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1 Introduction

In the previous work [1], we provided analysis of algebraic framework describing gauge

invariances of superstring field theories, which we call the Wess-Zumino-Witten-like struc-

ture, and showed that there exist (alternative) WZW-like actions which are off-shell equiv-

alent to A∞/L∞ actions given by [2]. In this paper, we focus on the NS-NS sector and

present details of analysis and its characteristic properties: some implicit or missing parts

and several important properties which remain unclear in [1] will be clarified. Through

these analysis, we will see that a pair of nilpotent products, which we call an L∞ triplet,

induces WZW-like framework and thus ensures the gauge invariances of superstring field

theories of [1–12].1

Formulation of superstring field theory has developed with understandings about how

we can obtain gauge-invariant operator insertions into string interactions. Particularly,

in [1–9], gauge invariant actions are constructed by operator insertions using first two

of (ξ(z), η(z);φ(z)), fermionic superconformal ghosts. Insertions of η(z) are very simple

because it has conformal weight 1 and is just a (nilpotent) current: on the basis of it,

a gauge-invariant action which has a WZW-like form was proposed by Berkovits in an

elegant way [3]. However, at the same time, these η-insertions enlarges the gauge symmetry

of the theory, and two nilpotent gauge generators appear. Insertions of ξ(z) are rather

complicated but also possible: using it with nonassociative regulators for [13, 14], Erler,

Konopka, and Sachs constructed an A∞ action [4]. This theory does not necessitate to

1Potentially, it goes for [10–12] and other earlier proposals. See the footnote 8 in section 5 and section 6.

Note that for the NS sector, its WZW-like structure is induced by a pair of commutative (cyclic) A∞/L∞
products.
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extend gauge symmetry. However, to be gauge invariant, a state Φ appearing in the action

must satisfy the constraint equation:
∮
η(z) Φ = 0 .

In the NS-NS sector, the situation becomes somewhat complicated: there exist three

nilpotent generators of gauge transformations, and we have to impose two constraint equa-

tions. To see this extended gauge symmetry, let us recall the kinetic term of an NS-NS

action, which was given by Berkovits based on his N = 4 topological prescription [5],

S[Ψ] = −1

2

〈
Ψ , Q η η̃Ψ

〉
+ . . . , (1.1a)

where Q is the BRST operator and 〈A,B〉 ≡ 〈A|c−0 |B〉 is the BPZ inner product with

c−0 ≡ 1
2(c0 − c̃0)-insertion. An NS-NS string field Ψ is total ghost number 0, left-moving

picture number 0, right-moving picture number 0 state in the left-and-right large Hilbert

space.2 We write η, η̃, ξ, and ξ̃ for the zero modes of η(z), η̃(z̃), ξ(z), and ξ̃(z̃), respectively.

As one expects from its construction, it is invariant under the gauge transformations

δΨ = ηΩ + η̃ Ω̃ +QΛ + . . . , (1.1b)

where Ω, Ω̃, and Λ denote gauge parameter fields. We thus have three nilpotent gauge

generators. When we include all interacting terms, three nonlinear extensions of these

nilpotent generators appear [1, 8, 9]. Then, a full action has a Wess-Zumino-Witten-like

form. To see constraints, it is helpful to consider the kinetic term3 of the L∞ action [2],

S[Φ] = −1

2

〈
ξ ξ̃Φ , QΦ

〉
+ . . . . (1.2a)

An NS-NS string field Φ is total ghost number 2, left-moving picture number −1, and

right-moving picture number −1 state satisfying two constraint equations: ηΦ = 0 and

η̃Φ = 0. One can find that if and only if Φ satisfies constraints, the action has gauge

invariance under

δΦ = Qλ+ . . . , (1.2b)

where the gauge parameter λ also satisfies constraints: η λ = 0 and η̃ λ = 0 . In [2], starting

from Zwiebach’s bosonic string products [15] and finding appropriate gauge invariant (ξ; ξ̃)-

insertions, they constructed suitable NS-NS products which satisfy (cyclic) L∞ relations,

LNS,NS : Q , L2( · , · ) , L3( · , · , · ) , L4( · , · , · , · ) , . . . ,

and gave a full action whose interacting terms satisfy L∞ relations. When we include all

interactions, to be gauge invariant (or to be cyclic), a state Φ appearing in the L∞ action

must satisfy two constraint equations: ηΦ = 0 and η̃Φ = 0 . From these analysis, we

2In this paper, we often call the state space whose superconformal ghost sector is spanned by

(ξ(z), η(z);φ(z)) and (ξ̃(z̃), η̃(z̃); φ̃(z̃)) as the left-and-right large Hilbert space H. Likewise, we call the

state space consists of states belonging to the kernels of both η and η̃ as the small Hilbert space HS. We

always impose (b0 − b̃0)Ψ = (L0 − L̃0)Ψ = 0 for all closed superstring field Ψ.
3Note that these two free actions are equivalent each other with linear partial gauge fixing or trivial

up-lift. For example, recall that Ψ of (1.1a) is obtained by an embedding of Φ of (1.2a) such as η η̃Ψ = Φ.
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achieve an idea that a triplet of three nilpotent objects determines the gauge structure of

the NS-NS theory: by identifying two of them as constraints, one can construct a gauge

invariant action.

Actually, on the basis of this idea, one can generalise or rephrase the construction of

the L∞ action as follows. Let ϕ be a dynamical string field. We first consider a state

Φηη̃[ϕ], which will be a functional of ϕ, satisfying two constraint equations,

ηΦηη̃[ϕ] = 0 ,

η̃Φηη̃[ϕ] = 0 .

Then, using this Φηη̃[ϕ], a gauge invariant action whose on-shell condition is given by

QΦηη̃[ϕ] +

∞∑
n=2

1

n!
Ln
( n︷ ︸︸ ︷

Φηη̃[ϕ] , . . . , Φηη̃[ϕ]
)

= 0

can be constructed: all properties we need are derived from constraint equations for Φηη̃[ϕ].

The resultant action has a WZW-like form and one can prove its gauge invariance via a

WZW-like manner without using specific properties of ϕ. As we will see in section 5, by

taking ϕ = Φ of (1.2a), it reduces to the original L∞ action of [2]. Namely, L∞ formulation

is completely described by a triplet of L∞ product (η, η̃ ; LNS,NS). Likewise, every known

actions for NS-NS superstring field theory potentially have their WZW-like forms described

by their L∞ triplets. For the most general form of the WZW-like structure and action, see

section 6 and appendix A.

Furthermore, there exist a dual triplet for this (η, η̃ ; LNS,NS), which has the completely

same information about the gauge structure of the NS-NS theory. Using this dual triplet,

one can construct alternative WZW-like action, which is our main focus. First, in section

2, we find that the NS-NS superstring product LNS,NS has two dual L∞ products:

Lα : α , [ · , · ]α , [ · , · , · ]α , [ · , · , · , · ]α , . . . (α = η , η̃ ) .

We will see that as well as η, η̃, or LNS,NS, these L∞ products have nice algebraic properties.

Then, one can consider the constraint equations provided by these Lη and Lη̃ :

ηΨηη̃[ϕ] +

∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃[ϕ] , . . . , Ψηη̃[ϕ]

]η
= 0 ,

η̃Ψηη̃[ϕ] +
∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃[ϕ] , . . . , Ψηη̃[ϕ]

]η̃
= 0 .

Using a state Ψηη̃[ϕ] satisfying these constraint equations, which will be a functional of some

dynamical string field ϕ, we construct a gauge invariant action whose on-shell condition is

Q Ψηη̃[ϕ] = 0 .

It also has a WZW-like form and one can prove its gauge invariance without details of ϕ,

which we explain in section 3. The L∞ triplet (Lη,Lη̃ ; Q) determines this WZW-like struc-

ture and action. All necessitated properties can be derived from the constraint equations
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for Ψηη̃[ϕ], and we give two explicit forms of this key functional Ψηη̃[ϕ] in section 4. As

we show in section 5, these WZW-like actions described by (Lη,Lη̃ ; Q) and (η, η̃ ; LNS,NS)

are off-shell equivalent, which would be an interesting aspect of the WZW-like structure.

Through these analysis, we would like to show that a triplet of mutually commutative L∞
products completely determines the WZW-like structure of NS-NS superstring field theory,

which is our main result.

In section 5, we present detailed properties of our WZW-like action. Firstly, we show

that as well as that of the NS sector, our WZW-like action of the NS-NS sector has a

single functional form which consists of single functionals Ψηη̃[ϕ] and elementally operators.

Secondly, using this single functional form, we prove the equivalence of two constructions

given in section 4. Thirdly, we clarify the relation to L∞ theory: we find that our WZW-like

action and the L∞ action are off-shell equivalent. Then we give a short discussion about

off-shell duality of equivalent L∞ triplets. Finally, we discuss the relation to the earlier

WZW-like theory proposed by [9]. With a brief summary of the WZW-like structure, we

end with conclusion in section 6. In appendix A, we discuss the WZW-like action based

on a general (nonlinear) L∞ triplet (Lc,Lc̃ ; Lp) . We show that as well as other known

WZW-like actions, it also satisfies the expected properties.

2 Two triplets of L∞

In this section, we present two triplets of mutually commutative L∞ products. The L∞
triplet completely determines the WZW-like action: its form, gauge structure and all

algebraic properties. As we will see, it gives the most fundamental ingredient of NS-NS

superstring field theory because every known actions potentially have the WZW-like form.

We write the graded commutator of two co-derivations D1 and D2 as[[
D1, D2

]]
≡ D1 D2 − (−)D1D2D2 D1 .

Note that it satisfies Jacobi identity exactly (without L∞ homotopy terms):[[
D1, [[D2 , D3 ]]

]]
+ (−)D1(D2+D3)

[[
D1, [[D2, D3 ]]

]]
+ (−)D3(D1+D2)

[[
D1, [[D2, D3 ]]

]]
= 0 .

