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1 Introduction and outlook

Recently, exceptional generalised geometries [1, 2] and exceptional field theories (EFT) [3–6]

have been the stage of intense activity. These frameworks capture the degrees of freedom

and gauge symmetries of maximal supergravities in a way that makes their exceptional

Ed+1(d+1) structures manifest, mirroring how O(d, d + n) structures are reproduced in

generalised geometry and double field theory (DFT) [7–10]. Not only do these frame-

works give a better understanding of how duality structures determine the geometrical and

physical properties of maximal supergravities, but they also provide the necessary tools to

study solutions, dimensional reductions and consistent truncations [1, 11–15] on non-trivial

backgrounds.
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While most of the recent research has been focused on exploiting the manifest duality

structures of DFT and EFT, it must be possible to introduce generalised geometries and

extended field theories associated to groups different from those of the O(d, d+ n) and

Ed+1(d+1) series. For instance, several generalised geometries were introduced in [16],

in particular examples based on a Spin(d, d) structure. In [13] it was proven that any d-

dimensional sphere is (generalised) parallelisable in an appropriate GL+(d+1) generalised

geometry. One can look for other relevant structures in the series of duality groups of

supergravity theories. A particularly interesting case is the series of duality symmetries of

half-maximal supergravities which, for specific dimensions (see table 1), contains groups

larger than the O(d, d+ n) captured by DFT.1 One example arises from the reduction of

ten-dimensional N = 1 supergravity coupled to nv = n gauge vectors [18, 19] down to

D = 4 . This yields an SL(2)×O(6, 6+n) duality group which is larger than the O(6, 6+n)

symmetry of DFT. A further reduction to D = 3 gives O(8, 8 + n) thus containing the

O(7, 7+n) captured by DFT. Also notable is the O(5, nt) duality symmetry of N = (2, 0)

supergravity in six dimensions coupled to nt tensors [20–22]. Upon subsequent reduction

to D < 3 , these duality symmetries would become infinite-dimensional reaching up to

D+++
n and B+++

n very extended Kac-Moody algebras [23, 24] analogous to the E11 of

the maximal supergravities [25]. It is therefore natural to construct extended field theories

based on the duality groups of half-maximal supergravities for D = 4 and D = 3 , in the

same fashion as exceptional field theory for the maximal cases [5, 6].

In this paper we investigate the D = 4 case and construct the extended field theory

whose associated duality group is SL(2) × O(6, 6 + n) . Notice that an SL(2) × O(5, 5)

generalised geometry was considered in [26] whereas an SL(2) × O(6, 6) one was briefly

mentioned in [27]. Apart from the theoretical motivation of understanding the similarities

and differences between this theory and the DFT with O(6, 6 + n) symmetry, having an

enhancement of the duality group with an SL(2) factor is also phenomenologically rele-

vant. This becomes manifest, for example, when studying the issue of moduli stabilisation

in the lower-dimensional gauged supergravities arising from generalised Scherk-Schwarz

(SS) reductions of the extended field theories. In particular, generalised SS reductions of

DFT down to D = 4 can only produce electric gaugings of N = 4 (half-maximal) super-

gravity, even when allowing for locally non-geometric twists that violate the section con-

straint [28, 29]. Such electric gaugings are subject to the no-go result by de Roo-Wagemans

(dRW) [30] stating the impossibility of stabilising the SL(2) dilaton of the N = 4 theory.

A crucial ingredient for stabilising such a scalar in half-maximal D = 4 supergravity is

the presence of non-trivial SL(2) angles, known as dRW phases, in the gauge group. In

the framework of the embedding tensor which allows to systematically investigate N = 4

gaugings [31], the presence of non-trivial dRW phases requires non-vanishing embedding

tensor components which are SL(2) rotated with respect to each other. Various maximally

symmetric solutions compatible with four-dimensional N = 4 gaugings of this type were

discussed in [32, 33].

It thus becomes crucial to have access to the SL(2) factor of the duality group in the

half-maximal extended field theory in order to generate N = 4 gaugings that may stabilise

1Interesting results on reproducing (Heterotic) DFT from D = 7 EFT have recently appeared in [17].
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D Maximal sugra / EFT Half-maximal sugra DFT

9 R+ × SL(2) R+ ×O(1, 1 + n) R+ ×O(1, 1 + n)

8 SL(2)× SL(3) R+ ×O(2, 2 + n) R+ ×O(2, 2 + n)

7 SL(5) R+ ×O(3, 3 + n) R+ ×O(3, 3 + n)

6 SO(5, 5) R+ ×O(4, 4 + n) R+ ×O(4, 4 + n)

5 E6(6) R+ ×O(5, 5 + n) R+ ×O(5, 5 + n)

4 E7(7) SL(2)×O(6, 6 + n) R+ ×O(6, 6 + n)

3 E8(8) O(8, 8 + n) R+ ×O(7, 7 + n)

Table 1. Relevant duality groups in maximal and half-maximal supergravity as well as in extended

field theory. Only the non-chiral N = (1, 1) supergravity in D = 6 is displayed. The R+ factor in

the duality structure of DFT is actually a combination of an internal R+ contained in the second

column and a trombone rescaling.

the moduli upon reduction to a D = 4 gauged supergravity. One systematic manner

of obtaining N = 4 gaugings at SL(2) angles is by Z2-truncating gaugings of N = 8

supergravity [34] for which moduli stabilisation is known to occur, e.g. the CSO(p, q, r)

gaugings (p + q + r = 8) of maximal supergravity [35–38]. Some of these gaugings arise

from consistent reductions of string/M-theory with fluxes,2 and without extra spacetime-

filling sources. However, from a phenomenological point of view, these gaugings are not yet

fully satisfactory because they cannot arise from compactifications (without boundaries)

and, at the same time, produce Minkowski or de Sitter (dS) solutions due to the no-go

theorem of [45] (see also [46]). In order to circumvent this no-go theorem, one may add

sources (branes, orientifold planes, KK-monopoles, ...) and/or introduce non-geometric

fluxes [47–51] whose higher-dimensional origin is not yet well understood. The resulting

four-dimensional supergravity is no longer compatible with maximal supersymmetry but

still can preserve some fraction thereof if the sources and fluxes are judiciously distributed

over the internal space. When they are set to preserve N = 4 supersymmetry, no example

of a perturbatively stable dS vacuum in D = 4 has been found.3 More strikingly, while

N = 4 gaugings can arise from either reductions of Type I/Heterotic supergravity [56,

57] or from orientifold reductions of Type II theories [58–61], an analysis based on the

embedding tensor formulation of gauged supergravities shows that the vast majority of

such gaugings lacks a higher-dimensional string/M-theory interpretation. For this reason,

much of the recent activity in the field has been directed towards assessing to what extent

gaugings induced by non-geometric fluxes may have an extended field theory origin.4

2See [14] (and references therein) for a unified account of electric gaugings, as well as [39–41] for dyonic

ones [42–44].
3The only examples of stable dS vacua in half-maximal gauged supergravity have recently appeared in

