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1 Introduction

Several years ago, two of us introduced a family of constrained Goldstino superfields [1],

in terms of which the models for spontaneously broken N = 2 Poincaré supersymmetry

are formulated. Some of these Goldstino superfields have been generalised to the case of

N = 2 anti-de Sitter supersymmetry [2]. The common feature of the constrained N = 2

superfields given in [1] is that their only independent component fields are the two Goldstini.

Therefore, if such a Goldstino superfield is coupled to supergravity in order to describe

spontaneously broken N = 2 local supersymmetry, it does not bring in any new degrees of

freedom, except for making the gravitini massive and generating a positive contribution to
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the cosmological constant, in accordance with the super-Higgs effect [3–5]. In particular,

the absence of scalars is an attractive feature for phenomenological applications.

Some of the N = 2 superfield Goldstino models given in [1] have natural N = 1

counterparts [6–10]. In particular, the constrained chiral scalar superfield, which will be

reviewed in section 2.2, is the N = 2 analogue of the N = 1 chiral scalar superfield φ [6, 7],

D̄α̇φ = 0, which is subject to the constraints [6]:

φ2 = 0 , (1.1a)

fφ = −1

4
φD̄2φ̄ , (1.1b)

where f is a real parameter of mass dimension +2 which characterises the supersymmetry

breaking scale. As was shown by Roček [6] (see also [11] for a recent review), the Goldstino,

which may be identified with Dαφ|θ=0, is the only independent component field contained

in φ. In the case of N = 1 supersymmetry, there is an alternative superfield approach to

describe the Goldstino dynamics, which was advocated in [12, 13]. It consists of getting

rid of the nonlinear constraint (1.1b) and working with a chiral scalar X , D̄α̇X = 0, which

is only constrained to be nilpotent,

X 2 = 0 . (1.2)

Unlike φ, the chiral scalar X contains an independent auxiliary field in addition to the

Goldstino. Nevertheless, the former proves to be a function of the latter on the mass shell.

In practice, the use of X is somewhat simpler than that of φ from the point of view of

its couplings to supergravity and supersymmetric matter. Conceptually, however, the two

constrained superfield realisations φ and X are completely equivalent [14] (as long as one

deals with low-energy effective actions without higher-derivative terms). In particular, they

lead to equivalent couplings to supergravity and supersymmetric matter, see [14] for the

technical details. The N = 2 superfield analogue of X was given in [15], see section 2.3

below for a review. We will demonstrate that this realisation is equivalent to the N = 2

chiral scalar Goldstino model of [1].

In this paper we propose models for spontaneously broken local N = 2 supersymme-

try, which are obtained by coupling the standard off-shell supergravity-matter systems to

the Goldstino superfields introduced in [1, 15]. Recently, there has been much interest in

N = 1 supergravity coupled to nilpotent Goldstino superfields for several reasons. Firstly,

such theories are interesting from the point of view of cosmology due to the possibility of

describing inflation [16, 17]. Secondly, every Goldstino superfield coupled to supergravity

provides a universal positive contribution to the cosmological constant [14, 18–21], unlike

the supersymmetric cosmological term [22] which yields a negative contribution to the cos-

mological constant. The same property is true for the Goldstino brane [23]. Of course,

the observation that the coupling of the Volkov-Akulov theory [24–26] to supergravity gen-

erates a model-independent positive contribution to the cosmological constant was made

long ago in the frameworks of on-shell supergravity [5] and off-shell supergravity [18]. But

it seems that at that time nobody was interested in generating a positive cosmological con-

stant. Cosmological model building [16, 17] and the so-called de Sitter supergravity [19]
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and its extensions [27, 28] have invigorated interest in the coupling of nonlinear super-

symmetry to supergravity. Nonlinear supersymmetries are also intriguing in the context

of amplitudes [29]. It is also worth recalling that N = 2 supergravity [30] realised Ein-

stein’s dream of unifying electromagnetism and gravity [31] by adding a massless complex

gravitino to the photon and graviton. When N = 2 supergravity is coupled to any of

the Goldstino superfields introduced in [1], the resulting theory describes (in a unitary

gauge) the Einstein-Maxwell system coupled to a massive complex gravitino. Integrating

out the massive gravitino fields leads to a low-energy Einstein-Maxwell theory of purely

supersymmetric origin.

This paper is organised as follows. In section 2 we review the Goldstino superfields

introduced in [1, 15] and elaborate on their properties and the explicit relationships be-

tween them. In section 3 we couple the chiral scalar and analytic Goldstino superfields

to supergravity and supersymmetric matter. Section 4 is devoted to the coupling of the

spinor Goldstino superfield to supergravity. Several generalisations of our results are given

in section 5. The main body of the paper is accompanied by four technical appendices.

Appendix A describes the component content of the nilpotent chiral scalar superfield Φ.

Appendix B gives a summary of the SU(2) superspace [32], while appendix C briefly in-

troduces N = 2 conformal superspace [33]. Finally, appendix D discusses nilpotent N = 1

supergravity following and extending [21]. Our two-component notation and conventions

correspond to [34].

2 Goldstino superfields in Minkowski superspace

We start by reviewing some results of [1] and elaborating on them.

2.1 Spinor Goldstino superfields

The N = 2 analogue of the nonlinear realisation for N = 1 supersymmetry [7–9, 35, 36],

in which there is a pair of Goldstone fields ξαi (x) which mix only with themselves under

supersymmetry transformation, is based on the coset parametrisation [1]

g
(
x, ξi(x), ψ̄i(x)

)
= ei(−xaPa+f−1ξαi (x)Qiα) eif−1ψ̄iα̇(x)Q̄α̇i . (2.1)

This yields the supersymmetry transformations

δξαi = fεαi − 2if−1ξβj ε̄
β̇j∂ββ̇ξ

α
i , (2.2a)

δψ̄iα̇ = f ε̄iα̇ − 2if−1ξβj ε̄
β̇j∂ββ̇ψ̄

i
α̇ . (2.2b)

The construction of N = 2 superfields associated with these Goldstino fields proceeds as

in the N = 1 case, and the resulting superfields Ξαi and Ψ̄i
α̇ satisfy the following set of

constraints involving the N = 2 covariant derivatives DA = (∂a, D
i
α, D̄

α̇
i ):

Dj
βΞαi = fδαβ δ

j
i , (2.3a)

D̄β̇jΞ
α
i = −2if−1Ξβj ∂ββ̇Ξαi , (2.3b)

Dj
βΨ̄i

α̇ = 0 , (2.3c)

D̄β̇jΨ̄
i
α̇ = fεβ̇α̇δ

i
j − 2if−1Ξβj ∂ββ̇Ψ̄i

α̇ . (2.3d)
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The constraints (2.3a) and (2.3b) were derived for the first time by Wess [37] as a gen-

eralisation of the N = 1 construction [9]. The constraints (2.3) tell us that ξαi = Ξαi |θ=0

and ψ̄iα̇ = Ψ̄i
α̇|θ=0 are the only independent component fields contained in the Goldstino

superfields introduced.

The spinor superfields Ξαi and Ψ̄i
α̇ provide equivalent descriptions of the Goldstini. It

may be checked that the latter is expressed via the former as

Ψ̄i
α̇ =

1

f4
D4(Ξ̄iα̇Ξ4) = Ξ̄iα̇ +O(Ξ3) , Ξ4 :=

1

3
ΞijΞij = −1

3
ΞαβΞαβ , (2.4)

which extends the N = 1 result given in [14]. Here and below we make use of the following

definitions1

D4 =
1

48
DijDij = − 1

48
DαβDαβ , Dij = Dα

i Dαj , Dαβ = Di
αDβi , (2.5a)

D̄4 =
1

48
D̄ijD̄ij = − 1

48
D̄α̇β̇D̄α̇β̇ , D̄ij = D̄α̇iD̄

α̇
j , D̄α̇β̇ = D̄α̇iD̄

i
β̇
. (2.5b)

The composites Ξij and Ξαβ in eq. (2.4) are defined similarly. Note that eq. (2.4) implies

that ψ̄iα̇ = ξ̄iα̇ + · · · , where the ellipsis stands for nonlinear terms in ξαi and ξ̄iα̇.

Eq. (2.3c) means that the spinor superfields Ψ̄i
α̇ are antichiral and their complex conju-

gates Ψαi are chiral, and so they provide ingredients for an action obtained by integration

over the chiral subspace of N = 2 Minkowski superspace:

SGoldstino = − 1

2f2

∫
d4xd4θΨ4 − 1

2f2

∫
d4xd4θ̄ Ψ̄4 , (2.6)

where Ψ4 := 1
3ΨijΨij , Ψij := Ψα

i Ψαj and Ψij = εikεjlΨkl. Making use of (2.4) allows us to

reformulate the Goldstino action (2.6) in terms of Ξαi and its conjugate:

SGoldstino = − 1

f6

∫
d4xd4θd4θ̄Ξ4Ξ̄4 . (2.7)

This action was given for the first time in ref. [38], which built on the earlier work [37]. At

the component level, the functionals (2.6) and (2.7) lead to nonlinear actions, which prove

to be equivalent to the N = 2 supersymmetric Volkov-Akulov theory [24–26]. To quadratic

order in Goldstini, the action (2.7) is

SGoldstino = −
∫

d4x
(
f2 + i ξαi

←→
∂αα̇ ξ̄

α̇i
)

+O(ξ4) . (2.8)

The constant term in the integrand (2.8) generates a positive (de Sitter) contribution to

the cosmological constant when the Goldstino superfields Ξαi are coupled to supergravity,

see section 4.

