
J
H
E
P
0
5
(
2
0
1
7
)
0
5
6

Published for SISSA by Springer

Received: February 27, 2017

Revised: April 14, 2017

Accepted: May 4, 2017

Published: May 10, 2017

The power of perturbation theory

Marco Serone,a,b Gabriele Spadaa and Giovanni Villadorob

aSISSA International School for Advanced Studies and INFN Trieste,

Via Bonomea 265, 34136, Trieste, Italy
bAbdus Salam International Centre for Theoretical Physics,

Strada Costiera 11, 34151, Trieste, Italy

E-mail: serone@sissa.it, gabriele.spada@sissa.it,

giovanni.villadoro@ictp.it

Abstract: We study quantum mechanical systems with a discrete spectrum. We show that

the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles)

are Borel resummable to the full result. Using a geometrical approach based on the Picard-

Lefschetz theory we characterize the conditions under which perturbative expansions lead to

exact results. Even when such conditions are not met, we explain how to define a different

perturbative expansion that reproduces the full answer without the need of transseries,

i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several

quantum mechanical systems are presented.

Keywords: Nonperturbative Effects, Field Theories in Lower Dimensions, Resummation

ArXiv ePrint: 1702.04148

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2017)056

mailto:serone@sissa.it
mailto:gabriele.spada@sissa.it
mailto:giovanni.villadoro@ictp.it
https://arxiv.org/abs/1702.04148
http://dx.doi.org/10.1007/JHEP05(2017)056


J
H
E
P
0
5
(
2
0
1
7
)
0
5
6

Contents

1 Introduction 1

2 One-dimensional integrals 4

2.1 Lefschetz-Thimble decomposition 4

2.2 Asymptotic series and Borel sums 7

2.3 Borel summability of thimbles 10

2.4 Exact perturbation theory 13

2.5 The asymptotic behaviour from semiclassics 15

3 Path integrals in QM 16

3.1 Higher dimensional integrals 16

3.2 The Lefschetz thimble approach to the path integral 18

3.3 Exact perturbation theory 21

4 Quantum mechanical examples 22

4.1 Tilted anharmonic oscillator 23

4.2 Symmetric double-well 26

4.3 Supersymmetric double well 28

4.4 False vacuum 31

4.5 Degenerate saddle points: pure anharmonic oscillators 32

5 Conclusions and future perspectives in QFT 33

A On the finiteness of B(∞)
−1/2Z 35

1 Introduction

It is known since ref. [1] that perturbative expansions in quantum field theories (QFT), as

well as in quantum mechanics (QM), are generically asymptotic with zero radius of conver-

gence. In special cases, such as the anharmonic oscillator in QM and φ4 theories up to d = 3

space-time dimensions, the perturbative expansion turns out to be Borel resummable [2–5].

For the anharmonic oscillator it has been verified that the Borel resummed perturbative

series converges to the exact result, available by other numerical methods. Perturbative

series associated to more general systems and/or in higher space-time dimensions are typ-

ically non-Borel resummable, because of singularities in the domain of integration. These

can be avoided by deforming the contour at the cost of introducing an ambiguity that is

non-perturbative in the expansion parameter λ. The ambiguity is expected to be removed

by including contributions from semiclassical instanton-like configurations (and all their
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corresponding series expansion), resulting in what is called transseries. There has been

considerable progress in recent years on these issues in the context of the theory of resur-

gence [6] (see e.g. ref. [7], and refs. [8, 9] for reviews and further references). A systematic

implementation to generic QFT and QM is however not straightforward. A resurgent anal-

ysis requires a detailed knowledge of the asymptotic form of the perturbative coefficients,

while typically only the leading large-order behaviour of the perturbative expansion might

be accessed in generic QFT and QM [10–13]. Besides, the knowledge of the coefficients of

the perturbative series alone is not enough to guarantee that the reconstructed transseries

reproduces the full answer. Some non-perturbative information is required, such as the

knowledge of some analytic properties of the observable as a function of the expansion pa-

rameter. Most importantly, the practicality of transseries beyond the weak coupling regime

is hindered by the need to resum the series expansion of all the semi-classical configurations

that contribute, in general infinite in number.

Perturbation theory within a path integral formulation is an infinite dimensional gen-

eralization of the usual steepest-descent method to evaluate ordinary integrals. For suffi-

ciently regular functions Picard-Lefschetz theory teaches us how to decompose the initial

contour of integration into a sum of steepest-descent trajectories (called Lefschetz thimbles,

or simply thimbles). A geometric approach to the path integral from this perspective, as

well as an excellent introduction for physicists to these ideas, has been given by Witten [14]

(see also refs. [15, 16]). The theory of Lefschetz thimbles allows us to rigorously classify

which saddle-point configurations contribute to a given physical observable.

An interesting question to ask is under what conditions no non-trivial saddle point

contributes, so that the whole result is given by the single perturbative series around the

trivial saddle-point. In terms of Lefschetz thimbles, this corresponds to the simple situation

in which the domain of integration of the path integral does not need any deformation being

already a single Lefschetz thimble on its own. This is what should happen for instance

in the anharmonic oscillator in which, as we mentioned, the perturbative series is Borel

resummable and converges to the exact result.

It has recently been shown in ref. [17] that several one-dimensional quantum mechanical

models with a discrete spectrum admit an “exact perturbation theory” (EPT) that is able

to capture the full result including non-perturbative effects, even in cases which are known

to receive instanton corrections, such as the (supersymmetric) double well.

In this paper we explain the reasons behind the results of ref. [17], using the path inte-

gral formulation and a Lefschetz thimble perspective. For pedagogical purposes, in section 2

we start by reviewing the concepts of Borel summability and Lefschetz-thimble decompo-

sition for a class of one-dimensional integrals Z(λ), viewed as 0-dimensional path integrals,

with the parameter λ playing the role of ~. In fact, all the properties of perturbation theory,

the role of non-perturbative saddles as well as the definition of EPT can easily be under-

stood in this context. The Lefschetz thimble decomposition reduces Z(λ) into a sum of

integrals over thimbles — steepest descent paths with a single saddle point. We prove that

their saddle-point expansion is always Borel resummable to the exact answer. In contrast

to previous works in the literature, there is no need to study the analytic properties of

the integral as a function of λ. Indeed, thanks to a suitable change of coordinates, we are
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able to rewrite the integral over thimbles directly in terms of a well-defined Borel trans-

form. This result implies the following important consequences. When the decomposition

of Z(λ) involves trivially only one thimble, its ordinary perturbation theory is also Borel

resummable to the whole result. On the contrary, when the decomposition involves more

than one thimble, or it requires an analytic continuation in λ, the naive series expansion

of Z(λ) is not Borel resummable to the exact answer.

Independently of the thimble decomposition of Z(λ), we show how to introduce a

second integral Ẑ(λ, λ0) which has a trivial thimble decomposition for any fixed λ0 and

coincides with Z(λ) at λ0 = λ. Therefore the expansion of Ẑ(λ, λ0) in λ is Borel resummable

to the exact result even when this is not the case for Z(λ). Such result is possible considering

that Z(λ) and Ẑ(λ, λ0), at fixed λ0, have different analytical properties in λ. The expansion

of Ẑ(λ, λ0) is the simplest implementation of EPT.

In section 3 the Borel summability of thimbles is readily extended to multi-dimensional

integrals and we discuss in some detail the non trivial generalization to path integrals in

QM. In this way we are able to show that QM systems with a bound-state potential and

a single non-degenerate crtitical point — the anharmonic oscillator being the prototypical

example — are entirely reconstructable from their perturbative expansion. Namely, for any

observable (energy eigenvalues, eigenfunctions, etc.) the asymptotic perturbation theory is

Borel resummable to the exact result.1 At least for the ground state energy, this remains

true also for potentials with multiple critical points as long as the absolute minimum

is unique.

Potentials V (x;λ) with more than one critical point are more problematic because not

all observables are Borel resummable to the exact result and in general instantons are well-

known to contribute. Unfortunately in most situations it is a challenging task to explicitly

classify all saddle-points and evaluate the corresponding contributions (see e.g. ref. [18]

for a recent attempt). In analogy to the one-dimensional integral we show how to bypass

this problem by considering an alternative potential V̂ (x;λ, λ0) admitting always a Borel

resummable perturbation theory in λ and coinciding to the original one for λ0 = λ. The

idea is to choose V̂ as the sum of a tree-level and a quantum potential, with the former

having only a single critical point. Since the thimble decomposition is controlled only by

the saddle point of the tree-level part, the perturbative expansion of V̂ (EPT) is guaranteed

to be Borel resummable to the exact result.

For any value of the coupling constant λ, EPT captures the full result. In contrast,

the expansion from V requires in general also the inclusion of instanton contributions, we

denote such expansion Standard Perturbation Theory (SPT). As noticed also in ref. [17],

EPT works surprisingly well at strong coupling, where SPT becomes impractical.

In the spirit of resurgence the coefficients of the perturbative series encode the exact

answer, with the crucial difference that no transseries are needed. Using this method, we

can relax the requirement of having a single critical point in the original potential V , and

arrive to the following statement: In one-dimensional QM systems with a bound-state

1As far as we know, the Borel resummability of observables other than the energy levels has not received

much attention in the literature.
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potential V that admits the V̂ defined above, any observable can be exactly computed from

a single perturbative series.

We illustrate our results in section 4 by a numerical study of the following quantum

mechanical examples: the (tilted) anharmonic potential, the symmetric double well, its

supersymmetric version, the perturbative expansion around a false vacuum, and pure an-

harmonic oscillators. In all these systems we will show that the exact ground state energy,

computed by solving the Schrodinger equation, is recovered without the need of advocating

non-perturbative effects, such as real (or complex) instantons. We will also show that the

same applies for higher energy levels and the eigenfunctions.

We conclude in section 5, where we also briefly report the future perspectives to extend

our results in QFT. Some technical details associated to section 3 are reported in an

appendix.

2 One-dimensional integrals

The main points of this paper are best understood by considering one-dimensional inte-

grals, where a step-by-step analytical study is possible. In order to be self-contained, we first

review essential facts about Lefschetz thimbles and Borel resummation methods in subsec-

tions 2.1 and 2.2, respectively. Readers familiar with these topics might jump directly to

subsection 2.3.

2.1 Lefschetz-Thimble decomposition

Consider the integral of the type

Z(λ) ≡ 1√
λ

∫ ∞
−∞

dx g(x) e−f(x)/λ , (2.1)

one-dimensional prototype of path-integrals in QM and QFT. We assume that the functions

g(x) and f(x), in general complex, are regular and the convergence of the integral for

positive values of λ is determined only by f(x).2 In general g might also present a sufficiently

regular dependence on λ. For simplicity, we take f and g to be entire functions of x, though

more general cases could be considered.

The perturbative expansion of Z(λ) around λ = 0 corresponds to the saddle-point

approximation of the integral (2.1).3 Since the function f in general has multiple saddle

points and each saddle point has its own perturbative expansion, the exact result for Z(λ) is

recovered by a non-trivial combination of the various saddle-point contributions (properly

resummed). We will review in this subsection the theory describing how to combine the

various saddle-points, and discuss in the next one how to exactly resum each expansion.