D = 7 [52]. In the context of N = 1 supergravity in D = 4 including sources and non-geometric fluxes,

the first examples were found in [53, 54] and further investigated in [55].
4An interesting analysis was carried out in [62] within the context of exceptional generalised geometry

and E7(7)-EFT in order to reproduce the family of maximal SO(8) gaugings in D = 4 of [42], also giving

an alternative origin for the family of half-maximal SO(4) gaugings in D = 7 of [63].
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The above discussion motivates us to construct the SL(2)×O(6, 6 +n) extended field

theory with the aim of obtaining N = 4 gaugings at non-trivial SL(2) angles upon gen-

eralised Scherk-Schwarz reductions to four dimensions. In this extended field theory, an

R+ × O(6, 6 + n) symmetry corresponds to the one captured by Heterotic DFT where

the internal coordinates are extended to fill the vector 12 + n representation. To accom-

modate for the enhanced SL(2) factor in the duality group, a further doubling of these

coordinates is necessary to fill the (2,12 + n) representation. We will refer to this theory

as half-maximal extended field theory or SL(2)-DFT. The algebra of generalised diffeomor-

phisms follows the general structure described in [64]. Moreover, in order to supplement

the O(6, 6 + n) structure with the SL(2) one, a hierarchy of tensor fields must be intro-

duced in analogy with that of gauged supergravities and EFT’s [4, 65, 66]. The SL(2)-DFT

is restricted by two section constraints which admit a maximal solution that keeps two in-

ternal coordinates and allows to capture a six-dimensional theory with O(5, nt) duality

symmetry, matching N = (2, 0) supergravity in six dimensions coupled to nt = 5 + n ten-

sor multiplets. An inequivalent maximal solution of the section constraints, unique up to

duality transformations, keeps six internal coordinates and thus corresponds to the ten-

dimensional half-maximal supergravity coupled to nv = n vector multiplets.5 Importantly,

one can also recover the standard formulation of DFT in [67] (with four external dimen-

sions) by dualising away certain fields. In this process, no physical degrees of freedom

are truncated but SL(2) covariance is inevitably lost. Gauge groups for the nv = n ten-

dimensional vectors can be accommodated in the same way as in Heterotic DFT [68] (see

also gauged DFT [29]). In fact, more general deformations are compatible with the ten-

dimensional solution of the section constraints. This is the half-maximal counterpart of the

X deformation introduced in [69] for E7(7)-EFT. However, unlike in Heterotic/gauged DFT

and X-deformed EFT, an additional constraint first mentioned in [69] plays a prominent

role in guaranteeing consistency and restricting the allowed deformations.

Equipped with the SL(2)-DFT, we investigate generalised twisted torus reductions that

reproduce N = 4 gaugings at non-trivial SL(2) angles. More concretely, we find that taking

any two instances of DFT reductions to D = 7 without warping, they can be assembled

into a D = 4 reduction that violates the section constraints but introduces dRW phases

in the final gauge group. As a prominent example of this feature we reproduce families of

SO(3)(4−p) × U(1)3p gaugings of N = 4 supergravity with p = 0, ..., 4 . The case p = 0

reproduces the most general family of SO(4)×SO(4) gaugings of half-maximal supergravity

recently classified in [70], in terms of a twisted quadruple torus reduction (n = 0). These

gaugings include as a special case the ones obtained from a Z2-truncation of the one-

parameter families of SO(8) and SO(4, 4) gauged maximal supergravities of [42, 43], but

also include other N = 4 gaugings which are not permitted by N = 8 supersymmetry.

The paper is organised as follows. In section 2 we construct the SL(2)×O(6, 6)

extended field theory (n = 0 ) as a truncation of E7(7)-EFT. We present the generalised

Lie derivative, tensor hierarchy and bosonic (pseudo-) action and discuss the solution of

5We are counting vector multiplets from ten dimensions but the general structure of our results applies

also to general SL(2) × O(6, ñ) groups. Of course no link to ten dimensions is available when ñ < 6, but

the chiral D = 6 theory is captured for any ñ > 0.
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the corresponding section constraints. Various checks in the limit of trivial SL(2) phases

are performed where the action and generalised Lie derivative reduce to those of standard

DFT. We also discuss the embedding of Type II orientifolds within the degrees of freedom

of SL(2)-DFT and identify the set of physical coordinates in cases which are relevant to

the 4 + 6 splitting of ten-dimensional Type IIB supergravity. In section 3 we generalise the

results to include 2 × n extra gauge vectors. First we study the Abelian case and then

consider non-Abelian deformations of the generalised Lie derivative, both in the gauge

and the gravity sectors, and connect them to the embedding tensor of N = 4 gauged

supergravity. In section 4 we investigate the SL(2)-DFT origin of classes of N = 4 gaugings

at SL(2) angles that admit full moduli stabilisation. Finally we collect some technical

results in the appendix A.

2 SL(2) × O(6, 6) extended field theory

The extended field theory featuring an SL(2) × O(6, 6) duality group (n = 0) can be ob-

tained by modding out the E7(7)-EFT by a discrete Z2 subgroup of E7(7) . In the supergrav-

ity context, the same prescription was applied in [34] to truncate the four-dimensional max-

imal supergravity to a half-maximal one coupled to six vector multiplets. E7(7) actually

contains Spin(6, 6) as a subgroup, and its Z2 extension with respect to SO(6, 6) is the

transformation we use to truncate. This Z2 flips the sign of SO(6, 6) spinorial represen-

tations while leaving the vectorial ones invariant. The induced transformation on fermions

flips the sign of half the gravitini, thus giving rise to an N = 4 truncation as intended.

In the following we focus on the main results of such a truncation of the E7(7)-EFT. The

technical details and conventions are gathered in the appendix A.

2.1 Generalised diffeomorphisms

The SL(2) × O(6, 6) extended field theory lives on an extended space-time that consists

of an external space-time with coordinates xµ and an internal space with coordinates

yαM . The latter sit in the (2,12) representation of SL(2) ×O(6, 6) with α = +,− and

M = 1, ..., 12 being SL(2) and O(6,6) fundamental indices, respectively. In addition to the

usual internal coordinates in DFT dual to momentum and winding, the theory contains

a second copy of such coordinates which are needed to fill the (2,12) representation of

the duality group. Analogously to the case of exceptional geometry [1, 64], the generalised

diffeomorphisms are defined in terms of a generalised Lie derivative LΛ when acting on

covariant R+ × SL(2) × O(6, 6) tensors. For a vector field UαM of weight λ(U) = λU ,

the action of the latter reads

LΛU
αM = ΛβN∂βNU

αM − UβN∂βNΛαM + Y αMβN
γPδQ ∂βNΛγP U δQ

+ (λU − ω)∂βNΛβNUαM ,
(2.1)

where ΛαM (x, y) is the generalised gauge parameter and ω = 1
2 . As in E7(7)-EFT, all

generalised diffeomorphism parameters carry weight λ = ω . The generalised Lie deriva-

tive (2.1) is expressed in terms of an invariant structure tensor

Y αMβN
γPδQ = δαδ δ

β
γ η

MN ηPQ + 2 εαβ εγδ δ
MN
PQ . (2.2)

– 5 –
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The relative coefficient between the two terms in (2.2) follows from the Z2-truncation of

the structure tensor of E7(7)-EFT (see appendix A). Substituting (2.2) into (2.1) one finds

LΛU
αM = ΛβN∂βNU

αM − UβN∂βNΛαM + ηMN ηPQ ∂βNΛβP UαQ

+ 2 εαβ εγδ ∂βNΛγ[M U |δ|N ] + (λU − ω)∂βNΛβNUαM .
(2.3)

The first line and the density term can be seen as the SL(2) generalisation of the generalised

Lie derivative of DFT. The term with εαβ is intrinsic to SL(2)-DFT and does not contribute

when restricting the coordinate dependence of all fields and parameters to yM ≡ y+M , or

equivalently setting ∂−M = 0 (‘DFT limit’ in the following).