In general, N = 2 supersymmetric Goldstino actions contain terms to sixteenth order

in the fields. The striking feature of the action (2.6) is that it is at most of eighth order

1We point out that the second-order operators Dij , Dαβ , D̄ij and D̄α̇β̇ are symmetric in their indices.
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in the fields ξαi and ψ̄iα̇, as a consequence of the constraints (2.3). To quartic order in

Goldstini, the component form of the action (2.6) is

SGoldstino = −
∫

d4x

(
1

2
f2 + i ξαi ∂αα̇ψ̄

α̇i − 1

4f2
ξij∂αα̇∂

α̇αψ̄ij −
1

4f2
ξαβ∂αα̇∂ββ̇ψ̄

α̇β̇

+
1

f2
ξαi(∂αα̇ξ

βj)∂β
α̇ψ̄ij −

1

f2
ξαi(∂αα̇ξ

β
i )∂ββ̇ψ̄

α̇β̇ − 1

4f2
ξαβ∂β

α̇((∂αα̇ψ̄
i
β̇
)ψ̄β̇i )

+
1

2f2
ξαβ(∂αα̇ψ̄

α̇i)∂ββ̇ψ̄
β̇
i +

1

2f2
ξαβ(∂αα̇∂ββ̇ψ̄

α̇i)ψ̄β̇i + c.c.

)
+ . . . (2.9)

This action turns into (2.8) once ψαi and ψ̄iα̇ are expressed in terms of ξαi and ξ̄iα̇.

2.2 Chiral scalar Goldstino superfield

The chiral scalar superfield [1]

Φ := Ψ4 , D̄α̇
i Φ = 0 (2.10)

obeys the following nilpotency conditions

Φ2 = 0 , (2.11a)

ΦDADBΦ = 0 , (2.11b)

ΦDADBDCΦ = 0 , (2.11c)

as well as the nonlinear relation

fΦ = ΦD̄4Φ̄ , (2.12)

which is similar to Roček’s constraint (1.1b). It follows from the definition of Φ, eq. (2.10),

and from (2.3d) that D4Φ is nowhere vanishing.

The chiral scalar Φ has been defined as the composite superfield (2.10) constructed

from Ψα
i . It can also be realised as a different composite,

Φ =
1

f7
D̄4(Ξ̄4Ξ4) , (2.13)

which is constructed from Ξαi and its conjugate. In both realisations, the relations (2.11)

and (2.12) hold identically. On the other hand, if we view Φ as a fundamental Goldstino

superfield, then (2.11) and (2.12) must be imposed as constraints. In addition, it is nec-

essary to require D4Φ to be nowhere vanishing. These properties guarantee that the two

Goldstini, which occur at order θ3, are the only independent component fields of Φ, see ap-

pendix A for the details. In this approach, the spinor Goldstino superfields can be realised

as composite ones constructed from Φ and its conjugate. In particular, one finds

Ξαi = − f

12

DαjDjiΦ

D4Φ
. (2.14)

It is a constructive exercise to check that this composite superfield obeys the con-

straints (2.3a) and (2.3b).

The Goldstino action takes the form

SGoldstino = −f
2

∫
d4xd4θΦ− f

2

∫
d4xd4θ̄ Φ̄ = −

∫
d4xd4θd4θ̄ Φ̄Φ . (2.15)
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2.3 Reducible chiral scalar Goldstino superfield

Instead of working with the Goldstino superfield Φ, which contains only two independent

component fields — the Goldstini — one can follow a different path, in the spirit of the

N = 1 constructions advocated in [12, 13]. Specifically, one can consider a chiral scalar X,

D̄α̇
i X = 0, which is only required to obey the nilpotency constraints

X2 = 0 , (2.16a)

XDADBX = 0 , (2.16b)

XDADBDCX = 0 , (2.16c)

in conjunction with the requirement that D4X be nowhere vanishing, D4X 6= 0. This ap-

proach was pursued in [15].2 The chiral superfield X contains two independent component

fields that we identify with the lowest components of the descendants χαi := − 1
12D

αjDijX

and D4X, which have the obvious, albeit useful, properties

Xχαi = 0 , (2.17a)

Dj
βχ

α
i = δαβ δ

j
iD

4X . (2.17b)

The dynamics of this supermultiplet is governed by the action

S̃Goldstino =

∫
d4xd4θd4θ̄ X̄X − f

∫
d4xd4θX − f

∫
d4xd4θ̄ X̄ . (2.18)

Making use of the constraints (2.16), it is not difficult to derive the following nonlinear

representation3 for X [15]:

X =
χ4

(D4X)3
, χ4 =

1

3
χijχij = −1

3
χαβχαβ , (2.19)

where χij = χαiχjα and χαβ := χiαχβi. With this representation for X, the con-

straints (2.16) hold identically.

The Goldstino model (2.18) is equivalent to the one described by the action (2.15).

The simplest way to prove this is by extending the N = 1 analysis of [14] to the N = 2

supersymmetric case. The starting point is to notice that if X obeys the constraints (2.16),

then e−ρX also obeys the same constraints, for every chiral scalar superfield ρ, D̄α̇
i ρ = 0.

This freedom may be used to represent

X = eρΦ , (2.20)

where Φ is the Goldstino superfield described in the previous subsection. The superfield ρ

in (2.20) is defined modulo gauge transformations of the form

ρ → ρ+ δρ , Φδρ = 0 . (2.21)

2The chiral scalar X was the only novel N = 2 Goldstino superfield introduced in [15], the others had

been given five years earlier in [1].
3Relation (2.19) has a natural counterpart in the case of N = 1 supersymmetry. Given a nilpotent N = 1

chiral superfield X, with the properties D̄α̇X = 0 and X2 = 0, it can be represented as X = −χ2(D2X)−1,

where χ2 = χαχα and χα = DαX.
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We now make use of the representation (2.20) and vary the action (2.18) with respect to

ρ, which gives

XD̄4X̄ = fX . (2.22)

We see that on the mass shell the nilpotent chiral superfield X, defined by (2.20), obeys the

same constraint as Φ, eq. (2.12). This means that ρ = 1 modulo the gauge freedom (2.21).

It is worth giving anN = 2 extension of one more important result from [14]. The point

is that the representation (2.14) does not require Φ to obey the nonlinear constraint (2.12);

only the nilpotency constraints (2.11) are essential. In other words, starting from X, it

turns out that the composite spinor superfield

Ξαi = f
χαi
D4X

(2.23)

obeys the constrains (2.3a) and (2.3b) (see also [15]). Now, given Ξαi , we know that

eq. (2.13) defines the chiral scalar Goldstino superfield Φ subject to the constraints (2.11)

and (2.12). Therefore, we can always represent

X = Φ + Υ , Φ =
1

f7
D̄4(Ξ̄4Ξ4) , (2.24)

for some chiral scalar Υ obeying the generalised nilpotency condition

2ΦΥ + Υ2 = 0 . (2.25)

The two component fields of X now belong to the two different chiral superfields Φ and Υ,

of which Φ contains the Goldstino and Υ the auxiliary field.

According to the terminology of [14], the N = 2 Goldstino superfields described in sec-

tions 2.1 and 2.2 are irreducible in the sense that the Goldstini are the only independent

component fields of such a superfield, while the other component fields are simply compos-

ites constructed from the Goldstini. There also exist reducible Goldstino superfields. They

contain certain independent auxiliary fields in addition to the Goldstini. Any reducible

Goldstino superfield may be represented as a sum of an irreducible Goldstino superfield

and a “matter” superfield, which contains the auxiliary fields. The chiral scalar X is an

example of a reducible Goldstino superfield. It is represented in the form (2.24), where Φ

is the irreducible Goldstino superfield and Υ the matter one.

2.4 Analytic Goldstino superfields

The superfields Ξαi , Ψ̄i
α̇ and Φ, which we have described in sections 2.1 and 2.2, are not

the only irreducible Goldstino superfields considered in [1]. Another Goldstino multiplet

introduced in [1] is a complex linear superfield, H ij , constructed originally as a composite of

the spinor ones. Here we study its properties in more detail using an alternative realisation

for H ij as a descendant of Φ.

Our first observation is that the degrees of freedom of the chiral scalar Φ can be encoded

in the following complex iso-triplet

H ij :=
1

4
DijΦ (2.26)

– 7 –
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and its conjugate H̄ij = H ij = 1
4D̄ijΦ̄. By construction, H ij satisfies the analyticity

constraints

D(i
αH

jk) = 0 , D̄
(i
α̇H

jk) = 0 , (2.27)

which mean that H ij is a N = 2 linear multiplet [39–41]. Following the modern projective-

superspace terminology [42, 43], one may also refer to H ij as a complex O(2) multiplet.

As shown in appendix A, the chiral scalar Φ is expressed in terms of its descendants χαi
and F , defined by (A.1), according to (A.2d). These are given in terms of H ij as follows:

χαi = −1

3
DαjHij , F =

1

12
DijHij . (2.28)

As a result, Φ turns into a composite superfield constructed from H ij . In particular, the

Goldstini χαi |θ=0 can be read off from H ij by taking its first spinor derivative. Making use

of (A.2b), we observe that H ij satisfies the nilpotency constraint

H(ijHkl) = 0 ⇐⇒ H ijHkl =
2

3
δi(kδ

j
l)H

2 , H2 =
1

2
H ijHij . (2.29)

Moreover, it holds that

H i1j1H i2j2H i3j3 = 0 . (2.30)

It may be shown that H ij obeys the following nonlinear constraints

D̄α̇
j H

ij = −4i∂αα̇
H ijDk

αHjk

D ·H
, D ·H =

1

2
DijHij (2.31a)

and

fH ij =
1

6
Dij

(
D̄ · H̄
D ·H

H2

)
, (2.31b)

which complete the list of conditions H ij has to obey in order to be an irreducible Goldstino

superfield. The Goldstino action (2.15) turns into

SGoldstino = − f

24

∫
d4x

(
DijHij + D̄ijH̄ij

)
. (2.32)

This action is supersymmetric because it is a variant of the N = 2 linear multiplet action

proposed by Sohnius [44].

