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1 Introduction

The SYK model [1–5] has elicited considerable attention in the recent high energy litera-

ture for being an apparently solvable model [6–10] that encapsulates non-trivial features

of black holes [11–16] with AdS2 horizons [17–26]. Several extensions of the model with

various interesting properties also have been proposed [27–30]. In particular, a supersym-

metric generalization has recently been studied by Fu, Gaiotto, Maldacena, and Sachdev

(FGMS) [31] (see also similar studies of supersymmetric lattice models in e.g. [32–36]).

Some recent studies of the SYK model in the CMT literature include [37–40].

In [41] Witten constructed an SYK-like model that does not involve averaging over

a random coupling. The model is based on a certain tensor model due to Gurau and

collaborators, on which there exists an extensive literature (see e.g. [42–50] and references

therein). Witten showed that the large-N limit of this model has the same correlation

functions and thermodynamics as the SYK model. The 1/N expansion of the Gurau-

Witten model has been explicitly constructed in [51], and a generalization that shares many

of its salient features but is based on an “uncolored” tensor model has been proposed and

studied in great detail by Klebanov and Tarnopolsky [52], building on an earlier analysis

of this type of model in [53].

The absence of quenched disorder is an attractive feature which means that the model

of [41] is a true quantum theory instead of an average over an ensemble of theories, as in

the original SYK model. It also provides possibilities for future studies of other chaotic

systems that manifestly avoid spin-glass phases, since the replica symmetry is not present.

(An alternative SYK-like model without disorder has been proposed in [54].) Given these
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advantages, it is natural to ask if we can find tensor models that describe other quenched

disordered systems with properties similar to the SYK model. One example of such a

system is the supersymmetric SYK model of FGMS [31]. This model was shown to be

chaotic at late times and has two towers of higher spin operators, together with their

superpartners, in its spectrum.

Motivated by both [31] and [41], in this paper we propose a tensor model that mirrors

the supersymmetric FGMS model. We promote the fermionic “quark” fields of [41] to

N = 1 fermionic tensor-valued superfields. Like the model of [41] our model has global

O(n)6/Z2
2 symmetry. We introduce additional “meson” superfields in order to be able to

construct a supercharge that is cubic in the quark and meson fields. The Hamiltonian is

the square of the supercharge. We prove that this model has a well-defined large-n limit.

Quark loops are suppressed by 1/n, and the dominant mesonic exchange graphs involve

“melon” diagrams of a type that are very familiar in tensor models. The nontrivial effective

dynamics of the quarks is completely due to having to propagate through the “mesonic

melon patch.” We sum the relevant melonic diagrams in the large-n limit and show that

the solution to the Schwinger-Dyson equations in the IR limit agrees with that of the

supersymmetric FGMS model. In particular, the dimension of the quark field is ∆ = 1/6

as in [31]. As a result, we conclude that other features such as the chaotic behavior and

the operator spectrum in the OPEs are identical to those in [31].

It is certainly also interesting to ask whether there exists a supersymmetrization of the

Gurau-Witten model that has the same IR physics as the fermionic SYK model (in which,

in particular, the fermion field has IR dimension ∆ = 1/4). In our model, we find that

taking the large-n limit does not commute with integrating out the auxiliary bosons. If we

first perform the latter, then with a judicious choice of coupling constant the meson fields

decouple completely. This process does recover the interaction

j ψi01i02i030 ψi01i12i131 ψi02i12i232 ψi03i13i233 (1.1)

that was shown to be diagrammatically equivalent to SYK in the large-n limit when j ∼
n−3/2 [41]. However, it also generates simultaneously the only other quartic operator in

the colored SYK-like tensor model,

g (ψaψb)(ψaψb) = g (ψi01i02i030 ψi01i12i231 ψj01i02i030 ψj01i12i231 + · · · ) , (1.2)

where the · · · represents a sum over a, b ∈ {0, 1, 2, 3}. This kind of operator is referred to as

a “pillow” operator in the recent study of the uncolored SYK-like tensor model by Klebanov

and Tarnopolsky [52]. The colored version of this pillow operator is also mentioned in [52].

An earlier thorough study of models with pillow operators can be found in [53]. However,

diagrams involving this pillow operator scale differently than those without it, suggesting

a different large-n limit.

Therefore our model is better regarded as a tensor version of the supersymmetric FGMS

model, rather than an honest supersymmetrization of the SYK-like Gurau-Witten tensor

model. Certainly there could be more than one way to supersymmetrize the fermionic

tensor models, and there could be more than one tensor model that resembles the SYK-

like models, as demonstrated for example by the uncolored model studied in [52].
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In section 1 we review the fermionic SYK-like Gurau-Witten tensor model of [41,

46], the supersymmetric SYK model of FGMS [31], and discuss their large-N limits. In

sections 2 through 4 we present and discuss our proposal for the supersymmetric tensor

model and discuss its large-N limit, with most of the technical details tucked away safely

in appendix A.

1.1 Review of the SYK-like tensor model (Gurau-Witten)

The SYK-like tensor model discussed in [41] is a modification of the construction of [46]

and is based on q = D + 1 real tensor-valued fermions

ψa1...aDa , a = 0, 1, . . . , D (1.3)

in 0+1 dimensions. Here each ai is a vector index of a distinct O(n) group and we focus on

the case D = 3 that is relevant to the SYK model. In this case each fermion is charged under

3 different O(n) groups and hence has 3 vector indices. Specifically these take the form

ψi01i02i030 , ψi01i12i131 , ψi02i12i232 , ψi03i13i233 , (1.4)

where each iab is a vector index of an O(n) group Gab. There are a total of D(D+1)
2 = 6

distinct O(n) groups. The interaction Hamiltonian has a global O(n)6/Z2
2 symmetry:

H int = jψi01i02i030 ψi01i12i131 ψi02i12i232 ψi03i13i233 . (1.5)

Here j is a coupling constant and the repeated O(n) indices are summed over. Altogether

there are

N = 4n3 (1.6)

fermionic degrees of freedom.

Products of fermions can be represented as 3-valent graphs with four types of labeled

vertices V0, . . . , V3. Specifically,

• each ψa is represented by a 3-valent vertex of type Va;

• an unoriented edge ab connecting two vertices of types Va and Vb corresponds to a

contraction over the O(n) index iab;

• and scalars under the full symmetry group correspond to graphs with no open edges.