Original L∞ triplet: (η, η̃ ; LNS,NS). As we explained, the constraint equations and

the of-shell condition of the L∞ action is described by a triplet of mutually commutative

L∞-products (η, η̃ ; LNS,NS), which is the first one of two L∞ triplets. The other L∞
triplet is its dual and has the completely same information. Before considering its dual,

let us recall how this L∞ product LNS,NS was constructed. In [2], they introduced a

generating function L(s, s̃ ; t) for a series of L∞ products, and required that L(0, 0; 0) ≡ Q

and L(1, 1 ; 0) gives Zwiebach’s string products of bosonic closed string field theory [15]. To

relate this L(s, s̃ ; t) with operator insertions, it is helpful to consider another generating

function µ(s, s̃ ; t) which has all information about operator insertions and will implicitly

determine the gauge invariance. They called this µ(s, s̃ ; t) as a gauge product. The NS-

NS L∞ products LNS,NS is included in this generating function L(s, s̃ ; t). By imposing or

– 4 –
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solving the recursive equations,

∂

∂s
L(s, s̃ ; t) =

[[
η , µ(s, s̃ ; t)

]]
,

∂

∂s̃
L(s, s̃ ; t) =

[[
η̃ , µ(s, s̃ ; t)

]]
,

with the initial conditions, one can obtain an appropriate L(s, s̃ ; t) from µ(s, s̃ ; t), and

vice versa. This L(s, s̃ ; t) is a series of L∞ products with operator insertions satisfying

[[ L ,η ]] = 0 and [[ L , η̃ ]] = 0 . As shown in [2], explicit forms of L(s, s̃ ; t) and µ(s, s̃ ; t) can

be determined by solving the recursive equation,

∂

∂t
L(s, s̃ ; t) =

[[
L(s, s̃ ; t) , µ(s, s̃ ; t)

]]
,

which ensures L∞ relations [[ L ,L ]] = 0 . Using these L(s, s̃ ; t) and µ(s, s̃ ; t) , the NS-NS

superstring L∞ products LNS,NS is given by the s = 0, s̃ = 0, and t = 1 value of L(s, s̃ ; t) :

LNS,NS ≡ L(s = 0, s̃ = 0; t = 1) .

We write Ln for the n-th product of LNS,NS as follows,

Ln
(
A1 , . . . , , An

)
≡ π1 LNS,NS

(
A1 ∧ . . . ∧An

)
.

Note that this µ(s, s̃ ; t) has all information about gauge-invariant operator insertions

and thus about how to construct the NS-NS products. Once we determine µ(s, s̃ ; t), how

to gauge-invariantly insert ξ, ξ̃, and picture-changing operators, the NS-NS L∞ product

LNS,NS is given by the t = 1 value solution of the linear differential equation

∂

∂t
LNS,NS(t) =

[[
LNS,NS(t) , µ(t)

]]
with the initial condition LNS,NS(t = 0) = Q, where µ(t) ≡ µ(s = 0, s̃ = 0; t). Hence, we

can solve it by iterated integration (with direction) and have the following expression,

LNS,NS =
→
P exp

[
−
∫ t

0
dtµ(t)

]
Q
←
P exp

[ ∫ t

0
dtµ(t)

]
.

For brevity, we write Ĝ for this iterated integral with direction and write LNS,NS =

Ĝ−1 Q Ĝ :

Ĝ ≡
←
P exp

[ ∫ t

0
dtµ(t)

]
.

It is a path-ordered exponential of coderivation µ, and thus a natural cohomomorphism of

L∞ algebras. In this form, L∞ relations look trivial: (L)2 = Ĝ−1(Q)2 Ĝ = 0. Using this

form, we find two dual L∞ products for LNS,NS and a dual of the L∞ triplet (η, η̃ ; LNS,NS) .

– 5 –
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Dual L∞ triplet: (Lη,Lη̃ ; Q). By construction, the NS-NS product LNS,NS commutes

with two L∞ products η and η̃ : [[η ,LNS,NS ]] = 0 and [[ η̃ ,LNS,NS ]] = 0 . Thus, there exist

two dual L∞ products for LNS,NS. Using path-ordered exponential map Ĝ, one can obtain

these dual L∞ products as follows,

Lη ≡ Ĝη Ĝ−1 , (2.1a)

Lη̃ ≡ Ĝ η̃ Ĝ−1 . (2.1b)

One can quickly find that these products satisfy L∞ relations (Lα)2 = Ĝ (α)2 Ĝ−1 = 0

because of (α)2 = 0 for α = η, η̃ , and have Q-derivation properties

Q Lα = Ĝ (Ĝ−1 Q Ĝ)α Ĝ−1 = −Ĝα (Ĝ−1 Q Ĝ) Ĝ−1 = −LαQ

because of [[ LNS,NS,α ]] = 0 for α = η, η̃, which will provide nonlinear extensions of con-

straint equations. Hence, as well as (η, η̃ ; LNS,NS), the triplet of L∞-products (Lη,Lη̃ ; Q)

is nilpotent and mutually commutative. Note that we found the correspondence of the

commutativity:[[
α , LNS,NS

]]
= 0 ⇐⇒

[[
Lα , Q

]]
= 0 , (α = η, η̃) . (2.2)

It is owing to an invertible cohomomorphism Ĝ, and thus the L∞ triplet (Lη,Lη̃ ; Q) has

the completely same information as (η, η̃ ; LNS,NS). We thus call (Lη,Lη̃ ; Q) as the dual

L∞ triplet. When Ĝ is cyclic in the BPZ inner product, this correspondence provides the

equivalence of WZW-like actions governed by equivalent L∞ triplets (See section 5.). In

this paper, we write the n-th product of Lα as follows,

[A1, . . . , An]α := π1Ĝα Ĝ−1(A1 ∧ · · · ∧ An), (α = η, η̃).

Nilpotent relations and derivation properties

For later use, we present explicit forms of algebraic relations satisfied by (Lη,Lη̃ ; Q) and

some details of related properties. The dual L∞ product Lα for α = η, η̃ satisfies L∞-

relations, (Lα)2 = 0. In terms of the n-th component, we have∑
σ

n∑
k=1

(−)|σ|
[
[Aiσ(1)

, . . . , Aiσ(k)
]α, Aiσ(k+1)

, . . . , Aiσ(n)

]α
= 0 , (2.3a)

where σ runs over all possible permutations and (−)|σ| denotes the sign of the corresponding

permutation. Likewise, LαQ + Q Lα = 0 implies that we have Q-derivation properties ,

Q
[
A1, . . . , An

]α
+
n−1∑
i=1

(−)A1+···+Ak−1
[
A1, . . . , QAk, . . . , An

]α
= 0 , (2.3b)

where the upper index of (−)A means the grading of A, namely, the total ghost number of

A. The commutativity Lη Lη̃ + Lη̃ Lη = 0 provides∑
α1,α2=η,η̃

∑
σ

n∑
k=1

(−)|σ|
[
[Aσ(1), . . . , Aσ(k)]

α1 , Aσ(k+1), . . . , Aσ(n)

]α2 = 0 . (2.3c)

– 6 –
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The lowest relation of (2.3c) is just η η̃ + η̃ η = 0, which would be very familiar. One can

quickly find that the second lowest relation of (2.3c) is given by

η
[
A ,B

]η̃
+
[
η A ,B

]η̃
+ (−)A

[
A , η B

]η̃
+η̃
[
A ,B

]η
+
[
η̃ A ,B

]η
+ (−)A

[
A , η̃ B

]η
= 0,

which is the matching of (crossed) Leibniz rules. Similarly, one can derive any higher

relations of (2.3c). It may look a little complicated, but it is powerful and exact.

Maurer-Cartan element and shifted L∞. There is a special element of the L∞
algebra of Lα for α = η, η̃,

MCLα(A) ≡ αA+
∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
A , . . . , A

]α
,

which we call the Maurer-Cartan element for Lα. As we will see, this element plays central

role in WZW-like theory: it appears in the constraint equations, in the on-shell condition,

and in the WZW-like action. Likewise, we often referMCQ(A) ≡ QA as the Maurer-Cartan

element for Q . There is an natural operation, a shift of the products, in L∞ algebras. For

any state A, the A-shifted products are defined by

[
B1 , . . . , Bn

]α
A
≡
∞∑
n=0

1

n!

[ n︷ ︸︸ ︷
A , . . . , A ,B1 , . . . , Bn

]α
.

Note that the Maurer-Cartan element MCLα(A) behaves as the A-shifted 0-th product.

One can check that with MCLα(A), the A-shifted products satisfy weak L∞ relations:∑
σ

n∑
k=1

(−)|σ|
[[
Bσ(1), . . . , Bσ(k)

]α
A
, Bσ(k+1), . . . , Bσ(n)

]α
A

= −
[
MCLα(A), B1, . . . , Bn

]α
A
.

(2.4a)

It implies that when given state A satisfies the Maurer-Cartan equation MCLα(A) = 0,

then the A-shifted products exactly satisfy the L∞ relations. Similarly, one can consider

the shift of (2.3c) and obtain the weakly commuting relations of two A-shifted products:∑
α1,α2=η,η̃

∑
σ

n∑
k=1

(−)|σ|
[[
Bσ(1) , . . . , Bσ(k)

]α1

A
, Bσ(k+1) , . . . , Bσ(n)

]α2

A

= −
[
MCLη(A) , B1 , . . . , Bn

]η̃
A
−
[
MCLη̃(A) , B1 , . . . , Bn

]η
A
. (2.4b)

We thus find that two A-shifted products commute if and only if given state A satisfies both

of the Maurer-Cartan equations MCLη(A) = 0 and MCLη̃(A) = 0 . Using these relations,

we prove the gauge invariance of the WZW-like action for NS-NS superstring field theory.

3 WZW-like action

Once we have a triplet of mutually commutative L∞-products (Lη,Lη̃ ; Q), by using these

to provide constraints or on-shell equations, we can construct a gauge invariant action,

which we explain in this section. We would like emphasis that one can achieve the gauge

invariance without using detailed properties of a dynamical string field of the theory. All

we need are two functional fields and their algebraic relations.

– 7 –
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Algebraic ingredients

In our WZW-like formulation of the NS-NS sector, two L∞-products Lη and Lη̃ are used

to define constraint equations for (functional) fields, the other L∞-product Q is used to

give the on-shell condition, and their mutual commutativity ensures the gauge invariance.

A functional field Ψηη[ϕ] satisfying these constraint equations plays the most important

role, which we call a pure-gauge-like (functional) field. With this functional Ψηη̃[ϕ], the

commutativity of L∞-products induces key algebraic relations, WZW-like relations. They

make possible to prove the gauge invariance without details of the dynamical string field

ϕ of the theory.

WZW-like functional field. Let Ψηη̃ = Ψηη̃[ϕ] be a Grassmann even, ghost number 2,

left-moving picture number −1, and right-moving picture number −1 state in the left-and-

right large Hilbert space: η η̃Ψηη̃ 6= 0. We call this Ψηη̃ a pure-gauge-like (functional) field

when Ψηη̃ satisfies the constraint equations:

ηΨηη̃ +

∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃ , . . . ,Ψηη̃

]η
= 0, (3.1a)

η̃Ψηη̃ +
∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃ , . . . ,Ψηη̃

]η̃
= 0. (3.1b)

In other words, Ψηη̃[ϕ] gives a solution of the Maurer-Cartan equations for the both dual

products (2.1a) and (2.1b). Therefore, two Ψηη̃[ϕ]-shifted products again have L∞ relations

and commute each other. One can define two linear operators Dη and Dη̃ acting on any

state A by

DαA ≡ αA+

∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃ , . . . ,Ψηη̃ , A

]α
, (α = η, η̃),

and two bilinear products of any states A and B by

[
A ,B

]α
Ψηη̃
≡
[
A ,B

]α
+

∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃ , . . . ,Ψηη̃ , A ,B

]α
, (α = η, η̃).