It follows from (2.31a) that the action (2.32) can be rewritten in the form

SGoldstino = − f

12

∫
d4x

(
Dij + D̄ij

)
Hij , Hij :=

1

2
(H ij + H̄ ij) . (2.33)

One may see that the dynamics of the Goldstini can be described using the real linear mul-

tiplet Hij , which is an irreducible Goldstino superfield. It satisfies a nilpotency condition

of degree 3,

H(i1i2Hi3i4Hi5i6) = 0 . (2.34)

– 8 –
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If Hij is used as a fundamental Goldstino superfield, the Goldstini may be defined to be

proportional to DαjHij |θ=0. The nonlinear constraint (2.31b) may be recast in terms of Hij .

We now introduce one more Goldstino superfield that is a real O(4) multiplet associated

with H ij and H̄ ij . It is defined by

Lijkl := H(ijH̄kl) = 2H(ijHkl) (2.35)

and obeys the analyticity constraints

D(i
αL

jklm) = D̄
(i
α̇L

jklm) = 0 . (2.36)

The second form of the Goldstino action (2.15) may be recast in the alternative form

SGoldstino = −1

5

∫
d4xDijklLijkl , Dijkl :=

1

16
D(ijD̄kl) . (2.37)

This action is N = 2 supersymmetric because it is a variant of the O(4) multiplet action

introduced for the first time by Sohnius, Stelle and West in [41].

To get further insights into the structure of the constrained superfield Lijkl, which is,

by construction, defined on N = 2 Minkowski superspace M4|8, it is useful to (i) reformulate

Lijkl as a holomorphic superfield on a superspace with auxiliary bosonic dimensions, M4|8×
CP 1, which is the most relevant superspace setting for off-shell N = 2 supersymmetric

theories; and (ii) make use of the modern projective-superspace notation [43].4

Let vi ∈ C2 \ {0} be homogeneous coordinates for CP 1. Given a symmetric iso-spinor

of rank n, T i1...in = T (i1...in), we associate with it a holomorphic homogeneous polynomial

T (n)(v) := vi1 . . . vinT
i1...in , where the superscript “n” denotes the degree of homogeneity,

that is T (n)(c v) = cn T (n)(v), with c ∈ C\{0}. It is clear that T (n)(v) defines a holomorphic

tensor field on CP 1. If T i1...in(z) is a superfield constrained by

D(i1
α T i2...in+1) = 0 , D̄

(i1
α̇ T i2...in+1) = 0 , (2.38)

it is called an O(n) multiplet.5 The holomorphic superfield T (n)(z, v) on M4|8×CP 1, which

is associated with the O(n) multiplet, obeys the analyticity constraints

D(1)
α T (n) = 0 , D̄

(1)
α̇ T (n) = 0 , (2.39)

where we have introduced the first-order operators D
(1)
α := viD

i
α and D̄

(1)
α̇ := viD̄

i
α̇, which

anticommute with each other. The O(n) multiplets are examples of the so-called projective

multiplets [49, 50], see [43] for a modern review.

The constraints (2.27) and (2.36) tell us that the Goldstino superfields H ij and Lijkl

are O(2) and O(4) multiplets, respectively. They can equivalently be described in terms

of the projective superfields H(2)(v) = vivjH
ij and L(4)(v) = vivjvkvlL

ijkl.

4The superspace M4|8×CP 1 was originally introduced by Rosly [45]. It is the superspace setting for both

the harmonic [46, 47] and the projective [48–50] superspace approaches to N = 2 supersymmetric theories

in four dimensions. The precise relationship between these approaches is thoroughly discussed in [43, 51].
5In case n is even, n = 2m, one can consistently define real O(2m) multiplets which are subject to the

reality condition T i1...i2m = Ti1...i2m = εi1j1 . . . εi2mj2mT
j1...j2m .
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The Goldstino superfield L(4) satisfies the nilpotency constraints

L(4)L(4) = 0 , (2.40a)

L(4)DADBL
(4) = 0 , (2.40b)

L(4)DADBDCL
(4) = 0 , (2.40c)

as well as the nonlinear relation

f2L(4) =
1

4!
L(4)D(4)

(
∂(−2)

)4
L(4) , (2.41)

which follows from eq. (2.31b). Here we have introduced the operators

D(4) := vivjvkvlD
ijkl , ∂(−2) :=

1

(v, u)
ui

∂

∂vi
, (2.42)

where (v, u) := viui, and ui is an isospinor constrained by the only requirement (v, u) 6= 0

(which means that vi and ui are linearly independent). It is not difficult to see that the

right-hand side of (2.41) is independent of ui. In what follows, given a symmetric iso-spinor

T i1...in , we will associate with it not only T (n) = vi1 . . . vinT
i1...in , but also the following

object

T (−n) :=
1

(v, u)n
ui1 . . . uinT

i1...in . (2.43)

With this notation, the constraint (2.41) turns into

f2L(4) = L(4)D(4)L(−4) . (2.44)

It is worth pointing out that the constraints (2.40) and (2.41) are quite similar to (2.11)

and (2.12).

It may be seen that L(4) is an irreducible Goldstino superfield. To demonstrate the

equivalence of this description to those discussed earlier, we point out that the following

composite real O(4) multiplet

L(4) :=
1

f6
D(4)(Ξ4Ξ̄4) (2.45)

satisfies the nilpotency constraints (2.40) and (2.41). This relation may be inverted to

express Ξαi in terms of L(4).

We believe that the Goldstino superfields H ij and Lijkl can be generalised to describe

spontaneously broken supersymmetry with eight supercharges in five and six dimensions

where chiral superfields are not defined in the SU(2) covariant formalism.

2.5 Reducible linear Goldstino superfield

The linear Goldstino superfield (2.26) is constructed from the irreducible chiral scalar

Goldstino superfield Φ. Instead of using Φ, we can choose X to define another complex

linear superfield,

H ij
X :=

1

4
DijX , (2.46)
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which is a reducible Goldstino superfield. It satisfies the same analyticity and nilpotency

conditions, eqs. (2.27) and (2.29), that H ij does. However, there is no constraint (2.31b)

in the case of H ij
X .

Within the harmonic superspace approach [46, 47], one deals with SU(2) harmonics

u+
i and u−i defined by

u−i := u+i , u+iu−i = 1 ⇐⇒
(
ui
−, ui

+
)
∈ SU(2) . (2.47)

They may be related to the isospinors vi and ui, which we have used in the previous

subsection, as follows:

vi → u+i :=
vi√
v†v

, ui := u−i =
v̄i√
v†v

, (2.48)

with v̄i := vi. Associated with H ij
X is the analytic superfield H++

X = u+
i u

+
j H

ij
X .

In terms of H++
X and H̄++

X , the Goldstino action (2.18) turns into

S̃Goldstino =

∫
du

∫
dζ(−4) L(+4) ,

L(+4) = H̄++
X H++

X + f
(

(θ+)2 + (θ̄+)2
)(
H++
X + H̄++

X

)
, (2.49)

where the integration is over the analytic subspace of harmonic superspace,

dζ(−4) := d4x (D−)4 , (D−)4 :=
1

16
(D̄−)2(D−)2 , (2.50)

and the u-integral denotes the integration over the group manifold SU(2) defined as in [46].

The second term in the analytic Lagrangian (2.49) involves naked Grassmann variables,

however the action proves to be supersymmetric [52].

3 Chiral and analytic Goldstino superfields in supergravity

In this section we couple the chiral scalar (Φ and X) and the analytic (H ij) Goldstino

superfields, which have been described in the previous section, to N = 2 supergravity and

supersymmetric matter. Since the two chiral realisations have been shown to be equivalent,

here we first provide the locally supersymmetric extension of X and then explain how to

read off the curved analogue of Φ.

In this section we make use of the superspace formulation for N = 2 conformal super-

gravity, which was developed in [53] and employed in [53, 54] to construct general off-shell

supergravity-matter couplings.6 A brief summary of the corresponding curved superspace

6This formulation is often called SU(2) superspace, since the corresponding superspace structure group is

SL(2,C)×SU(2)R, with SL(2,C) being the universal cover of the Lorentz group SO0(3, 1). There exist two

more superspace formulations for N = 2 conformal supergravity, which are characterised by larger structure

groups, specifically: (i) the U(2) superspace of [55] with the structure group SL(2,C)×U(2)R, where U(2)R =

SU(2)R × U(1)R denotes the N = 2 R-symmetry group; and (ii) the conformal superspace of [33], which

naturally leads to the superconformal tensor calculus [56–58]. In the latter formulation, the entire N = 2
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geometry is given in appendix B. The reason this superspace geometry is suitable to de-

scribe N = 2 conformal supergravity is that it is compatible with super-Weyl invariance.