The algebra of the generalised Lie derivative must close for consistency of the SL(2)-

DFT. This condition can be expressed as[
LΛ,LΣ

]
WαM = L[Λ,Σ]SW

αM , (2.4)

where the SL(2) generalisation of the C(ourant)-bracket of DFT (denoted here S-bracket)

is defined as [
Λ,Σ

]αM
S
≡ 1

2

(
LΛΣαM − LΣΛαM

)
(2.5)

for any two vectors Λ and Σ of weight λ = 1/2. As in DFT/EFT, the closure condi-

tion (2.4) requires to impose a so-called section constraint. There are two such constraints

in SL(2)-DFT which read

ηMN ∂αM ⊗ ∂βN = 0 and εαβ ∂α[M | ⊗ ∂β|N ] = 0 , (2.6)

and which restrict the dependence of fields and parameters on the internal coordinates

yαM . The first constraint in (2.6) is identified with the SL(2) generalisation of the section

constraint of DFT that forbids simultaneous dependence on a momentum coordinate and

its dual winding. The second constraint is again a genuine feature of SL(2)-DFT and

forbids the dependence on more than one coordinate of type + and its SL(2) duals (of

type − ). This constraint is therefore trivially satisfied in the DFT limit.

The SL(2) generalisation of the C-bracket in (2.5) fails to satisfy the Jacobi identity.

This issue is commonly resolved by noticing that the Jacobiator can be expressed as a

symmetric bracket defined as

{Λ,Σ}αMS ≡ 1

2

(
LΛΣαM + LΣΛαM

)
= εαβ ηMP ηNQ ∂βN

(
εγδ Λγ [P Σδ

Q]

)
+

1

2
εαγ εβδ ηMN ∂βN

(
ηPQ Λ(γ

P Σδ)
Q
)

− 1

4
εαβ ηMN

(
ΣγP∂βN ΛγP + ΛγP∂βN ΣγP

)
. (2.7)

Each of the three terms in (2.7) is a trivial gauge parameter so that L{Λ,Σ}S vanishes

identically. Indeed, using the section constraints (2.6), it can be shown that the following

parameters do not generate generalised diffeomorphisms

ΛαM = εαβηMP ηNQ∂βNχPQ , ΛαM = εαγεβδηMN∂βNχγδ and ΛαM = εαβηMNχβN .

(2.8)
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Here χPQ = −χQP and χγδ = χδγ are respectively in the (1,66) and (3,1) represen-

tations of the duality group and carry weight 1 , whereas χβN is in the (2,12) , carries

weight 1/2 and is covariantly constrained as(
P(1,1)+(1,66)+(3,1)

)αMβN
χαM ∂βN = 0 =

(
P(1,66)+(3,1)

)αMβN
χαM χβN , (2.9)

where P denotes the projector onto the displayed representations. In particular, it can

be shown that the bracket in the last term of (2.7) satisfies the above constraints. The

necessity for the class of trivial parameters in the (2,12) becomes apparent when facing

the task of constructing a gauge covariant field strength for the vectors Aµ
αM , as we will

see next.

2.2 Yang-Mills sector and tensor hierarchy

Generalised diffeomorphisms with parameters ΛαM (x, y) depending on the external space-

time coordinates xµ require the customary covariantisation in extended field theories of

the external derivative with gauge connections Aµ
αM (x, y) , namely

Dµ = ∂µ − LAµ . (2.10)

The vectors Aµ
αM carry weight λ(Aµ) = 1

2 and are chosen to transform as

δΛAµ
αM = Dµ ΛαM =

(
∂µ − LAµ

)
ΛαM . (2.11)

Due to the non-vanishing Jacobiator, the naive expression for the associated field strength

Fµν = 2 ∂[µAν]−[Aµ, Aν ]S fails to transform covariantly under generalised diffeomorphisms.

To cure this, a set of tensor fields is introduced whose variations precisely cancel the non-

covariant terms. The modified field strengths read

FµναM = Fµν
αM + 2 εαβηMP ηNQ∂βNBµν PQ + εαγεβδηMN∂βNBµν γδ −

1

2
εαβηMNBµν βN ,

(2.12)

where the tensor fields are in the same representations and carry the same weights as the

trivial parameters (2.8), and where BµνβN is subject to the covariant constraints (2.9). A

general variation of the modified field strength (2.12) yields

δFµναM = 2D[µδAν]
αM + 2 εαβηMP ηNQ∂βN∆Bµν PQ

+ εαγεβδηMN∂βN∆Bµν γδ −
1

2
εαβηMN∆Bµν βN ,

(2.13)

where we have defined the covariant variations

∆Bµν PQ = δBµν PQ + εγδ A[µ
γ

[P δAν]
δ
Q] ,

∆Bµν γδ = δBµν γδ + ηPQA[µ(γ
P δAν]δ)

Q ,

∆Bµν βN = δBµν βN + δA[ν
γP∂βNAµ]γP +A[µ

γP∂βNδAν]γP .

(2.14)

– 7 –
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We finally choose the following vector (i.e. generalised diffeomorphism) and tensor gauge

transformations

δAµ
αM = Dµ ΛαM − 2 εαβηMP ηNQ∂βNΞµPQ − εαγεβδηMN∂βNΞµγδ +

1

2
εαβηMNΞµβN ,

∆Bµν PQ = 2D[µ Ξν]PQ + εγδ Λγ [P FµνδQ] ,

∆Bµν γδ = 2D[µ Ξν]γδ + ηPQ Λ(γ
P Fµν δ)Q ,

∆Bµν βN = 2D[µΞν]βN + FµνγP∂βNΛγP + ΛγP∂βNFµν γP

+ 8 ηSP
(
∂βN ∂γS A[µ

γR
)

Ξν]PR + 4 εδξ
(
∂βN ∂ξP A[µ

λP
)

Ξν]λδ ,

(2.15)

where the tensor gauge parameters ΞµPQ = −ΞµQP , Ξµαβ = Ξµβα and ΞµβN lie in

the same (1,66), (3,1) and (2,12) representations as the corresponding tensor fields and

also carry weights 1, 1 and 1/2, respectively. After some algebra along the lines of the