Then, as the first identity of (2.4a), one can quickly find that Dη and Dη̃ are nilpotent,

(Dα)2A = 0 , (α = η, η̃). (3.2a)

As the second identity of (2.4a), the bilinear product satisfies Liebniz rules,

Dα

[
A ,B

]α
Ψηη̃

+
[
DαA ,B

]α
Ψηη̃

+ (−)A
[
A ,DαB

]α
Ψηη̃

= 0. (3.2b)

Likewise, as the first identity of (2.4b), we have the (anti-) commutation relation,(
DηDη̃ +Dη̃Dη

)
A = 0, (3.2c)

and as the second identity of (2.4b), we can find matching of crossed Liebniz rules,

Dη

[
A , B

]η̃
Ψηη̃

+
[
Dη A , B

]η̃
Ψηη̃

+ (−)A
[
A , Dη B

]η̃
Ψηη̃

+Dη̃

[
A , B

]η
Ψηη̃

+
[
Dη̃ A , B

]η
Ψηη̃

+ (−)A
[
A , Dη̃ B

]η
Ψηη̃

= 0 . (3.2d)
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WZW-like relations. Let D be a derivation operator for both L∞-products Lη and

Lη̃ : namely,

(−)D D
[
A1, . . . , An

]α
=

n∑
k=1

(−)D(A1+···+Ak−1)
[
A1, . . . ,DAk, . . . , An

]α
, (α = η, η̃)

holds for any states A1, . . . , An ∈ H . For example, since the BRST operator Q, a partial

differential ∂t with respect to any formal parameter t ∈ R, and the variation δ of the

dynamical string field satisfy the Leibniz rule for these L∞-products Lη and Lη̃, one can

take D = Q, ∂t, or δ. By acting this D on the constraint equations (3.1a) and (3.1b), we

find Dη(D Ψηη̃) = 0 and Dη̃(D Ψηη̃) = 0. Nilpotent properties (Dη)
2 = 0 and (Dη̃)

2 = 0

imply that with some (functional) state ΨD[ϕ] belonging to the left-and-right large Hilbert

space H, we have

−(−)D D Ψηη̃[ϕ] = DηDη̃ ΨD[ϕ] , (3.3)

which is the most important relation in the WZW-like formulation of the NS-NS sector,

the WZW-like relation. Note that the existence of the (functional) state ΨD[ϕ] is ensured

by the fact4 that both Dη-complex and Dη̃-complex are exact in the left-and-right large

Hilbert space H . We call this ΨD[ϕ] satisfying (3.3) as an associated (functional) field.

When the derivation operator D has ghost number g, left-moving picture number p,

and right-moving picture p̃, the associated field ΨD[ϕ] has the same quantum numbers: its

ghost number is g, left-moving picture number is p, and right-moving picture number is p̃.

We started with the L∞ triplet (Lη,Lη̃ ; Q) and obtained the above algebraic ingre-

dients by using two of it as constraints of theory. What is the use of the last L∞? As we

will see, its Maurer-Cartan equation gives a constraint describing the mass shell with the

above Ψηη̃[ϕ] :

QΨηη̃[ϕ] = 0 . (3.4)

Note that this (3.4) is also a special case of (3.3). Thus, the above three relations (3.1a),

(3.1b), and (3.3) are fundamental, and we often call them as Wess-Zumino-Witten-like

relations in NS-NS superstring field theory.

Action, equations of motion, and gauge invariances

Let ϕ be a dynamical NS-NS string field and ϕ(t) be a path satisfying ϕ(0) = 0 and

ϕ(1) = ϕ, where t ∈ [0, 1] is a real parameter. Once we obtain Ψηη̃[ϕ] and ΨD[ϕ] as

functionals of given dynamical string field ϕ, we can construct a WZW-like action for

NS-NS string field theory:

Sηη̃[ϕ] =

∫ 1

0
dt
〈
Ψt[ϕ(t)], QΨηη̃[ϕ(t)]

〉
, (3.5)

4In section 5, we will see this fact again.
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where Ψt[ϕ(t)] denotes ΨD[ϕ(t)] with D = ∂t, the t-differential associated (functional)

field. As we will see, using the variational associated (functional) field ΨD[ϕ] with D = δ,

the variation of this action is given by t-independent form:

δSηη̃[ϕ] =
〈
Ψδ[ϕ], QΨηη̃[ϕ]

〉
. (3.6)

Then, the WZW-like relation (3.3) implies that the gauge transformations are given by

Ψδ[ϕ] = Dη Ω +Dη̃ Ω̃ +QΛ. (3.7)

The equation of motion is given by t-independent form

QΨηη̃[ϕ] = DηDη̃ ΨQ[ϕ] = −Dη̃Dη ΨQ[ϕ] = 0. (3.8)

One can quickly find these facts by using only WZW-like relations, (3.1a), (3.1b), and (3.3),

which we explain in the rest.5

Variation of the action

Let us recall basic properties of L∞-products and the BPZ inner product. The inner

product 〈A,B〉 includes the c−0 -insertion.6 Hence, for D′ = Dη, Dη̃, or Q, we have7

〈
D′A , B

〉
= (−)D

′A
〈
A , D′B

〉
, (3.9a)

and for α = η, η̃, we can use the following cyclic and symmetric properties:〈
A ,
[
B , C

]α
Ψηη̃

〉
= (−)AB

〈
B ,

[
A , C

]α
Ψηη̃

〉
= (−)A(B+C)

〈
B ,

[
C , A

]α
Ψηη̃

〉
. (3.9b)

For D = ∂t, δ, or Q, because of the derivation properties of Lα, we find

(−)DD
(
DαA

)
−Dα

(
DA

)
−
[
D Ψηη̃ , A

]α
Ψηη̃

= 0 , (α = η, η̃). (3.9c)

In particular, note that with setting A = Ψt and B = DηΨδ, the relation (3.2d) provides

Dη̃

(
Dη[A,B]η̃Ψηη̃ + [Dη̃A,B]ηΨηη̃ + [DηA,B]η̃Ψηη̃ + [A,Dη̃B]ηΨηη̃

)
= 0. (3.10)

We prove that when we have WZW-like functional fields Ψηη̃[ϕ] and ΨD[ϕ] which

satisfy (3.3), our NS-NS action Sηη̃[ϕ] has topological t-dependence of (3.6). We carry out

a direct computation of the variation of the action:

δSηη̃[ϕ] =

∫ 1

0
dt
(〈
δΨt[ϕ(t)], QΨηη̃[ϕ(t)]

〉
+
〈
Ψt[ϕ(t)], δ

(
QΨηη̃[ϕ(t)]

)〉)
.

5These computations are similar to those of the earlier WZW-like action [9].
6In the left-and-right large Hilbert space, the inner product 〈A,B〉 vanishes unless the sum of A’s and

B’s total ghost, left-moving picture, and right-moving picture numbers are 3, −1, and −1, respectively.
7The prime denotes that we focus only on the BPZ property and we do not require the derivation

property.
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For brevity, we omit ϕ(t)-dependence of functionals: we do not need it in computations.

Using (3.8) in addition to (3.2) and (3.3), we find that the second term can be transformed

into 〈Ψδ, ∂t(QΨηη̃)〉 plus extra terms:〈
Ψt, δ(QΨηη̃)

〉
= 〈Ψt, QDη̃DηΨδ〉

= 〈Ψt, Dη̃DηQΨδ〉 − 〈Ψt, [QΨηη̃, DηΨδ]
η̃
Ψηη̃
〉+ 〈Ψt, Dη̃[QΨηη̃, Ψδ]

η
Ψηη̃
〉

= − 〈Ψδ, QDηDη̃Ψt〉 − 〈QΨηη̃, [Ψt, DηΨδ]
η̃
Ψηη̃
〉 − 〈QΨηη̃, [Dη̃Ψt, Ψδ]

η
Ψηη̃
〉

= 〈Ψδ, ∂t
(
QΨηη̃

)
〉+ 〈ΨQ, Dη̃Dη

(
[Ψt, DηΨδ]

η̃
Ψηη̃

+ [Dη̃Ψt, Ψδ]
η
Ψηη̃

)
〉

=
〈
Ψδ, ∂t

(
QΨηη̃

)〉
+
〈
ΨQ, [Dη̃DηΨt, Ψδ]

η
Ψηη̃
〉

+ 〈ΨQ, Dη̃

(
Dη[Ψt, DηΨδ]

η̃
Ψηη̃

+ [Dη̃Ψt, DηΨδ]
η
Ψηη̃

)
〉. (3.11a)

Likewise, we find the first term of the variation becomes 〈∂tΨδ, QΨηη̃〉 plus extra terms:〈
δΨt, QΨηη̃

〉
= −〈Dη̃DηδΨt,ΨQ〉

= −〈δ
(
Dη̃DηΨt

)
,ΨQ〉+ 〈[δΨηη̃, DηΨt]

η̃
Ψηη̃

,ΨQ〉+ 〈Dη̃[δΨηη̃,Ψt]
η
Ψηη̃

,ΨQ〉

= −〈∂t
(
δΨηη̃

)
,ΨQ〉+ 〈ΨQ, [DηΨt, δΨηη̃]

η̃
Ψηη̃

+Dη̃[Ψt, δΨηη̃]
η
Ψηη̃
〉

= −〈∂t
(
Dη̃DηΨδ

)
,ΨQ〉+ 〈ΨQ, [DηΨt, Dη̃DηΨδ]

η̃
Ψηη̃

+Dη̃[Ψt, Dη̃DηΨδ]
η
Ψηη̃
〉

= −〈Dη̃Dη∂tΨδ,ΨQ〉 − 〈[∂tΨηη̃, DηΨδ]
η̃
Ψηη̃

+Dη̃[δΨηη̃,Ψδ]
η
Ψηη̃

,ΨQ〉

+ 〈ΨQ, [DηΨt, Dη̃DηΨδ]
η̃
Ψηη̃

+Dη̃[Ψt, Dη̃DηΨδ]
η
Ψηη̃
〉

= 〈∂tΨδ, DηDη̃ΨQ〉 − 〈ΨQ, [Dη̃DηΨt, DηΨδ]
η̃
Ψηη̃

+Dη̃[Dη̃DηΨt,Ψδ]
η
Ψηη̃
〉

+ 〈ΨQ, [DηΨt, Dη̃DηΨδ]
η̃
Ψηη̃

+Dη̃[Ψt, Dη̃DηΨδ]
η
Ψηη̃
〉

=
〈
∂tΨδ, QΨηη̃

〉
+
〈
ΨQ, [DηDη̃Ψt,Ψδ]

η
Ψηη̃

〉
+
〈
ΨQ, Dη̃

(
[DηΨt, DηΨδ]

η̃
Ψηη̃

+ [Ψt, Dη̃DηΨδ]
η
Ψηη̃

)〉
. (3.11b)

If and only if the sum of these extra terms vanishes, the action (3.5) has a topological

t-dependence. However, (3.10) ensure the cancellation of these extra terms, and we find

(3.11a) + (3.11b) =
〈
∂tΨδ, QΨηη̃

〉
+
〈
Ψδ, ∂t

(
QΨηη̃

)〉
.