The point is that the algebra of covariant derivatives (B.3) preserves its functional form

under the super-Weyl transformations [53]

δσDiα =
1

2
σ̄Diα +DγiσMγα −Dαkσ Jki , (3.1a)

δσD̄α̇i =
1

2
σD̄α̇i + D̄γ̇i σ̄ M̄γ̇α̇ + D̄kα̇σ̄ Jki , (3.1b)

δσDa =
1

2
(σ + σ̄)Da +

i

4
(σa)

α
β̇D

k
ασ D̄

β̇
k +

i

4
(σa)

α
β̇D̄

β̇
k σ̄D

k
α −

1

2
Db(σ + σ̄)Mab , (3.1c)

with the parameter σ being an arbitrary covariantly chiral superfield, D̄α̇iσ = 0. The

dimension-1 components of the torsion transform as follows:

δσS
ij = σ̄Sij − 1

4
Dγ(iDj)γ σ , (3.2a)

δσYαβ = σ̄Yαβ −
1

4
Dk(αDβ)kσ , (3.2b)

δσWαβ = σWαβ , (3.2c)

δσGαβ̇ =
1

2
(σ + σ̄)Gαβ̇ −

i

4
Dαβ̇(σ − σ̄) . (3.2d)

As is seen from (3.2c), the covariantly chiral symmetric spinor Wαβ transforms homoge-

neously, and therefore it is a superfield extension of the Weyl tensor, known as the N = 2

super-Weyl tensor [55, 57, 61].

3.1 Two realisations for the chiral Goldstino superfield

The Goldstino superfield X is covariantly chiral,

D̄α̇i X = 0 , (3.3)

and obeys the nilpotency constraints

X2 = 0 , (3.4a)

XDADBX = 0 , (3.4b)

XDADBDCX = 0 . (3.4c)

We choose X to be inert under the super-Weyl transformations,

δσX = 0 . (3.5)

The constraints (3.4) are clearly super-Weyl invariant.

superconformal algebra is gauged in superspace. The three formulations prove to be equivalent, and they

are also related to each other in the following sense: (i) SU(2) superspace is a gauged fixed version of U(2)

superspace [59]; and (ii) U(2) superspace is a gauge fixed version of conformal superspace [33]. The most

general off-shell N = 2 supergravity-matter couplings were constructed in SU(2) superspace [53, 54], a few

years before the conformal superspace was introduced. They can uniquely be lifted to U(2) superspace [59]

and also to conformal superspace [60]. For certain applications, SU(2) superspace is the simplest formalism

to deal with. We will use the conformal superspace setting in section 4.
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As in the rigid supersymmetric case, the Goldstino superfield is subject to the addi-

tional requirement that ∆X is nowhere vanishing, ∆X 6= 0, so that (∆X)−1 is well defined.

Here ∆ denotes the complex conjugate of the N = 2 chiral projection operator [62]

∆̄ =
1

96

(
(D̄ij + 16S̄ij)D̄ij − (D̄α̇β̇ − 16Ȳ α̇β̇)D̄α̇β̇

)
=

1

96

(
D̄ij(D̄ij + 16S̄ij)− D̄α̇β̇(D̄α̇β̇ − 16Ȳ α̇β̇)

)
, (3.6)

with D̄α̇β̇ := D̄(α̇
k D̄

β̇)k. Its main properties can be summarised in terms of an arbitrary

super-Weyl inert scalar superfield U as follows:

D̄α̇i ∆̄U = 0 , (3.7a)

δσU = 0 =⇒ δσ∆̄U = 2σ∆̄U , (3.7b)∫
d4xd4θd4θ̄ E U =

∫
d4xd4θ E ∆̄U . (3.7c)

Here E−1 = Ber(EA
M ) is the full superspace measure, and E denotes the chiral density.

The derivation of (3.7c) can be found in [63].

We postulate the Goldstino superfield action in curved superspace to be

S̃Goldstino =

∫
d4xd4θd4θ̄ E X̄X −

{
f

∫
d4xd4θ EW 2X + c.c.

}
, (3.8)

as a natural curved-superspace extension of (2.18). Here W denotes the field strength of an

Abelian vector multiplet. It is a covariantly chiral superfield, D̄α̇i W = 0, which is subject

to the constraint7 [55, 64]

Σij :=
1

4

(
Dij + 4Sij

)
W =

1

4

(
D̄ij + 4S̄ij

)
W̄ , (3.9)

and is characterised by the super-Weyl transformation law

δσW = σW . (3.10)

It is assumed that W is nowhere vanishing, W 6= 0, and therefore it may be identified

with one of the two supergravity compensators.8 The Goldstino action (3.8) is super-

Weyl invariant.

The constraints (3.4) are preserved if X is locally rescaled,

X → eτX , D̄α̇i τ = 0 , (3.11)

for an arbitrary covariantly chiral scalar τ . Requiring the action (3.8) to be stationary

under arbitrary displacements (3.11) gives

X = Φ , fW 2Φ = Φ∆̄Φ̄ . (3.12)

7Every covariantly chiral superfield W under the additional reality condition (3.9) is called reduced chiral.
8The choice of the second compensator is not unique. Different choices lead to different off-shell formu-

lations for N = 2 supergravity [65].
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The constraint on Φ is the curved-superspace generalisation of (2.12). Making use of (3.12),

the Goldstino action (3.8) reduces to

SGoldstino = −f
2

∫
d4xd4θ EW 2Φ + c.c. (3.13)

3.2 Spontaneously broken supergravity

In this subsection we present two off-shell models for spontaneously broken N = 2 super-

gravity. They are described by actions of the form

S̃ = S̃Goldstino + SSUGRA . (3.14a)

Here the Goldstino action is given by (3.8), and SSUGRA stands for a pure supergravity

action. Requiring this action to be stationary under arbitrary displacements (3.11) turns

X into Φ defined by (3.12), and the action (3.14a) into

S = SGoldstino + SSUGRA , (3.14b)

with SGoldstino being given by (3.13). Below we will consider two different off-shell formu-

lations for N = 2 supergravity.

Let us first consider the minimal formulation for N = 2 supergravity with two com-

pensators, the vector multiplet and the (improved) tensor multiplet, proposed in 1983 by

de Wit, Philippe and Van Proeyen [65]. In superspace, the corresponding gauge-invariant

supergravity action can be written in the form given in [66]

SSUGRA =
1

κ2

∫
d4xd4θ E

{
ΨW− 1

4
W 2 +mΨW

}
+ c.c. (3.15)

where κ is the gravitational constant, m the cosmological parameter, and W denotes the

following reduced chiral superfield9

W := −G
8

(D̄ij + 4S̄ij)

(
Gij

G2

)
, G =

√
1

2
GijGij , (3.16)

which is associated with the tensor multiplet. The tensor multiplet is usually described

using its gauge invariant field strength Gij , which is defined to be a real iso-triplet (that

is, Gij = Gji and Ḡij := Gij = Gij) subject to the covariant constraints [39–41]

D(i
αG

jk) = D̄(i
α̇G

jk) = 0 , (3.17)

with the super-Weyl transformation law

δσG
ij = (σ + σ̄)Gij . (3.18)

The constraints (3.17) are solved [67–70] in terms of a covariantly chiral prepotential Ψ,

D̄α̇i Ψ = 0, as follows:

Gij =
1

4

(
Dij + 4Sij

)
Ψ +

1

4

(
D̄ij + 4S̄ij

)
Ψ̄ , D̄iα̇Ψ = 0 . (3.19)

9This multiplet was originally discovered in [65] using the superconformal tensor calculus. The regular

procedure to derive W within the superspace setting was given in [66].
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The field strength Gij is invariant under gauge transformations of the form

δΛΨ = i Λ , D̄α̇i Λ = 0 ,
(
Dij + 4Sij

)
Λ =

(
D̄ij + 4S̄ij

)
Λ̄ , (3.20)

with Λ being an arbitrary reduced chiral superfield. The action (3.15) is invariant under

these gauge transformations, since both W and W are reduced chiral superfields. The

action (3.15) is also super-Weyl invariant, since the super-Weyl transformation laws of Ψ

and W are [54, 66]

δσΨ = σΨ , δσW = σW . (3.21)

Since the iso-vector superfield Gij is one of the two supergravity compensators, its length

G must be nowhere vanishing, G 6= 0.

To vary the action (3.14a) with respect to the vector multiplet, it is advantageous to

represent W in the form [66]

W =
1

4
∆̄
(
Dij + 4Sij

)
Vij , (3.22)

where ∆̄ is the chiral projection operator (3.6). Here the unconstrained real iso-triplet

Vij = Vji is the curved-superspace extension of Mezincescu’s prepotential [71] (see also [67]).

The equation of motion for the vector multiplet is

Σij −mGij = −2fκ2
(
H ij
X + H̄ ij

X

)
, H ij

X :=
1

4

(
Dij + 4Sij

)
(WX) . (3.23)

In the limit f → 0, this equation reduces to the one given in [66]. Since the tensor multiplet

does not couple to the Goldstino superfield in (3.8), the equation of motion for the tensor

multiplet is the same as in pure supergravity10 [66]

W +mW = 0 . (3.24)

Making use of the nilpotency constraint (3.4a), from (3.23) we deduce

(Σ(2) −mG(2))3 = 0 , (3.25)

where Σ(2)(v) = vivjΣ
ij is the real O(2) multiplet associated with (3.9), and G(2)(v) =

vivjG
ij . Eq. (3.25) is a nilpotency condition of degree 3. It tells us that we are dealing

with nilpotent N = 2 supergravity. The equation (3.23) is similar to that in spontaneously

broken N = 1 supergravity [21, 23], see appendix D for a review of the construction of [21].