The idea is to deform the integration contour into a sum of steepest descent paths

of the saddle points. As first step we analytically continue the functions f and g in the

2We assume this to be true also for the analytic continuation of the integrand on the complex x-plane,

which we will perform soon.
3Note that if g(x) is brought to the exponent the saddle points of f(x)−λ log g(x) will be different. The

associated saddle-point expansion, however, will not correspond to the original expansion in λ.
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complex plane z = x+ iy and view eq. (2.1) as an open contour integral in z:

Z(λ) =
1√
λ

∫
Cx
dz g(z) e−f(z)/λ, (2.2)

where Cx is the real axis. We call zσ the saddle points of f(z), i.e f ′(zσ) = 0. As long as

zσ are isolated and non-degenerate, f ′′(zσ) 6= 0, the contour of steepest-descent passing

through zσ is determined by a flow line z(u) satisfying the first-order equations

dz

du
= η

∂F

∂z̄
,

dz̄

du
= η

∂F

∂z
, η = ±1 , (2.3)

where F (z) ≡ −f(z)/λ and u is the real line parameter. Unless z(u) = zσ for all u, a

non-constant flow can reach zσ only for u = ±∞. Using eq. (2.3) one has

dF

du
=
∂F

∂z

dz

du
= η

∣∣∣∂F
∂z

∣∣∣2 . (2.4)

The cycles with η = −1 and η = +1 are denoted respectively downward and upward flows,

since ReF is monotonically decreasing and increasing in the two cases, as eq. (2.4) indicates.

Following the notation of ref. [14]4 we denote by Jσ and Kσ the downward and upward

flows passing through the saddle point zσ. Equation (2.4) shows that ImF is constant on

both Jσ and Kσ. The downward flow Jσ coincides with the path of steepest-descent and

when such path flows to Re F = −∞ it is called Lefschetz thimble, or thimble for short. By

construction the integral over each thimble is well defined and convergent. When instead

the steepest descent path hits another saddle point, the flow splits into two branches and

an ambiguity arises. The corresponding integral is said to be on a Stokes line and, as we

will see below, some care is required.

Given the absence of singularities on the complex plane, the contour Cx can be freely

deformed to match a combination C of steepest descent paths keeping the integral (2.2)

finite during the deformation:

C =
∑
σ

Jσnσ . (2.5)

By means of the Picard-Lefschetz theory the integer coefficients nσ are given by

nσ = 〈Cx,Kσ〉 , (2.6)

where 〈Cx,Kσ〉 denote the intersection pairings between the original contour Cx and the

upward flows Kσ and we used the fact that Jσ and Kσ are dual to each other:

〈Jσ,Kτ 〉 = δστ . (2.7)

The original integral (2.1) is then reduced to a sum of integrals along the thimbles Jσ,

Z(λ) =
∑
σ

nσZσ(λ) , (2.8)

4We refer the reader to section 3 of this paper for a more extensive introduction to Lefschetz thimbles.
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where

Zσ(λ) ≡ 1√
λ

∫
Jσ
dz g(z) e−f(z)/λ . (2.9)

Contrary to the naive expectation that the contour of integration should be deformed to

pass through all (complex and real) saddles of f , only the subset of saddles with nσ 6= 0

must be considered.

In the presence of a flow connecting two saddle points zσ and zτ , we have Jσ = Kτ and

the corresponding intersection 〈Jσ,Kτ 〉 is not well defined. This problem can be avoided by

taking λ to be complex, modifying in this way the flow curves, that implicitly depend on λ.

The initial integral is then recovered in the limit Im λ→ 0. When Z(λ) is not on a Stokes

line the intersection numbers nσ in eq. (2.5) are unambiguous in such limit. On a Stokes

line instead some of the nσ are discontinuous and the decomposition (2.5) is different in

the two limits Im λ→ 0±, yet the same Z(λ) is recovered in the two cases.

Two choices of f are particularly interesting for the discussion of path integrals in QM

and QFT: f purely imaginary (corresponding to the real-time path integral) and f real

(corresponding to the Euclidean path integral). In the first case the integration cycle Cx is

not a Lefschetz thimble (the imaginary part is not constant) and the decomposition (2.5)

is non-trivial. On the contrary, in the second case f has at least one real saddle and Cx
coincides with one or more steepest descent paths (being ImF = 0). If the real saddle is

unique, all others being complex, the real axis is a thimble and C = Cx. In presence of

more real saddles Z(λ) is on a Stokes line and the decomposition (2.5) requires an analytic

continuation.

The quantum mechanical path integral generalization of this result implies an impor-

tant difference between Minkoswki and Euclidean times. While in the former we expect in

general a very complicated Lefschetz thimble decomposition (2.5) with an infinite number

of saddles contributing, in the latter there is a class of theories where the original inte-

gration domain is already a thimble and eq. (2.5) is not necessary. For this reason we will

focus on real functions f and correspondingly we will consider euclidean path integrals.

It is useful to illustrate the discussion above by considering the explicit example of the

integral (2.1) with

f(x,m) =
1

2
mx2 +

1

4
x4 , g(x) = 1 , (2.10)

which corresponds to the zero-dimensional reduction of the anharmonic oscillator for m > 0,

the pure anharmonic oscillator for m = 0 and the symmetric double well for m < 0. The

resulting function Z(λ,m) is analytic in m and can be written as

Z(λ,m) =



√
m
2λe

m2

8λ K 1
4

(
m2

8λ

)
m > 0 ,

Γ(1/4)√
2
λ−1/4 m = 0 ,√

−mπ2

4λ e
m2

8λ

[
I− 1

4

(
m2

8λ

)
+ I 1

4

(
m2

8λ

)]
m < 0 ,

(2.11)

where Kn and In are the modified Bessel functions.

Consider first the case with m > 0, which, as we will see, is not on a Stokes line for λ

real and positive. The function f(z,m) has three saddle points: z0 = 0, z± = ±i
√
m. For

– 6 –
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real λ the upward flows from the saddle z0 hit the two saddles z±. This can be avoided

by giving a small imaginary part to λ as is shown in figure 1 (first row) for positive (left)

and negative (right) values of Im λ. The white regions are those where the integral is

asymptotically convergent; by definition, the thimbles (continuous curves) start and end in

these regions. The upward flows (dashed curves) instead start and end in the grey regions

where the integrand diverges. Notice that the intersection numbers of the upward flows Kσ
with the integration contour are the same in the two cases Imλ ≶ 0 (n0 = 1, n± = 0).

Therefore, the decomposition (2.5) is not ambiguous, Cx coincides with a single thimble

and we are not on a Stokes line.

When m < 0 the integral is on a Stokes line for real positive λ, since the saddle points

are all on the real axis (z0 = 0, z± = ±
√
−m). As before the upward flows from z0 hit the

other two saddles z±, but now the intersection numbers jump across Im λ = 0 (n0 = ±1,

n± = 1), as can be seen in figure 1 (second row). Depending on the sign of Im λ the

decomposition (2.5) reads

C+ = J− − J0 + J+ , Im λ > 0 ,

C− = J− + J0 + J+ , Im λ < 0 .
(2.12)

The integrals over the two paths C± coincide when Im λ→ 0, as manifest from the figure.

For m = 0 the only saddle point at z0 = 0 is degenerate (i.e. f ′′(0) = 0) and multiple

upward and downward flows depart from z0 as illustrated in figure 1 (third row). The

decomposition rules (2.5) do not apply and analytic continuation of the parameter λ does

not help. One possible way to use saddle point techniques is to define the case m = 0

as the limit m → 0 of the previous cases, where the three saddle points z0,± collide. An

alternative way will be described in section 2.4.

2.2 Asymptotic series and Borel sums

The integrals Zσ(λ) in eq. (2.9) can be evaluated using saddle-point expansions, that give

generically rise to divergent asymptotic expansions. This is due to the fact that λ = 0 is a

singular point, since for any λ < 0 the integral is divergent.

A series expansion associated to a function Z(λ) is asymptotic if, for any fixed order N ,

Z(λ)−
N∑
n=0

Znλ
n = O(λN+1) , as λ→ 0 . (2.13)

Different functions can have the same asymptotic expansion, for instance when the differ-

ence is suppressed by a factor e−α/λ, and hence the coefficients of the asymptotic series

alone do not uniquely fix the function Z(λ).

Divergent asymptotic series provide at best an approximate description of the function

Z(λ), with an accuracy that depends on the behaviour of the series coefficients Zn for n� 1.

Suppose that for n� 1

Zn ∼ n!annc , (2.14)

– 7 –
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4

Figure 1. Downward and upward flows associated to the functions f(z, 1) (upper panels), f(z,−1)

(middle panels) and f(z, 0) (lower panels) in the z plane. The grey sectors correspond to the

asymtptotic regions where the integral diverges. The red points are the saddles of the functions

f(z,m). Continuous and dashed lines denote downward and upward flows, respectively. The lower

panels correspond to the degenerate case, where multiple downward and upward flows depart from

a saddle point. We have taken Re λ = 1, Imλ > 0 (left panels) and Im λ < 0 (right panels).

– 8 –



J
H
E
P
0
5
(
2
0
1
7
)
0
5
6

for some real parameters a and c.5 The best accuracy for Z(λ) is obtained by finding the

value N = NBest that minimizes the error ∆Z ∼ ZNλN . Using Stirling formula, one has

NBest ≈
1

aλ
, (2.15)

where the error is asymptotically given by

∆Z ∼ e−
1
aλ , (2.16)

independently of c at leading order. This error is consistent with the intrinsic ambigu-

ity related to asymptotic series discussed above. Keeping more than NBest terms in the

asymptotic series would lead to an increase in the error.

A possible way to reconstruct a function Z(λ) with asymptotic expansion of the form

∞∑
n=0

Znλ
n (2.17)

is via Borel resummation. We define the Borel transform

BZ(t) =
∞∑
n=0

Zn
n!
tn , (2.18)

which is the analytic continuation of a series with non-zero radius of convergence.6 In the

absence of singularities for t > 0 the integral

ZB(λ) =

∫ ∞
0

dt e−tBZ(tλ) (2.19)

defines a function of λ with the same asymptotic expansion as Z(λ) and the series (2.17)

is said to be Borel resummable. Since, as we mentioned, different functions can admit the

same asymptotic series, certain properties of Z(λ) and its behaviour near the origin have

to be assumed to prove that ZB(λ) = Z(λ).7 These requirements are generically hard to

verify. On the other hand, in the specific cases where Z(λ) is defined as an integral, one

might be able to rewrite it directly in the form (2.19), so that the equality ZB(λ) = Z(λ)

can be proved without the need of verifying the above assumptions. This is the approach

taken in this paper, as we will show in subsection 2.3 and in section 3. When ZB(λ) = Z(λ)

we say that the series (2.17) is Borel resummable to the exact result.

In the following we will be using a generalization of the Borel transform, due to Le

Roy, obtained by defining

BbZ(λ) ≡
∞∑
n=0

Zn
Γ(n+ 1 + b)

λn , (2.20)

5The analysis that follows can easily be generalized for large-order behaviours of the kind Zn ∼ (n!)kannc.

In all the cases considered in this paper the parameter k is equal to one.
6We assumed here that the coefficients Zn have the large order behaviour given by eq. (2.14).
7These assumptions have been given by Watson, see e.g. theorem 136, p.192 of the classic book [19], and

subsequently improved by Nevanlinna, see ref. [20] for a modern presentation.
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where b is an arbitrary real parameter. The function ZB(λ) now reads

ZB(λ) =

∫ ∞
0
dt tbe−t BbZ(λt) , (2.21)

and clearly B0Z(t) = BZ(t). Borel-Le Roy trasforms with different b can be related ana-

lytically as follows:

Bb(t) = t−b∂nt

[
tb+nBb+n(t)

]
, n ∈ N+

Bb+α(t) =
t−b−α

Γ(α)

∫ t

0
dt′

(t′)b Bb(t′)
(t− t′)1−α , 0 < α < 1 .

(2.22)

Note that the position of the singularities of two Borel-Le Roy transforms is the same,

which implies that Borel summability does not depend on b, though the nature of the

singularities might.

The analytic structure of the Borel transform is connected to the large order behaviour

of the asymptotic series. For example the coefficient a in eq. (2.14) determines the position

of the singularity closest to the origin (λt? = 1/a). If a < 0 the series alternates in sign, the

singularity is on the negative real axis of t and the series is Borel resummable in the absence

of further singularities on the positive real axis. For a > 0 the closest singularity is on the

real axis and the series is not Borel resummable.8 In this case a lateral Borel resummation

can be defined by slightly deforming the integration contour of eq. (2.19) above or below the

singularity. The resulting ambiguity in the choice of the path is of order e−t? = e−1/(aλ), i.e.