E7(7)-EFT case, it can be proven that the modified field strengths (2.12) transform as

R+×SL(2)×O(6, 6) vectors of weight λ(FµναM ) = 1/2 under generalised diffeomorphisms

and are invariant under tensor gauge transformations, namely

δΛFµναM = LΛFµναM and δΞFµναM = 0 . (2.16)

2.3 Bosonic pseudo-action

We now present the pseudo-action governing the dynamics of the theory. It can be derived

by Z2-truncating the pseudo-action of E7(7)-EFT [5], as described in the appendix A, and

must be supplemented with the twisted self-duality relations

FµναM = −1

2
e εµνρση

MNεαβMβNγP Fρσ γP , (2.17)

where e is the determinant of the vierbein and MαMβN ≡ MαβMMN is a symmetric

matrix parameterising the scalar manifold. The dynamics of the theory is completely

specified by imposing the above twisted self-duality equations after varying the pseudo-

action

SSL(2)-DFT =

∫
d4x d24y e

[
R̂ +

1

4
gµν DµMαβ DνMαβ +

1

8
gµν DµMMN DνMMN

− 1

8
MαβMMN Fµν αMFµνβN + e−1 Ltop − VSL(2)-DFT(M, g)

]
.

(2.18)

The gauge invariance of this pseudo-action is guaranteed by the fact that the section con-

straints (2.6) are in one-to-one correspondence with the truncation of the E7(7)-EFT section

constraint. Nevertheless, gauge invariance can be checked explicitly using the fact that the

vierbein and the scalar matrix MαMβN transform under generalised diffeomorphisms as

a scalar density and as a symmetric tensor of weight λ(eµ
a) = 1/2 and λ(MαMβN ) = 0,
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respectively. This implies6 in particular

δΛeµ
a = ΛγP ∂γP eµ

a +
1

2
∂γPΛγP eµ

a ,

δΛM
αβ = ΛγP ∂γPM

αβ − 2Mγ(α ∂γPΛβ)P +Mαβ ∂γPΛγP ,

δΛM
MN = ΛγP ∂γPM

MN − 2MP (M ∂γPΛ|γ|N) + 2 ηP (M MN)R ∂γPΛγQ ηQR .

(2.19)

Equipped with these formulae and the transformations (2.17), it is then possible to verify

that each term in the pseudo-action is invariant under generalised diffeomorphisms and

tensor gauge transformations. The relative coefficients between the various term can be

fixed by requiring invariance under external diffeomorphisms but this computation is more

involved and we expect it to follow the same steps as in E7(7)-EFT.

The kinetic terms: in line with the structure of extended field theories, the Einstein-

Hilbert term is constructed from a modified Riemann tensor

R̂µν
ab = Rµν

ab[ω] + FµναM eaρ ∂αMeρ
b , (2.20)

where Rµν
ab[ω] is the curvature of the spin connection in the external space-time and

carries weight λ(Rµν
ab[ω]) = 0. The corresponding modified Ricci scalar then transforms

as scalar of weight λ(R̂) = −1 under generalised diffeomorphims.

The second, third and fourth terms respectively correspond to the kinetic terms for

the Mαβ ∈ SL(2)/SO(2) scalars, the MMN ∈ SO(6, 6)/(SO(6) × SO(6)) scalars and the

vector fields in the theory. Furthermore, we will parameterise Mαβ and its inverse as

Mαβ =
1

ImS

(
|S|2 ReS

ReS 1

)
and Mαβ =

1

ImS

(
1 −ReS

−ReS |S|2

)
, (2.21)

where S(x, y) ≡ χ0 + i e−φ is the complex axion-dilaton of SL(2)-DFT. In particular, the

rigid SL(2) symmetry acts linearly on Mαβ and as a fractional linear transformation on

the complex field S . The specific parameterisation of MMN will not play any role in this

work.

The topological term: the topological term is obtained from the one of E7(7)-EFT and

takes the form of a surface term in five dimensions

Stop = − 1

24

∫
Σ5

d5x d24y εµνρστ εβα ηMN FµναM DρFστ βN . (2.22)

6There is an ambiguity in how to distribute the density term between the transformation of Mαβ and

the one of MMN . Note however that this is irrelevant for the gauge invariance of the pseudo-action (2.18).

In order to recover later on the correct transformation of MMN in DFT, we have chosen here to move the

whole density term to the transformation of Mαβ .
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The potential: the potential resulting from the truncation of the E7(7)-EFT expression

takes the following form

VSL(2)-DFT(M, g) = MαβMMN

[
− 1

4

(
∂αMM

γδ
)

(∂βNMγδ)−
1

8
(∂αMM

PQ)(∂βNMPQ)

+
1

2

(
∂αMM

γδ
)

(∂δNMβγ) +
1

2

(
∂αMM

PQ
)

(∂βQMNP )

]
+

1

2
MMNMPQ

(
∂αMM

αδ
)

(∂δQMNP )+
1

2
MαβMγδ

(
∂αMM

MQ
)
(∂δQMβγ)

− 1

4
MαβMMN

[
g−1(∂αMg) g−1(∂βNg) + (∂αMg

µν) (∂βNgµν)
]

− 1

2
g−1 (∂αMg) ∂βN

(
MαβMMN

)
,

(2.23)

and depends on both SL(2) and SO(6, 6) scalars.

Vector and tensor field equations: the field equations for the vectors Aµ
αM can be

derived by varying the Lagrangian (2.18)

δAL =

[
1

4
Dµ
(

2 eMαβMMNFµν βN + εµνρσFρσ αM
)

+ e Ĵ ναM + eJ ναM
]
δAν

αM ,

(2.24)

where the first and second terms come from the variation of the kinetic and topological

term,7 respectively. The currents Ĵ and J in (2.24) are defined by

δLEH = e Ĵ ναM δAν
αM and δLkin. scal = eJ ναM δAν

αM , (2.25)

and are associated to the Einstein-Hilbert term and the kinetic terms for the scalars,

respectively. Using the twisted self-duality equation (2.17), the field equations for the

vectors (2.24) become

δAL = δAν
αM

[
1

2
εµνρσ DµFρσ αM + e Ĵ ναM + eJ ναM

]
. (2.26)

The variation of the Lagrangian (2.18) with respect to the tensor fields yields the

twisted self-duality equations (2.17) projected under internal derivatives. It is important

to emphasise the role of the twisted self-duality equations (2.17). They allow for the

manifest duality covariance of this formulation and reflect the on-shell relations between

dual degrees of freedom. As previously mentioned, they can be derived only partially as

field equations for the tensor fields and must be imposed on top of the vector field equations

derived from the pseudo-action (2.18).