It is well-known (see for example [43–46, 48, 50]) that the tensor models on which [41]

is based are dominated in the large-N limit by a certain class of “melon” diagrams (see

figure 1). The quantum mechanical tensor model (1.5) has a well-defined large-N limit

provided that the coupling j is taken to scale as

j ∼ n−3/2 ∼ N−1/2 . (1.7)

In [41] it was shown that the melon diagrams which dominate the model in this limit are the

same as the Feynman diagrams that dominate the large-N limit of the SYK model. The

Schwinger-Dyson equations of the two theories are therefore formally identical (except for

extra copies in the tensorial model due to the vector indices). As a result, the correlation

functions, chaotic behavior, etc. of the two models should be identical.
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Figure 1. The large-N limit of the SYK-like model of [41], like many tensor models, is dominated

by “melon” graphs. Here we show several melonic contributions to the 2-point function. In general

they may be generated iteratively using the basic building block shown in the second term.

1.2 Review of the supersymmetric SYK model (FGMS)

A direct supersymmetrization of the SYK model was constructed by FGMS [31] using

superfields. In 0 + 1 dimensions, an N = 1 superfield can be constructed with the help of

a single real Grassmann variable θ. For instance, a fermionic superfield is defined as

Ψ(t, θ) = ψ(t) + θ b(t) , (1.8)

where ψ(t) is fermionic and b(t) is bosonic. The supersymmetry transformation is generated

by the off-shell supercharge

Q = ∂θ − iθ ∂t , (1.9)

which satisfies Q2 = −i∂t. We further define the super-derivative

D = ∂θ + iθ ∂t , D2 = i∂t , (1.10)

which anticommutes with the supercharge

{Q,D} = 0 . (1.11)

The supersymmetry transformation of the superfield is

δξψ(t) + θ δξb(t) ≡ δξΨ(t, θ) = ξQΨ(t, θ) = ξb(t)− iξθ ∂tψ(t) , (1.12)

from which we read off the transformations of the components

δξψ(t) = ξb(t) , δξb(t) = iξ∂tψ(t) , (1.13)

which in turn imply

Qψ(t) = b(t) , Qb(t) = i∂tψ(t) . (1.14)

In 0 + 1 dimensions any N = 1 superfield can be decomposed into a constant piece and a

piece proportional to θ. From the form of the supercharge, the θ-dependent piece always

transforms into a total derivative. As a result, any integral of the form∫
dθ dt f(t, θ) (1.15)

is manifestly invariant under supersymmetry since the dθ integral picks out the term pro-

portional to θ that transforms into a total derivative. The simplest interacting supersym-

metric Lagrangian for a collection of superfields Ψi takes the form

L =

∫
dθ

(
−1

2
ΨiDΨi + i

Cijk
3

ΨiΨjΨk

)
, (1.16)
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Figure 2. Left: the dominant “core” diagram contributing to the ψψ 2-point function in the

supersymmetric FGMS model. Right: the corresponding dominant “core” diagram in the fermionic

SYK model. In both graphs the solid lines represent ψi fields, the wavy lines represent bi fields, and

the dashed lines represent a correlation of a product of Gaussian random couplings; Cijk on the left

and Jijkl on the right. The full set of dominant graphs is generated iteratively using this core.

where repeated indices i, j, k are summed over and Cijk is a totally antisymmetric coupling

constant. In component form, this gives

L =
i

2
ψi∂tψi −

1

2
bibi + iCijkbiψjψk . (1.17)

Notice that there is no kinetic term for the bi field, so it is auxiliary and can be integrated

out. Substituting the resulting constraint

bi = iCijkψjψk (1.18)

back into the Lagrangian gives

L =
i

2
ψi∂tψi −

CijkCimn
2

ψjψkψmψn . (1.19)

As noted in [31] this is very similar to the original SYK model except that the fundamental

coupling is not a direct 4-point coupling Jijkl but a Yukawa type Cijk leading to an effective

4-point coupling ∼ CijmCklm. In the SYK model each Jjkmn is a Gaussian random variable,

but if instead the Yukawa couplings Cijk are drawn from a Gaussian distribution then it

changes the structure of the large-N equations. As a result, the scaling dimension of the

fields in the IR of the supersymmetric model are different [31] than those of the original

fermionic SYK model.

1.3 Large-N limit of the supersymmetric model

Most of the analysis in [8, 31] was done using effective actions obtained by averaging over

the random couplings. This approach is convenient because the Schwinger-Dyson equations

of the original theory become the classical equations of motion of the effective/collective

fields. Correlation functions can then be computed using the solutions of these equations

of motion.

The effective action and Schwinger-Dyson equations of the supersymmetric model are

written down in eqs. (2.10) and (2.11) of [31]. Since the Schwinger-Dyson equations can

be visualized diagrammatically, e.g. as in figures 1 and 2 of [8], we can translate the first

line of equation (2.11) in [31] back to a diagrammatic presentation which simply states

that the leading large-N contributions to the 〈ψi(t1)ψi(t2)〉 2-point function come from all

“melon” diagrams that can be constructed from the building block shown in the left panel

of figure 2. These diagrams can also be shown to be dominant by a straightforward power
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Figure 3. Left: the dominant “core” diagram contributing to the bb 2-point function in the

supersymmetric FGMS model. Right: the dominant ladder “rung” diagram contributing to the

ψψψψ 4-point function in the fermionic SYK model. The full set of dominant graphs is generated

iteratively using this core (with propagator corrections obtained by also iterating the right panel of

figure 2).

counting argument. If we use the constraint (1.18) to replace the bosonic field by a pair

of fermionic fields, together with a change of the vertices to those of the Lagrangian (1.19)

with the bi integrated out, this diagram precisely reproduces the dominant “core” diagram

of the 〈ψi(t1)ψi(t2)〉 2-point function in the fermionic SYK model, shown in the right panel

of figure 2.

Similarly, the second line of eq. (2.11) in [31] implies that the leading contributions

to the 〈bi(t1)bi(t2)〉 2-point function come from “melon” diagrams of the building block

drawn in the left panel of figure 3. If we use the constraint (1.18) and change the vertices

accordingly again, this diagram precisely reduces to the dominant “kernel” diagram of the

4-point functions in the fermionic SYK model, as shown for example in figure 3 of [8] and

in the right panel of our figure 3.

Note that this analysis does not mean that a 2-point function of the bi fields in the

supersymmetric model should be thought of as a 4-point function of ψi’s in the fermionic

model. Rather, this merely demonstrates that the dominant diagrams in the supersym-

metric model are pictorially the same set of dominant diagrams as in the fermionic model.

Specifically, we can resolve bosonic lines into a pair of fermionic lines to see how the dom-

inant diagrams map from the supersymmetric model into the fermionic model. We will

observe a similar phenomenon in our proposed supersymmetric tensor model.