O(∆Z). This ambiguity signals the presence of extra non-perturbative contributions to Z(λ)

not captured by ZB(λ). A systematic way of reconstructing the non-perturbative effects

from the perturbative series is the subject of resurgence [6]. As we will discuss in detail

in the following, for functions Z(λ) of the form (2.1) the deformation defining the lateral

Borel resummation corresponds to the one needed to avoid Stokes lines in the geometric

description of subsection 2.1. This leads to non-vanishing intersection numbers (2.6). For

path integrals these numbers are generically infinite but, luckily enough, we will not need to

compute them (neither algebraically through resurgence nor geometrically through Picard-

Lefschetz theory), as we will show in the next two subsections. This is in fact one of the

central results of this paper.

2.3 Borel summability of thimbles

We saw in subsection 2.1 that the integral Z(λ) can be decomposed into a sum of integrals

over thimbles Zσ(λ). We will show now that each of these integrals admits an asymptotic

expansion which is Borel resummable to the exact result.

Consider the following change of variable [23, 24]:

t =
f(z)− f(zσ)

λ
. (2.23)

8As we will see, the large-order behaviour of the coefficients Zn might more generally give rise to poles

or branch-cut singularities of BbZ(t) at complex values of t. The conclusion is the same of the case a < 0.
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Recalling eq. (2.4), we see that for any value of z along Jσ the variable t is real and non-

negative. For each value of t 6= 0, there are two values z1,2(λt) ∈ Jσ satisfying eq. (2.23):

one for each of the two branches of the downward flow. After this change of variable we get

Zσ(λ) = e−f(zσ)/λ

∫ ∞
0

dt t−1/2 e−tBσ(λt) , Bσ(λt) ≡
∑
k=1,2

g(zk(λt))

|f ′(zk(λt)|
√
λt . (2.24)

For small t’s, we can expand f(z)− f(zσ) ∝ z2 (recall that f ′′(zσ) 6= 0) giving f ′(z1,2(t)) ∝√
t so that Bσ(λt) is analytic in the origin.9 The reader may recognize eq. (2.24) as the

Laplace trasform of the Borel-Le Roy resummation formula (2.21) with

Bσ(λt) = B−1/2Zσ(λt) . (2.25)

In particular the coefficients of the expansion of Bσ(λ) around the origin are related to

those of Zσ(λ) by B
(n)
σ = Z

(n)
σ Γ(n + 1/2). The function Bσ(λt) is analytic on the whole

semipositive real t axis given the regularity of f(z) and g(z) and the absence of other

saddle points for f(z) along the thimble. This proves that the power series of Zσ(λ) is

Borel resummable. Not only, but having been able to rewrite the integral directly in terms

of a Borel transform of the associated asymptotic expansion, we are guaranteed that the

Borel resummation reproduces the full function Zσ(λ).

The original integral (2.1) can then be computed using eq. (2.8) and Borel resummation

of the perturbative expansion of the Zσ’s given in eq. (2.24). The contribution associated

to the trivial saddle (i.e. the one with the smallest f(zσ)) can be seen as the perturbative

contribution to Z(λ), while the other saddles can be interpreted as non-perturbative effects.

When only one saddle contributes, the perturbative contribution is Borel resummable to

the exact result. When more saddles contribute, the perturbative expansion, although

Borel resummable, does not reproduce the full result. If Z(λ) is on a Stokes line some

of the perturbative expansions of the thimbles are not Borel resummable. This is due to

singularities of the Borel function induced by the presence of other saddles in the steepest

descent path (f ′(z1,2(λt)) = 0 for z 6= zσ).

We illustrate the results above using the explicit examples of eq. (2.10). We start

with the case m > 0 and, without loss of generality, set m = 1. The original integration

path coincides with the thimble J0, the only one that contributes, and the perturbative

expansion is expected to be Borel resummable to the exact result. The coefficients Z
(m=1)
σ=0,n

of the perturbative expansion of Z(λ, 1) read

Z
(1)
0,n =

√
2(−)n

Γ
(
2n+ 1

2

)
n!

. (2.26)

For large n we have

Z
(1)
0,n = (−4)n

Γ(n)√
π

(
1 +O

(
1

n

))
. (2.27)

9Note that even if f ′′(zσ) = 0 the function Bσ(λt) can still be defined in such a way to stay analytic in

the origin by rescaling it for a different power of t. In particular, if f(z(t)) − f(zσ) ∝ zn, with n > 2, we

have f ′(z1,2(t)) ∝ t1−1/n.
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The Borel-Le Roy transform (2.20) with b = −1/2 gives

B−1/2Z
(1)
0 (λt) =

√
1 +
√

1 + 4λt

1 + 4λt
, (2.28)

which presents a branch-cut singularity in the t-plane at λt? = −1/4 but it is regular on

the positive real axis. By integrating over t one reproduces the exact result (2.11):∫ ∞
0
dt t−

1
2 e−tB−1/2Z

(1)
0 (λt) =

1√
2λ
e

1
8λK 1

4

(
1

8λ

)
= Z(λ, 1) . (2.29)

In this simple case we can also explicitly solve for the change of variable (2.23):

z1,2(λt) = ±
√√

1 + 4λt− 1 , (2.30)

and check the validity of eq. (2.25). The form of BbZ
(1)
0 depends on the value of b. For

instance, the standard Borel function B0Z
(1)
0 associated to eq. (2.26) equals

B0Z
(1)
0 (λt) =

√
8

π

K
(
−1+

√
1+4λt

2
√

1+4λt

)
(1 + 4λt)1/4

, (2.31)

where K(x) is the complete elliptic integral of the first kind. One can check that eq. (2.31)

is in agreement with eq. (2.28) using the formula (2.22). We also see, as mentioned, that

the position of the singularity of B0Z
(1)
0 and B−1/2Z

(1)
0 is the same.

The integral with m < 0 is more interesting because Z(λ,m) has a non-trivial thimble

decomposition and is on a Stokes line. As we discussed, this is avoided by taking complex

values of λ. Depending on the sign of Im λ the two distinct decompositions in eq. (2.12) are

generated. Setting m = −1 for simplicity and factoring out e−f(zσ)/λ from each Z
(m=−1)
σ (λ),

the coefficients of the perturbative expansions read

Z
(−1)
±,n =

Γ
(
2n+ 1

2

)
n!

, Z
(−1)
0,n = iZ

(1)
0,n . (2.32)

The Borel-Le Roy transform (2.20) with b = −1/2 gives

B−1/2Z
(−1)
± (λt) =

√
1 +
√

1− 4λt

2(1− 4λt)
, B−1/2Z

(−1)
0 (λt) = iB−1/2Z

(1)
0 (λt) . (2.33)

The Borel-Le Roy functions B−1/2Z
(−1)
± have a branch-cut singularity in the t-plane at

t = 1/(4λ) and for real positive λ the asymptotic series with coefficients Z
(−1)
±,n are not

Borel resummable. However, the small imaginary part in λ needed to avoid the Stokes

lines would also allow us to avoid the singularity that now moves slightly below or above

the real t axis for Im λ respectively positive or negative. We are effectively performing a

lateral Borel summation. After integrating over t we get

Z
(−1)
± (λ) = sign(Imλ)

ie
1

8λ

2
√
λ
K 1

4

(
− 1

8λ

)
,

Z
(−1)
0 (λ) = iZ

(1)
0 (λ) .

(2.34)
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Using eq. (2.12), the sum of the three contributions in the limit Im λ→ 0 gives√
π2

4λ
e

1
8λ

[
I− 1

4

(
1

8λ

)
+ I 1

4

(
1

8λ

)]
= Z(λ,−1) . (2.35)

Notice that the discontinuity of the intersection number n0 = −sign(Imλ) as Imλ → 0

fixes the ambiguity in the lateral Borel resummation of the perturbative series around the

saddles z±.

2.4 Exact perturbation theory

We have seen in the previous subsections how integrals of the form (2.1) can exactly be

computed combining properly resummed saddle-point contributions. In particular, for real

functions f , eq. (2.5) is trivial or not depending on the number of real saddles of f . We

will explain in this subsection that the decomposition (2.5) in terms of thimbles can be

modified. This implies that even when f has more real saddles we can trivialize eq. (2.5)

so that Z(λ) is reproduced by a saddle-point expansion around one (perturbative) saddle

only. This observation will play a crucial role when considering QM, since the computation

of the intersection numbers (2.6) is far from trivial in the path integral case.

The Lefschetz thimble decomposition associated to the integral (2.1) is governed by

the saddle points of f and in particular it is independent of the prefactor g(x). Define the

function

Ẑ(λ, λ0) ≡ 1√
λ

∫ ∞
−∞
dx e−f̂(x)/λĝ(x, λ0) , (2.36)

where

f̂(x) ≡ f(x) + δf(x) , ĝ(x, λ0) ≡ g(x)eδf(x)/λ0 , (2.37)

are regular functions of x that satisfy the same conditions as f(x) and g(x), in particular10

lim|x|→∞ δf(x)/f(x) = 0. The original integral is recovered by setting λ0 = λ:

Ẑ(λ, λ) = Z(λ) . (2.38)

From the point of view of the saddle-point expansion in λ at fixed λ0, the function δf inside

f̂ is a “classical” modification of f , while the factor of δf in ĝ is a “quantum” deformation.

At fixed λ0, the thimble decomposition of the integral (2.36) is determined by the downward

and upward flows associated to the saddle points zσ̂ of f̂ and not to the original saddles zσ of

f . By properly choosing the function δf , we can generally construct a function f̂ with only

one real saddle x0 (for convenience chosen such that f̂(x0) = 0) that trivializes the thimble

decomposition to C = Cx. While Z(λ) may lie on a Stokes line, so that its perturbation

theory is non-Borel resummable and requires extra non-perturbative contributions, the

asymptotic expansion of Ẑ(λ, λ0) in λ at fixed λ0 will be Borel-resummable to the exact

result Ẑ(λ, λ0). Setting then λ = λ0 allows us to derive the original function Z(λ0).

We call the series expansion of Ẑ(λ, λ0) in λ at fixed λ0 “exact perturbation theory”

(EPT), while we call the ordinary expansion of Z(λ) “standard perturbation theory” (SPT).

Note that in general SPT includes both perturbative and non-perturbative saddles.

10 It is possible that this condition might be relaxed to some extent. It would be interesting to further

analyze this point and try to find necessary and sufficient conditions for δf(x).
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We illustrate the method by reconsidering the example (2.11) with m = −1, where the

contour decomposition (2.12) required three different saddle-point contributions. Consider

the choice

δf(x) = x2 , (2.39)

so that

f̂(x) =
1

2
x2 +

1

4
x4 = f(x, 1) , ĝ(x, λ0) = exp

(x2

λ0

)
. (2.40)

The thimble decomposition is now determined by f(x, 1), in which case we know that Cx
coincides with a thimble. The coefficients of the corresponding perturbative expansion read

Ẑn(λ0) =
√

2(−)n
Γ
(
2n+ 1

2

)
n!