2.4 Section constraints and string embedding

We now investigate the solutions of the section constraints (2.6). Let us consider them

acting on any single field Φ(xµ, yαM ) of the theory, namely

∂α
M∂βMΦ = 0 and ∂+[M∂−N ]Φ = 0 . (2.27)

7This variation is once again easily derived by truncating the expression of E7(7)-EFT.
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The first equation imposes that any internal coordinate that Φ depends on must be null

with respect to the O(6,6) metric ηMN . We now look for a set of coordinates that satisfies

the above constraints. Let us use SL(2,R)×O(6, 6) to fix the choice of one first coordinate:

we can choose y+1 without loss of generality. Then the second equation combined with

this choice restricts the dependence on the other internal coordinates as

∂+[1∂−N ]Φ = 0 ⇒ ∂−NΦ = 0 ∀N 6= 1 . (2.28)

One thus finds two possible solutions of the section constraints (2.27):

i) We may take y−1 as another coordinate independent from y+1 . In this case, no

extra coordinate dependence is allowed and we have a two-dimensional solution of

the section constraints. Imposing the above coordinate dependence on all fields and

parameters, we obtain a six-dimensional theory. There is an O(5, 5) × R+ resid-

ual duality symmetry, where R+ acts as a trombone in the entire six-dimensional

spacetime. On the two coordinates yα1 there is an action of the GL(2,R) struc-

ture group for the internal manifold obtained from SL(2,R) and an R subgroup of

R+ ×O(6, 6) . This leads us to identify this case with a 4 + 2 dimensional split of

six-dimensional chiral N = (2, 0) half-maximal supergravity coupled to five tensor

multiplets [22].

ii) The other independent solution is obtained by only allowing for a dependence on

y+M coordinates. Then the section constraints in (2.27) reduce to those of DFT,

and a dependence on up to six mutually null coordinates is allowed. Up to O(6, 6)

transformations, we can restrict to y+1,...,d with d ≤ 6 . A GL(d) subgroup of O(6, 6)

acts as structure group of the internal manifold, and global (continuous) symmetries

are broken to R+ × O(6 − d, 6 − d) . The theory is identified with half-maximal

(4 + d)-dimensional supergravity coupled to nv = 6− d vector multiplets. If d = 2

the non-chiral N = (1, 1) six-dimensional supergravity [71, 72] coupled to four vector

multiplets is recovered in a 4+2 split. The (maximal) d = 6 solution is identified with

a 4+6 dimensional split of ten-dimensional N = 1 half-maximal supergravity [18, 19]

without vector multiplets.

Type IIB orientifolds and physical coordinates. The Z2 discrete group we have

used to truncate E7(7)-EFT and obtain SL(2)-DFT can be identified with applying an

orientifold projection in Type IIB string theory. This amounts to modding out the Type

IIB theory by the worldsheet orientation-reversal transformation Ωp, the fermion number

projector for left-moving fermions (−1)FL and an internal space involution σOp which

must be an isometry of the internal space and is induced by an Op-plane. Here we are

interested in the behaviour of the six physical internal coordinates (upon solving the section

constraints) under the orientifold involution σOp in the presence of an Op-plane. The group

theoretical decomposition of the 56 generalised coordinates of E7(7)-EFT under ordinary
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SL(6) internal diffeomorphisms that is relevant to discuss Type IIB orientifolds reads

E7(7) ⊃ SL(2)S × SO(6, 6) ⊃ SL(2)S × SL(6)× R+
T

56 → (2,12) → (2,6)(+ 1
2) + (2,6’)(− 1

2)

(1,32) → (1,6’)(+1) + (1,20)(0) + (1,6)(−1)

⊃ SL(6)× R+
S × R+

T

→ 6(+ 1
2
,+ 1

2) + 6(− 1
2
,+ 1

2) + 6’(+ 1
2
,− 1

2) + 6’(− 1
2
,− 1

2)

→ 6’(0,+1)︸ ︷︷ ︸
∂O3
m

+20(0,0) + 6(0,−1) .

(2.29)

For the sake of clarity, we have attached a label S to the SL(2) factor of the duality group

of SL(2)-DFT which acts as fractional linear transformations on the axion-dilaton S .

When considering an O3-plane in Type IIB, the six internal coordinates are reflected

by σO3 implying that they are parity-odd. Then the element 6’(0,+1) must be identified

with the six internal derivatives ∂O3
m , the SL(2)S factor of the duality group corresponds

to Type IIB S-duality8 and the scalar field ImS is the Type IIB dilaton [73]. The R+
T

charge is then identified with the combination of the rescaling of the coordinates of the

internal space M6 and of the ten-dimensional metric that leaves the D = 4 Einstein

frame metric invariant. We can thus write

∂O3
m 6= 0 : R+

S = R+
φIIB

and R+
T = R+

M6 scaling . (2.30)

Note that the physical coordinates descend from the spinor representation (1,32) in order

to flip sign under the orientifold action and therefore are projected out by the Z2-truncation.

As a result, SL(2)-DFT does not capture Type IIB backgrounds with O3-planes, neither

does ordinary DFT.9 This clarifies some confusion in the literature.

When considering an O9-plane in Type IIB, the six internal coordinates are left in-

variant by σO9 implying that they are parity-even. Recalling that only the coordinates

descending from the (2,12) are Z2-even, one must select one of the 6’’s coming from

this representation to be the physical derivatives ∂O9
m . Up to SL(2)S rotations, we can

select the 6’(− 1
2
,− 1

2
) without loss of generality. The Z2-truncation will now be interpreted

as the truncation of the Type IIB theory to the pure supergravity sector of the Type I

theory, equivalently Type IIB with O9-plane. However, since the physical derivatives are

not singlets under the SL(2)S factor of the duality group, the latter can no longer be iden-

tified with the S-duality of Type IIB. An alternative interpretation of the same physical

derivatives is in terms of the Heterotic ones ∂Het
m . The distinction between the Type I and

Heterotic pictures turns out to be a matter of conventions. First of all, the axion ReS

is associated with either the internal C6 of Type IIB or B6 of Heterotic depending on

8This implies that O(6, 6) is not identified with the Type IIB T-duality in this case.
9We are not considering DFT supplemented with an additional “layer” of Ramond-Ramond (RR) poten-

tials in the 32’ of O(6,6) needed to formulate the Type IIB theory [74]. Even in this case, our identification

of physical derivatives ∂O3
m holds.
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the conventions. On the other hand, R+
S is a combination of the Type IIB dilaton scaling

R+
φIIB

and the scaling of the internal space R+
M6 scaling . The correct matching of charges is

given by

∂Type I/Het
m 6= 0 :

(
R+
φIIB

R+
M6 scaling

)
=

(
+1

2 −
1
2

−3
2 −

1
2

)(
R+
S

R+
T

)
. (2.31)

We see that the charge assignment that reflects the interpretation of the SL(2)-DFT in

terms of its Type I/Heterotic origin has now changed to

E7(7) ⊃ SL(2)S × SO(6, 6) ⊃ SL(6)× R+
φIIB
× R+

M6 scaling

56 → (2,12) → 6(0,−1) + 6(− 1
2
,+ 1

2) + 6’(+ 1
2
,− 1

2) + 6’(0,+1)︸ ︷︷ ︸
∂
Type I/Het
m

→ (1,32) → 6’(− 1
2
,− 1

2) + 20(0,0) + 6(+ 1
2
,+ 1

2) .