2 A supersymmetric tensor model

We now combine the ideas reviewed in sections 1.1 and 1.2 to construct a tensor model

version of the supersymmetric FGMS model. To this end we start by promoting the tensor-

valued fermion ψa of eq. (1.3) to the tensorial superfield

Ψ
ia
a = ψ

ia
a + θ β

ia
a , (2.1)

where ia is a collective notation for the vector indices of the individual O(n) groups. A

naive supersymmetrization of the tensorial model would be to replace the Ψ(t, θ) superfields

in the action (1.16) by the tensorial version (2.1). However, one immediately encounters

the problem that it is not possible to construct a scalar under all of the O(n) groups that

is cubic in the tensorial fields Ψ
ia
a of the q = 4 model.

We can compensate for this problem by introducing a set of “meson” superfields

Πia0...îaa...îab...ia3, ib0...îbb...îab...ib3
ab ≡ Π

ia, ib
ab = χ

ia, ib
ab + θ π

ia, ib
ab (2.2)

– 6 –
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with fermionic components χ
ia, ib
ab and bosonic components π

ia, ib
ab . The notation îab means

that the vector index associated to the group Gab is missing. All fields are antisymmetric

in a↔ b so, to be completely explicit, the q(q−1)
2 = 6 mesonic superfields have the form

Πi02i03, i12i13
01 , Πi01i03, i12i23

02 , Πi01i02, i13i23
03 , (2.3)

Πi01i13, i02i23
12 , Πi01i12, i03i23

13 , Πi02i12, i03i13
23 . (2.4)

Now we can write down an O(n)6/Z2
2-invariant interacting Lagrangian by appropriately

coupling the Ψ
ia
a “quark” fields to the Π

ia, ib
ab meson fields:

L =

∫
dθ

(
−1

2
ΨaDΨa −

1

2
ΠabDΠab + i

g

2
Πab

(
ΨaΨb +

1

2
εabcdΨcΨd

)
+ i

h

6
ΠabΠbcΠca

)
,

(2.5)

where g, h are coupling constants and the indices a, b, c are summed over. In terms of

component fields, the above Lagrangian reads

L =
i

2
ψa∂tψa −

1

2
βaβa +

i

2
χab∂tχab −

1

2
πabπab

+ i
g

2
πab

(
ψaψb +

1

2
εabcdψcψd

)
− igχab

(
βaψb +

1

2
εabcdβcψd

)
+ i

h

2
πabχbcχca . (2.6)

Next let us compare this supersymmetric tensor model to the fermionic tensor model

of [41]. To achieve this we integrate out the non-dynamical bosonic fields βa and πab. They

are determined to satisfy the constraints

βa = −ig
(
χabψb +

1

2
εabcdχbcψd

)
, (2.7)

πab = i
g

2

(
ψaψb +

1

2
εabcdψcψd

)
+ i

h

2
χbcχca . (2.8)

After substituting these values back into the Lagrangian we arrive at

L =
i

2
ψa∂tψa +

i

2
χab∂tχab +

(
gh

8
− g2

2

)(
2χabχacψcψb + εabcdχbcχaeψeψd

)
− g2

8
εabcdψaψbψcψd −

g2

4
(ψaψb)(ψaψb) +

h2

8
χabχbcχcdχda . (2.9)

Evidently the Lagrangian simplifies if we choose

h = 4g . (2.10)

In the next section we discuss the significant ramifications of this choice for the large-N

limit; not because of the precise factor of 4 but because eq. (2.10) ties together the scaling

of h and g with n. We expect the large-N limit of this theory to be qualitatively insensitive

to the precise numerical value of h/g, but the choice 4 is clearly appealing because it leads

to completely decoupled Lagrangians

Lψ =
i

2
ψa∂tψa −

g2

8
εabcdψaψbψcψd −

g2

4
(ψaψb)(ψaψb) , (2.11)

Lχ =
i

2
χab∂tχab + 2g2χabχbcχcdχda (2.12)

for the quarks and mesons.
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The second interaction term

(ψaψb)(ψaψb) = ψi01i02i030 ψi01i12i231 ψj01i02i030 ψj01i12i231 + · · · (2.13)

in eq. (2.11) has different index structure as the first interaction term in that equation

ψi01i02i030 ψi01i12i131 ψi02i12i232 ψi03i13i233 , (2.14)

which is precisely the one considered in [41].

Let us record here for later use the Lagrangian at the value (2.10) both in terms of

superfields

L =

∫
dθ

(
−1

2
ΨaDΨa −

1

2
ΠabDΠab + i

g

2
Πab

(
ΨaΨb +

1

2
εabcdΨcΨd

)
+ i

2g

3
ΠabΠbcΠca

)
,

(2.15)

and in terms of the component fields,

L =
i

2
ψa∂tψa −

1

2
βaβa +

i

2
χab∂tχab −

1

2
πabπab

+ i
g

2
πab

(
ψaψb +

1

2
εabcdψcψd

)
− igχab

(
βaψb +

1

2
εabcdβcψd

)
+ 2igπabχbcχca . (2.16)

3 Large-N limit of the supersymmetric tensor model

In this section we analyze the large-N limit of the Lagrangian (2.16) directly, without first

integrating out the bosonic fields. Instead of using the effective action approach of [8, 31]

that is very natural for taking the disorder average, we directly analyze the dominant

Feynman diagrams in the large-N limit and study the low energy behavior by deriving and

solving the appropriate Schwinger-Dyson equations.

In our model the total number of degrees of freedom is

N = 4n3 + 6n4 = O(n4) , (3.1)

which is obviously larger than the O(n3) of the purely fermionic model. In the following, we

will use the word “large-n” simply because we will be counting directly powers of n, not N .

The main technical result of our paper is that a sensible large-n limit of the supersymmetric

tensor model (2.16) exists if we scale the coupling constant as

g ∼ n−1 . (3.2)

The detailed proof of this is relegated to the appendix; we now proceed with several com-

ments about its implications.

First we note that with g ∼ 1/n, the large-n expansion will manifestly have an expan-

sion in inverse integer powers of n, being the rank of each of the six global O(n) groups,

similar to how the expansion is organized in the approach of [52]. On the other hand, we

could translate our large-n expansion into a large-N expansion using eq. (3.1), which would

lead to fractional powers of 1/N as noted in [41] for the fermionic tensor model.

– 8 –
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Figure 4. The first few diagrams which dominate the ψψ (top panel) and χχ (bottom panel)

2-point functions (and their super-descendants) in the large-n limit when g ∼ 1/n. In each panel

the five diagrams scale as gknk for k = 0, 2, 4, 4, 4, respectively. As noted in the text, single lines

represent ψa or βa fields and double lines represent the mesonic χab or πab fields. All dominant

diagrams are obtained by iterating the building blocks shown in figure 5.