1F1

(
− n, 1

2
− 2n;− 2

λ0

)
, (2.41)

where 1F1(a, b; z) is the Kummer confluent hypergeometric function. At any fixed λ0, the

Kummer function for n� 1/λ2
0 asymptotes to exp(−1/λ0) and for large n we have

Ẑn(λ0) ≈ e−
1
λ0 (−4)n

Γ(n)√
π

(
1 +O

(
1

n

))
, (2.42)

where the size of the O(1/n) subleading terms depends on λ0. The Borel resummation of

the perturbative series gives

B−1/2Ẑ(λt, λ0) =

∞∑
n=0

Ẑn(λ0)

Γ(n+ 1/2)
(λt)n . (2.43)

Recovering the formula for the Borel transform from this equation is non-trivial. We can

however use eq. (2.24) to get

B−1/2Ẑ(λt, λ0) = B−1/2Z
(1)
0 (λt) e

√
1+4λt−1
λ0 , (2.44)

where B−1/2Z
(1)
0 is the Borel-Le Roy function associated to the m = 1 case, given in

eq. (2.28). As expected, no singularities are present on the positive real t axis. By taking

λ0 = λ and performing the integral over t one reproduces the exact result for Z(λ,−1)

given in eq. (2.11):

Ẑ(λ, λ) =

∫ ∞
0
dt t−

1
2 e−tB−1/2Ẑ(λt, λ) = Z(λ,−1) . (2.45)

The above considerations are easily extended to more general functions f(x). In par-

ticular, for polynomial functions of degree 2n, independently of the location of the 2n− 1

saddle points and of the corresponding thimble decomposition associated to f(z), we can

always construct a function f̂(z), for example f̂(z) = z2 + f (2n)(0)z2n/(2n)!, which has

only one real saddle point and a trivial thimble decomposition. Notice that the choice of

allowed δf(x) is arbitrary and all of them are equally good.

Interestingly enough, the method above provides also an efficient way to study degen-

erate cases with f ′′(zσ) = 0, where perturbation theory is ill-defined. Instead of deforming
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the function f(z), e.g. by adding a small quadratic term εz2, and of analyzing the inte-

gral in the limit ε → 0, we can more simply consider an appropriate function δf(z) that

removes the degeneracy, bypassing the need of taking a limit. For example, consider the

integral (2.11) at m = 0 with the choice

δf(x) =
x2

2
, (2.46)

so that

f̂(x) =
1

2
x2 +

1

4
x4 = f(x, 1) , ĝ(x, λ0) = e

x2

2λ0 . (2.47)

Since this case corresponds to the previous one with m = −1 via the rescaling λ0 → 2λ0,

the Borel resummation of the perturbative expansion is simply given by B−1/2Ẑ(λt, 2λ0),

with B−1/2Ẑ given in eq. (2.44). Taking λ0 = λ and performing the integral over t, one

reproduces the exact result∫ ∞
0
dt t−

1
2 e−tB−1/2Ẑ(λt, 2λ) =

Γ (1/4)√
2

λ−1/4 . (2.48)

2.5 The asymptotic behaviour from semiclassics

The saddle-points, whether or not they contribute to the integral (2.1), dictate the large-

order behaviour of the series expansion of adjacent saddles. In QM this method has been

first used11 by Bender and Wu in ref. [22] and extended to QFT by Lipatov [10] (see

also refs. [11–13] for early extensive studies). For the specific case of finite-dimensional

integrals a more rigorous derivation can be found in refs. [23, 24], where an exact resurgent

formula relating the asymptotic series of different saddles has been derived. It has been

shown in ref. [23] that the leading large order behaviour of the coefficients Zσ,n is governed

by other saddles close to zσ. More precisely, consider the integral (2.9) as a function of

λ = |λ| exp(iθ). The thimble Jσ(θ) moves in the complex z-plane as θ is varied. For the

special values of θ where the thimble crosses other saddle points the integral is on a Stokes

line. These saddles are called “adjacent” to zσ. Among the adjacent saddles, we denote

by zσ0 the leading adjacent saddle as the one with the smallest value of |f(zσ0) − f(zσ)|.
Modulo an overall phase, the large-order behaviour of Zσ,n is given by the lowest-order

coefficient Zσ0,0 of the series associated to the leading adjacent saddle zσ0 [23]:

Zσ,n =
∑
zσ0

Zσ0,0
(n− 1)!

(f(zσ0)− f(zσ))n

(
1 +O

(
1

n

))
, (2.49)

where Zσ0,0 = g(zσ0)/
√

2π|f ′′(zσ0)| and the sum is present in case we have more than

one saddle with the same minimal value of |f(zσ0) − f(zσ)|. Equation (2.49) justifies and

generalizes our working assumption (2.14) which was valid only for real values of f(zσ0)−
f(zσ). Matching the two equations we get

a =
1

f(zσ0)− f(zσ)
, c = −1 . (2.50)

11A similar method was already used in 1964, see ref. [21]. We thank Arkady Vainshtein for drawing our

attention to his work.
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As we mentioned, the coefficient a dictates the location of the leading singularities (i.e. the

ones closest to the origin) of the Borel function BZ(t). For real functions f with more than

one saddle on the real axis the expansion around a minimum zσ gives a real and positive, in

agreement with the non-Borel summability of an asymptotic expansion on a Stokes line.12

It is clear from eq. (2.49) that in general the Borel function can have leading singularities

for complex values of its argument, as anticipated in footnote 8.

The n-dependence of the leading large-order behaviour is governed by the function

f(z) and is independent of g(z), the latter entering only in the determination of the overall

normalization of the coefficients. For EPT this implies that at fixed λ0, the n-dependence

of the leading large order behavior of Ẑn(λ0) does not depend on λ0. More precisely we

have, using eq. (2.49),

Ẑn(λ0) ≈
∑
z0

Zz0,0
(n− 1)!

(f̂(z0)− f̂(x0))n

(
1+O

(
1

n

))
, Zz0,0 = e

δf(z0)
λ0

g(z0)√
2π|f̂ ′′(z0)|

, (2.51)

where z0 are the leading adjacent saddles associated to the (unique) real saddle x0 and

Zz0,0 is the leading order term of the series associated to z0. Given the above choice of

f̂(z), the factor f̂(z0) − f̂(x0) in eq. (2.51) is always either complex or real negative, so

that no singularities appear in the positive real t axis of BẐ(t). Equation (2.51) is valid

at fixed λ0 for parametrically large values of n. More specifically we need n � 1 and

n � 1/λ2
0 in order to suppress the contributions coming from the higher-order coefficient

terms Zz0,1, Zz0,2, . . . associated to the leading adjacent saddle series Zz0,n. The large-order

behaviour (2.42) is immediately reproduced using eq. (2.51).

3 Path integrals in QM

In this section, after having generalized the results of section 2 to higher dimensional

integrals, we extend them to path integrals and introduce EPT in QM.

3.1 Higher dimensional integrals

The analysis of the one-dimensional integral (2.1) performed in section 2 can be extended

to n-dimensions. Interpreting the domain of integration as an n-dimensional cycle Cx = Rn

in n complex dimensions (with coordinates z), like in eq. (2.2), downward and upward

flows can be defined generalizing eq. (2.3). For each saddle zσ, the Lefschetz thimble Jσ
and its dual cycle Kσ are obtained by taking the union of all the down- and up- ward flows.

As for the 1-dimensional case possible Stokes lines can be avoided by taking λ complex.

After decomposing the cycle Cx in terms of thimbles, like in eq. (2.5), we are left with the

evaluation of integrals of the type

Zσ(λ) = λ−n/2
∫
Jσ
dz g(z) e−f(z)/λ , (3.1)

12The argument is valid also when the real saddle entering eq. (2.50) is not the leading adjacent one, in

which case the singularity in the positive real t axis will still appear, though it will not be the closest to

the origin.
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Figure 2. The support of integration Ωλt of the Borel function in n dimensions with topology

Sn−1 is the section of the thimble identified by the constraint (3.2).

with f and g regular functions and such that the integral is convergent for any positive λ.

By construction the function f has only one non-degenerate saddle zσ: ∇f(zσ) = 0 with

det[∂i∂jf(zσ)] 6= 0. Repeating the same steps as for the one-dimensional case and using

known results from Morse theory, we can prove that the formal series expansion for Zσ(λ)

around λ = 0 is Borel resummable to the exact result. Indeed performing the change of

variables

t =
f(z)− f(zσ)

λ
, (3.2)

we have (see also refs. [24, 25])

Zσ(λ) = e−f(zσ)/λ

∫ ∞
0

dt tn/2−1 e−tBσ(λt) ,

Bσ(λt) ≡ (λt)1−n/2
∫
Jσ
dz g(z) δ[f(z)− f(zσ)− λt] = (λt)1−n/2

∫
Ωλt

dΣ
g(z)

|∇f(z)|
.

(3.3)

The integral in Bσ(λt) has support over the (n− 1)-dimensional hypersurface Ωλt, defined

by the constraint f(z) = f(zσ) + λt, with dΣ its volume form (see figure 2). has the

topology of a compact n− 1 dimensional sphere Sn−1.13 Theorems from Morse theory (see

e.g. ref. [26]) guarantee that this will continue to be true for any t as long as no other

critical point of f(z) is met, which is true for thimbles away from Stokes lines. Moreover,

since ∇f(z) 6= 0 for z 6= zσ, it follows that the integral defining Bσ(λt) is finite for any

value of t > 0. Similarly to the one-dimensional case, for t→ 0 one has ∇f(z) = O(t1/2).

Taking into account the λt dependence from the volume form we see that Bσ(λt) is analytic

in the whole semipositive real axis including the origin. We conclude that the power series

of Zσ(λ) in λ is Borel resummable to the exact result and Bσ(t) = Bn/2−1Zσ(t). Depending

on whether n is even or odd, the first relation in eq. (2.22) allows us to rewrite Borel and

13In one dimension Sn−1 reduces to two points, which were denoted by z1 and z2 in eq. (2.24).
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b = −1/2 Borel-Le Roy transforms as simple derivatives of the formula above, namely

B0Zσ(t) = ∂k−1
t

∫
Jσ
dz g(z) δ[f(z)− f(zσ)− t] , n = 2k ,

B−1/2Zσ(t) =
√
t ∂kt

∫
Jσ
dz g(z) δ[f(z)− f(zσ)− t] , n = 2k + 1 .

(3.4)

3.2 The Lefschetz thimble approach to the path integral

We are now ready to discuss path integrals in QM. Consider

Z(λ) =

∫
Dx(τ)G[x(τ)]e−S[x(τ)]/λ , (3.5)

with τ the Euclidean time. The action S is of the form

S[x] =

∫
dτ

[
1

2
ẋ2 + V (x)

]
, (3.6)

where the potential V (x) is assumed to be an analytic function of x, with V (x) → ∞ for

|x| → ∞, so that the spectrum is discrete. In analogy to the finite dimensional cases the

functionals S[x] and G[x] are regular and such that the path integral is well-defined for any

λ ≥ 0. The measure Dx includes a λ-dependent normalization factor to make Z(λ) finite.

The integration is taken over real x(τ) configurations satisfying the boundary conditions

of the observable of interest.

By definition the path integral is the infinite dimensional limit of a finite dimensional

integral, namely eq. (3.5) means

Z(λ) = lim
N→∞

∫
D(N)x(τ)G(N)[x(τ)]e−S

(N)[x(τ)]/λ , (3.7)

where the limit is now explicit and G(N)[x(τ)], S(N)[x(τ)],D(N)x(τ), are discretized versions

of the functionals G and S and of the path integral measure, which includes the factor

λ−N/2. Such limit can be twofold: the continuum limit, always present, and the infinite

time limit, relevant for the extraction of certain observables. The former is not expected

to generate problems in QM, since after having properly normalized the path integral all

quantities are finite in this limit. The infinite time limit could instead be more subtle and

we will discuss later when it may lead to troubles. For the moment we restrict our analysis

to path integrals at finite time so that the limit in eq. (3.7) only refers to the continuum one.

Similarly to the finite dimensional case, the first step is to identify all the (real and

complex) saddles zσ(τ) (the solutions of the equations of motion) of the action S[x] and

to construct the analogue of the upward and downward flows from each zσ(τ). Given the

infinite dimensional nature of the path integral, the number of saddles is also infinite. In

general a systematic analysis and computation of all the relevant flows and intersection

numbers is impractical. In specific cases, however, only a few real saddle point solutions

exist and we may hope to reconstruct the full answer from a finite set of saddle point

expansions. In particular, if the equations of motion admit only one real solution, the

domain of the integration (all real paths satisfying the boundary conditions) coincides
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with a thimble. We will now show that such path integral (and similarly any path integral

over thimbles) admits a perturbation theory which is Borel resummable to the exact result.