(2.32)

This charge assignment shows that the internal physical coordinates are invariant under

shifts of the ten-dimensional dilaton. In fact they are invariant under the full SL(2)IIB ,

though it is broken by the Z2-projection. Applying an SL(2)IIB transformation will ex-

change representations with opposite R+
φIIB

charges in (2.32). This translates into the

mixing of representations coming from the (2,12) and the (1,32) . Indeed, the Z2 action

does not commute with SL(2)IIB . We stress that the physical coordinates are by defini-

tion always SL(2)IIB singlets. Since the dictionary between E7(7)-EFT fields and Type IIB

ones is also fixed only up to SL(2)IIB transformations, it is entirely a matter of conventions

whether the truncation to the (2,12) indicated in (2.32) with 6’(0,+1) as physical coordi-

nates is to be identified with the action of an O9-plane, and hence with the supergravity

sector of Type I, or with its SIIB-dual giving the supergravity sector of Heterotic. The

O(6, 6) factor in the duality group of SL(2)-DFT is then interpreted as the T-duality of

Type I or of Heterotic supergravity.

Finally, under SL(2)S , the ∂
Type I/Het
m ≡ ∂

∂y+m
derivatives in the 6’(0,+1) are rotated

into the ∂
∂y−m in the 6’(+ 1

2
,− 1

2
) . Notice that there is no simple ten-dimensional interpreta-

tion for this dualisation: in terms of its action on fields, this duality mixes metric degrees of

freedom with C6 ones (or B6), and C2 (or B2) degrees of freedom with the dual graviton.

As already emphasised, such a dualisation has nothing to do with the SIIB-duality relating

Type I and Heterotic.

Summarising, only the Type I/Heterotic theories retain physical coordinates which

are all “bosonic” inside E7(7) and thus survive the Z2 -truncation halving E7(7)-EFT to

SL(2)-DFT. They belong to the unique orbit of six-dimensional solutions of the section

constraints of SL(2)-DFT which, in turn, corresponds to the unique half-maximal super-

gravity in ten dimensions. It is known that full moduli stabilisation cannot be achieved

either in Type I or Heterotic compactifications without invoking non-geometric fluxes that

activate non-trivial SL(2)S de Roo-Wageman angles [30]. We will show that these can be

obtained from generalised Scherk-Schwarz [75] reductions of SL(2)-DFT that necessarily

violate the section constraints in (2.6), e.g., by including dependence on coordinates re-

lated to each other by SL(2)S dualisation. As we stressed above, despite the conventional
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name this is not the string theory S-duality evident in Type IIB, and in particular does

not exchange Type I and Heterotic degrees of freedom.

2.5 SL(2)-DFT in the electric frame

The main advantage of the SL(2)-DFT pseudo-action we have provided is that invariance

under generalised diffeomorphisms is manifest term by term except for the scalar potential.

However, it requires one to treat vector fields and their duals in a democratic approach and

to impose (2.17) on top of the field equations. In this section we provide a true10 action

in a symplectic frame where only the Aµ
+M vectors are treated as propagating and have

a kinetic term. This has the double purpose of allowing for a more direct comparison with

the gauged supergravity literature [31] where usually such an action is used, and facilitate

the discussion of the connection between our theory and the formulation of DFT provided

in [67]. Indeed, in the latter an action with true kinetic terms for the physical vector fields

is provided and the appropriate gauge-fixing and dualisation procedures that we will need

to carry out are much simpler if we also start with true kinetic terms. In such an action,

the manifest SL(2) covariance is broken in the vector kinetic terms and in the topological

term.

O(6, 6) covariant electric frame. We choose an Sp(24) symplectic frame where the

twelve vectors Aµ
+M are identified as physical electric vectors. This by no means implies

that the Aµ
−M vectors disappear from the Lagrangian. They become non-dynamical but

still enter the theory via the covariant derivatives Dµ , the non-Abelian structure of the

S-bracket and a new topological term L̃top . Similarly to what happens in gauged super-

gravity, the Yang-Mills and topological terms lose their manifest SL(2) duality covariance.

However, the field equations derived from such an action, denoted as S̃SL(2)-DFT , remain

SL(2)-covariant and reproduce those of the original SL(2)-DFT formulation presented in

section 2.3. After moving to the electric frame, the action is given by

S̃SL(2)-DFT =

∫
d4x d24y e

[
R̂ − 1

2(ImS)2
gµν DµSDν S̄ +

1

8
gµν DµMMN DνMMN

+ L̃V + e−1 L̃top − VSL(2)-DFT(M, g)

]
,

(2.33)

resembling the one of N = 4 gauged supergravity [31]. In this formulation, only a subgroup

SO(1, 1) × O(6,6) is realised off-shell. The potential remains unaffected by the choice of

symplectic frame and is still given by the expression in (2.23). We also chose to rewrite

the kinetic term for the SL(2) scalars in terms the complex field S. This kinetic term can

be further decomposed to make the dilaton and the axion appear explicitly

− 1

2(ImS)2
gµν DµSDν S̄ =

1

2
gµνDµ(eφ)Dν(e−φ)− 1

2
e2φ gµνDµχ0Dνχ0 . (2.34)

Note in passing that (2.19) implies

δΛe
−φ = ΛαM∂αMe

−φ + e−φ∂αMΛαM . (2.35)

10Note that in order to actually perform integration in the internal space it is still generally necessary to

first solve the section constraint and restrict the integration measure accordingly.
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In the electric frame, the kinetic term and the generalised θ-term for the dynamical

vectors Aµ
+M take the form

L̃V = −1

4
e ImS MMN Fµν+MFµν+N − 1

8
ReS εµνρσηMN Fµν+MFρσ+N . (2.36)

In order to discuss how the choice of electric frame affects the structure of the theory, we

introduce a symplectic vector GµναM = (Gµν+M ,Gµν−M ) defined as

Gµν+M ≡ Fµν+M ,

Gµν−M ≡ −ηMNεµνρσ
∂LV

∂Fρσ+N
=

1

2
e εµνρσ ImS ηNP M

MN Fρσ+P + ReS Fµν+M ,
(2.37)

where we use a “mostly plus” external spacetime metric and where ε0123 = +1 . There-

fore Gµν−M denotes the dual of the electric field strength. Following the construction of

gauge invariant Lagrangians in the presence of electric and magnetic charges [76], the new

transformations of the various fields under generalised diffeomorphisms are now given by

δΛAµ
αM = Dµ ΛαM ,

∆ΛBµν PQ = εγδ Λγ [P GµνδQ] ,

∆ΛBµν γδ = ηPQ Λ(γ
P Gµν δ)Q ,

∆ΛBµν βN = GµνγP∂βNΛγP + ΛγP∂βNGµν γP ,

(2.38)

which in turn induce modifications in the transformation of the field strengths (2.12). By

comparing (2.38) and (2.15) one sees that only the transformations of the tensor fields

under generalised diffeomorphisms are modified. In order to ensure gauge invariance of

the Lagrangian under generalised diffeomorphisms, which is spoiled by the new L̃V term

in (2.36), the following topological term is needed

L̃top = εµνρσ
[

1

3
[Aµ, Aν ]−MS ηMN

(
∂ρAσ

+N − 1

4
[Aρ, Aσ]+NS

)
+

1

6
[Aµ, Aν ]+MS ηMN

(
∂ρAσ

−N − 1

4
[Aρ, Aσ]−NS

)
− 1

4

(
2 ηMP ηNQ∂−NBµν PQ + ηMN∂+NBµν−−

− ηMN∂−NBµν−+ −
1

2
ηMNBµν−N

)
ηMR Fρσ

−R

− 1

2
ηMNηPQ ∂−MBµν NP

(
ηRS ∂+RBρσ QS −

1

2
Bρσ+Q

) ]
. (2.39)

Note the dependence of the above expression on the magnetic vectors Aµ
−M . This will be

relevant later on when recovering ordinary DFT.