Next let us note that g ∼ 1/n implies a different scaling g2 ∼ 1/n2 for the coefficient of

the quartic interaction (2.13) compared to the scaling 1/n3/2 which was found in [41] to give

a sensible and non-trivial scaling limit of the purely fermionic model with interaction (2.14).

This change in the necessary scaling behavior is qualitatively similar to what happens in

the supersymmetric FGMS model, see e.g. the discussion below eq. (1.5) of [31]. However,

the difference seems to be more significant in our case; unlike the case in [31], the change

in the large-n scaling here is inherently due to the introduction of the meson fields which

dominate the large-n limit. This fact is of course evident from eq. (3.1) but it will also

be seen more explicitly in the appendix. Indeed, in the strict large-n limit, correlation

functions of ψa fields are dominated by graphs with no ψa loops (see for example the top

panel of figure 4). The nontrivial effective dynamics of the quark field ψa is therefore

completely a consequence of it having to propagate through a background of πab fields like

some kind of “mesonic melon patch”.

Let us also note that we can define the model (2.16) in more than zero spatial dimen-

sions, and all of the large-n diagrammatic analysis in the following and in the appendix

applies identically in these higher dimension models.

Finally, for the purpose of large-n power counting, we do not distinguish between the

ψa and β fields; they give identical factors of n. For the same reason we make no distinction

between the χab and πab fields. In figures such as 4 we will use single lines to denote the

ψa, βa fields and double lines to denote the χab, πab fields. Essentially, this means that we

draw superspace Feynman diagrams for the Ψa, Πab fields.

3.1 2-point functions

We show in the appendix that the dominant contributions to all 2-point functions scale as

g2kn2k in the large-n limit. Consequently, the large-n limit exists if g ∼ 1/n, as already

advertised above. Several examples of these dominant contributions are shown in figure 4.

For completeness we also give a few examples of subdominant diagrams in figure 6. All

dominant contributions can be constructed by iterating the “core” building blocks shown

in figure 5.
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Figure 5. Fundamental building blocks for the ψψ (left) and χχ (right) 2-point functions (and

their super-descendants) at large n. Each of these two diagrams scales as g2n2.

Figure 6. Three examples of diagrams that are suppressed in the large-n limit when g ∼ 1/n.

From left to right they scale as g2n, g4n2 and g4n3 respectively.

Figure 7. Diagrammatic presentation of the Schwinger-Dyson equations. The diamonds represent

the self-energy of the ψa or βa fields. The squares represent the self-energy of the χab or πab fields.

The propagators with circular blobs are exact and are computed as shown in the bottom two panels.

The iteration of the dominant large-n contributions is represented diagrammatically

in figure 7. Let us use Σxx(t1, t2) to denote the self-energy of a field x, and Gxy(t1, t2)

to denote the 2-point function between a field x(t1) and another field y(t2). Then we

can translate figure 7 directly into a set of Schwinger-Dyson equations for the “diagonal”

2-point functions of the component fields:

Σψψ(t1, t2) = −12g2Gψψ(t1, t2)Gππ(t1, t2)− 12g2Gββ(t1, t2)Gχχ(t1, t2) , (3.3)

Σββ(t1, t2) = −12g2Gψψ(t1, t2)Gχχ(t1, t2) , (3.4)

Σχχ(t1, t2) = −32g2Gχχ(t1, t2)Gππ(t1, t2) , (3.5)

Σππ(t1, t2) = −16g2Gχχ(t1, t2)2 , (3.6)

together with

∂t1G
ψψ(t1, t3) + i

∫
dt2 Σψψ(t1, t2)Gψψ(t2, t3) = δ(t1 − t3) , (3.7)

∂t1G
χχ(t1, t3) + i

∫
dt2 Σχχ(t1, t2)Gχχ(t2, t3) = δ(t1 − t3) , (3.8)
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iGββ(t1, t3) + i

∫
dt2 Σββ(t1, t2)Gββ(t2, t3) = δ(t1 − t3) , (3.9)

iGππ(t1, t3) + i

∫
dt2 Σππ(t1, t2)Gππ(t2, t3) = δ(t1 − t3) . (3.10)

The factors of 12 in (3.3) and (3.4) are due to the 12 possible meson-fermion loops for a

given ψa or βa 2-point function. The extra factors of 32 = 8× 22 in (3.5) and (3.6) are due

to the 8 possible meson loops and the factor of 2 in the coupling (contributing a factor of

22) in the last term of the Lagrangian (2.16). Finally, the factor 16 in (3.6) is from the 4

possible meson loops, which is a half of the factor in (3.5) because both the lines in the

loop are χ lines (in other words, we have multiplied by the familiar symmetry factor 1
2).

This set of Schwinger-Dyson equations can be solved analytically in the IR limit, where

the first term in each of the equations (3.7)–(3.10) can be dropped. We make a power law

ansatz for each field

Gxx(t1, t2) ∼ 1

(t1 − t2)2∆x
, x ∈ {ψ , β , π , χ} . (3.11)

Plugging these back to the IR limit of eqs. (3.3)–(3.10) and carrying out the integrals, we

get the following set of equations by a simple comparison of the powers of (t1 − t3) in the

integration result:

(3.7) ⇒ 2∆ψ + ∆π = 1 , ∆ψ + ∆β + ∆χ = 1 , (3.12)

(3.8) ⇒ ∆π + 2∆χ = 1 , (3.13)

(3.9) ⇒ ∆β + ∆ψ + ∆χ = 1 , (3.14)

(3.10) ⇒ ∆π + 2∆χ = 1 . (3.15)

To completely determine the dimensions we follow [31] in making use of supersymmetry.