Using ϕ(0) = 0 and ϕ(1) = ϕ, it concludes our proof of (3.6):

δSηη̃[ϕ] =

∫ 1

0
dt

∂

∂t

〈
Ψδ[ϕ(t)], QΨηη̃[ϕ(t)]

〉
=
〈
Ψδ[ϕ], QΨηη̃[ϕ]

〉
.

In summary, for fixed L∞ triplet (Lη,Lη̃ ; Q), we first consider a functional Ψηη̃ satis-

fying constraint equations (3.1a) and (3.1b) defined by two of it, Lη and Lη̃. Next, using

this Ψηη̃, we estimate the WZW-like relation (3.3) and derive the other functional ΨD,

which gives a half input of the action. Lastly, using Ψηη̃, we consider the Maurer-Cartan

element of the remaining L∞ product Q, which provides the on-shell condition (3.4) and

thus the other half of the action. Then, combining these, we can obtain a gauge invariant

WZW-like action (3.5).
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4 Two constructions

As we showed in section 3, when two states Ψηη[ϕ] and ΨD[ϕ] satisfying (3.3) are obtained,

one can find the WZW-like action (3.5). Therefore, the construction of actions is equivalent

to finding explicit expressions of these functionals in terms of the dynamical string field ϕ.

In this section, we present two different expressions of these Ψηη̃, ΨD using two different

dynamical string fields Φ and Ψ. It gives two different realisations of our WZW-like action,

which we call small-space parametrisation Sηη̃[Φ] and large-space parametrisation Sηη̃[Ψ].

Through these constructions, we also see that once we have Ψηη̃[ϕ] explicitly as a

functional of ϕ, the other functional ΨD[ϕ] can be derived from Ψηη̃[ϕ]. It would suggest

that Ψηη̃ is the fundamental ingredient in WZW-like theory, which we will discuss in the

next section.

Small-space parametrisation: ϕ = Φ

We write Φ for a NS-NS dynamical string field belonging to the small Hilbert space: ηΦ = 0

and η̃Φ = 0. This Φ is a Grassmann even, total ghost number 2, left-moving picture number

−1, and right-moving picture number −1 state.

Pure-gauge-like (functional) field Ψηη̃[Φ]. As a functional of Φ, the pure-gauge-like

field Ψηη̃ = Ψηη̃[Φ] can be constructed by

Ψηη̃[Φ] ≡ π1Ĝ
(
e∧Φ

)
. (4.1)

Note that co-homomorphism Ĝ preserves the total ghost, left-moving picture, and right-

moving picture numbers and this Ψηη̃[Φ] has correct quantum numbers as a pure-gauge-

like field. Thus, to show it, we have to check that (4.1) indeed satisfies the constraint

equations (3.1a) and (3.1b).

Recall that in coalgebraic notation, we can write (3.1a) and (3.1b) as follows:

π1 Lα
(
e∧Ψηη̃ [ϕ]

)
= 0 , (α = η, η̃).

Since Ψηη̃[Φ] is given by using the group-like element, the following relation holds:

e∧Ψηη̃ [Φ] = e∧π1Ĝ(e∧Φ) = Ĝ
(
e∧Φ

)
.

Because of (2.1a) and (2.1b), one can quickly find that (4.1) satisfies

Lα
(
e∧Ψηη̃ [Φ]

)
= (Ĝα Ĝ−1) Ĝ

(
e∧Φ

)
= Ĝα

(
e∧Φ

)
= 0 , (α = η, η̃) ,

which provides a proof that (4.1) gives a pure-gauge-like (functional) field. In the last

equality, we used the properties of the dynamical string fields: ηΦ = 0 and η̃Φ = 0.

Thus, in this small-space parametrisation ϕ = Φ, it is the origin of all algebraic relations

of WZW-like theory.

– 12 –



J
H
E
P
0
5
(
2
0
1
7
)
0
9
5

Associated (functional) field ΨD[Φ]. Similarly, as functionals of Φ, the associated

(functional) field ΨD = ΨD[Φ] with D = ∂t or D = δ can be constructed by

ΨD[Φ] ≡ π1Ĝ
(
ξ ξ̃D Φ ∧ e∧Φ

)
, (4.2a)

and the associated (associated) field ΨQ[Φ] can be given by

ΨQ[Φ] ≡ π1ĜQξξ̃
(
e∧Φ

)
, (4.2b)

where Qξξ̃ is a coderivation operation which we will define below.

Recall that Ψηη̃ satisfies the constraint equations (3.1a) and (3.1b), and thus D Ψηη =

Dη-exact = Dη̃-exact holds, which implies the existence of ΨD satisfying (3.3). One can

derive an explicit form of the functional ΨD[Φ] from Ψηη̃[Φ] in this manner.

Using the graded commutator of two coderivations D1 and D2,[[
D1 , D2

]]
≡ D1 D2 − (−)D1D2D2 D1 ,

we can write [[ Lα,D ]] = 0 for the mutual commutative properties of Lα = Ĝα Ĝ−1 for

α = η, η̃ . Note that Iff D is linear, the mutual commutativity [[ Lα,D ]] = 0 gives just the

D-derivation property. Then, we notice the following correspondence of the commutativity:[[
Ĝα Ĝ−1, D

]]
= 0 ⇐⇒

[[
α , Ĝ−1D Ĝ

]]
= 0 .

Namely, the co-derivation Ĝ−1D Ĝ commutes with both η and η̃ . Hence, because of

η-exactness and η̃-exactness, there exist a coderivation Dξξ̃ such that

Ĝ−1D Ĝ = −(−)D
[[
η , [[ η̃ , Dξξ̃ ]]

]]
.

Note that any derivation D can be lift to the corresponding coderivation, for which we also

write D, because it is a linear map. For example, when D = ∂t and D = δ, the above

coderivation Dξξ̃ is just the operations assigning ξξ̃D on each slot because of D Ĝ = Ĝ D .

Using Dξξ̃ and the properties of the dynamical string field, ηΦ = 0 and η̃Φ = 0, we find

(−)DD Ĝ
(
e∧Φ

)
= −Ĝ

[[
η , [[ η̃ , Dξξ̃ ]]

]] (
e∧Φ

)
= −Ĝη η̃Dξξ̃

(
e∧Φ

)
= −Lη Lη̃ ĜDξξ̃

(
e∧Φ

)
= −Lη

(
π1L

η̃
(
π1ĜDξξ̃ (e∧Φ) ∧ e∧π1Ĝ(e∧Φ)

)
∧ e∧π1Ĝ(e∧Φ)

)
.

Note that with (4.1), the linear operator Dα for α = η, η̃ can be written as

Dα = π1L
α
(
I ∧ e∧π1Ĝ(e∧Φ)

)
, (α = η, η̃) .

We thus find that if we define the associated field ΨD[Φ] by the following functional of Φ,

ΨD[Φ] ≡ π1ĜDξξ̃ (e∧Φ) ,

which reduces to (4.2a) and (4.2b), the Wess-Zumino-Witten-like relation (3.3) in-

deed holds:

(−)DD Ψηη̃[Φ] = −DηDη̃ ΨD[Φ].
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Large-space parametrisation: ϕ = Ψ

We write Ψ for a dynamical NS-NS string field which belongs to the left-and-right large

Hilbert space: ηΨ 6= 0, η̃Ψ 6= 0, and ηη̃Ψ 6= 0. This Ψ has total ghost number 0, left-moving

picture number 0, and right-moving picture number 0.

Pure-gauge-like (functional) field Ψηη̃[Ψ]. Let us consider the solution Ψηη̃[τ ; Ψ] of

the following differential equation,

∂

∂τ
Ψηη̃[τ ; Ψ] = Dη(τ)Dη̃(τ) Ψ (4.3)

with the initial condition Ψηη̃[τ = 0; Ψ] = 0, where for any state A ∈ H, we define

Dα(τ)A ≡ αA+

∞∑
n=0

1

n!

[ n︷ ︸︸ ︷
Ψηη̃[τ ; Ψ], . . . ,Ψηη̃[τ ; Ψ], A

]α
, (α = η, η̃) .

A pure-gauge-like (functional) field Ψηη̃[Ψ] is obtained as the τ = 1 value solution

Ψηη̃[Ψ] ≡ Ψηη̃[τ = 1; Ψ]. (4.4)

Note that (4.3) has the same form as the defining equation of a pure gauge field in bosonic

string field theory [16], which is the origin of the name pure-gauge-like (functional) field.

We check that this Ψηη̃[Ψ] satisfies (3.1a) and (3.1b). For this purpose, we set

MCLα(τ) ≡ αΨηη̃[τ ; Ψ] +

∞∑
n=1

1

n!

[ n︷ ︸︸ ︷
Ψηη̃[τ ; Ψ] , . . . ,Ψηη̃[τ ; Ψ]

]α
, (α = η, η̃).

Because of the initial condition Ψηη̃[0; Ψ] = 0 of (4.3), it satisfiesMCLα(0) = 0. Using (4.3)

and (2.4a), we obtain the following linear differential equation

∂

∂τ
MCLα(τ) = Dα(τ) ∂τΨηη̃[τ ; Ψ]

= (−)|α|
[
MCLα(τ) , Dα̃(τ)Ψ

]α
Ψηη̃ [τ ;Ψ]

, (4.5)

where (−)|α| denotes −1 for α = η and +1 for α = η̃. The initial condition MCLα(τ) = 0

provides that we have MCLα(τ) = 0 for any τ , which ensures (4.4) indeed satisfies (3.1a)

and (3.1b) and gives a proof that (4.4) is a pure-gauge-like (functional) field. By the

iterated integral of (4.3), one can quickly find that a few terms of (4.4) are given by

Ψηη̃[Ψ] = ηη̃Ψ +
1

2

([
ηη̃Ψ, η̃Ψ

]η
+ η

[
ηη̃Ψ,Ψ

]η̃)
+ . . . .