The supergravity theory (3.15) possesses a dual formulation in which the tensor mul-

tiplet compensator is dualised into a polar hypermultiplet compensator [54]. To obtain the

dual formulation, the first step is to recast the chiral action (3.15) as a projective action.

10In pure supergravity, the equation of motion for the N = 2 gravitational superfield, which describes

the Weyl multiplet, is G−WW̄ = 0, as demonstrated in [66]. This equation has a natural counterpart at

the component level [65]. In the case of spontaneously broken supergravity described by the action (3.14a),

this equation gets deformed by terms involving X and its conjugate, G−WW̄
[
1 + 2fκ2(X + X̄)

]
= 0.
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Within the off-shell formulation for general supergravity-matter systems developed in [53],

a universal locally supersymmetric action is given by

S =
1

2π

∮
(v, dv)

∫
d4xd4θd4θ̄ E

WW̄L(2)

(Σ(2))2
. (3.26)

The Lagrangian L(2)(v) in (3.26) is a covariant projective multiplet of weight two, which is

real with respect to the so-called smile conjugation, see [53] for the details. The projective

Lagrangian corresponding to (3.26) was given in [54]. It is

κ2L(2)
SUGRA = G(2) ln

G(2)

iΥ(1)Ῠ(1)
− 1

2
V Σ(2) +mVG(2) , (3.27)

where V (v) is the tropical prepotential for the vector multiplet, and Υ(1)(v) is a weight-

one arctic multiplet (both Υ(1) and its smile-conjugate Ῠ(1) are pure gauge degrees of

freedom). The chiral field strength W is constructed in terms of the tropical prepotential

as follows [72]:

W =
1

8π

∮
(v, dv)

(
D̄(−2) + 4S̄(−2)

)
V (v) , (3.28)

where we have used the notation defined in subsection 2.4. This field strength is invariant

under gauge transformations of the form:

δλV = λ+ λ̆ , (3.29)

with the gauge parameter λ(v) being a covariant weight-zero arctic multiplet, and λ̆ its

smile-conjugate.

Unlike the action (3.15), the tensor multiplet appears in (3.27) only via its gauge in-

variant field strength G(2). With reference to the vector multiplet, it appears in (3.15) only

via its gauge invariant field strength, while the projective Lagrangian (3.27) involves the

gauge prepotential V . The locally supersymmetric action generated by (3.27) is invariant

under the gauge transformations (3.29).

Since the tensor multiplet compensator appears in the Lagrangian (3.27) only via

the gauge invariant field strength, G(2), the tensor multiplet can be dualised into an off-

shell polar hypermultiplet following the scheme described in [54]. The dual supergravity

Lagrangian is

κ2L(2)
SUGRA,dual = −1

2
V Σ(2) − iῨ(1)emV Υ(1) . (3.30)

Under the gauge transformation (3.29), the hypermultiplet varies as δλΥ(1) = −mλΥ(1)

such that the supergravity action is gauge invariant.

3.3 Matter couplings

General matter couplings for the Goldstini are obtained by replacing the Goldstino ac-

tion (3.8) with

S̃Goldstino −→
∫

d4xd4θd4θ̄ EN X̄X −
{∫

d4xd4θ E ZX + c.c.

}
. (3.31)
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Here N is a super-Weyl invariant real scalar, δσN = 0, while Z is a covariantly chiral

scalar, D̄α̇i Z = 0, with the super-Weyl transformation law δσZ = 2σZ. If the supersym-

metric matter consists of a set of Abelian vector multiplets described by covariantly chiral

field strengths WI , then N = N (WI , W̄J) and Z = Z(WI). In order to guarantee the

required super-Weyl transformation laws, the composites N (WI , W̄J) and Z(WI) must be

assigned certain homogeneity properties. Some of the reduced chiral superfields WI may

be composite. For instance, we may choose

Z = WW , W =
1

8π

∮
(v, dv)

(
D̄(−2) + 4S̄(−2)

)
K(Υa, Ῠb̄) , (3.32)

where W is the chiral compensator, and K(ϕa, ϕ̄b̄) is the Kähler potential of a real analytic

Kähler manifold, with a, b̄ = 1, . . . , n. The hypermultiplet variables Υa(v) in (3.32) are

covariant weight-zero arctic multiplets, and Ῠb̄ denotes the smile conjugate of Υb, see [53]

for the technical details. The reduced chiral superfield W is invariant under Kähler trans-

formations [72]

K(Υ, Ῠ) → K(Υ, Ῠ) + Λ(Υ) + Λ̄(Ῠ) , (3.33)

with Λ(ϕ) being a holomorphic function. The action (3.31) with Z given by (3.32) describes

the off-shell coupling of the Goldstino superfield to hypermultiplets.

Requiring the action (3.31) to be stationary under arbitrary displacements (3.11) gives

X = Φ , ZΦ = Φ∆̄(N Φ̄) , (3.34)

which is a consistent deformation of the constraint (3.12).

3.4 Analytic Goldstino superfields

We now recast the Goldstino action (3.13) in terms of a linear Goldstino superfield. This

is achieved by recalling the observation [54, 63] that the N = 2 locally supersymmetric

chiral action

Schiral =

∫
d4x d4θ E Lc + c.c. , D̄α̇i Lc = 0 , (3.35)

can be realised as a projective superspace action:

Schiral =
1

2π

∮
(v, dv)

∫
d4xd4θd4θ̄ E

WW̄L(2)
c

(Σ(2))2
,

L(2)
c =

1

4
V

{(
D(2) + 4S(2)

)Lc

W
+
(
D̄(2) + 4S̄(2)

) L̄c

W̄

}
, (3.36)

where V is the tropical prepotential for the vector multiplet with field strength W . Ap-

plying this general result to the Goldstino action (3.13) gives the projective Lagrangian

L(2)
Goldstino = −f

2
V
(
H(2) + H̄(2)

)
≡ −fVH(2) , (3.37)
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where we have introduced the complex linear Goldstino superfield

H(2) = vivjH
ij , H ij =

1

4
(Dij + 4Sij)(WΦ) . (3.38)

It obeys the analyticity constraints

D(1)
α H(2) = D̄(1)

α̇ H(2) = 0 ⇐⇒ D(i
αH

jk) = D̄(i
α̇H

jk) = 0 , (3.39)

as well as the nilpotency condition

H(ijHkl) = 0 ⇐⇒ (H(2))2 = 0 . (3.40)

In terms of the real linear superfield H(2), the nilpotency condition is

(H(2))3 = 0 . (3.41)

We now show how the spontaneously broken supergravity (3.14a) can be reformu-

lated as a nilpotent N = 2 supergravity theory. Varying the action (3.14a) with respect

to the tensor multiplet compensator leads to the equation (3.23). We then require the

action (3.14a) to be stationary under arbitrary displacements (3.11), which implies that

X = Φ and the action (3.14a) turns into (3.14b). Then, the equation (3.23) takes the form

Σ(2) −mG(2) = −4fκ2H(2) . (3.42)

As a result, the projective Lagrangian for the theory (3.14b) can be written as

κ2L(2) = G(2) ln
G(2)

iΥ(1)Ῠ(1)
− 1

4
V Σ(2) +

3

4
mVG(2) . (3.43)

This has the form of the supergravity Lagrangian (3.27) with rescaled parameters. The two

conformal compensators have to obey the nilpotency condition (3.25) as well as curved-

superspace analogues of the nonlinear constraints (2.31).

4 Spinor Goldstino superfields in supergravity

In this section, we provide a curved-superspace extension of the spinor Goldstino superfield

Ξαi defined by the constraints (2.3a) and (2.3b). It is known that some superfield represen-

tations of Poincaré supersymmetry cannot be lifted to the locally supersymmetric case. In

particular, covariantly chiral N = 2 superfields with Lorentz and SU(2) indices cannot be

defined in general. This means that there is no straightforward curved-superspace general-

isation of the spinor Goldstino superfield Ψ̄i
α̇ defined by the constraints (2.3c) and (2.3d).

Fortunately, the constraints on Ξαi allow for a supergravity analogue.

In order to lift Ξαi to supergravity, it is advantageous to employ the superspace formu-

lation for N = 2 conformal supergravity developed by Butter11 [33] and further elaborated

11Conformal superspace was originally constructed for 4D N = 1 supergravity [73] and then extended to

the 4D N = 2 [33] case, 3D N -extended conformal supergravity [74], 5D conformal supergravity [75] and

recently to the 6D N = (1, 0) case [76].
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in [77]. We denote by ∇A = (∇a,∇iα, ∇̄α̇i ) the corresponding superspace covariant deriva-

tives. Throughout this section we use the notation and various results from ref. [77].

Appendix C includes those technical details on conformal superspace which are relevant

for our analysis.