To that end let us first note that the tensorial analogue of eq. (1.14) is clearly

Qψa(t) = βa(t) , Qβa(t) = i∂tψa(t) , (3.16)

Qχab(t) = πab(t) , Qχab(t) = i∂tχab(t) . (3.17)

Indeed, as a consistency check, it is easy to verify that the Lagrangian (2.16) changes by a

total derivative

δξL =
iξ

2
∂t

(
−ψaβa − χabΠab −

g

2

(
χabψaψb +

1

2
εabcdχabψcψd

)
+

2g

3
χabχbcχca

)
(3.18)

under the supersymmetry transformations (3.16) and (3.17). We also work out the expres-

sion of the supercharge in terms of the fundamental fields of this model, which is

Q = −
√

2g

4

(
χabψaψb +

1

2
εabcdχabψcψd

)
+

√
2g

3
χabχbcχca , (3.19)

which is normalized so that it squares to the Hamiltonian corresponding to (2.11):

Q2 =
g2

8
εabcdψaψbψcψd +

g2

4
(ψaψb)(ψaψb)− 2g2χabχbcχcdχda . (3.20)
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Now if we apply these transformations to the 2-point correlation functions, in a manner

identical to the derivation of eq. (2.17) of [31], we obtain the relations

Gππ(t1, t2) = −i∂t1Gχχ(t1, t2) , (3.21)

Gββ(t1, t2) = −i∂t1Gψψ(t1, t2) . (3.22)

Together with eq. (3.11) this implies

∆β = ∆ψ +
1

2
, ∆π = ∆χ +

1

2
. (3.23)

Now we have enough information to finally determine all of the IR scaling dimensions:

∆χ = ∆ψ =
1

6
, ∆π = ∆β =

2

3
. (3.24)

We can derive an additional consistency check on our large-n Schwinger-Dyson equa-

tions by noting that eqs. (3.21) and (3.22) impose extra relations between the self-energies.

Specifically, by plugging these into eqs. (3.7)–(3.10) and then integrating by parts we obtain

Σψψ(t1, t2) = −i∂t1Σββ(t1, t2) , (3.25)

Σχχ(t1, t2) = −i∂t1Σππ(t1, t2) . (3.26)

These conditions together with eqs. (3.21) and (3.22) are easily seen to be compatible with

the Schwinger-Dyson equations (3.3)–(3.10).

In fact we can also easily determine the normalization of the propagators (3.11) in the

IR limit. Plugging the ansatz

Gxx(t1, t2) =
nx

(t1 − t2)2∆x
, x ∈ {β , π} , (3.27)

Gxx(t1, t2) =
nx sgn(t1 − t2)

(t1 − t2)2∆x
, x ∈ {ψ , χ} (3.28)

into the IR limit of equations (3.3)–(3.10) and using tij ≡ ti − tj we obtain

−12ig2

∫
dt2

(
nψnπ sgn(t12)

t
2∆ψ+2∆π

12

+
nχnβ sgn(t12)

t
2∆χ+2∆β

12

)
nψ sgn(t23)

t
2∆ψ

23

= δ(t13) , (3.29)

−32ig2

∫
dt2

nχnπ sgn(t12)

t
2∆χ+2∆π

12

nχ sgn(t23)

t
2∆χ

23

= δ(t13) , (3.30)

−12ig2

∫
dt2

nχnψ

t
2∆χ+2∆ψ

12

nβ

t
2∆β

23

= δ(t13) , (3.31)

−16ig2

∫
dt2

n2
χ

t
4∆χ

12

nπ

t2∆π
23

= δ(t13) . (3.32)

To solve the above set of equations it is useful to note the relations∫
dt13 e

−ivt13
∫
dt2

sgn(t12)

|t12|α
sgn(t23)

|t23|β
=

(2π)2

cf
(

1−α
2

)
cf

(
1−β

2

) |v|α+β−2 , (3.33)

∫
dt13 e

−ivt13
∫
dt2

1

|t12|α
1

|t23|β
=

(2π)2

cb
(

1−α
2

)
cb

(
1−β

2

) |v|α+β−2 , (3.34)
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which may be derived from the identities [31]∫
dt eiwt

sgn(t)

|t|2∆
= cf (∆)

sgn(w)

|w|1−2∆
, cf (∆) = 2i cos(π∆)Γ(1− 2∆) , (3.35)∫

dt eiwt
1

|t|2∆
= cb(∆)

1

|w|1−2∆
, cb(∆) = 2 sin(π∆)Γ(1− 2∆) . (3.36)

The equations (3.29)–(3.32) then become, in the frequency domain,

−12ig2

 n2
ψnπ (2π)2

cf

(
1−2∆ψ−2∆π

2

)
cf

(
1−2∆ψ

2

) |v|2∆ψ+2∆π+2∆ψ−2

+
nχnβnψ(2π)2

cf

(
1−2∆χ−2∆β

2

)
cf

(
1−2∆ψ

2

) |v|2∆χ+2∆β+2∆ψ−2

 = 1 , (3.37)

−32ig2n2
χ nπ

(2π)2

cf

(
1−2∆χ−2∆π

2

)
cf

(
1−2∆χ

2

) |v|2∆χ+2∆π+2∆χ−2 = 1 , (3.38)

−12ig2nχnψ nβ
(2π)2

cb

(
1−2∆χ−2∆ψ

2

)
cb

(
1−2∆β

2

) |v|2∆χ+2∆ψ+2∆β−2 = 1 , (3.39)

−16ig2n2
χ nπ

(2π)2

cb

(
1−4∆χ

2

)
cb
(

1−2∆π
2

) |v|4∆χ+2∆π−2 = 1 . (3.40)

Comparing the powers of v leads to the relations (3.12)–(3.15):

∆χ = ∆ψ , ∆π = ∆β , ∆π + 2∆χ = 1 . (3.41)

Taking the ratio of eqs. (3.38) and (3.40) gives

2cb

(
1− 4∆χ

2

)
cb

(
1− 2∆π

2

)
= cf

(
1− 2∆χ − 2∆π

2

)
cf

(
1− 2∆χ

2

)
. (3.42)

Then making use of eq. (3.41) and the relations

cf (∆)cf (−∆) = −4π∆ cot(π∆) , cb(∆)cb(−∆) = −4π∆ tan(π∆) (3.43)

we arrive at

− 4π(1− 4∆χ) cot(2π∆χ) = −2π(1− 2∆χ) tan(π∆χ) . (3.44)

This transcendental equation has infinitely many solutions, but only one, ∆χ = 1/6, that

is consistent with both eq. (3.41) and the supersymmetry constraint (3.23). We will focus

only on this solution in the following. The normalization factors nx in eqs. (3.27) and (3.28)

can also be fixed once we take into account eqs. (3.21) and (3.22), which give the relations

nπ = 2i∆χnχ , nβ = 2i∆ψnψ . (3.45)
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Figure 8. The leading large-n contributions to the ψψββ 4-point functions are obtained by iterating

this kernel, leading to ladder diagrams of the type shown in the last panel of figure 19.

Finally we conclude that the equations (3.37)–(3.40) are solved by

nχ = −(32
√

3πg2)−1/3 , nψ = ±(36πg2)−1/3 . (3.46)

Let us make two comments on eq. (3.24). First, even though the meson fields dominate

in the large-n limit defined by the scaling (3.2), the original ψa and βa fields experience

similar IR physics, having exactly the same IR dimensions as the χab and the πab fields,

respectively. This can be understood as a consequence of supersymmetry, which introduces

non-dynamical bosonic fields that in turn provide the constraints (2.8) relating the pair

(ψa, βa) with (χab, πab). Second, it is notable that the IR dimensions 1
6 ,

2
3 of our tensor

fields are exactly the same as those of the component fields in the supersymmetric FGMS

model of [31]. This provides encouraging support to our supersymmetrization approach;

since the fermionic tensor model of [41] has the same IR physics as the SYK model (in

the large-n limit), our supersymmetric tensor model should give the same IR physics as

that of the supersymmetric FGMS model introduced in [31] if our supersymmetrization is

consistent.