The tensor gauge transformations are not affected by the choice of electric frame and

can still be read off from (2.15). To check the invariance of the Lagrangian under such

transformations it is convenient to first compute the general variation of L̃V and L̃top
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with respect to the various fields

δA,B L̃V =
1

2
εµνρσ ηMN Gµν−M DρδAσ+N +

1

4
εµνρσηMN Gµν−M ∂̂+N

[
∆Bρσ

]
,

δA,B L̃top = −1

2
εµνρσ ηMN Fµν+M DρδAσ−N −

1

4
εµνρσηMN Fµν−M ∂̂+N

[
∆Bρσ

]
,

(2.40)

where we have introduced the following notation for the projection onto the space of trivial

gauge parameters

∂̂αM
[
∆Bµν

]
≡ 2 εαβηMP ηNQ∂βN∆Bµν PQ + ηMNεαγεβδ∂βN∆Bµν γδ −

1

2
εαβηMN∆Bµν βN .

(2.41)

This projection plays an important role and has appeared, for example, in the form of a

Stückelberg coupling in the expression of the covariant field strengths FµναM in (2.12). In

particular, it can be shown using (2.15), that ∂̂αM [∆Bµν ] = 2D[µ ∂̂
αM [Ξν]]. From (2.40),

it is possible to verify that both L̃V and L̃top are invariant under tensor gauge trans-

formations (up to total derivatives for the latter). This requires the use of the section

constraints11 and of a Bianchi identity of the form

3D[µFνρ]
αM = ∂̂αM

[
Hµνρ

]
, (2.42)

where the field strengths HµνρPQ , Hµνρ γδ and Hµνρ βN associated to the tensor fields

Bµν PQ , Bµν γδ and Bµν βN are defined up to terms that vanish upon projection with ∂̂αM .

Of particular relevance will be the expression for the three-form field strengths in the (3,1)

representation

Hµνρ γδ = 3

(
D[µBνρ] γδ − ηPQA[µ(γ

P ∂νAρ]δ)
Q +

1

3
ηPQA[µ(γ

P [Aν , Aρ]]S δ)
Q

)
, (2.43)

which displays a generalised Chern-Simons like modification based on the S-bracket. This

is the SL(2) analog of the structure found in DFT [67].

The general variation of the Lagrangian (2.33) with respect to the various vector and

tensor fields reads12

δA+,A−,B L̃SL(2)-DFT = δAν
+M

[
−1

2
ηMN ε

µνρσ DµGρσ−N + e Ĵ ν+M + eJ ν+M

]
+ δAν

−M
[

1

2
ηMN ε

µνρσ Dµ Gρσ+N + e Ĵ ν−M + eJ ν−M
]

− 1

4
εµνρσ ∂̂+M

[
∆Bµν

]
ηMN

[
F − G

]
ρσ

−N ,

(2.44)

where the currents Ĵ and J were defined in (2.25). The variation of the Lagrangian

with respect to the tensor fields thus yields a projected duality relation between electric

and magnetic vectors while the variation with respect to the magnetic vectors gives the

11In particular, it can be shown that terms of the form εαβ ηMN ∂̂
αM [•] ∂̂βN [•] reduce to a total derivative

by virtue of the section constraints (2.6).
12Up to total derivatives and terms that vanish as a result of the field equations for tensors.

– 16 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
8

duality relation between the tensor fields and the scalars. Observe that the combined field

equations can be written covariantly as

1

2
εµνρσ DνGρσαM = e εαβ ηMN

[
Ĵ µβN + J µβN

]
,

εµνρσ ∂̂αN
[
∆Bµν

]
εαγ ηMP

[
F − G

]
ρσ
γN = 0 , (2.45)

and correctly reproduce the field equations in (2.26) for the vectors obtained from the

manifestly SL(2) covariant pseudo-action of SL(2)-DFT.

Let us finally point out that when taking all the fields to be independent of the internal

generalised coordinates y+M and y−M , the action (2.33) reduces to the one of ungauged

N = 4 supergravity in four dimensions [31]. In particular, all the magnetic vectors and ten-

sors drop out of the Lagrangian except for two remainders that come from the topological

term and the kinetic term for the electric vectors and that combine into

1

8
εµνρσBµν−M

[
F −G

]
ρσ
−M , (2.46)

where Gµν
−M denote the duals of the Abelian electric field strengths (as defined in (2.37)).

The field equation for the tensors then simply reflects the vector-vector duality in four

dimensions.

2.6 DFT limit and χ0 ↔ Bµν dualisation

Our goal now is to make contact with the formulation of DFT in [67]. As already mentioned,

SL(2)-DFT must be equivalent to DFT when fields and parameters only depend on yM ≡
y+M coordinates, namely

(∂+M , ∂−M ) ≡ (∂M , 0) . (2.47)

The DFT action of [67] contains a dynamical tensor field Bµν ≡ [t++]−−Bµν−− while

the axion χ0 is absent. In contrast, both fields appear in the action (2.33) of SL(2)-DFT

although only χ0 has a kinetic term (2.34). The two fields are dual to each other with their

duality relation being enforced by the field equations for the magnetic vectors in (2.45).

By an appropriate use of the duality relations and after gauge fixing, we will dualise away

the dynamical axion χ0 from the action (2.33) in favor of a dynamical Bµν tensor field,

thus recovering the DFT formulation of [67]. In the process, the topological term L̃top will

be absorbed into the kinetic term for Bµν .

Let us start by applying the DFT limit (2.47) to the equations of motion of the magnetic

vectors in (2.45). In this case it is easy to verify that

e Ĵ µ−M = 0 ,

eJ µ−M = ∂βN

[
eDµ

(
MβγMNP

)
M−γMMP

]
= ∂M

[
e e2φDµχ0

]
.