We proceed by lifting the Goldstino superfield X, which has so far been defined in SU(2)

superspace, to conformal superspace. Such a reformulation is unique if X is required to

be primary, in addition to being covariantly chiral. Then the superconformal properties of

X are:

DX = 0 , Y X = 0 , KAX = 0 , ∇̄α̇i X = 0 , (4.1)

where D, Y and KA = (Ka, Sαi , S̄
i
α̇) are respectively the dilatation, U(1)R, special confor-

mal and S-supersymmetry generators of theN = 2 superconformal algebra. The nilpotency

constraints (3.4) turn into

X2 = 0 , (4.2a)

X∇A∇BX = 0 , (4.2b)

X∇A∇B∇CX = 0 . (4.2c)

As in SU(2) superspace, ∆X is required to be nowhere vanishing, ∆X 6= 0, where the

covariantly antichiral projection operator is

∆ :=
1

48
∇ij∇ij = − 1

48
∇αβ∇αβ , ∇ij := ∇γ(i∇γj) , ∇αβ := ∇k(α∇β)k , (4.3)

and this expression for ∆ is much simpler than the same operator in SU(2) superspace,

eq. (3.6). For every primary superfield U with the properties DU = 0, Y U = 0 and

KAU = 0, ∆U proves to be an antichiral primary superfield of dimension 2, that is:

D∆U = 2∆U , Y∆U = 4∆U , KA∆U = 0 and ∇iα∆U = 0. An example of a superfield U

is provided by X. The Goldstino action (3.8) is uniquely lifted to conformal superspace to

describe the dynamics of X.

As in the flat case, the nilpotent chiral superfield X contains two independent compo-

nent fields which can be identified with the θ-independent components of the descendants

χαi := − 1
12∇

αj∇ijX and ∆X. Unlike X and ∆X, the spinor superfield χαi is not primary.

It has two obvious properties:

Xχαi = 0 , (4.4a)

∇jβχ
α
i = δαβ δ

j
i∆X . (4.4b)

It is much more difficult to derive the following relation

∇̄β̇j χ
α
i = −i(∆X)−1

(
εijχ

αk∇γβ̇χγk + εijχ
k
γ∇γβ̇χαk + 2χγ(i∇

αβ̇χγj)

)
+(∆X)−2

(
iχij∇αβ̇∆X − iεij χ

αγ∇γβ̇∆X +
2

3
εij(∇̄kγ̇W̄ β̇γ̇)χklχ

αl
)

−4i

3
εij(∆X)−3 W̄ β̇γ̇χklχ

γk∇αγ̇χlγ + 3iεij(∆X)−4 W̄ β̇γ̇χ4∇αγ̇∆X , (4.4c)
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which involves the super-Weyl tensor. To completely specify the properties of χαi , we also

need its S-supersymmetry transformations

S̄j
β̇
χαi = 0 , Sβj χ

α
i = 2(∆X)−1

(
εαβχij + εijχ

αβ
)
. (4.5)

As in the flat-superspace case, we make use of the definitions: χij := χαiχjα, χαβ := χkαχkβ
and χ4 := 1

3χ
ijχij = −1

3χ
αβχαβ .

Making use of the constraints (4.2), it is possible to prove that X is a composite

superfield constructed from χαi ,

X =
χ4

(∆X)3
, ∆X =

1

4
∇iαχαi . (4.6)

Using this representation, the nilpotency conditions (4.2) are satisfied identically.

In the super-Poincaré case, the spinor Goldstino superfield Ξαi was constructed from

X according to (2.23). In the supergravity framework, we make use of a similar definition,

Ξαi := f
χαi

∆X
, (4.7)

with χαi and ∆X given above. The superfield (4.7) proves to satisfy the

following constraints:

∇jβΞαi = fδαβ δ
j
i , (4.8a)

∇̄β̇j Ξαi = 2if−1Ξγj∇γβ̇Ξαi − iεijf
−3(∇αγ̇W̄ β̇γ̇)Ξ4 − iεijf

−3W̄ β̇γ̇∇αγ̇Ξ4

−2iεijf
−3W̄ β̇γ̇ΞklΞ

αk∇γγ̇Ξγl − 4i

3
f−3W̄ β̇γ̇Ξk(iΞ

αk∇γγ̇Ξγj)

−1

3
εijf

−2(∇̄kγ̇W̄ β̇γ̇)ΞklΞ
αl − 2

3
f−2(∇̄γ̇(iW̄

β̇γ̇)Ξj)kΞ
αk , (4.8b)

which are the curved-superspace generalisation of the constraints (2.3a) and (2.3b).

As with χαi , Ξαi is not primary. Its superconformal properties are determined by the

relations

Sβj Ξαi = 2εαβf−1Ξij + 2εijf
−1Ξαβ , S̄j

β̇
Ξαi = 0 . (4.9)

On the other hand, the composites χ4 and Ξ4 turn out to be primary superfields,

KAχ4 = 0 , KAΞ4 = 0 . (4.10)

An important property of Ξ4 is

∇̄α̇i Ξ4 = −2iΞ4∇γα̇Ξγi . (4.11)

This relation can be used to check that X = Ξ4∆X is chiral. The same relation is useful

to show that the dimensionless primary chiral scalar

Φ :=
1

f7
W−2∆̄(W 2W̄ 2Ξ4Ξ̄4) =

1

f7
∆̄(W̄ 2Ξ4Ξ̄4) (4.12)
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has the following properties:

Φ2 = 0 , Φ∇A∇BΦ = 0 , Φ∇A∇B∇CΦ = 0 , (4.13a)

fΦ = W−2 Φ∆̄Φ̄ . (4.13b)

This primary chiral scalar is the unique extension of the irreducible Goldstino super-

field (3.12) to conformal superspace. It is worth pointing out that (4.11) implies that

Φ defined by (4.12) is proportional to Ξ4.

The action for the Goldstino superfield Ξαi coupled to supergravity is given by

SGoldstino = − 1

f6

∫
d4xd4θd4θ̄ E W 2W̄ 2 Ξ4Ξ̄4 . (4.14)

It can be recast in the form (3.13) if we make use of (4.12).

It is important to observe that the constraints (4.8) allow for the following unitary

gauge condition

Ξαi |θ=0 = 0 , (4.15)

which completely fixes the local Q-supersymmetry invariance. We now evaluate the Gold-

stino action (4.14) in this gauge and show that it generates a positive contribution to the

cosmological constant upon imposing standard superconformal gauge conditions.

First of all, we recall that any action given by an integral over the full superspace can

equivalently be represented as an integral over the chiral subspace,∫
d4xd4θd4θ̄ E L =

∫
d4xd4θ E ∆̄L . (4.16)

Next, reducing the chiral action to components gives

S =

∫
d4x e

(
∆ + · · ·

)
∆̄L
∣∣∣
θ=0

. (4.17)

Here the ellipsis denotes terms involving supergravity fields and at most three spinor deriva-

tives (see [33, 77] for the complete expression). In the unitary gauge, it is easy to see that

the component reduction of the action (4.14) is

SGoldstino =− 1

f6

∫
d4x eW 2W̄ 2(∆Ξ4)(∆̄Ξ̄4)

∣∣∣
θ=0

= −f2

∫
d4x eW 2W̄ 2

∣∣∣
θ=0

. (4.18)

Here we have used the fact that in the unitary gauge we have

∇jβΞαi |θ=0 = fδαβ δ
j
i , ∇̄β̇j Ξαi |θ=0 = 0 , (4.19)

together with ∆Ξ4|θ=0 = f4. We also have to fix the local dilatation, U(1)R and supercon-

formal (KA) symmetries in a standard way [65] in order to end up with the canonically

normalised Einstein-Hilbert action. In superspace this requires choosing the gauge W = 1.

The final expression for the cosmological constant proves to be

Λ = f2 − 3
m2

κ2
. (4.20)
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Here the second term on the right comes from the supersymmetric cosmological term in

the supergravity action (3.15).

Let us conclude this section with a few comments. As mentioned above, Ξαi is not a

primary superfield. However, with the aid, for instance, of the chiral compensator W , a

primary extension of Ξαi can be constructed. It turns out that the superfield

Ξα
i = − 1

12W∆X

(
∇αj − 3W−1(∇αjW )

)
∇ij(WX) (4.21)

is primary. Its evaluation gives

Ξα
i = Ξαi −

1

2W
(∇αjW )Ξij −

1

2W
(∇βiW )Ξαβ

− 1

6W

(
(∇ijW )−W−1(∇γ(iW )(∇γj)W )

)
ΞjkΞαk

+
1

6W

(
(∇αβW )− 3W−1(∇(αkW )(∇β)

k W )
)

ΞijΞ
j
β

− 1

12W

(
(∇αj∇ijW )− 3W−2(∇αjW )(∇ijW )

)
Ξ4 . (4.22)

In the derivation of (4.22), we have only used the fact that W is a chiral primary superfield.

The Bianchi identity ∇ijW = ∇̄ijW̄ has not been used at all, and therefore the above

construction does not require W to be the field strength of a vector multiplet.

Multiplying (4.22) by ∆X gives a primary extension of χαi ,

χαi = f−1Ξα
i ∆X . (4.23)

It holds that

Ξ4 = Ξ4 , χ4 = χ4 . (4.24)

For this reason the field redefinition Ξαi → Ξα
i does not affect any models constructed in

terms of X or Ξ4.

5 Generalisations

In conclusion we consider two generalisations inspired by the discussion in this paper.