3.2 4-point functions

We can also consider 4-point functions. In the appendix we show that the dominant large-n

contributions to 4-point functions of the ψa, βa fields come from meson-exchange ladder

diagrams of the type shown in the last panel of figure 19. The simplest example is a 4-point

function of the type 〈ψa(t1)βb(t2)ψa(t3)βb(t4)〉. Plugging in the appropriate component

fields, we find that contributions to this 4-point function are obtained by iterating the

kernel shown in figure 8. This kernel has essentially the same form as the analogous one

in the supersymmetric FGMS model (see figure 6(a) of [31]). Moreover, since we found in

the previous subsection that the IR dimensions of our fields coincide precisely with those

of that reference, we conclude that the 4-point functions of our supersymmetric tensor

model must be the same as those of those in the supersymmetric FGMS model of [31]. In

particular, this means that the eigenvalues of the kernel and hence the operator spectrum

that appears in the OPE limit of the 4-point functions must also be the same as those

in [31].

4 Discussion

The Gurau-Witten tensor model of [41] is based on an interaction of the form

Lint = j εabcdψaψbψcψd (4.1)
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and has a well-defined large-n limit if j ∼ n−3/2, in which case it reproduces exactly the

physics of the large-n limit of the fermionic SYK model.

In this paper we introduced a tensor model that has the same IR physics as the

supersymmetric FGMS model of [31] in the large-n limit. Our construction required the

introduction of tensor-valued “meson” fields χab as well as auxiliary boson fields. In our

analysis we noted the fact that taking the large-n limit and integrating out the auxiliary

bosons do not commute. If we first take the large-n limit with g ∼ 1/n, we find that the

effective dynamics of the quark fields in the IR is the same as that of the supersymmetric

FGMS model.

However, if we first integrate out the bosonic fields, we found that a judicious choice

of coupling constants decouples the mesons completely, leaving an effective interaction

Lint = −g
2

8
εabcdψaψbψcψd −

g2

4
(ψaψb)(ψaψb) (4.2)

which involves (4.1) as well as the only other operator that is quartic in ψ fields and

invariant under the global symmetry group. However, the large-n limit of this model is

different from Gurau-Witten; the presence of the pillow operator violates the large-n limit

g2 ∼ n−3/2 that is appropriate for the interaction (2.14).1 It will be worthwhile to explore

the large-N property of this pillow operator in the future.

Further notice that we can consider a purely mesonic model, which can be obtained

from (2.15) by turning off all the Ψa fields.2 Since the Ψa fields are subdominant, we believe

that this mesonic model has the same IR physics as we discussed in this paper. We include

the Ψa fields in order to make the comparison with the purely fermionic Gurau-Witten

model manifest, although our model does not reduce to the latter.
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A The mesonic melon patch: a proof of the large-n expansion

Here we prove that the large-n limit of (2.16) is dominated by “melonic” graphs of the type

shown in figure 4. The proof is split into several steps. We first discuss vacuum graphs, since

graphs with external fields can be obtained by cutting lines in vacuum graphs. Moreover

we start with vacuum graphs with only mesonic loops since quark loops are suppressed by

1/n, as we show in step 5.

1We thank Igor Klebanov and Grigory Tarnopolsky pointing out this important fact to us.
2We thank Juan Maldacena for raising this point to us.
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Figure 9. Pulling apart a mesonic double line into a pair of single quark lines. The upper panel

shows this process in terms of the single/double line notation introduced in figure 4; the lower panel

depicts the same splitting in terms of the four individual O(n) index strands carried by the meson

field.

Figure 10. Modification of the vertices. The top left panel shows the resolution of the πψψ vertex

into a quartic vertex of single lines, and the bottom left panel shows the resolution of the χχχ

vertex into a 6-valent vertex. The right panels show the same procedure in terms of the individual

vector index strands.

Step 1: a convenient notational trick. We start by introducing a modification to the

way we draw our Feynman diagrams, such as those in figure 4, to manifest the connection

to the fermionic model. This is done by “pulling apart” each internal double line associated

to a mesonic πab or χab field into a pair of single lines. In terms of the individual vector

index strands (of the different O(n) groups) to which the single and double lines resolve,

this process inserts a strand loop of type ab into each internal mesonic line of type ab. This

process, depicted in figure 9, allows us to translate any diagram in our model into one with

only three-stranded internal lines. By redrawing every diagram in this way we will be able

to transcribe many steps of the large-n proof presented in [41] (and based on [46]).

Notice that this procedure is only defined for internal double lines in a diagram, which

always end on two vertices. Consequently we should modify the vertices as well. The

original πabψaψb vertex (and its superpartner χabβaψb) splits into a quartic vertex for

single lines, and the original πabχbcχca vertex splits into a 6-valent vertex. When these

vertices are resolved into the individual index strands they reveal that the extra strand loop

inserted into each meson line undergoes a “U-turn” at every vertex. These modifications

are pictured in figure 10.

To summarize, each vacuum diagram in the theory (2.16) can be drawn with single-

line three-stranded edges interacting via 4-valent and 6-valent vertices. The benefit of this

rewriting is that we can basically transcribe the large-n counting argument from [41, 46].

The only change we have to make is to remove one power of n for every extra loop of strand

that was introduced, i.e. one power of n for every meson line in the original diagram.
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Step 2: counting the large-n scaling of a graph. At this step we are focusing on

vacuum diagrams with only 6-valent vertices. Proceeding as in [41, 46] we consider one at a

time the three separate ways to “project” a stranded diagram onto a standard double-line

type Feynman diagram. Here by “double-line” we mean fat diagrams of the type familiar

in the study of large-N gauge theory and not the double lines we have been using to denote

our meson fields; importantly, there is no meaning of planarity for the latter. To define

a projection we first pick one of the three cyclic orderings of the labels (0, 1, 2, 3) modulo

reflection, i.e.