The integral inside the limit in eq. (3.7) is finite dimensional and can now be treated

as before, in particular we can rewrite it using eqs. (3.3) and (3.4) as

Z(λ) = lim
N→∞

e−
S(N)[x0(τ)]

λ

∫ ∞
0

dt t−1/2e−tB(N)
−1/2Z(λt)

B(N)
−1/2Z(λt) =

√
λt ∂Nλt

∫
D(N)
λ=1x(τ)G(N)[x(τ)] δ[S(N)[x(τ)]− S(N)[x0(τ)]− λt] ,

(3.8)

where for definiteness we discretized the path integral into a 2N + 1 dimensional one and

D(N)
λ=1x(τ) is the discretized measure without the λ dependence (i.e. with λ = 1). The

regularity of the functionals S and G and the absence of other real saddle points allow

a choice of discretization for which the Borel-Le Roy function B(N)
−1/2Z(λt) is finite and

integrable for any N . In QM the absence of divergences in the continuum limit strongly

suggests that the exchange of the limit with the integral in the first line of eq. (3.8) can

be performed safely. The function B(∞)
−1/2Z(λt) will then correspond to the Borel-Le Roy

transform in the continuum limit, which will be integrable and will reproduce the full result

Z(λ). As a check we verified the finiteness of B(∞)
−1/2Z(λt) at λt = 0 (which reproduces the

known results for the harmonic oscillator) as well as at any order in λt in polynomial

potentials (see the appendix).

We are then led to the following result:

If the action S[x(τ)] has only one real saddle point x0(τ) satisfying the boundary con-

ditions implicit in eq. (3.5), such that detS′′[x0(τ)] 6= 0, then no thimble decomposition is

needed and the formal series expansion of Z(λ) around λ = 0, corresponding to the saddle

point expansion of the path integral, is Borel resummable to the exact result.

If the action S[x] admits one real saddle only, in general it will admit several (or an

infinite number of) complex saddles (or complex instantons). All these complex instantons,

however, do not contribute to the path integral. Analogously to the finite-dimensional

cases, whenever more than one real saddle point with finite action satisfying the boundary

conditions of the path integral exists, the perturbative series generically will not be Borel

resummable, as a result of the Stokes phenomenon.

Boundary conditions determine the number of real saddle points of S and hence are of

crucial importance to check the validity of our working assumption. As a result the same

theory may have some observables that are Borel resummable to the exact result and some

for which the perturbative series requires the inclusion of non-perturbative effects. It might

be useful to illustrate the point with an example. Consider a QM system with an (inverted)

potential like the one depicted in figure 3 and define

W(λ, β, x0) =

∫
x(β/2)=x(−β/2)=x0

Dx(τ) e−S[x(τ)]/λ =
∑
k

|ψk(x0;λ)|2e−βEk(λ) , (3.9)

where Ek(λ) and ψk(x;λ) are the eigenvalues and the eigenfunctions of the system, respec-

tively. Depending on x0, the action S admits one or more real saddle points. For instance,
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x1

x2

-V (x)

Figure 3. Sketch of a bounded (inverted) potential with more than one critical point.

for x0 > x2 only one real solution exist. For x0 < x2 depending on β one or more real

solutions are allowed.

The partition function is related to W(λ, β, x0) by

Z(λ, β) =

∫ ∞
−∞

dx0W(λ, β, x0) =
∑
n

e−βEn(λ) , (3.10)

which corresponds to summing over all real periodic trajectories and it is not Borel re-

summable.

We now discuss the infinite β limit, which is relevant for the extraction of some ob-

servables such as the properties of the ground state (eigenvalue, eigenfunction, . . . ). Unlike

the continuum limit, the large-β limit generically does not commute with the thimble de-

composition. There are cases where the path integral admits more than one real saddle at

finite β but only one survives at β →∞. There are other cases instead where only one real

saddle exists for any finite β but the path integral lies on a Stokes line at β =∞.

Consider for instance the ground state energy

E0(λ) = − lim
β→∞

1

β
logZ(λ, β) . (3.11)

For the example of tilted double-well potential discussed before, Z(λ, β) has multiple real

saddles for any finite β, corresponding to solutions of the equations of motion with period

β. Besides the trivial one, x(τ) = x2, the leading saddle corresponds to the solution x(τ) =

x1, which is suppressed by a factor e−β[V (x1)−V (x2)]/λ. Therefore in the limit β → ∞
only the thimble associated to the true minimum gives a non-vanishing contribution. The

perturbative series for E0 is then Borel resummable to the full answer, though Z(λ, β) at

finite β is not. This result is more manifest if we use the alternative formula

E0(λ) = − lim
β→∞

1

β
logW(λ, β, x2) . (3.12)

Since W(λ, β, x2) has only one saddle (x(τ) = x2) for any β, the Borel summability of

E0(λ) follows trivially from our analysis.14

14The Borel summability of W(λ, β, x2) for any β and its explicit form (3.9) suggest that the same

conclusion should hold for the rest of the spectrum.
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The same discussion applies for any bound-state potential with a unique global min-

imum. When the minimum is not unique generically the perturbative series of E0 is not

Borel resummable because in the large β limit an infinite number of saddles with finite

action are present, independently of the functional W used. This is also true if the degen-

eracy of the absolute minimum is lifted at the quantum level, i.e. V (x1)− V (x2) = O(λ),

as it will become more clear below. We will discuss in more detail the properties of the

Borel transform of E0 for the different cases in section 4.

The analysis is particularly simple for potentials V (x) that have a single non-degenerate

critical point (minimum). Without loss of generality we take it to be at the origin with

V (0) = 0. Indeed, independently of the boundary conditions, there is always a single real

saddle point both at finite and infinite β. Since our considerations apply for any allowed

choice of the functional G[x] in eq. (3.5) we are led to argue that perturbative series of any

observable is Borel resummable to the exact result. By any observable we mean any path

integral with regular boundary conditions and analytic functions of them, such as partition

functions, energy eigenvalues, eigenfunctions, etc. In this way we recover in a simple and

intuitive way known results [2, 3, 27] on the Borel summability of the energy spectrum

of a class of anharmonic potentials and extend them to more general QM systems and

observables.

3.3 Exact perturbation theory

Interestingly enough, the method of subsection 2.4 can easily be extended to the QM

path integral (3.5). Suppose we can split the potential V = V0 + ∆V into the sum of two

potentials V0 and ∆V such that15

1. V0 has a single non-degenerate critical point (minimum);

2. lim|x|→∞∆V/V0 = 0 .

Consider then the auxiliary potential

V̂ = V0 +
λ

λ0
∆V ≡ V0 + λV1 , (3.13)

where λ0 is an arbitrary positive constant and define the modified path integral

Ẑ(λ, λ0) =

∫
Dx G[x] e

−
∫
dτ ∆V

λ0 e−
S0
λ , S0 ≡

∫
dτ

[
1

2
ẋ2 + V0

]
. (3.14)

Since Ẑ(λ, λ) = Z(λ), the latter can be obtained by the asymptotic expansion in λ of Ẑ
(EPT), which is guaranteed to be Borel resummable to the exact answer.

We can then relax the requirement of a single critical point and state our general result:

All observables in a one-dimensional QM system with a bound-state potential V for

which points 1. and 2. above apply are expected to be entirely reconstructable from a single

perturbative series.

15The second condition may be too conservative, see also footnote 10.
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Generally the decomposition V = V0 + ∆V is far from being unique. EPT is defined

as an expansion around the minimum of V0, which does not need to be a minimum (or a

critical point) of the original potential V . The number of interaction terms present in EPT

also depends on the particular decomposition performed and in general is higher than the

number of interaction terms present in the original theory (SPT). Since the mass term we

choose for V0 might differ from the one of V , so will do the effective couplings of SPT and

EPT. As long as conditions 1. and 2. above are fulfilled, any choice of EPT is equivalent

to any other, though in numerical computations with truncated series some choices might

be more convenient than others.

The leading large-order behaviour of the coefficients associated to the asymptotic ex-

pansion of the ground state energy associated to Ẑ(λ, λ0) can be deduced using the results

of refs. [10–12] (see in particular section II of ref. [12]). The large-order behaviour of the

ground state energy coefficients is governed by the action S0 only. In analogy to the one-

dimensional integral, the functional G exp(−
∫

∆V/λ0) in eq. (3.14) governs only the overall

n-independent size of the coefficients.

Note that so far we used non-canonical variables with the coupling constant λ playing

the role of ~ —the saddle-point expansion is the loopwise expansion. This means that in

the canonical basis the potential V (x) turns into V (x;λ) defined as

V (x;λ) =
V (
√
λx)

λ
. (3.15)

On the other hand, the coupling constant dependence of a generic QM potential may not

be of the form in eq. (3.15). For example, the expansion in g for the potential

V (x; g) = x2 + gx4 + gx6 (3.16)

does not correspond to the loopwise parameter. Indeed, setting λ =
√
g, the terms x2+λ2x6

satisfy eq. (3.15) while the term λ2x4 is effectively a one-loop potential that should be

included in the functional G[x] of eq. (3.5).

4 Quantum mechanical examples

In this section we study numerically polynomial QM systems in SPT and EPT, providing

extensive evidence of the results obtained in the previous sections. A summary of part of

these results appeared in ref. [17].

The perturbative series in both SPT and EPT are obtained by using the Mathemat-

ica [28] package “BenderWu” of ref. [29] which is based on recursion relations among the

perturbative coefficients first derived by Bender and Wu in refs. [22, 30]. We consider up

to N orders in the perturbative expansion (for EPT we fix the auxiliary parameter λ0

to a given value) and we approximate the Borel function with Padé approximants.16 For

16We also considered other approximation methods, such as the conformal mapping of refs. [32, 33]. While

the results are consistent with those obtained using Borel-Padé approximants, the latter typically give a

better numerical precision for N � 1. On the other hand, at small N the conformal mapping method is

more reliable because of numerical instabilities of the Borel-Padé approximants.
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definiteness we use the Borel-Le Roy function BbZ(λ) with b = −1/2, which numerically

seems a convenient choice leading to more accurate Padé approximants. The numerical

computation of the integral in eq. (2.21) gives the final result (evaluated for the value of

the coupling λ = λ0 in EPT).17 In the following we will refer to the above procedure as the

Padé-Borel method. The result obtained is then compared with other numerical methods

such as the Rayleigh-Ritz (RR) method (see e.g. ref. [31] for some explicit realizations). For

polynomial potentials of small degree an efficient implementation is as follows: one starts

from the truncated basis |k0〉, k = 1, . . . , NRR of the harmonic oscillator eigenfunctions,

and then computes the full Hamiltonian matrix Hkh = 〈k0|H|h0〉, which is almost diagonal.

The approximate energy levels and eigenfunctions of the system are given by the eigenval-

ues and eigenvectors of Hkh. This method converges to the exact result very quickly. The

accuracy depends on NRR and on the energy level considered. The lower is the level, the

higher is the accuracy.

We mostly focus on the energy eigenvalues Ek(λ), though the eigenfunctions φk(x;λ)

are also considered. Since the package [29] computes non-normalized wavefunctions, we

define

ψk(x;λ) ≡ φk(x;λ)

φk(x0;λ)
(4.1)

for some x0 and compute

∆ψk(x;λ) =
ψRR
k (x;λ)− ψEPT

k (x;λ)

ψRR
k (x;λ)

, (4.2)

where for simplicity we omit the x0 dependence in the ψk(x;λ).