In this parametrisation, the properties of the dynamical string field η η̃Ψ 6= 0 makes possible

to use Ψ itself just like a gauge parameter of the nilpotent transformations generated by

Lη̃ and Lη̃, and to have a pure-gauge-like field Ψηη̃[Ψ] as a functional of Ψ. (Note that

they are not the gauge transformations of our theory; it only reminds us those of other

theories.)
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Associated (functional) field ΨD[Ψ]. We consider the following differential equation

− ∂

∂τ
ΨD[τ ; Ψ] = (−)DD Ψ +

[
Dη(τ)Ψ ,ΨD[τ ; Ψ]

]η̃
Ψηη̃ [τ ;Ψ]

+
[
Ψ , Dη̃(τ)ΨD[τ ; Ψ]

]η
Ψηη̃ [τ ;Ψ]

,

(4.6)

with the initial condition ΨD[0; Ψ] = 0 up to Dη-exact or Dη̃-exact terms. An associated

(functional) field ΨD[Ψ] is obtained by the τ = 1 value solution of (4.6),

ΨD[Ψ] ≡ ΨD[τ = 1; Ψ] . (4.7)

As Dη-exacts and Dη̃-exacts does not affect in the first slot of (3.5), this ΨD is determined

up to these. To prove (4.7) satisfy (3.3), we set

I(τ) ≡ DηDη̃ ΨD[τ ; Ψ] + (−)D D Ψηη̃[τ ; Ψ].

Note that iff we prove I(τ) = 0 for any τ , it implies we have an appropriate associated

field ΨD[Ψ]. Using (3.2) and (4.3), we find

∂

∂τ
I(τ) =

[
∂τΨηη̃, Dη̃ΨD

]η
Ψηη̃

+Dη

[
∂τΨηη̃,ΨD

]η̃
Ψηη̃

+DηDη̃ ∂τΨD + (−)DD ∂τΨηη̃

=
[
DηDη̃Ψ, Dη̃ΨD

]η
Ψηη̃

+Dη

[
DηDη̃Ψ,ΨD

]η̃
Ψηη̃

+DηDη̃ ∂τΨD + (−)DDDηDη̃Ψ

=
{
−Dη

[
Dη̃Ψ, Dη̃ΨD

]η
Ψηη̃

+
[
Dη̃Ψ, DηDη̃ΨD

]η
Ψηη̃

}
−Dη

[
DηΨ, Dη̃ΨD

]η̃
Ψηη̃

+
{[

D Ψηη̃, Dη̃Ψ
]η
Ψηη̃

+Dη

[
(−)DD Ψηη̃,Ψ

]η̃
Ψηη̃

}
+DηDη̃

(
∂τΨD + (−)DD Ψ +

[
DηΨ,ΨD

]η̃
Ψηη̃

)
=
[
Dη̃Ψ, I(τ)

]η
Ψηη̃

+Dη

[
Ψ, I(τ)

]η̃
Ψηη̃

+DηDη̃

(
∂τΨD + (−)DD Ψ +

[
DηΨ,ΨD

]η̃
Ψηη̃

+
[
Ψ, Dη̃ΨD

]η
Ψηη̃

)
. (4.8)

From the third equal to the forth equal, we used the following identity:

−Dη

[
DηΨ, Dη̃ΨD

]η̃
Ψηη̃

= DηDη̃

[
Ψ, Dη̃ΨD

]η
Ψηη̃

+Dη

[
Dη̃Ψ, Dη̃ΨD

]η
Ψηη̃

+Dη

[
Ψ, (Dη̃)

2ΨD

]η
Ψηη̃

+ (Dη)
2
[
Ψ, Dη̃ΨD

]η̃
Ψηη̃

+Dη

[
Ψ, DηDη̃ΨD

]η̃
Ψηη̃

= DηDη̃

[
Ψ, Dη̃ΨD

]η
Ψηη̃

+Dη

([
Dη̃Ψ, Dη̃ΨD

]η
Ψηη̃

+
[
Ψ, DηDη̃ΨD

]η̃
Ψηη̃

)
.

When ΨD[τ ; Ψ] satisfies (4.6) up to Dη -exacts and Dη̃-exacts, we have

∂

∂τ
I(τ) =

{
Ψ , I(τ)

}
Ψηη̃(τ)

,

which is the same type of differential equations as (4.5), where {A,B}Ψηη̃ is defined by{
A ,B

}
Ψηη̃(τ)

≡
[
Dη̃(τ)A ,B

]η
Ψηη̃ [τ ;Ψ]

+Dη(τ)
[
A ,B

]η̃
Ψηη̃ [τ ;Ψ]

.
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The initial condition I(0) = 0 provides that we have I(τ) = 0 for any τ , which gives a proof

that (4.7) satisfies (3.3). For example, one can quickly find a few terms of Ψt[Ψ(t)] are

Ψt[Ψ(t)] = −∂tΨ(t) +
1

2

([
ηΨ(t), ∂tΨ(t)

]η̃
+
[
Ψ(t), η̃ ∂tΨ(t)

]η)
+ . . . .

On the Dη-exacts and Dη̃-exacts. We found a defining equation (4.6) of ΨD[Ψ]. Since

it is up to Dη-exacts and Dη̃-exacts, one can find another expression. Note that we have

the following identity([
DηΨ ,ΨD

]η̃
Ψηη̃

+
[
Ψ, Dη̃ΨD

]η
Ψηη̃

)
+
([
Dη̃Ψ,ΨD

]η
Ψηη̃

+
[
Ψ , DηΨD

]η̃
Ψηη̃

)
= −Dη

[
Ψ ,ΨD

]η̃
Ψηη̃
−Dη̃

[
Ψ ,ΨD

]η
Ψηη̃

which provides another expression of (4.8):

∂

∂τ
I(τ) =

{
Ψ, I(τ)

}
Ψηη̃(τ)

+DηDη̃

(
∂τΨD + (−)DD Ψ−

[
Dη̃Ψ,ΨD

]η
Ψηη̃
−
[
Ψ, DηΨD

]η̃
Ψηη̃

)
.

It ensures that as a defining equation of ΨD[τ ; Ψ], we can also use

∂τΨD = −(−)DD Ψ +
[
Dη̃Ψ,ΨD

]η
Ψηη̃

+
[
Ψ, DηΨD

]η̃
Ψηη̃

. (4.9)

The difference between (4.6) and (4.9) is just Dη-exacts plus Dη̃-exacts, which does not

affect WZW-like relations and the resultant action: it is just the gauge invariance generated

by Dη and Dη̃. Note also that since we have Dη(τ)Dη̃(τ) = −Dη̃(τ)Dη(τ), one may

compute as

∂

∂τ
I(τ) = ∂τ

(
−Dη̃Dη ΨD

)
+ (−)DD ∂τΨηη̃

= −
[
DηΨ, I(τ)

]η̃
Ψηη̃
−Dη̃

[
Ψ, I(τ)

]η
Ψηη̃

+DηDη̃

(
∂τΨD + (−)DD Ψ−

[
Dη̃Ψ,ΨD

]η
Ψηη̃
−
[
Ψ, DηΨD

]η̃
Ψηη̃

)
. (4.10)

However, we have the following identity([
Dη̃Ψ, I(τ)

]η
Ψηη̃

+Dη

[
Ψ, I(τ)

]η̃
Ψηη̃

)
+
([
DηΨ, I(τ)

]η̃
Ψηη̃

+Dη̃

[
Ψ, I(τ)

]η
Ψηη̃

)
= −

[
Ψ, DηI(τ)

]η̃
Ψηη̃
−
[
Ψ, Dη̃I(τ)

]η
Ψηη̃

.

Comparing (4.8) and (4.10) with (4.9), we also find

0 =
[
Ψ, DηI(τ)

]η̃
Ψηη̃

+
[
Ψ, Dη̃I(τ)

]η
Ψηη̃

=
[
Ψ, (−)DDηD Ψηη̃

]η̃
Ψηη̃

+
[
Ψ, (−)DDη̃D Ψηη̃

]η
Ψηη̃

.

These term can appear or vanish in computations of ∂τI(τ) = {Ψ, I(τ)}Ψηη̃(τ).

On the small associated fields

We constructed two functionals Ψηη̃[ϕ] and ΨD[ϕ]. It is sufficient to give a WZW-like

action explicitly. However, one can consider small associated (functional) fields defined by

ΨηD[ϕ] ≡ Dη ΨD[ϕ], ΨDη̃[ϕ] ≡ Dη̃ ΨD[ϕ]. (4.11)
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The WZW-like relation (3.3) provides that they satisfy the following relations

Jη[ϕ] ≡ Dη̃ΨηD[ϕ]− (−)DD Ψηη̃[ϕ] = 0, Jη̃[ϕ] ≡ DηΨDη̃[ϕ] + (−)DD Ψηη̃[ϕ] = 0.

(4.12)

One may prefer these because of the analogy with the NS sector. For example, us-

ing (−)DD Ψηη̃ = DηΨDη̃ = Dη̃ΨηD with derivations D1 and D2 satisfying D1D2 =

(−)D1D2D2D1, one can find8

D1ΨD2η̃ − (−)D1D2D2ΨD1η̃ − (−)D1
[
ΨD1η̃,ΨD2η̃

]η
Ψηη̃

= Dη-exact,

D1ΨηD2 − (−)D1D2D2ΨηD1 − (−)D1
[
ΨηD1 ,ΨηD2

]η̃
Ψηη̃

= Dη̃-exact.

On the basis of these functionals and relations, one can obtain another check of the gauge

invariance of the action. For details in this direction, see appendix E of [1]. In the rest of

this section, we explain how one can construct explicit forms of these as functionals of Φ

or Ψ.

Small-space parametrisation. It is easy to obtain these in terms of Φ because the

analogy with the NS sector exactly works. We find that small associated (functional) fields

ΨDη̃ and ΨηD are given by

ΨDη̃[Φ] ≡ π1Ĝ
(
Dξ e

∧Φ
)
, ΨηD[Φ] = π1Ĝ

(
Dξ̃ e

∧Φ
)
,

where we used coderivations Dξ and Dξ̃ such that

Ĝ−1D Ĝ = −(−)D
[[
η , Dξ

]]
, Ĝ−1D Ĝ = −(−)D

[[
η̃ , Dξ̃

]]
.

It is consistent with (4.11). Note that D Ĝ = Ĝ D for D = ∂t, δ, but Q Ĝ = Ĝ LNS,NS.