J = (0, 1, 2, 3), (0, 1, 3, 2), or (0, 2, 1, 3) . (A.1)

Then, for a given ordering J = (. . . , ai−1, ai, ai+1, . . .), we keep only the two vector index

strands aiai±1 of each single line of type ai, and we ignore the third index strand ai+2 =

ai−2. Then we glue a “face” of type Fai,ai+1 onto each closed index loop of type aiai+1. In

this way each diagram becomes a fat line diagram as in conventional large-N theories. We

denote the collection of all faces for a given J by

FJ =

3∑
i=0

FJaiai+1
. (A.2)

The Euler characteristic of the resulting fat diagram is, for a given J ,

χJ = V6 − E + FJ = −2V6 +
∑
i

FJaiai+1
, (A.3)

where the V6 is the number of 6-valent vertices and E = (6V6)/2 is the total number of

edges. Notice that E is not the total number of lines in the original graph before splitting

open all of the mesonic lines; instead, the number of mesonic lines in the original graph is

e2 = (3V6)/2 . (A.4)

We define the “degree” of a given single-line graph by

ω =
∑
J

(
1− χJ

2

)
, (A.5)

which evaluates to

ω = 3 + 3V6 −F . (A.6)

Here F =
∑

iFaiai+1 is the total number of closed loops of strands in the graph; in

particular, this should not be confused with the FJ that is defined for a given fat diagram

corresponding to the ordering J .

Given these relations, each graph scales with g and n according to

gV6nFn−e2 , (A.7)

where the last factor removes the extra loops we introduced in step 1 to inflate the original

mesonic lines. Using (3.2), (A.4) and (A.6), this evaluates to

n3+ 1
2
V6−ω . (A.8)
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Figure 11. A 6-valent vertex with index labels {1, 1, 2, 2, 3, 3}. When we resolve this into a fat

vertex for the choice J = (0, 1, 3, 2), it is necessary to arrange the two 1’s to be cyclically adjacent,

the two 2’s to be cyclically adjacent, and the 1’s and 2’s to be separated by 3’s. This is the only

way to ensure that the strands of type 10 and 20 match up. For different choices of J the vertex

would have to be resolved into a fat diagram with different cyclic orderings.

It may look worrisome that the result depends on the number of 6-valent vertices with a

positive coefficient, since it might allow for arbitrarily large n-scaling for diagrams with

sufficiently many 6-valent vertices. However, we will show in the next step that

1

2
V6 − ω ≤ 1 for all graphs. (A.9)

Step 3: bounding the large-n behavior. To show (A.9) we take a closer look at

the form of the 6-valent vertex. This vertex originates from the πabχbcχca coupling in

eq. (2.16). Therefore, when we pull the meson lines apart into single lines as explained in

step 1, this vertex resolves into a coupling of three pairs of distinct indices {a, a, b, b, c, c}
and, importantly, does not couple arbitrary sets of indices. The notation {· · · } emphasizes

that we are talking merely about a set of indices; there isn’t yet any notion of cyclic

ordering.

Now consider some given J and suppose, without loss of generality, that the three

labels a, b, c in the 6-vertex appear in the cyclic order J = (a, b, c, d), where d is the fourth

index, i.e. {d} = {0, 1, 2, 3} \ {a, b, c}. Then, when we resolve into a fat diagram using this

J , the index a resolves into strands of type ab and da, the index b resolves into strands of

type ab and bc, and the index c resolves into strands of type bc and cd. In total we have 12

strands. In order for the two da strands to pair up, and for the two ab strands to pair up,

it is necessary to order the 6 index labels of the vertex cyclically as (a, b, c, c, b, a), i.e., so

that the two c’s are cyclically adjacent, the two a’s are cyclically adjacent, and these pairs

are separated from each other by the two b’s. An example of this is shown in figure 11 for

the choice {a, b, c, d} = {1, 3, 2, 0}.
There are three possible J ’s (see eq. (A.1)), so there are three different ways to blow

up a given 6-valent vertex into the vertex in a fat line diagram. It is clear that the blow-up

of a single 6-vertex can always be drawn as a planar fat vertex. However, as soon as two

such vertices are joined, in general there will be a topological obstruction to maintaining

planarity. Specifically, it is easy to see that whenever two 6-valent vertices are joined

together, there must be a handle for at least one of the three J ’s, corresponding to a

twist in matching the fat lines to the original legs. More specifically, if the pair of 6-valent
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Figure 12. An example illustrating the existence of a handle for one of the three J ’s in the case

when two 6-valent vertices are connected by four lines. The 3 diagrams to the right of the arrow

show the three blow-ups of this graph for the three different choices J = (0123), (0132) and (0213)

respectively. In this example we see that only the third ordering develops a handle. Inserting a

pair of 6-valent vertices of this type into a larger diagram therefore does not change the value of
1
2V6 − ω since V6 increases by two while ω increases by one.

Figure 13. In contrast to the situation shown in figure 12, if two 6-valent vertices are connected

by only two lines, then the corresponding fat graph is non-planar for two J ’s. Inserting a pair of

6-valent vertices of this type into a larger graph therefore decreases 1
2V6 − ω by one.

Figure 14. The vacuum bubble diagram, which is a leading contribution to the large-n limit,

having V6 = 2 and ω = 0. It contains two 6-valent vertices and can be blown up into a planar fat

graph for each of the three choices of J . Other dominant diagrams can be recursively obtained by

adding 6-valent vertices to this graph in a manner explained in step 4 of the appendix.

vertices is joined by four lines (i.e., by two mesons, in the original diagram), then a handle

exists for only one J , as shown in figure 12. On the other hand, if the pair of vertices is

joined by only two lines (i.e., by one meson), then a handle must exist for more than one

J , as shown in figure 13.

The only exception occurs when two 6-valent vertices are connected by 6 legs, as shown

in figure 14. This can be blown up into a planar fat graph for each choice of J , so this

diagram has V6 = 2, ω = 0, and hence 1
2V6 − ω = 1 so it grows like n4 according to

eq. (A.8). (The 1-loop diagram with no vertices should be thought of as a special case, it

clearly scales as n4 also.) We take the bubble graph of figure 14 as the starting point of

our inductive construction to be discussed in the next step. Here we finish by noting that
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Figure 15. An example of the recursive generation of dominant (O(n4)) vacuum diagrams. The

process is shown in terms of the inflated single line propagators and vertices on the left; and in

terms of the original double line notation on the right. The green part in bold lines is the building

block shown in figure 12. Iterating this procedure leads to “melon” graphs of the standard type.

since adding a pair of 6-valent vertices (the number of such vertices must always be even)

to any graph necessarily introduces a handle for at least one J , so the quantity 1
2V6 − ω

can never be greater than 1. This completes the proof of eq. (A.9).