4.1 Tilted anharmonic oscillator

The first example we consider is the tilted anharmonic oscillator

V (x;λ) =
1

2
x2 + α

√
λx3 +

λ

2
x4 , (4.3)

where α is a real parameter. For |α| < 2
√

2/3, the potential has a unique minimum at

x = 0. According to our results, SPT is then Borel resummable to the exact value for all

the observables. For 2
√

2/3 ≤ |α| < 1 some quantities, such as the ground state energy

E0(λ, α), are Borel resummable to the exact value while some are not, such as the partition

function. The cases |α| = 1 (symmetric double well) and |α| > 1 (false vacuum) will be

discussed in the next subsections.

For definiteness, let us look at the ground state energy E0(λ, α). The position of the

leading singularities in the associated Borel plane is dictated by the value of the action

S[z±] on the nearest saddle points, which for |α| < 1 are complex instantons z± [12]:

λt± = λS[z±] = −2

3
+ α2 +

1

2
α(α2 − 1)

(
log

1− α
1 + α

± iπ
)
. (4.4)

17Results with N = 100÷ 500 are obtained within minutes÷hours with a current standard laptop.
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Figure 4. Location of the singularities in the Borel plane for the standard and exact perturbative

series of E0(λ, α) for the potential (4.3). The dashed line represents the location of the leading

singularities as expected from eq. (4.4) with |α| ∈ [0, 1]. The red bullets indicate the position of

the first and second complex instantons for |α| = 3/4. The regions where the simple poles of the

Padé-Borel approximants accumulate are depicted in blue and green.

This expectation is confirmed by a numerical analysis with Borel-Padé approximants (see

figure 4). The ground state energy coefficients E0,n(α) for n � 1 oscillate with a pe-

riod given by 2π/|Arg t±|. As long as the coefficients oscillate, the observable is Borel

resummable. The period is minimum at α = 0, where the coefficients alternate, and grows

with |α| until it becomes infinite at |α| = 1 and Borel resummability is lost. In numerical

evaluations at fixed order N the best accuracy is obtained at α = 0. For α 6= 0, at least

N > 2π/|Arg t±| orders are required to see the alternating nature of the series.

Even if E0(λ, α) is Borel resummable for |α| < 1 in SPT, EPT can be used to greatly

improve the numerical results at strong coupling. Indeed, we can define a potential V̂ =

V0 + λV1 with

V0 =
1

2
x2 +

λ

2
x4 , V1 = α

√
λ

λ0
x3 , (4.5)

so that the original one is recovered for λ0 = λ.

The first terms in the perturbative SPT and EPT expansions read

E0 =
1

2
+

3−11α2

8
λ− 21−342α2+465α4

32
λ2 +

333−11827α2+45507α4− 39709α6

128
λ3 + . . .

Ê0 =
1

2
+

3

8
λ− 21

32
λ2 +

(
333

128
− 11α2

8λ2
0

)
λ3 + . . . , (4.6)

which shows how EPT rearranges all the α-dependent terms in the perturbative expansion.

For instance, the one-loop α2-dependent term in SPT appears at three loops in EPT.
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Figure 5. Comparison between the relative error ∆E0/E0 in the computation of the ground state

energy using Borel-Padé approximants of the series coming from eqs. (4.3) (SPT) and (4.5) (EPT)

as a function of the number N of series coefficients retained. (Left panel) weak coupling λ = 1/20,

(right panel) strong coupling λ = 5.

As we discussed, V1 modifies the overall normalization of the large-order coefficients

Ê0,n(λ0) with respect to the ones of the anharmonic oscillator E0,n(α = 0) without altering

their leading large-order n-dependence. The normalization at leading order is given by the

exponential of the integral of V1 evaluated at the nearest complex saddles

exp

(
− αλ

3/2

λ0

∫ ∞
−∞

dτ z3
±[τ ]

)
= e±iπα/2λ0 . (4.7)

In analogy to the one-dimensional case outlined at the end of section 2, we expect for n� 1

and n� 1/λ2
0,

Ê0,n

(
λ0

α

)
= E0,n(α = 0)

[
cos

(
πα

2λ0

)
+O

(
1

n

)]
, (4.8)

where

E0,n(α = 0) = −
√

6

π3/2

(
−3

2

)n
Γ

(
n+

1

2

)[
1 +O

(
1

n

)]
. (4.9)

In particular, eq. (4.8) implies that the leading singularity of the Borel function is located

at t = −2/3 as in the case of the anharmonic oscillator with α = 0. This is numerically

confirmed by the associated Borel-Padé approximants (see figure 4). It is useful to compare

the efficiency of SPT and EPT as a function of the number of terms N that are kept in

the series expansion. These are reported in figure 5 for weak and strong coupling values

λ = 1/20, λ = 5, respectively, where ∆E0 refers to the discrepancy with respect to ERR
0 .

In agreement with expectation, at sufficiently weak coupling SPT performs better than

EPT. The situation is drastically different at strong coupling, where SPT is essentially

inaccurate for any N reported in figure 5, while EPT has an accuracy that increases with

the order.

At fixed number of perturbative terms, EPT works at its best for coupling constants

λ ∼ O(1). Like SPT, as λ increases the integral in eq. (2.21) is dominated by larger
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values of t (this is best seen by rescaling t → t/λ) and hence more and more terms of

the perturbative expansion are needed to approximate the Borel function. On the other

hand, in analogy to the one-dimensional case (2.44), the Borel function in EPT contains

an additional exponential term coming from exp(−
∫
V1). When λ� 1 the accuracy drops

because the coefficients Ên(λ0) are very large before reaching the regime when eq. (4.8)

applies.

4.2 Symmetric double-well

For |α| = 1 the potential (4.3) turns into a symmetric double-well, with two degenerate

minima. This is the prototypical model where real instantons are known to occur and

the perturbative expansion around any of the two minima are known to be not Borel

resummable. SPT requires the addition of an infinite number of real instantons to fix the

ambiguities related to lateral Borel resummations and to reproduce the full result, see e.g.

ref. [34] for a numerical study.

Shifting the x coordinate so that x = 0 is the maximum of the potential

V (x;λ) =
λ

2

(
x2 − 1

4λ

)2

, (4.10)

we can perform an EPT by considering the auxiliary potential

V0 =
1

32λ
+
λ0

2
x2 +

λ

2
x4 , V1 = −

(
1 +

1

2λ0

)
x2

2
, (4.11)

which has as effective couplings λ/λ
3/2
0 and λ/λ0(1 + 1/(2λ0)). This choice of EPT, where

the minimum of V0 is half way between the two minima of the double well, is such that the

numerical Borel-Padé resummation is able to reconstruct the non-perturbative splitting

between the first two levels at moderately small couplings, with a few hundred orders of

perturbation theory. However, at fixed order N of perturbation theory and for very small

couplings, the true vacua depart further and further from the minimum of V0 and the

corresponding EPT becomes even worse than the naive truncated series. In this regime

a better choice would be to take the minimum of V0 close to one of the true minima of

the double well (although resolving non-perturbative effects in this regime becomes harder

and, as expected, more terms of the perturbative expansion are required).

We start by considering the ground state energy E0(λ). The large order behavior of

the series coefficients Ê0,n(λ0) in EPT for n� 1 and n� 1/λ2
0 are given by

Ê0,n(λ0) = λ
1
2
− 3

2
n

0 e
−
√
λ0

(
1+ 1

2λ0

)
E0,n(α = 0)

[
1 +O

(
1

n

)]
. (4.12)

As before, the exponential λ0-dependent factor is obtained by evaluating the potential V1,

the second term in square brackets in eq. (4.11), at the leading complex instanton solutions

z±. The prefactor λ
1
2
− 3

2
n

0 is instead due to the λ0 dependence of the quadratic term in V0.

By taking N = 200, λ = λ0 = 1/32, we get ∆E0/E0 ≈ 2 ·10−5 and ∆E1/E1 ≈ 2 ·10−11.

These accuracies are already several orders of magnitude smaller than the leading order
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k x = 1/8 x = 1/4 x = 1/2 x = 1 x = 2 ∆En/En

Anharmonic

0 7 · 10−24 4 · 10−23 2 · 10−22 10−21 8 · 10−20 3 · 10−33

1 3 · 10−15 2 · 10−14 7 · 10−14 5 · 10−13 3 · 10−11 4 · 10−30

2 2 · 10−8 10−7 4 · 10−6 6 · 10−7 7 · 10−6 2 · 10−27

Symmetric double well

0 5 · 10−27 3 · 10−26 10−25 2 · 10−25 3 · 10−24 6 · 10−34

1 4 · 10−18 2 · 10−17 10−16 6 · 10−16 2 · 10−14 10−30

2 5 · 10−11 3 · 10−10 3 · 10−9 2 · 10−9 10−8 5 · 10−27

Table 1. Relative errors of the ratio of wave functions (4.2) and energies of the first three levels

of the anharmonic and symmetric double well at λ = 1, evaluated at different points x using EPT

with N = 200, and RR methods. In the anharmonic case EPT coincides with SPT. We have taken

x0 = 1/16 in eq. (4.1).

one-instanton contribution

Einst
0 ≈ 2√

πλ
e−

1
6λ , (4.13)

which amounts to ≈ 0.031, or from the whole instanton contribution computed as the energy

split between the ground state and the first excited level, which amounts to ≈ 0.024. For

larger values of the coupling λ the accuracy of EPT improves very quickly. For instance,

already at λ = λ0 = 1/25, keeping N = 200 as before, ∆E0/E0 ≈ 10−8 and ∆E1/E1 ≈
4 · 10−14, way smaller than the leading one-instanton contribution ≈ 0.087 or of the whole

instanton contribution, computed as above and ≈ 0.061. For λ ≥ 1 SPT breaks down: one

would need to resum the whole transseries given by the multi-instantons and their saddle-

point expansions, which is very challenging. On the other hand EPT works very efficiently

in this regime. At fixed order N , the error decreases as λ increases up to some value, beyond

which the error slowly increases again. There is no need to consider too large values of N

to get a reasonable accuracy, in particular in the strong coupling regime λ ∼ 1.

For instance, at λ = 1 and with N = 2(4) orders, we get ∆E0/E0 ' 3%(0.5%) by

using the conformal mapping method [32, 33] with coupling

w(λ) =

√
1 + 3λ/2− 1√
1 + 3λ/2 + 1

, (4.14)

and Borel resumming the new series.

As far as we know, the convergence of series related to observables other than energy

eigenvalues have been poorly studied. This has motivated us to analyze the series associated

to the wave functions φk(x;λ). We report in table 1 the values of ∆ψk(x;λ) for the first three

levels of the anharmonic oscillator, α = 0 in eq. (4.3), and the symmetric double well (4.10),

for some values of x at λ = 1. Given the exponential decay of the wave function, larger

values of x are subject to an increasing numerical uncertainty and are not reported. The

decrease in accuracy as the level number k increases is also expected, since both the RR
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Figure 6. Comparison of the wavefunctions (normalized as in eq. (4.1) at x0 = 2
√

2) for the first

two levels of the symmetric double-well potential with λ = 1/32 . Those computed in EPT with

N = 200 are indicated by blue bullets (ground state) and orange crosses (first state) while the ones

computed using the RR method are indicated by solid curves.

methods and SPT/EPT require more and more precision. In all the cases considered the

Borel-Padé approximants are free of poles in the real positive t axis. The results clearly

indicate that EPT captures the full answer. For illustration in figure 6 we plot ψ0,1 and

∆ψ0,1 at λ = 1/32.