Large-space parametrisation. The situation becomes somewhat complicated in the

large-space parametrisation. One can construct small associated (functional) fields ΨDη̃[Ψ]

and ΨηD[Ψ] as the τ = 1 value solutions,

ΨDη̃[Ψ] ≡ ΨDη̃[τ = 1; Ψ], ΨηD[Ψ] ≡ ΨηD[τ = 1; Ψ],

of the following differential equations

∂

∂τ
ΨDη̃[τ ; Ψ] = DDη̃(τ) Ψ +

[
Dη̃(τ)Ψ,ΨDη̃[τ ; Ψ]

]η
Ψηη̃ [τ ;Ψ]

,

− ∂

∂τ
ΨηD[τ ; Ψ] = DDη(τ) Ψ +

[
Dη(τ)Ψ,ΨηD[τ ; Ψ]

]η̃
Ψηη̃ [τ ;Ψ]

,

8They follow from direct computations

D1D2Ψηη̃ = (−)D2D1

(
DηΨD2η̃

)
= (−)D1+D2

(
DηD1ΨD2η̃ + [D1Ψηη̃,ΨD2η̃]ηΨηη̃

)
= (−)D1+D2

(
DηD1ΨD2η̃ + (−)D1 [DηΨD1η̃,ΨD2η̃]ηΨηη̃

)
,

(−)D1D2D2D1Ψηη̃ = (−)D1+D2+D1D2

(
DηD2 ΨD1η̃ + (−)D2 [DηΨD2η̃,ΨD1η̃]ηΨηη̃

)
= (−)D1+D2+D1D2

{
Dη
(
D2ΨD1η̃ − (−)D2 [ΨD2η̃,ΨD1η̃]ηΨηη̃

)
+ [ΨD2η̃, DηΨD1η̃]ηΨηη̃

}
.
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with the initial conditions ΨDη̃[τ = 0; Ψ] = 0 and ΨηD[τ = 0; Ψ] = 0. The minus sign

of the second equation comes from the ordering of Dη and Dη̃ in the definition of (4.3).

One can also check these satisfy (4.12) using (4.3) in the same manner as the NS sector:

the equation

∂τJη = [DηDη̃Ψ,ΨηD]η̃ +Dη̃∂τΨηD − (−)DDDηDη̃Ψ

= Dη̃

(
∂τΨηD + [DηΨ,ΨηD]η̃ + DDηΨ

)
− [DηΨ, Dη̃ΨηD − (−)DD Ψηη̃]

η̃

with Jη(0) = 0 provides Jη(τ) = 0 for any τ . Likewise, we find Jη̃(τ) = 0 for any τ .

We can therefore obtain ΨηD and ΨDη̃ satisfying (4.12) without using ΨD and (4.11).

When we start with ΨD and (4.6), does DηΨD or DηΨD of (4.11) satisfy the above differen-

tial equation? The answer is yes; it gives correct solutions up to Dη-exacts and Dη̃-exacts:

∂

∂τ

(
Dη(τ)ΨD[τ ; Ψ]

)
= −D (Dη ΨD)−

[
DηΨ , (Dη ΨD)

]η̃
Ψηη̃

+Dη̃

[
DηΨ ,ΨD

]η
Ψηη̃

.

Conversely, when we set DηA = ΨηD[Ψ] and start with these differential equations, can we

derive the fact that this A satisfies (4.6)? The answer is again yes; we can re-derive (4.6)

up to Dη-exacts and Dη̃-exacts. Thus large and small associated fields both work well.

On the Dη-exactness and Dη̃-exactness. We can only specify the large associated

(functional) field ΨD up to Dη- and Dη̃-exact terms, and these ambiguities do not con-

tribute in the action. Therefore, in principle, one could set these any values by hand. We

have operators Fξ and F̃ ξ̃ defined by

Fξ ≡
∞∑
n=0

[
ξ
(
η −Dη

)]n
ξ, F̃ ξ̃ ≡

∞∑
n=0

[
ξ̃
(
η̃ −Dη̃

)]n
ξ̃, (4.13)

which satisfy Dη Fξ+Fξ Dη = 1 and Dη̃ F̃ ξ̃+ F̃ ξ̃ Dη̃ = 1, respectively.9 See also [1, 17–19].

These Fξ and F̃ ξ̃ consist of the pure-gauge-like (functional) field Ψηη̃[ϕ] and operators Lη,

Lη̃, η, η̃, ξ and ξ̃. Using these pieces, one can construct ΨD[ϕ] via ΨηD[ϕ] and ΨDη̃[ϕ]

as follows,

ΨD[ϕ] ≡ FξΨDη̃[ϕ] = −F̃ ξ̃ΨηD[ϕ].

This ΨD quickly satisfies (3.3), and thus, for example, one can check that (4.3) holds up to

Dη-exacts and Dη̃-exacts in large-space parametrisation. Note that as well as that of the

NS sector, the form of F or F̃ is not unique. In the NS-NS sector, this type of ambiguities

of (4.13) can be crossed over between left-moving and right-moving sectors. Although Fξ

and F̃ ξ̃ do not exactly commute under the above choice of (4.13) and the equality holds

up to Dη-exacts or Dη̃-exacts, we can have the strict commutativity and equality, which

we see in the next section.

9If you prefer, you can use the coalgebraic notation: Fξ(A) = π1 Ĝ[eG
−1(Ψηη̃) ∧ π1 ξ Ĝ

−1(e∧Ψηη̃ ∧ A)] .

The author thanks to T.Erler for comments.
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5 Properties

Single functional form

As we found, two or more types of functional fields Ψηη̃[ϕ], ΨD[ϕ] appear in the WZW-like

action (3.5). Their algebraic relations make computations easy, but, at the same time, give

constraints on these functional fields: the existence of many types of (functional) fields

satisfying constraint equations would complicate its gauge fixing problem. It is known that

in the NS sector, (alternative) WZW-like actions have single functional forms [19]. We

show as well as NS actions, our NS-NS action Sηη̃[ϕ] has a single functional form which

consists of the single functional Ψηη̃[ϕ] and elementally operators. It may be helpful in the

gauge fixing problem.

Recall that in the left-and-right large Hilbert space H of the NS-NS sector, because of

η ξ + ξ η = 1 and η̃ ξ̃ + ξ̃ η̃ = 1, the η-complex and η̃-complex are both exact:

. . .
η−→ H η−→ H η−→ H η−→ . . . (exact) , . . .

η̃−→ H η̃−→ H η̃−→ H η̃−→ . . . (exact).

Furthermore, since η η̃ + η̃ η = 0, η ξ̃ + ξ̃ η = 0, η̃ ξ + ξ η̃ = 0, and ξ ξ̃ + ξ̃ ξ = 0 hold, we

have the direct sum decomposition of the large state space H as follows:

H = η η̃H⊕ η ξ̃H⊕ η̃ ξH⊕ ξξ̃H.

Likewise, the existence of (4.13) satisfying Dη Fξ+Fξ Dη = 1 and Dη̃ F̃ ξ̃+ F̃ ξ̃ Dη̃ = 1

implies that the both Dη-complex and Dη̃-complex are also exact in this large state spaceH:

. . .
Dη−→ H Dη−→ H Dη−→ H Dη−→ . . . (exact) , . . .

Dη̃−→ H
Dη̃−→ H

Dη̃−→ H
Dη̃−→ . . . (exact).

However, we saw (4.13) do not exactly commute each other. Does there exist a direct sum

decomposition using these exact sequences? To achieve this, we consider

F ≡
∞∑
n=0

[
F̃ ξ(ηF̃−1 − F̃−1Dη)

]n
F̃ , F−1 ≡ ηξF̃−1 + ξF̃−1Dη .

One can quickly find that as well as (4.13), this F and its inverse F−1 also provide

Dη = F ηF−1, Dη̃ = F η̃F−1,

and it makes possible to have the following decompositions of the identity,

Dη Fξ + FξDη = 1 , Dη̃ Fξ̃ + Fξ̃Dη̃ = 1 , (Fξ ≡ F ξF−1, Fξ̃ ≡ F ξ̃F
−1 ) .

Furthermore, now, these operators all are constructed from single F , we have

DηDη̃ +Dη̃Dη = 0, Dη Fξ̃ + Fξ̃Dη = 0, Dη̃ Fξ + FξDη̃ = 0, Fξ Fξ̃ + Fξ̃ Fξ = 0,

which give us the desired direct sum decomposition of the large state space H :

H = DηDη̃H⊕Dη Fξ̃H⊕Dη̃ FξH⊕Fξ Fξ̃H .
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Since QΨηη̃ = DηFξDη̃Fξ̃(QΨηη̃) and Dη̃DηΨt = ∂tΨηη̃, using this F , we find

Sηη̃[ϕ] =

∫ 1

0
dt
〈
Ψt[ϕ(t)], QΨηη̃[ϕ(t)]

〉
=

∫ 1

0
dt
〈
∂tΨηη̃[ϕ(t)], FξFξ̃ QΨηη̃[ϕ(t)]

〉
. (5.1)

It consists of the single functional Ψηη̃[ϕ] and elementary operators Lη, Lη̃, η, ξ, η̃, ξ̃, and

Q. One can also check that this (5.1) has topological t-dependence using (3.3) and the

commutation relation [[D, F ξ]] = −Fξ[[D, Dη]]Fξ + [[Dη, F ξDFξ]] .

Equivalence of two constructions

In section 4, we presented two constructions of the WZW-like action. We explain these two

actions are equivalent and derive a field redefinition connecting these. By construction, the

equivalence of Sηη̃[Φ] and Sηη̃[Ψ] follows if we consider the identification

Ψηη̃[Φ] ∼= Ψηη̃[Ψ] . (5.2)

It is trivial from the fact that the WZW-like action (3.5) has the single functional form (5.1)

which consists of Ψηη̃ and elementally operators. Since both actions have the same

WZW-like structure, one can impose this identification and solve it as a field relation.

See also [1, 19–22].

Field relation. Note that the identification of states (5.2) provides the identification of

their Fock spaces

e∧Ψηη̃ [Φ] = e∧Ψηη̃ [Ψ] ,

Under the identification (5.2), by acting ∂t, we have

Ψt[Φ] = Ψt[Ψ] +Dη-exacts +Dη̃-exacts. (5.3)

Note that these Dη-exact or Dη̃-exact term does not contribute in the action. We thus

consider

e∧Ψηη̃ [Ψ(t)] ∧Ψt[Ψ(t)] = e∧Ψηη̃ [Φ(t)] ∧Ψt[Φ(t)] = Ĝ
(
e∧Φ(t) ∧ ξξ̃∂tΦ(t)

)
.