Step 4: identifying the dominant vacuum graphs. At this stage we have now proven

that there is indeed a well-defined large-n expansion when g ∼ 1/n. Our next task is to

identify the vacuum graphs that dominate this limit. These are the ones which saturate

the bound

ω =
1

2
V6 − 1 (A.10)

and hence scale like n4. As in [41, 46] we proceed by induction starting with the graph

shown in figure 14. Now suppose we have a graph that satisfies (A.10). Next we consider

adding a pair of 6-valent vertices into this graph. The bound (A.10) will continue to hold

only if the addition of these vertices introduces a handle for a single J ; if handles are

introduced for more than one J then (A.10) will be violated.

Since each pair of adjacent vertices in a graph must be connected by at least one

handle, it is clear that if we add two new vertices to a graph, the only way to avoid adding

more than one new handle is for there to be one handle between the two new vertices. If

instead the new handles connect new vertices to existing ones, then at least 2 new handles

are needed, which gives a subdominant diagram. But the only way to add a pair of 6-valent

vertices connected by exactly one handle is to use a pair of the type shown in figure 12.

We conclude that the dominant diagrams are all built from the vacuum graph in

figure 14 by breaking some pairs of the inflated propagators and inserting the building

block shown in figure 12 in all possible “planar” ways. One example of such an insertion

is shown in figure 15. Each resulting diagram can then be translated back to the original

double-line notation.

Step 5: the dominant contributions to meson and quark correlators. To find

the dominant contributions to the meson propagator we can simply cut any edge in one of

the dominant vacuum graphs. This gives precisely the set of graphs shown already in 4.

One example of this cutting procedure is shown in figure 16.

Finally we are ready to construct the dominant contributions to the correlation func-

tions of the single-line quark fields. These are always obtained by cutting vacuum graphs

with a single quark loop (and arbitrarily many meson loops), as we now discuss.
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Figure 16. An example of the recursive construction that generates the leading contributions to

the 2-point function of the original double-line (meson) fields. The first arrow represents the action

of inserting one building block, as in figure 15. The third panel shows two different ways to get a

2-point graph by cutting one of the edges in the second panel.

First, to get a vacuum graph with single lines we need to insert some 4-valent vertices

of the type shown in the top panel of figure 10. It is clear from the form of this vertex that

it can be interpreted simply as splitting a double (meson) line into a pair of single (quark)

lines. This interaction originates from the vertices with one double line and two single

lines, i.e. πabψaψb or χabβaψb. But since the two single lines in any such vertex necessarily

carry different indices a 6= b, they cannot close to form a tadpole that we could cut to get

a contribution to a quark two-point function. To get such a contribution we need to insert

at least two 4-valent vertices.

In addition to the insertion of these 4-valent vertices, we need one additional move in

the following discussion, which is to strip off a line from a 6-valent vertex to make it a

4-valent vertex. This process breaks two of the virtual loops we introduced in step 1 and

rejoins them after an exchange. An example of this move is shown in figure 17. It is clear

that this move does not change the actual number of index strand loops in the diagram.

In addition, since the number of vertices also does not change, we conclude that this move

does not change the large-n behavior of a diagram. Finally we note that there is symmetry

between the 3 pairs of indices of each 6-valent vertex, and we always have a free choice of

which pair of indices to strip off.

Now consider the process of adding a single quark loop inside any vacuum diagram of

the meson fields. We simply start with any dominant “melon” contribution to the vacuum

(zero-point function). Then consider all possible distinct ways of inserting a pair of 4-valent

vertices onto the various double-line propagators. The two vertices may be on the same

propagator, or on different propagators. Then, starting from one of these vertices, and

proceeding in either direction, we can “unzip” the meson double lines into a pair of quark

lines. Each single line opened up in this way extends until it hits the next vertex. If this is

a 6-valent vertex, then we can use the move shown in figure 17 to reduce the 6-valent vertex

into a 4-valent vertex with the single line cleanly separated out. Then we simply continue

unzipping past this vertex. Ultimately, the zipper runs out when we hit the second of our

two inserted 4-valent vertices. Note that for each pair of inserted vertices, there is more

than one distinct way to unzip a diagram. An example of this process is shown in figure 18.

All dominant vacuum diagrams with a single quark loop are obtained in this way by

unzipping some double-line in a melonic vacuum graph. How do these graphs scale with n?

As discussed above, the unzipping move shown in figure 17 does not affect the scaling with

n. We get a factor of 1/n2 from having inserted two 4-valent vertices. But this process

also creates precisely one new strand loop, since the two 3-strand single lines from one of

the insertions have to join up with the two 3-strand single lines from the other insertion,
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Figure 17. The move to separate out a single line from a 6-valent vertex to make a 4-valent vertex.

In the left panel, the 6-valent vertex carries indices {1, 1, 2, 2, 3, 3} and we can strip off the line 3

by breaking 2 virtual loops and reconnecting the open ends shown by the bold strands in red.

Figure 18. An example showing how to generate dominant contributions to the quark 2-point

functions. We start with a mesonic vacuum graph and insert two vertices, shown in red. In this

figure the two vertices sit on the same meson propagator, but this needn’t be the case in general.

We then “unzip” the mesons between these vertices. This can be done in two ways. In the top

panel we unzip the “short” way and in the bottom panel we unzip the “long” way. In the latter

case, as discussed in the text, the unzipping passes straight through the two vertices. Finally we

obtain various dominant contributions to the quark 2-point function by cutting open the various

quark lines that have been exposed.

ψ

β

ψ

β

Figure 19. An example showing how to generate dominant contributions of the quark/squark

4-point functions. We start by inserting four vertices, shown in red, into a mesonic vacuum graph.

We then unzip horizontally the two pairs of insertions. Finally we cut the green dashed lines, which

come from unzipping the top and the bottom double lines in the previous step, to get the dominant

ladder diagrams contributing to the 〈ψa(t1)βb(t2)ψa(t3)βb(t4)〉 4-point correlator.

giving a factor of n. Altogether we conclude that the leading vacuum graphs with a single

quark loop scale as n3 in the large-n limit. Of course, it is expected that each quark loop

should suppress a graph by 1/n compared to a graph with only meson loops.

With all these preparations, we finally can construct the dominant diagrams contribut-

ing to the 2-point functions of some single-line fields simply by cutting open the quark loop.

This suppresses a diagram by a factor of n3, leading to graphs that scale as O(1) in the

large-n limit. This process is also shown in figure 18. In general it is clear that this

procedure generates the melonic-type graphs shown in figure 4.
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We can compute leading 4-point function diagrams in a similar manner, but with two

quark lines cut. Since the construction is essentially the same we do not elaborate all the

details but just show in figure 19 one example that generates the dominant ladder diagrams

contributing to the 4-point function of some single-line quark fields.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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