4.3 Supersymmetric double well

We now turn to the notable tilted double-well potential

V (x;λ) =
λ

2

(
x2 − 1

4λ

)2

+
√
λx . (4.15)

This is the exact quantum potential that one obtains from the supersymmetric version

of the double well when the fermionic variables are integrated out. As it is well known,

the ground state energy E0 = 0 to all orders in SPT due to supersymmetry. At the non-

perturbative level, however, E0 6= 0 because supersymmetry is dynamically broken [35]. Due

to the absence of perturbative contributions in SPT, the supersymmetric double-well is the

ideal system where to test EPT. It is also one of the simplest system where a perturbative

expansion is Borel resummable (being identically zero), but the sum does not converge to

the exact value.
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Different authors have invoked complex instantons to reproduce E0 [36, 37]. Their argu-

ment is essentially based on the observation that the entire quantum tilted potential (4.15)

does not admit other real saddles that can contribute to the ground state energy. Note

however that the perturbation theory in λ corresponds to the expansion around the saddle

points of the classical action. Since the tilt in eq. (4.15) is quantum in nature, the saddle-

points of this system are the same as the ones of the symmetric double-well. In particular,

real instantons occur, meaning that the path integral is on a Stokes line. The instanton

contributions to E0 have been extensively studied in ref. [38], where the first nine terms of

the perturbative series around the 1-instanton saddle have been computed using a gener-

alized Bohr-Sommerfeld quantization formula [39, 40]. As expected, this expansion agrees

very well with the numerical calculation at small coupling, while it breaks down when λ

approaches one since the perturbative expansion of more and more instantons need to be

properly included.

Note that the expansion around the saddle-points of the full action corresponds to

treat the whole potential (4.15) as classical. This means that the coefficient of the linear

tilt is rescaled by a factor λ0/λ to satisfy eq. (3.15). The resulting potential, which leads

to an alternative perturbative expansion in λ (APT), reads

VAPT =
λ

2

(
x2 − 1

4λ

)2

+
λ0√
λ
x . (4.16)

The original result is recovered by setting λ = λ0. This expansion for the ground state

energy is no longer supersymmetric, but according to the discussion in subsection 3.2 is

Borel resummable to the exact result. We show in figure 7 the partial sums

SN =
N∑
k=1

ckλ
k (4.17)

of the coefficients of APT as a function of N for λ = 1/200. The dashed line represents

the exact ground state energy. While each term in perturbation theory is non-vanishing,

cancellations make the size of the truncated sum to decrease until N ≈ NBest = 74, where

it approaches the expected non-perturbative answer. For larger values of N the series

starts diverging, though Borel resummation reconstructs the right value with a precision

of O(10−3) using N = 200 terms. The feature appearing around N = 150 is due to the

change of sign of the truncated sum. Indeed the sign of the coefficients ck oscillates with

a long period O(150) since at weak coupling the tilt of the double-well potential is small

and complex singularities of the Borel plane are close to the real axis (see figure 4).

Analogously to the previous cases we can also introduce an EPT for which all the

observable are Borel resummable. For this purpose we consider the auxiliary potential

V0 =
1

32λ
+
λ0

2
x2 +

λ

2
x4 , V1 =

x√
λ
−
(

1 +
1

2λ0

)
x2

2
, (4.18)

where V1 includes the quantum tilt x and the quadratic x2 term necessary to recover the

original potential. The specific decomposition (4.18) turns out to be numerically convenient

for moderately small and large couplings.
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Figure 7. The partial sum (4.17) of APT for the potential (4.16) as a function of N for λ = 1/200.

The black dashed line corresponds to the exact ground state energy as computed using RR methods.
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Figure 8. The ground state energy (top) and the relative error (bottom) as a function of the

coupling λ for the supersymmetric double well (4.15). The blue [green] crosses refer to EPT [APT]

from the potential (4.18) [(4.16)] with N = 200 series coefficients, the orange dots to SPT of

ref. [38], with a truncated expansion up to the ninth order around the leading instanton. The black

line corresponds to the exact result, computed by means of a Rayleigh-Ritz method.

In figure 8 we show a comparison between the various perturbative estimates of E0 and

the numerical RR one as a function of the coupling constant. As expected, at small coupling

SPT provides the best estimate. In fact it encodes analytically the leading instanton effect

providing the asymptotic value of E0 at λ → 0. However, already at moderately small

couplings both APT and EPT are able to resolve the leading instanton effects with a
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Figure 9. Plots of the potential (4.19) (solid black curve) and the associated potential V0 in

eq. (4.20) (dashed curve) with λ = 1. The dashed blue line corresponds to the ground state energy

associated to V0, the solid red and the dashed black ones are the ground state energy of the

potential (4.19) obtained from EPT and RR methods, respectively.

good accuracy. At moderate and strong coupling the instanton computation quickly breaks

down, while both APT and EPT work extremely well. In particular the accuracy of EPT

strongly increases with λ up to λ ∼ 4. For larger values of the coupling the accuracy drops,

but it remains remarkable. For λ ∼ 102 we have an accuracy ∼ 10−20 with 200 orders of

perturbation theory. It is amazing how a perturbative computation can work so efficiently

at strong coupling!

4.4 False vacuum

We now consider the potential (4.3) with |α| > 1. In this case x = 0 is no longer the

absolute minimum, and we are effectively expanding around a false vacuum. Clearly SPT

is non-Borel resummable in this case, given the presence of other real instantons. The

perturbative expansion around the false vacuum does not contribute at all to E0, which, as

we saw, is entirely reconstructed by the expansion around the true vacuum. Still the EPT

around the false vacuum defined by the potential (4.5) is able to recover the (true) ground

state energy.

In figure 9 we show the shape of the original potential V for α = −3/2

V (x;λ) =
1

2
x2 − 3

2

√
λx3 +

λ

2
x4 , (4.19)

and the corresponding exact ground state energy E0 ≈ −0.828 at λ = 1. We also show the

potential V0 used in EPT

V0 =
1

2
x2 +

λ

2
x4 , (4.20)

with the would-be ground state energy E
(0)
0 ≈ 0.696. Using EPT with N = 280 orders such

value moves to Ê0 ≈ −0.847. Although the accuracy is not comparable to that obtained
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in the previous cases, it is remarkable that one is able to compute the energy of the true

vacuum starting from a perturbative expansion around a false vacuum.

4.5 Degenerate saddle points: pure anharmonic oscillators

In this subsection we discuss how to use EPT to address the infinitely coupled systems

described by potentials with degenerate saddle points. Consider for example the pure an-

harmonic oscillators with potentials of the form

V (x) = 2`x2` , ` ∈ N+ . (4.21)

The factor 2` is such that, modulo a trivial rescaling, the Hamiltonian is of the form

p2 + x2` which is the conventional normalizaton used in the literature for this class of

models. Pure anharmonic oscillators are intrinsically strongly coupled and can be obtained

as the λ → ∞ limit of their corresponding ordinary massive anharmonic oscillators after

the rescaling x→ λ−1/2(1+`)x. The potentials (4.21) are convex with a degenerate minimum

at x = 0. In the absence of a quadratic mass term, perturbation theory cannot be used.

The energy eigenvalues E
(2`)
k of these systems have instead been studied using Rayleigh-

Ritz methods (see e.g. ref. [41]), Thermodynamic Bethe Ansatz (TBA) [42] or a Wentzel

Kramers Brillouin (WKB) approximation [43, 44] (see also ref. [45] for a more modern

perspective). In the WKB approximation one considers a series expansion in 1/k, k being

the quantum number level. It was found in refs. [43–45] that the asymptotic series of

the WKB expansion, where classical real trajectories in phase space are considered, does

not reproduce the correct result. A better accuracy is achieved by adding in the WKB

quantization formula the contribution of complex trajectories in phase space. However,

there are an infinite number of them and a parametrically high accuracy could be obtained

only by resumming all the infinite complex trajectories.

In terms of Lefschetz thimbles, the potentials (4.21) have a degenerate saddle for which

our considerations do not apply. A possibility is to add a mass term εx2 to eq. (4.21),

compute the energy levels E
(2`)
k (ε) and extrapolate the result for ε → 0. By choosing

ε > 0 we are guaranteed that E
(2`)
k (ε) are Borel resummable for any ε and no (real or

complex) non-perturbative contributions are expected. We have verified this expectation

by computing the ground state energy E
(4)
0 (ε) for the pure quartic oscillator for smaller and

smaller values of ε (using the Padé-Borel method) and have found that the extrapolated

value E
(4)
0 converges to the exact value.

The same result can be found with much greater accuracy and efficiency using EPT

without taking any extrapolation. Consider the auxiliary family of potentials defined as

V0 = λ`−12`x2` +

`−1∑
j=1

cjλ
j−1x2j , V1 = − 1

λ0

`−1∑
j=1

cjλ
j−1x2j , (4.22)

such that at λ = λ0 = 1 the potential in eq. (4.21) is recovered. By a proper choice of the

`− 1 coefficients cj , V0 has a unique non-degenerate minimum at x = 0 and perturbation

theory is well-defined.
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k E
(4)
k ∆E

(4)
k /E

(4)
k E

(6)
k ∆E

(6)
k /E

(6)
k

0 1.0603620904 3 · 10−45 0.5724012268 2 · 10−19

1 3.7996730298 2 · 10−44 2.1692993557 3 · 10−19

2 7.4556979379 9 · 10−37 4.5365422804 9 · 10−17

3 11.6447455113 4 · 10−36 7.4675848174 7 · 10−16

4 16.2618260188 4 · 10−36 10.8570827110 2 · 10−16

Table 2. Energy eigenvalues E
(2`)
k and the corresponding accuracies ∆E

(2`)
k /E

(2`)
k of the first five

levels of the pure anharmonic x4 and x6 potentials, computed using EPT with N = 200. Only the

first ten digits after the comma are shown (no rounding on the last digit).

For the pure quartic case ` = 2, by choosing c1 = 2 in eq. (4.22) and by using only

the first ten orders of EPT we get E
(4)
0 ' 1.060362, which is more accurate than the value

in table 2 of ref. [45], obtained using 320 orders in the WKB expansion with the inclusion

of the leading complex saddles. The accuracy is easily improved using more coefficients of

the perturbative expansion. We have computed in this way the E
(2`)
k for different values of

` and k, as well as the associated wave-functions ψ
(2`)
k (x) for some values of x. In all cases

we found excellent agreement between our results and those obtained with RR methods.

For illustration we report in table 2 the accuracies for the energy levels of the first five

states of the pure x4 and x6 oscillators computed comparing EPT to the results from RR

methods. We used N = 200 orders of perturbation theory and in eq. (4.22) we chose c1 = 2

for ` = 2 and c1 = 4, c2 = 2 for ` = 3. Notice the accuracy of E
(4)
0 up to 45 digits! At fixed

N , similarly to the RR method, the accuracy decreases as the energy level and the power

` in eq. (4.21) increase (in contrast to the WKB method where the opposite occurs) All

the energy eigenvalues reported in table 2 are in agreement with those reported in table 1

of ref. [41], tables I and II of ref. [42] and table 2 of ref. [45], in all cases computed with

less precision digits than our results.18 The accuracy of our results sensibly depend on the

choice of the coefficients cj in eq. (4.22). We have not performed a systematic search of the

optimal choice that minimizes the errors, so it is well possible that at a fixed order N a

higher accuracy than that reported in table 2 can be achieved.

5 Conclusions and future perspectives in QFT

In this paper we have studied one-dimensional QM systems with bound-state potentials

and discrete spectra. We characterized some of the conditions for the Borel summability of

perturbation theory in QM. In particular when the potential admits only one critical point

(minimum), we have shown that the loopwise expansion in the Euclidean path integral

is Borel resummable and reproduces the full answer. Several known results in the litera-

ture about the Borel summability of certain QM systems, such as the quartic anharmonic

oscillator [2, 3], are rederived and generalized in this new perspective.