The ambiguity appearing in (5.3) is completely absorbed into the gauge transformations:

δ
(
e∧Ψηη̃ [ϕ]

)
= e∧Ψηη̃ [ϕ] ∧ ξξ̃δΨηη̃[ϕ] = e∧Ψηη̃ [ϕ] ∧ ξξ̃

(
QΛ +DηΩ +Dη̃Ω̃

)
.

Since cohomomorphism Ĝ is invertible, we obtain the following field relation

Φ = −π1η η̃

∫ 1

0
dt Ĝ−1

(
e∧Ψηη̃ [Ψ(t)] ∧Ψt[Ψ(t)]

)
= π1

∫ 1

0
dt Ĝ−1

(
e∧Ψηη̃ [Ψ(t)] ∧Dη̃DηΨt[Ψ(t)]

)
.
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By using the WZW-like relation (3.3), it reduces to the following expression

Φ = π1

∫ 1

0
dt Ĝ−1

(
∂t e

∧Ψηη̃ [Ψ(t)]
)

= π1Ĝ
−1
(
e∧Ψηη̃ [Ψ]

)
,

which can be directly derived from (5.2).

Relation to L∞ theory

We write Φ for the small-space dynamical string field considered in section 4, and write

Φ′ for the dynamical string field of the L∞ action proposed in [2]. As well as Φ, this Φ′

belongs to the small Hilbert space: ηΦ′ = 0 and η̃Φ′ = 0. Recall that using the small-space

dynamical string field Φ, we constructed an action

Sηη̃[Φ] =

∫ 1

0
dt
〈
π1Ĝ

(
ξξ̃∂tΦ(t) ∧ e∧Φ(t)

)
, Q π1Ĝ

(
e∧Φ(t)

)〉
.

We will show that this Sηη[Φ] is exactly off-shell equivalent to the L∞ action,

SL∞ [Φ′] =
1

2

〈
ξξ̃Φ′, QΦ′

〉
+

∞∑
n=1

1

(n+ 1)!
〈ξξ̃Φ′, Ln+1(

n︷ ︸︸ ︷
Φ′, . . . ,Φ′,Φ′)

〉
. (5.4)

Let Φ′(t) be a path connecting Φ′(0) = 0 and Φ′(1) = Φ′, where t ∈ [0, 1] is a real

parameter. We write SL∞ [Φ′(t)] for the function given by replacing Φ′ of (5.4) with Φ′(t),

which satisfies SL∞ [Φ′(1)] = SL∞ [Φ′] and SL∞ [Φ′(0)] = SL∞ [0] = 0. Then, we have

SL∞ [Φ′] =

∫ 1

0
dt

d

dt
SL∞ [Φ′(t)] =

∫ 1

0
dt
〈
ξξ̃∂tΦ

′(t), π1L
NS,NS e∧Φ′(t)

〉
.

Using coalgebraic notation and LNS,NS = Ĝ−1 Q Ĝ, we find

SL∞ [Φ′] =

∫ 1

0
dt
〈
π1

(
ξξ̃∂tΦ

′(t) ∧ e∧Φ′(t)
)
, π1Ĝ

−1 Q Ĝ
(
e∧Φ′(t)

)〉
=

∫ 1

0
dt
〈
π1Ĝ

(
ξξ̃∂tΦ

′(t) ∧ e∧Φ′(t)
)
, Q π1Ĝ

(
e∧Φ′(t)

)〉
.

In the second equality, we used the fact that Ĝ is a cyclic L∞-isomorphism compatible

with the BPZ inner product. This just gives one realization of our WZW-like action (3.5)

in small-space parametrisation. Hence, with the (trivial) identification of the string fields,

Φ ∼= Φ′ ,

we obtained a proof that the L∞ action SL∞ [Φ′] proposed in [2] is equivalent to our Sηη̃[Φ].

It implies that since Sηη̃[Ψ] has the same WZW-like structure as Sηη̃[Φ], WZW-like actions

Sηη̃[Φ] and Sηη̃[Ψ] both are equivalent to that of L∞ formulation. See also [1, 22]
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WZW-like reconstruction of L∞ action. In the L∞ action, the L∞ triplet is given

by (η, η̃ ; LNS,NS). We thus consider a functional Φηη̃[ϕ] which satisfies two constraint

equations defined by η and η̃,

π1 η (e∧Φηη̃ [ϕ]) = ηΦηη̃[ϕ] = 0, (5.5a)

π1 η̃ (e∧Φηη̃ [ϕ]) = η̃Φηη̃[ϕ] = 0. (5.5b)

By acting derivation D satisfying both [[D, η]] = 0 and [[D, η̃]] = 0 on these, we find

η (DΦηη̃) = 0 and η̃ (DΦηη̃) = 0. It implies that with some functional ΦD[ϕ], we have the

WZW-like relation,

(−)DD Φηη̃[ϕ] = −η η̃ΦD[ϕ]. (5.6)

The existence of ΦD is ensured because η-complex and η̃-complex are both exact in the left-

and-right large Hilbert space. Using Φηη̃[ϕ], we can consider the Maurer-Cartan element

for the remaining L∞ products LNS,NS :

π1 LNS,NS(eΦηη̃ [ϕ]) = QΦηη̃[ϕ] +
∞∑
n=2

1

n!
Ln
( n︷ ︸︸ ︷

Φηη̃[ϕ] , . . . ,Φηη̃[ϕ]
)
.

Note that there also exists an associated field ΦL[ϕ] such that

π1 LNS,NS(e∧Φηη̃ [ϕ]) = η η̃ΦL[ϕ] .

According to our recipe, utilizing these ingredients, we can construct a WZW-like action:10

SL∞ [ϕ] =

∫ 1

0
dt
〈
Φt[ϕ(t)], π1 LNS,NS(e∧Φηη̃ [ϕ(t)])

〉
=

∫ 1

0
dt
〈
Φt[ϕ(t)], η η̃ΦL[ϕ(t)]

〉
. (5.7)

One can check this action (5.7) has topological t-dependence and gauge invariance in the

WZW-like manner. In particular, since η and η̃ are linear L∞ products, their shifted prod-

ucts are themselves. Thus, one can compute it with truncated versions of (3.11b) or (3.11a).

We notice that if we set ϕ = Φ satisfying ηΦ = η̃Φ = 0, it naturally induces a trivial form

of the functional, Φηη̃[Φ] ≡ Φ, because of the triviality of η- and η̃-cohomology. Similarly,

if we use ϕ = Ψ, it also implies Φηη[Ψ] ≡ ηη̃Ψ . While its small-space parametrisation is

just the L∞ action given by [2], its large-space parametrisation is just a trivial up-lift of

small-space one.

Off-shell duality of L∞ triplets. As we mentioned, when Ĝ is cyclic in the BPZ

inner product, (2.2) ensures not only the equivalence of L∞ triplets but also the off-shell

10The NS-NS actions given by [10, 12] also has this kind of WZW-like structure and WZW-like form of

the action. Its L∞ triplet is quickly obtained by replacing LNS,NS of (η, η̃ ;LNS,NS) with the L∞ products

appearing the action of [10, 12] because of their small-space constraints.
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equivalence of resultant WZW-like actions. To see this, it is useful to consider the Maurer-

Cartan-like element in the correlation function :

〈
MCα(A)

〉
≡
∞∑
n=1

1

(n+ 1)!

〈
A ,
[ n︷ ︸︸ ︷
A, . . . ,A

]α〉
.

Note that the above sum starts from n = 1, namely, two-inputs is the lowest. In the

correlation function 〈 . . . 〉, the BPZ cyclic property of Ĝ is just 〈Ĝ( . . . )〉 = 〈 . . . 〉. We

thus obtain 〈
MCQ(A)

〉
=
〈
Ĝ−1 · MCQ(A)

〉
=
〈
MCL(A′)

〉
, (5.8)

whereMCL(A′) is the Maurer-Cartan element for LNS,NS and A′ is a state satisfying dual

constraints for A . Note that when the state A satisfies MCLη(A) = MCLη̃(A) = 0, the

state A′ satisfies MCη(A′) =MC η̃(A′) = 0.

Let us introduce a Grassmann variable t̃ satisfying ( t̃ )2 = 0, and write A[ϕ] ≡ Ψηη̃[ϕ]+

t̃Ψt[ϕ]. Using a measure factor d ≡ dt · ∂ t̃ , we can express the WZW-like action (3.5) as

Sηη̃ =

∫
d
〈
MCQ(A)

〉
, (5.9)

which reminds us the Chern-Simons form and its geometrical quantity. Likewise, using

A′[ϕ] ≡ Φηη̃[ϕ] + t̃Φt[ϕ], the WZW-likely extended L∞ action (5.7) can be written as

SL∞ =

∫
d
〈
MCL(A′)

〉
. (5.10)

Then, the equality (5.8) of the Maure-Cartan elements in the correlation function con-

cludes the off-shell equivalence between our WZW-like action (3.5) based on the L∞ triplet

(Lη,Lη̃ ; Q) and the (WZW-likely extended) L∞ action (5.7) based on the L∞ triplet

(η, η̃ ; LNS,NS) . Note that this off-shell equivalence does not necessitate detailed informa-

tion about dynamical string fields. It is a powerful and significant consequence of the

WZW-like structure.

Relation to the earlier WZW-like theory

The L∞ triplet of the earlier WZW-like action is given by (L−,NS, η̃ ;η). In this WZW-like

NS-NS theory of [9], a solution of both Maurer-Cartan equations for L−,NS and η̃ plays

the most important role. We write ϕ′ for a dynamical NS-NS string field and consider

a functional GL = GL[ϕ′] of this string field. Let GL be a state which has ghost number

2, left-moving picture number 0, and right-moving picture number −1 state in the large

Hilbert space. When this GL satisfies

QGL +

∞∑
n=1

1

(n+ 1)!

[ n︷ ︸︸ ︷
GL , . . . ,GL ,GL

]−,NS
= 0, (5.11a)

η̃ GL = 0, (5.11b)
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we call GL a pure-gauge-like (functional) field. Let D be a derivation operator of L−,NS

and η̃ : namely D L−,NS − (−)DL−,NS D = 0 and D η̃ − (−)Dη̃D = 0. For example, one

can take D = η, ∂t, and δ. Once the above pure-gauge-like (functional) field GL is given,

we consider

(−)DDGL = −QGL η̃Ψ′D, (5.12)

which we call the (earlier) WZW-like relation. Here, Ψ′D = Ψ′D[ϕ′] is a functional of the

dynamical string field, which has the same ghost, left-moving-picture, and right-moving-

picture numbers as d. We call this Ψ′D[ϕ′] satisfying (5.12) as an associated (functional)

field. Note that QGL , the first GL-shifted L−,NS, satisfies QGL η̃ + η̃ QGL = 0 because

of (5.11a) and (5.11b).