5.1 N -extended case

Whilst the results in equations (2.3) were derived in [1] with the case of N = 2 super-

symmetry in mind, they apply for arbitrary N -extended supersymmetry in four spacetime

dimensions.12 This is because they are derived from the coset parametrisation (2.1) using

only the anti-commutator

{Qiα, Q̄α̇ j} = 2Pαα̇δ
i
j , i, j = 1, . . . ,N (5.1)

12The N = 1 case was also considered in [1].
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and the conjugation rule Qiα
† = Q̄α̇i, which are still applicable regardless of the range of

the index i. However, the chiral action (2.6) is specific to the N = 2 case, and in the

general N -extended case it must be replaced with

S = − 1

2f2(N−1)

∫
d4xd2N θΨ2N − 1

2f2(N−1)

∫
d4xd2N θ̄ Ψ̄2N , (5.2)

where we have introduced the chiral scalar

Ψ2N =
2N

N !(N + 1)!
Ψi1j1 · · ·ΨiN jN ε

i1···iN εj1···jN =
2N

(N + 1)!
det(Ψij) , (5.3)

and as earlier, Ψij := Ψα
i Ψαj . The normalisation of the composite superfield Ψ2N is

chosen so that Ψ2N = Ψ11Ψ22 . . .ΨNN . The determinant form of the N -extended chiral

Lagrangian, eq. (5.3), makes it analogous to the Volkov-Akulov theory [24–26].

5.2 Generalisation of the Lindström-Roček construction

Lindström and Roček [18] proposed to describe the Goldstino using a real scalar superfield

V , which is nilpotent, V 2 = 0, and obeys the nonlinear constraint

fS̄0S0V =
1

16
VDα(D̄2 − 4R)DαV , (5.4)

with S0 the chiral compensator, D̄α̇S0 = 0, for the old minimal formulation for N = 1

supergravity [78–80].13 Actually, V was realised in [18] only as a composite superfield,

fS̄0S0V = φ̄φ , (5.5)

constructed from the covariantly chiral scalar Goldstino superfield φ (which is the curved-

superspace extension of Roček’s nilpotent superfield [6]) constrained by

D̄α̇φ = 0 , φ2 = 0 , fS2
0φ = −1

4
φ(D̄2 − 4R)φ̄ , (5.6)

compare with (1.1). If instead V is viewed as a fundamental Goldstino superfield, then it

has been shown [14] that one has to impose the three nilpotency constraints

V 2 = 0 , (5.7a)

VDADBV = 0 , (5.7b)

VDADBDCV = 0 , (5.7c)

in addition to (5.4). It is also necessary to require that the descendant DαWα is nowhere

vanishing, where

Wα = −1

4
(D̄2 − 4R)DαV . (5.8)

13Here we use the notation S0 for the chiral compensator following [81, 82]. In the superspace literature

reviewed in [83], it is usually denoted Φ. The super-Weyl gauge S0 = 1 was used in [18].
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The constraints (5.4) and (5.7) guarantee that V contains a single independent compo-

nent field — the Goldstino, which is the lowest (θ-independent) component of Wα. The

Goldstino action is

SGoldstino = −f
∫

d4xd2θd2θ̄ E S̄0S0V . (5.9)

The constraints (5.4) and (5.7), as well as the action (5.9), are invariant under super-

Weyl transformations [84] of the form

δσDα =

(
σ̄ − 1

2
σ

)
Dα + (Dβσ)Mαβ , (5.10a)

δσD̄α̇ =

(
σ − 1

2
σ̄

)
D̄α̇ + (D̄β̇σ̄)M̄α̇β̇ , (5.10b)

δσDαα̇ =
1

2
(σ + σ̄)Dαα̇ +

i

2
(D̄α̇σ̄)Dα +

i

2
(Dασ)D̄α̇

+(Dβα̇σ)Mαβ + (Dαβ̇σ̄)M̄α̇β̇ , (5.10c)

where σ is an arbitrary covariantly chiral scalar superfield, D̄α̇σ = 0. It is assumed that V

is super-Weyl inert, while S0 transforms as δσS0 = σS0.

It is possible to follow a different path than the one just discussed, in the spirit of

the nilpotent N = 1 chiral construction of [12, 13]. Specifically, we consider a Goldstino

superfield V which only obeys the nilpotency constraints (5.7), in conjunction with the

requirement that DαWα is nowhere vanishing. It has two independent component fields,

the Goldstino Wα|θ=0 and the auxiliary scalar DαWα|θ=0. One may show that the con-

straints (5.7) imply the representation14

V = −4
W 2W̄ 2

(DαWα)3
, W 2 = WαWα , (5.11)

which ensures (5.7) is identically satisfied. The relation (5.11) is super-Weyl invariant,

since Wα and DαWα transform as super-Weyl primary superfields, δσWα = 3
2σWα and

δσ(DαWα) = (σ + σ̄)DαWα.

The constraints (5.7) are invariant under local re-scalings of V

V → eτV , (5.12)

with τ an arbitrary real scalar superfield. The dynamics of this supermultiplet is governed

by the action

S̃Goldstino =

∫
d4xd2θd2θ̄ E

{
1

16
VDα(D̄2 − 4R)DαV − 2fS̄0S0V

}
. (5.13)

Varying the Goldstino superfield according to δV = τV , with τ being arbitrary, gives the

constraint (5.4) as the corresponding equation of motion. Then the action (5.13) reduces

to (5.9).

14In the case that V obeys the constraint (5.4), the relation (5.11) reduces to (fS̄0S0)3V = 16W 2W̄ 2,

which was derived in [14] in the flat-superspace limit.
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Within the new minimal formulation for N = 1 supergravity [85], the compensator is

a real covariantly linear scalar superfield,

(D̄2 − 4R)L = 0 , L̄ = L , (5.14)

with the super-Weyl transformation δσL = (σ + σ̄)L, see [34, 82, 83] for reviews. The

action for supergravity coupled to the Goldstino superfield V is

S =

∫
d4xd2θd2θ̄ E

{
3

κ2
L ln

L
|S0|2

+
1

16
VDα(D̄2 − 4R)DαV − 2fLV

}
, (5.15)

where now S0 is a purely gauge degree of freedom.

If V is a real unconstrained superfield, the action (5.15) describes new minimal su-

pergravity coupled to a massless vector supermultiplet with a Fayet-Iliopoulos term (see,

e.g., [82]). The action is invariant under U(1) gauge transformations δV = λ+ λ̄, with the

gauge parameter λ being chiral, D̄α̇λ = 0. However, in our case V is subject to the nilpo-

tency conditions (5.7), which are incompatible with the gauge invariance. These nilpotency

conditions guarantee that the Goldstino and the auxiliary field are the only independent

component fields of V .

An important feature of unbroken new minimal supergravity is that it does not allow

any supersymmetric cosmological term [86, 87].15 Our action for spontaneously broken su-

pergravity (5.15) leads, at the component level, to a positive cosmological constant which is

generated by the Goldstino superfield. The cosmological constant in (5.15) is strictly posi-

tive since there is no supersymmetric cosmological term producing a negative contribution.
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A The component content of Φ

In this appendix we elaborate on the component content of the chiral scalar Goldstino

superfield defined by the constraints (2.11) and (2.12). For this it is relevant to introduce

the two descendants of Φ:

χαi := − 1

12
DαjDijΦ = − 1

12
DβiD

αβΦ , F := D4Φ . (A.1)

15Among the known off-shell formulations for N = 1 (see [34, 83] for reviews), supersymmetric cosmo-

logical terms exist only for the old minimal supergravity [88, 89] and the n = −1 non-minimal supergravity

as formulated in [90].
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The Goldstini may be identified with χαi |θ=0. By assumption, the field F |θ=0 is nowhere

vanishing. The constraints (2.11) prove to imply the relations:

Di
αΦ =

4

3
χαjχ

ijF−2 =
4

3
χβiχαβF

−2 , (A.2a)

DijΦ = −4χijF−1 , (A.2b)

DαβΦ = 4χαβF
−1 , (A.2c)

Φ = χ4F−3 , (A.2d)

where we have introduced the composites

χij = χαiχjα = χji , χαβ = χiαχβi = χβα , χ4 :=
1

3
χijχij = −1

3
χαβχαβ . (A.3)

The relations (A.2) imply that all the components of Φ are expressed in terms of χαi |θ=0

and F |θ=0. Furthermore, by applying the operator D4 to both sides of (2.12) one can

derive the following nonlinear equation on F and its conjugate

fF = −2iχαi ∂αα̇χ̄
α̇i + FF̄ +

χij

F
�
χ̄ij
F̄
− χαβ

F
∂αα̇∂ββ̇

χ̄α̇β̇

F̄

−8i

9

χijχαj
F 2

�∂αα̇
χ̄ikχ̄

α̇k

F̄ 2
+
χ4

F 3
�2 χ̄

4

F̄ 3
. (A.4)

This equation can be uniquely solved by iteration in order to express F in terms of χαi and

its complex conjugate χ̄α̇i := (χαi ),

F = f − 2i

f
(∂αα̇χ

α
i )χ̄α̇i +O(χ4) . (A.5)

The series terminates since χαi and χ̄α̇i are anti-commuting.