18Note however that the numerical computations based on the Rayleigh-Ritz methods remain superior

for these simple potentials.
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We also explained why EPT — the modified perturbative expansion introduced in

ref. [17] — is able to extend the above result to generic bound-state potentials. Remark-

ably, EPT encodes all the non-perturbative corrections of SPT, the standard semi-classical

expansion including instantons, providing the full answer for any value of the coupling

constant. In particular, EPT works at its best at strong coupling, where the high accuracy

obtained confirms its validity. All complications occurring in SPT, related to the need of a

resurgence analysis to make sense of otherwise ambiguous results, or of a highly non-trivial

Lefschetz thimble decomposition of the path integral, are bypassed when using EPT. These

points have been illustrated in details with several examples.

Our results can be extended in various directions. It would be interesting to under-

stand if and how they can be obtained directly in Minkowski space where, contrary to

the Euclidean case, one would always expect an infinite number of saddles to contribute.

On the other hand the generalization to higher-dimensional QM systems with bound-state

potentials should be straightforward.

The extension of our results to QFT is probably the most interesting. Possible com-

plications arise both from UV and IR effects. As it is well-known, in contrast to QM, in

QFT it is not enough to properly define the path integral measure to get a finite theory.

The key point to address is understanding how the renormalization procedure needed to

remove UV divergencies affects the Lefschetz thimble approach to the path integral.

The IR limit (i.e. infinite volume limit) is also more subtle than in QM because of

possible phase transitions and spontaneous breaking of symmetries. Since in this case ob-

servables O(λ) may no longer be analytic for any value of the coupling λ, it is not clear what

will be the fate of the properties of perturbation theory and of the thimble decomposition.

Aside from the subtleties mentioned above, a naive extrapolation of our anharmonic

potentials to scalar QFT would lead to the expectation that perturbation theory for su-

perrenormalizable potentials with a single critical point are Borel resummable to the exact

result. The proof of the Borel summability for the particular cases of the φ4 theories with

a positive squared mass term in d = 2 and d = 3 [4, 5] seems to be compatible with this

conjecture. The φ4 theory in d = 2 seems the ideal laboratory to start exploring our ideas

in the QFT framework. Indeed this is one of the simplest non-integrable QFT where UV

divergencies can be removed by just normal ordering. In addition, in the infinite volume

limit, it undergoes a second-order phase transition to a Z2-breaking phase in d = 2 [46].

We hope to come back to the analysis of this model in the future.

On a more general perspective, by a proper analytic continuation in the space-time

dimension, one might hope to put on firmer grounds the conjectured Borel summability of

the ε-expansion in the φ4 theory [11]. In QFT we will not have access to many terms in

the perturbative expansion, and of course we cannot expect the degree of accuracy that is

possible in QM. Nevertheless, computations of critical exponents in the three-dimensional

Ising and vector O(N) models have shown that an accuracy at the per mille level can be

achieved at strong coupling ε = 1 by resumming (using Borel-Padé approximants, conformal

mapping or other methods) the first few loops in perturbation theory [47]. More ambitious

goals would be to extend our methods to QFT that are not Borel resummable, like gauge

theories in d = 4. Any progress in this direction would be of great interest.
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We think that the results of this paper have opened a new perturbative window on

strongly coupled physics.
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A On the finiteness of B(∞)
−1/2Z

In this appendix we report some checks we performed about the finiteness of the contin-

uum limit of B(N)
−1/2Z(λt). First of all, we consider the partition function of the harmonic

oscillator. We discretize the path integral by cutting-off the real Fourier modes coefficients

cn of x(τ):

x(τ) =
N∑
k=0

ckηk cos
2πkτ

β
+

N∑
k=1

c−kηk sin
2πkτ

β
, ηk =

√
2− δk,0√
β

. (A.1)

The discretized action reads

S(N)[x] =

∫ β

0
dτ

[
1

2
ẋ2 +

1

2
ω2x2

]
=

1

2

N∑
k=−N

µkc
2
k , µk ≡ ω2 +

(2πk)2

β2
. (A.2)

The path integral measure reads

D(N)x(τ) =

N∏
k=−N

Nk dck , Nk ≡


|k|
β

√
2π
λ k 6= 0

1
β
√

2πλ
k = 0

. (A.3)

Introduce now a radial coordinate system defined as

ck =

√
2

µk
ρ ĉk ,

N∑
k=−N

ĉ2
k = 1 (A.4)

where ρ is the radius and the ĉk’s encode the standard parametrization of the unit 2N -

sphere in terms of its 2N -angles, whose explicit form will not be needed. Using the expres-

sion (3.8) for the Borel-Le Roy function and the above results, we get

B(N)
−1/2Z0(λt) =

√
λt

β

N∏
k=1

[
2πk

β

]2

∂Nλt

∫ ∞
0

dρ

ρ
Ω2N+1

[
N∏

k=−N

ρ
√
πµk

]
δ(ρ2 − tλ)

=
1

Γ
(
N + 1

2

)√λt ∂Nλt(λt)N− 1
2

1

βω

N∏
k=1

1

1 +
(
ωβ
2πk

)2

=
1

Γ
(

1
2

) 1

βω

N∏
k=1

1

1 +
(
ωβ
2πk

)2 , (A.5)
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where Ωd = 2πd/2/Γ(d/2) is the area of the unit (d − 1)-dimensional sphere and we used

the relation

∂Nλt(λt)
N+p =

Γ(N + p+ 1)

Γ(p+ 1)
(λt)p , (A.6)

valid for any value of p. Notice how taking N derivatives with respect to λt gives rise to

an N -dependent Gamma function that compensates the one coming from the area of the

unit-sphere. As expected, the dependence on λt disappears and the continuum limit gives

the finite answer

lim
N→∞

B(N)
−1/2Z0(λt) ≡ lim

N→∞

Z(N)
0

Γ(1/2)
=
Z0

Γ
(

1
2

) , Z0 =
1

2 sinh
(
ωβ
2

) , (A.7)

which reproduces the known partition function Z0 of the harmonic oscillator after the

integral over t is performed.

An exact computation of B(N)
−1/2Z(λt) is clearly out of reach in interacting QM systems.

Yet, we can show that B(∞)
−1/2Z(λt) is finite to all orders in perturbation theory for polyno-

mial potentials. It is useful to work out in detail the first order term of B(N)
−1/2Z(λt) for the

quartic anharmonic oscillator V (x) = ω2x2/2 + x4/4. We have

B(N)
−1/2Z(λt) = Z(N)

0

√
λt

πN+ 1
2

∂Nλt

∫ ∞
0

dρ

∫
dΩ2N+1 ρ

2Nδ(ρ2 + ρ4ξ − tλ) , (A.8)

where Z(N)
0 is the discretized version of the harmonic oscillator partition function defined

in eq. (A.7) and

ξ =

N∑
n,m,p,q=−N

ηnηmηpηq√
µnµmµpµq

∫ β

0
dτ(ĉnXn)(ĉmXm)(ĉpXp)(ĉqXq) , Xn ≡

{
cos 2πnτ

β , n ≥ 0

sin 2πnτ
β , n < 0

.

(A.9)

At linear order in λt, once we expand the argument of the delta function, we get

B(N)
−1/2Z(λt) =Z(N)

0

√
λt

πN+ 1
2

∂Nλt

∫ ∞
0
dρ

∫
dΩ2N+1ρ

2N−1(1− 2ρ2ξ)δ[ρ−
√
λt(1− λtξ/2) + . . .]

+O(λt)2 . (A.10)

It is convenient to evaluate the integral over the angular variables ĉn before the one in

dτ appearing in eq. (A.9). This is easily obtained by using the following identity, valid in

cartesian coordinates in any number of dimensions d:∫
ddxxnxmxpxqf(x2)=

(δnmδpq + δnpδmq + δnqδmp)

d(d+ 2)

∫
ddxx4f(x2) , x2 =

d∑
k=1

xkxk , (A.11)

from which it immediately follows, taking d = 2N + 1,∫
dΩ2N+1ĉnĉmĉpĉq =

(δnmδpq + δnpδmq + δnqδmp)

(2N + 1)(2N + 3)
Ω2N+1

=
πN+ 1

2

2Γ
(
N + 5

2

)(δnmδpq + δnpδmq + δnqδmp). (A.12)
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The integral over dτ is straightforward and after a bit of algebra we get∫
dΩ2N+1ξ =

3β

2

πN+ 1
2

Γ
(
N + 5

2

)(G(N))2 , G(N) ≡ 1

β

N∑
k=−N

1

µk
. (A.13)

Plugging eq. (A.13) in eq. (A.10) gives

B(N)
−1/2Z(λt) = Z(N)

0

(
1

Γ(1/2)
− 3β

4

√
λt∂Nλt(λt)

N+1/2 N + 3/2

Γ
(
N + 5

2

)(G(N))2 +O(λt)2

)
= Z(N)

0

(
1

Γ(1/2)
− 3β

4
(G(N))2 λt

Γ(3/2)
+O(λt)2

)
.

(A.14)

In the continuum limit we have

lim
N→∞

B(N)
−1/2Z(λt) = Z0

(
1

Γ(1/2)
− 3

4
βG2 λt

Γ(3/2)
+O(λt)2

)
, (A.15)

where

G =
1

2ω
coth

βω

2
(A.16)

is the particle propagator at τ = 0. After integrating over t, eq. (A.15) reproduces the first

order perturbative correction to the partition function of the quartic anharmonic oscillator.

Finiteness of B(N)
−1/2Z as N → ∞ to all orders is easily shown. For simplicity, we

just keep track of the factors of N , neglecting all other parameters. At order (λt)k, after

expanding the argument of the delta function, we get

B(N)
−1/2Z(λt)|λk ∝ Z

(N)
0

√
λt

πN+ 1
2

∂Nλt(λt)
N+k−1/2Nk

∫
dΩ2N+1ξ

k . (A.17)

The 4k-generalization of eq. (A.11) gives∫
dΩ2N+1ξ

k ∝ 1

N2k
Ω2N+1 . (A.18)

Plugging eq. (A.18) in eq. (A.17) and using eq. (A.6) gives

lim
N→∞

B(N)
−1/2Z(λt)|λk ∝ lim

N→∞
Z(N)

0

(λt)k

πN+ 1
2

Γ(N + k + 1/2)

Γ(k + 1/2)

Ω2N+1

Nk
∝ Z0

(λt)k

Γ
(
k + 1

2

) . (A.19)

Similarly, we can prove the finiteness of the continuum limit to all orders in perturbation

theory for any other interaction term of the form g x2p. Recall that the loopwise parameter

λ corresponds to a coupling constant g = λp−1 and hence, for p 6= 2, the two are not

identical. Taking that into account, the scaling in N of B(N)
−1/2Z at order gk reads

lim
N→∞

B(N)
−1/2Z(λt)|gk ∝ lim

N→∞
Z(N)

0

√
λt

πN+ 1
2

∂Nλt(λt)
N+(p−1)k− 1

2NkΩ2N+1

Npk
∝ gktk(p−1)

Γ
[
(p− 1)k + 1

2

] ,
(A.20)

and is finite. q.e.d.

Finiteness of B(N)
−1/2Z to all orders in perturbation theory for any polynomial potential

term easily follows from the above results.
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[5] J. Magnen and R. Sénéor, Phase Space Cell Expansion and Borel Summability for the

Euclidean φ4 in Three-Dimensions Theory, Commun. Math. Phys. 56 (1977) 237 [INSPIRE].

[6] J. Ecalle, Les Fonctions Resurgentes, vol. I–III, Publ. Math. Orsay, Orsay France (1981).

[7] I. Aniceto, R. Schiappa and M. Vonk, The Resurgence of Instantons in String Theory,

Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].

[8] M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and

strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].

[9] D. Dorigoni, An Introduction to Resurgence, Trans-Series and Alien Calculus,

arXiv:1411.3585 [INSPIRE].

[10] L.N. Lipatov, Divergence of the Perturbation Theory Series and the Quasiclassical Theory,

Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [INSPIRE].

[11] E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Perturbation Theory at Large Order. 1. The

ϕ2N Interaction, Phys. Rev. D 15 (1977) 1544 [INSPIRE].
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