In [9], using these GL[ϕ′] and ΨD[ϕ], a WZW-like action was given by

S[ϕ] =

∫ 1

0
dt
〈
Ψ′t[ϕ

′(t)], η GL[ϕ′(t)]
〉
. (5.13)

We write Ψ′t[ϕ
′(t)] for the associated field Ψ′D[ϕ′(t)] with D = ∂t, and ϕ′(t) is a path

connecting ϕ′(0) = 0 and ϕ′(1) = ϕ′, where t ∈ [0, 1] is a real parameter. While the

dynamical string field is taken ϕ′ = Ψ′ in the left-and-right large Hilbert space in [9], if one

prefer, one can consider the small-space parametrisation. But now, we would like to focus

on its WZW-like structure.

By its construction, we notice that the situation is parallel to the NS sector of heterotic

string field theory [7]: unfortunately, as [23], we do not have exact off-shell equivalence at

all order but only have lower order equivalence. For example, by taking the following

nonlinear partially gauge-fixing condition on ϕ′ = Ψ′ with the small-space string field Φ,

Ψ′ = ξ̃

{
ξΦ +

1

3!
ξL−,NS

2

(
ξΦ,Φ

)
+

1

4!

(
ξL−,NS

3

(
QξΦ, ξΦ,Φ

)
+ ξL−,NS

3

(
XΦ, ξΦ,Φ

))
+

1

4!

(4

3
ξL−,NS

2

(
Φ, ξL−,NS

2 (ξΦ,Φ)
)

+
1

3
ξL−,NS

2

(
ξΦ, ξL−,NS

2 (Φ,Φ)
)

− 2

3
ξL−,NS

2

(
ξΦ, L−,NS

2 (ξΦ,Φ)
))}

+ . . . ,

the action (5.13) reduces to the L∞ action based on their asymmetric construction of [2].

Hence, WZW-like actions (3.5) and (5.12) relate each other via field redefinitions, at least

lower order.

6 Conclusion

We presented that a triplet of mutually commutative L∞ products (Lc,Lc̃ ; Lp) completely

determine the gauge structure of the WZW-like action. As we showed, every known NS-NS

superstring field theory [1, 2, 9, 10, 12] potentially have the following WZW-like structure

and WZW-like form of the action, which is one interesting result: by using two of it as
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constraint equations,

π1 Lc e∧Ψcc̃[ϕ] =
∑
n=1

1

n!
Lcn
(
Ψcc̃[ϕ], . . . ,Ψcc̃[ϕ]

)
= 0, (6.1a)

π1 Lc̃ e∧Ψcc̃[ϕ] =
∑
n=1

1

n!
Lc̃n
(
Ψcc̃[ϕ], . . . ,Ψcc̃[ϕ]

)
= 0, (6.1b)

and introducing a functional Ψcc̃[ϕ] of some dynamical string field ϕ satisfying these con-

straints, we constructed a gauge-invariant WZW-like action for the NS-NS superstring field

theory,

Scc̃[ϕ] =

∫
d
〈
MCLp(A)

〉
=

∫ 1

0
dt
〈
Ψt[ϕ(t)], π1L

p e∧Ψcc̃[ϕ(t)]
〉
, (6.2)

whose on-shell condition is given by the Maurer-Cartan element of the other L∞,

π1 Lp e∧Ψcc̃[ϕ] =
∑
n=1

1

n!
Lpn
(
Ψcc̃[ϕ], . . . ,Ψcc̃[ϕ]

)
= 0 . (6.3)

One can prove its gauge invariance using the functional Ψcc̃[ϕ] and algebraic relations

derived from the mutual commutativity of the L∞ triplet (Lc,Lc̃ ; Lp),11 without using

details of the dynamical string field ϕ. Since each know NS-NS action has its WZW-like

form, one can say that to study its L∞ triplet is equivalent to know the gauge structure of

NS-NS superstring field theory. In this paper, we focused on two L∞ triplets (Lη,Lη̃ ; Q)

and (η, η̃ ; LNS,NS) which provide the L∞ action of [2]. Particularly, we presented detailed

analysis of the former and proved their off-shell equivalence with several general or exact

results. We also discussed the relation to the earlier WZW-like action of [9]. We showed as

well as the WZW-like action of the NS sector, our WZW-like action of the NS-NS sector

has a single functional form, which may be a new approach to the gauge-fixing problem of

WZW-like theory.
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A General WZW-like action based on (Lc,Lc̃ ; Lp)

In section 6, we gave the general WZW-like action based on a general L∞ triplet

(Lc,Lc̃ ; Lp) . In this appendix, we prove that the general WZW-like action,

Scc̃[ϕ] =

∫ 1

0
dt
〈
Ψt[ϕ(t)], π1L

pe∧Ψcc̃[ϕ(t)]
〉
,

11As we found, in the NS-NS sector, one or two L∞ of the triplet becomes linear. However, in general,

all L∞ of the triplet can be nonlinear: when we include the Ramond sectors, it will be the case, which

is expected from the result of [19]. Actually, with deep insights, one can find a pair of (nonlinear) A∞
products plays such a role in WZW-like actions for open superstring field theory including the NS and R

sectors [24].
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has topological parameter dependence: its variation is given by

δScc̃[ϕ] =
〈
Ψδ[ϕ], π1L

pe∧Ψcc̃[ϕ]
〉
.

Then, because of the nilpotency of L∞ triplet (Lc,Lc̃ ; Lp) , the general WZW-like action

is invariant under the gauge transformations generated by Lc , Lc̃, and Lp ,

Ψδ[ϕ] = π1 Lce∧Ψcc̃[ϕ] ∧ Ω + π1 Lc̃e∧Ψcc̃[ϕ] ∧ Ω̃ + π1 Lpe∧Ψcc̃[ϕ] ∧ Λ .

Since Ψcc̃[ϕ] satisfies Maurer-Cartan equations Lce∧Ψcc̃[ϕ] = 0 and Lc̃e∧Ψcc̃[ϕ] = 0 , for

any coderivation D commuting with Lc and Lc̃ , we find

(−)DD Lc
′
e∧Ψcc̃[ϕ] = Lc

′
e∧Ψcc̃[ϕ] ∧ π1De

∧Ψcc̃[ϕ] = 0 , (c′ = c , c̃ ) .

Hence, since η- and η̃-cohomology are trivial, there exist a state ΨD[ϕ] such that

−DcDc̃ΨD[ϕ] ≡ −π1L
cLc̃e∧Ψcc̃[ϕ] ∧ΨD[ϕ] = π1(−)DDe∧Ψcc̃[ϕ] ,

where we defined Dc′A ≡ −π1L
c′e∧Ψcc̃[ϕ] ∧ A , (c′ = c, c̃) , for brevity. This is the WZW-

like relation for a general L∞ triplet (Lc,Lc̃ ; Lp) , which provides δΨcc̃ = −DcDc̃Ψδ ,

∂Ψcc̃ = −DcDc̃Ψt , π1L
pe∧Ψcc̃ = DcDc̃ΨLp , and so on. For two coderivations D1 and D2

which are mutually commute with Lc and Lc̃ , we find

π1 D1 D2 e
∧Ψcc̃[ϕ] = π1 D1 e

∧Ψcc̃[ϕ] ∧ π1(−)D2Lc Lc̃
(
e∧Ψcc̃[ϕ] ∧ΨD2 [ϕ]

)
= (−)D2π1L

c Lc̃ D1e
∧Ψcc̃[ϕ] ∧ΨD2 [ϕ]

= (−)D2π1L
c Lc̃

(
e∧Ψcc̃[ϕ] ∧ π1D1

(
e∧Ψcc̃[ϕ]

)
∧ΨD2 [ϕ]

)
+ (−)D2π1L

c Lc̃
(
e∧Ψcc̃[ϕ] ∧ π1D1

(
e∧Ψcc̃[ϕ] ∧ΨD2 [ϕ]

))
.

It gives general versions of other useful identities derived from the mutual commutativity of

coderivations, which are used in the variation of the action. For example, δ(π1 Lpe∧Ψcc̃) =

π1L
p(e∧Ψcc̃ ∧ δΨcc̃) , (3.2), and (3.9) . Using these, we find a half of the variation is〈

Ψt, δ
(
π1 Lpe∧Ψcc̃

)〉
=
〈
Ψt, π1 Lp

(
e∧Ψcc̃ ∧DcDc̃ Ψδ

)〉
= −

〈
Ψδ, Dc̃Dcπ1 Lp

(
e∧Ψcc̃ ∧Ψt

)〉
=
〈
Ψδ, ∂t

(
π1 Lpe∧Ψcc̃

)〉
+
〈
Ψδ, π1L

cLc̃
(
e∧Ψcc̃ ∧DcDc̃ΨLp ∧Ψt

)〉
.

(A.1a)

We notice that these computation can be carried out by replacing QΨηη̃ = DηDη̃ΨQ

of (3.11a) with π1L
pe∧Ψcc̃ = DcDc̃ΨLp . Likewise, after short computations, we find〈

δΨt, π1 Lpe∧Ψcc̃
〉

= −
〈
Dc̃DcδΨt, ΨLp

〉
=
〈
∂t
(
Dc̃DcΨδ

)
, ΨLp

〉
+
〈
π1L

cLc̃
(
e∧Ψcc̃ ∧DcDc̃Ψδ ∧Ψt

)
, ΨLp

〉
= −

〈
∂tΨδ, DcDc̃ΨLp

〉
−
〈
Ψδ, π1L

cLc̃
(
e∧Ψcc̃ ∧DcDc̃ΨLp ∧Ψt

)〉
.

(A.1b)

Note that this term can be also obtained by replacing ΨQ of (3.11b) with ΨLp . Hence, we

obtain the desired result

δ
〈
Ψt[ϕ(t)], π1L

pe∧Ψcc̃[ϕ(t)]
〉

= (A.1a) + (A.1b) = ∂t
〈
Ψδ[ϕ(t)], π1L

pe∧Ψcc̃[ϕ(t)]
〉
.
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We would like to emphasise that the Scc̃[ϕ] gives a gauge invariant action for any

L∞ triplet (Lc,Lc̃ ; Lp) in the completely same way. In general, field redefinitions Û

drastically change the string vertices and state space in highly nontrivial manner. In

terms of L∞ algebras, it is just described by an L∞ morphism between two L∞ triplets,

Û : (Lc,Lc̃ ; Lp) → (Lc′,Lc̃′ ; Lp′). Hence, the general WZW-like action Scc̃[ϕ] is covariant

under any string field redefinitions. Thus, as a gauge theory, it may capture general field

theoretical properties of superstrings.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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