B SU(2) superspace

This appendix contains a summary of the formulation for N = 2 conformal supergrav-

ity [53] in SU(2) superspace [32]. A curved N = 2 superspace is parametrised by local

coordinates zM = (xm, θµı , θ̄ıµ̇ = θµı ), where m = 0, 1, 2, 3 and µ, µ̇, ı = 1, 2. The su-

perspace structure group is chosen to be SL(2,C) × SU(2), and the covariant derivatives

DA = (Da,Diα, D̄α̇i ) read

DA = EA + ΦA
klJkl +

1

2
ΩA

bcMbc

= EA + ΦA
klJkl + ΩA

βγMβγ + Ω̄A
β̇γ̇M̄β̇γ̇ . (B.1)

Here EA = EA
M∂M , Mcd and Jkl are the generators of the Lorentz and SU(2) groups re-

spectively, and ΩA
bc and ΦA

kl the corresponding connections. The action of the generators

on the covariant derivatives are defined as:

[Mαβ ,Diγ ] = εγ(αDiβ) ,
[
Jkl,Diα

]
= −δi(kDαl) , (B.2)

together with their complex conjugates.
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The algebra of covariant derivatives is [53]

{Diα,D
j
β} = 4SijMαβ + 2εijεαβY

γδMγδ + 2εijεαβW̄
γ̇δ̇M̄γ̇δ̇

+2εαβε
ijSklJkl + 4YαβJ

ij , (B.3a)

{Diα, D̄
β̇
j } = −2iδij(σ

c)α
β̇Dc + 4δijG

δβ̇Mαδ + 4δijGαγ̇M̄
γ̇β̇ + 8Gα

β̇J ij , (B.3b)

together with the complex conjugate of (B.3a), see [53] for the explicit expressions for the

commutators [Da,Djβ ] and [Da, D̄β̇j ]. Here the real four-vector Gαα̇, the complex symmetric

tensors Sij = Sji, Wαβ = Wβα, Yαβ = Yβα and their complex conjugates S̄ij := Sij ,

W̄α̇β̇ := Wαβ , Ȳα̇β̇ := Yαβ are constrained by the Bianchi identities [32, 53]. The latter

comprise the dimension-3/2 identities

D(i
αS

jk) = D̄(i
α̇S

jk) = 0 , D̄α̇i Wβγ = 0 , Di(αYβγ) = 0 , DiαSij +Dβj Yβα = 0 , (B.4a)

DiαGββ̇ = −1

4
D̄i
β̇
Yαβ +

1

12
εαβD̄β̇jS

ij − 1

4
εαβD̄γ̇iW̄β̇γ̇ , (B.4b)

together with their complex conjugates as well as the dimension-2 relation(
Di(αDβ)i − 4Yαβ

)
Wαβ =

(
D̄(α̇
i D̄

β̇)i − 4Ȳ α̇β̇
)
W̄α̇β̇ . (B.5)

C Conformal superspace

This appendix contains a summary of the formulation for N = 2 conformal supergravity

in conformal superspace [33] employed in section 4. We use the notations of [77] which are

consistent with those of [53] and appendix B and review the results necessary for deriving

results in section 4. The structure group of N = 2 conformal superspace is chosen to be

SU(2, 2|2) and the covariant derivatives ∇A = (∇a,∇iα, ∇̄α̇i ) have the form

∇A = EA +
1

2
ΩA

abMab + ΦA
ijJij + iΦAY +BAD + FA

BKB

= EA + ΩA
βγMβγ + Ω̄A

β̇γ̇M̄β̇γ̇ + ΦA
ijJij + iΦAY +BAD + FA

BKB . (C.1)

Here, as in SU(2) superspace, EA = EA
M∂M , Mcd and Jkl are the generators of the

Lorentz and SU(2) R-symmetry groups respectively, and ΩA
bc and ΦA

kl the corresponding

connections. The remaining generators and corresponding connections are: Y and ΦA for

the U(1) R-symmetry group; D and BA for the dilatations; KA = (Ka, Sαi , S̄
i
α̇) and FA

B

for the special superconformal generators.

The Lorentz and SU(2) generators act on ∇A as in the SU(2) superspace case, see

eq. (B.2). The U(1)R and dilatation generators obey

[Y,∇iα] = ∇iα , [Y, ∇̄α̇i ] = −∇̄α̇i , (C.2a)

[D,∇a] = ∇a , [D,∇iα] =
1

2
∇iα , [D, ∇̄α̇i ] =

1

2
∇̄α̇i . (C.2b)

The special superconformal generators KA transform under Lorentz and SU(2) as

[Mab,Kc] = 2ηc[aKb] , [Mαβ , S
γ
i ] = δγ(αSβ)i , [Jij , S

γ
k ] = −εk(iS

γ
j) , (C.3)
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together with their complex conjugates, while their transformation under U(1) and dilata-

tions is:

[Y, Sαi ] = −Sαi , [Y, S̄iα̇] = S̄iα̇ ,

[D,Ka] = −Ka , [D, Sαi ] = −1

2
Sαi , [D, S̄iα̇] = −1

2
S̄iα̇ . (C.4a)

The generators KA obey

{Sαi , S̄
j
α̇} = 2iδji (σ

a)αα̇Ka , (C.5)

while the nontrivial (anti-)commutators of the algebra of KA with ∇B are given by

[Ka,∇b] = 2δabD + 2Ma
b ,

{Sαi ,∇
j
β} = 2δji δ

α
βD− 4δjiM

α
β − δji δ

α
βY + 4δαβJi

j ,

[Ka,∇jβ ] = −i(σa)β
β̇S̄j

β̇
, [Sαi ,∇b] = i(σb)

α
β̇∇̄

β̇
i , (C.6a)

together with complex conjugates.

The (anti-)commutation relations of the covariant derivatives ∇A [33, 77] relevant for

calculations in this paper are

{∇iα,∇
j
β} = 2εijεαβW̄γ̇δ̇M̄

γ̇δ̇ +
1

2
εijεαβ∇̄γ̇kW̄ γ̇δ̇S̄k

δ̇
− 1

2
εijεαβ∇γδ̇W̄

δ̇
γ̇K

γγ̇ , (C.7a)

{∇iα, ∇̄
β̇
j } = −2iδij∇αβ̇ , (C.7b)

[∇αα̇,∇iβ ] = −iεαβW̄α̇β̇∇̄
β̇i − i

2
εαβ∇̄β̇iW̄α̇β̇D−

i

4
εαβ∇̄β̇iW̄α̇β̇Y + iεαβ∇̄β̇j W̄α̇β̇J

ij

− iεαβ∇̄iβ̇W̄γ̇α̇M̄
β̇γ̇ − i

4
εαβ∇̄iα̇∇̄

β̇
kW̄β̇γ̇S̄

γ̇k +
1

2
εαβ∇γβ̇W̄α̇β̇S

i
γ

+
i

4
εαβ∇̄iα̇∇γγ̇W̄ γ̇β̇Kγβ̇ , (C.7c)

together with complex conjugates. The superfield Wαβ = Wβα and its complex conjugate

W̄α̇β̇ := Wαβ are dimension one conformal primaries, KAWαβ = 0, and obey the additional

constraints

∇̄α̇iWβγ = 0 , ∇kα∇βkWαβ = ∇̄α̇k ∇̄β̇kW̄α̇β̇ . (C.8)

D Nilpotent N = 1 supergravity

Consider N = 1 supergravity coupled to a covariantly chiral scalar X , D̄α̇X = 0, subject

to the nilpotency condition

X 2 = 0 . (D.1)

The complete action, which is equivalent to the action used in [19, 20], is

S =

∫
d4xd2θd2θ̄ E

(
− 3

κ2
S̄0S0 + X̄X

)
+

{∫
d4xd2θ E S3

0

(
µ

κ2
− f X

S0

)
+ c.c.

}
. (D.2)
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Under the super-Weyl transformation (5.10), X transforms as a primary dimension-1 su-

perfield, δσX = σX .

Varying (D.2) with respect to the chiral compensator S0 gives the equation

R− µ = −2

3
fκ2 X

S0
, (D.3)

where we have introduced the super-Weyl invariant chiral scalar

R = −1

4
S−2

0 (D̄2 − 4R)S̄0 . (D.4)

Eq. (D.3) allows for two interpretations. Firstly, it is the equation of motion for S0, with

X being a spectator superfield. Secondly, it allows us to express X as a function of the

supergravity fields. The nilpotency constraint (D.1) and the equation of motion (D.3)

imply that the chiral curvature becomes nilpotent [21, 23],

(R− µ)2 = 0 . (D.5)

Making use of (D.3) once more, the functional (D.2) can be rewritten as a higher-derivative

supergravity action [21]

S =

(
3

2fκ2

)2 ∫
d4xd2θd2θ̄ E S̄0S0|R− µ|2 −

{
1

2

µ

κ2

∫
d4xd2θ E S3

0 + c.c.

}
, (D.6)

where R is subject to the constraint (D.5). This action does not involve the Goldstino

superfield explicitly.

The nilpotency condition (D.1) is preserved if X is locally rescaled,

X → eτX , D̄α̇τ = 0 . (D.7)

Requiring the action (D.2) to be stationary under such re-scalings of X gives

X = φ , (D.8)

where φ is the Lindström-Roček chiral scalar defined by (5.6). If the compensator satisfies

its equation of motion (D.3), then the chiral curvature obeys the nonlinear constraint

2

3
(fκ)2S2

0(R− µ) =
1

4
(R− µ)(D̄2 − 4R)

[
S̄0(R̄− µ)

]
, (D.9)

in addition to the nilpotency condition (D.5). Making use of (D.9) turns the ac-

tion (D.6) into

S = − 3

2κ2

∫
d4xd2θd2θ̄ E S̄0S0 +

{
µ

4κ2

∫
d4xd2θ E S3

0 + c.c.

}
. (D.10)

This is a pure supergravity action with rescaled Newton’s constant and cosmological pa-

rameter, κ2 → 2κ2 and µ→ 1
2µ. The chiral compensator S0 in (D.10) obeys the nilpotency

condition (D.5) and the nonlinear constraint (D.9). In a super-Weyl gauge S0 = 1, these

conditions turn into

(R− µ)2 = 0 , (D.11a)

2

3
(fκ)2(R− µ) =

1

4
(R− µ)(D̄2 − 4R)(R̄− µ) . (D.11b)

Other approaches to nilpotent N = 1 supergravity were developed in [16, 23, 91–93].
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