(2.48)

Using now the definition of the symplectic vector (2.37) in combination with the Bianchi

identity (2.42), the field equations for the magnetic vectors reduce to

∂M

(
1

6
εµνρσHνρσ + e e2φDµχ0

)
= 0 , (2.49)
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with Hνρσ ≡ [t++]−−Hνρσ−− and where the expression of the three-form field strength

Hµνρ can be obtained from (2.43) and reads

Hµνρ = 3

(
D[µBνρ] + A[µ−

N ∂νAρ]−N −
1

3
A[µ−

N [Aν , Aρ]]S −N

)
. (2.50)

Note that, in the DFT limit (2.47), [Λ,Σ]+MS reduces to the C-bracket and that there-

fore (2.50) matches the corresponding expression in [67].

We continue with the gauge fixing of the axion χ0 = ReS . Applying the DFT limit

to a generalised diffeomorphism (with parameter ΛαM ) acting on the scalar fields of the

theory, one finds that Λ−M only13 affects the gauge transformation of χ0

δΛ−χ0 = ∂MΛ−M , (2.51)

and that χ0 transforms as a scalar with respect to Λ+M transformations. The quantity

∂MΛ−M is the parameter of an axionic shift symmetry (both xµ and yM dependent)

while Dµχ0 only involves Aµ
−M in the gauge connection

Dµχ0 = ∂µχ0 − ∂MAµ−M . (2.52)

As a result we can then gauge-fix the Λ−M transformations by setting χ0 = 0 . This

is the standard procedure for Peccei-Quinn symmetries that allows to remove from the

Lagrangian the generalised θ-term: χ0 ηMN TrF+M ∧ F+N . We thus arrive at

Dµχ0 = −∂MAµ−M , (2.53)

and, since Aµ
−M are non-dynamical in the SL(2)-DFT action (2.33), we can integrate

them away. Substituting (2.53) into the field equations of the magnetic vectors (2.49)

one finds

∂M

(
1

6
εµνρσHνρσ − e e2φ gµν∂NAν

−N
)

= 0 . (2.54)

These equations are solved by setting

∂MAµ
−M = e−2φ (∗H)µ + cµ with ∂Mcµ = 0 , (2.55)

where (∗H)µ = 1
6 e
−1 εµνρσHνρσ is the Hodge dual of Hνρσ and is a proper four-dimensional

vector.

The last step in the dualisation process is to substitute (2.55) into the relevant terms in

the Lagrangian. These are the kinetic term for χ0 and L̃top . Importantly, it can be shown

that the axion χ0 drops out of the potential (2.23) when taking the DFT limit. Moreover,

by noticing that only the component [Aµ, Aν ]−MS of the S-bracket depends (linearly) on

Aµ
−M in the DFT limit, it is straightforward to observe that magnetic vectors appear at

most linearly in every term of the topological term (2.39). Notice also that only Bµν−−
appears, and that the definition of ∆Bµν−− does not contain δAµ

−M . This means that

13Importantly, no other fields entering the Lagrangian are affected by Λ−M transformations.
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we can simply use the variation (2.40) to deduce a compact expression for L̃top in the

DFT limit. After some algebra one arrives at

Lkin-χ0 = −1

2
e e2φ gµν

(
∂MAµ

−M) (∂NAν−N) ,
L̃top =

1

6
εµνρσ

(
∂MAµ

−M) Hνρσ . (2.56)

Upon substitution of (2.55) into (2.56), the integration constant cµ only appears in a term

∝ cµc
µ and is thus set to vanish by its own field equation. The remaining terms combine

into the kinetic term for Bµν , namely

Lkin-χ0 + L̃top = −e e−2φ 1

12
HµνρHµνρ . (2.57)

Lastly, in order to recover the DFT action in [67] which is presented in the string

frame, we perform a change of variables of the form

g̃µν = eφ gµν , e2d = eφ , (2.58)

which in turn induces ẽ = e2φ e . The transformations of ẽµ
a and e−2d under generalised

diffeomorphisms with parameter ΛP ≡ Λ+P can be derived from (2.19) and (2.35) after

using (2.58). They read

δΛẽµ
a = ΛP ∂P ẽµ

a and δΛe
−2d = ΛP ∂P e

−2d + e−2d ∂PΛP = ∂P

(
e−2dΛP

)
, (2.59)

so that, as wanted, ẽµ
a and e−2d respectively transform as a scalar and a scalar density

under the Λ transformations of DFT [67]. Note that the transformation of the SO(6, 6)

scalar matrix MMN can be straightforwardly deduced from (2.19) and also matches the

DFT expression. The density term in the transformation of e−2d is associated with an R+
DFT

which appears explicitly in the right column of table 1, and which is a linear combination14

of the original R+ in SL(2)-DFT and the R+ ⊂ SL(2). Furthermore, the rescaling of the

external metric is responsible for a shift of the modified external Ricci scalar, as is usual

when moving from the Einstein to the string frame in four dimensions

R̂(e) = eφR̂(ẽ) +
3

2
eφ g̃µν DµφDνφ + 3 eφ g̃µν D̂µDνφ . (2.60)

Here D̂µ is the spacetime derivative covariantised with respect to both external and in-

ternal generalised diffeomorphisms (i.e. it contains generalised Christoffel symbols). When

substituted into the action, the last term is integrated by parts. In the process, one directly

drops a total Dµ derivative. This is allowed since it acts on a scalar density of weight 1

under R+
DFT . Note also that the rescaling (2.58) has no effect on the Fµν+M term in the

modified Ricci scalar. After taking the DFT limit, dualising the axion χ0 into a tensor

14As mentioned before, the correct weights in the DFT limit of the various fields under R+
DFT were

already assigned through the choice of the coefficients for the density terms in (2.19).
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field Bµν and moving to the string frame, the action (2.33) then reduces to

SDFT =

∫
d4x d12y ẽ e−2d

[
R̂(ẽ) + 4DµdDµd+

1

8
DµMMN DµMMN

− 1

12
HµνρH

µνρ − 1

4
MMN FµνMFµν N − VDFT (d,MMN , g̃)

]
,

(2.61)

where the field strengths of the electric vectors read15

FµνM ≡ Fµν+M = Fµν
+M − ηMN∂NBµν , (2.62)

and where external space-time indices are now raised and lowered with the rescaled metric

g̃µν . Finally, the part of the Lagrangian containing the potential takes the form

LPot = − ẽ e−2d VDFT

= ẽ e−2d

[
1

8
MMN

(
∂MM

KL
)

(∂NMKL)− 1

2
MMN

(
∂NM

KL
)

(∂LMMK)

− 2(∂Md)
(
∂NM

MN
)

+ 4MMN (∂Md)(∂Nd)

+
1

4
MMN ∂M g̃µν ∂N g̃

µν +
1

4
MMN g̃−1(∂M g̃) g̃−1(∂N g̃)

− 2MMN (∂Md) g̃−1(∂N g̃) +
1

2

(
∂MM

MN
)
g̃−1(∂N g̃)

]
.

(2.63)

As previously stated, the axion χ0 cancels out in the above expression. Dropping a total

derivative16 and using ẽ−1(∂M ẽ) = 1
2 g̃
−1(∂M g̃) , the potential (2.63) can be expressed as

LPot = ẽ e−2d
[
R(d,M) +

1

4
MMN ∂M g̃µν ∂N g̃

µν +
1

4
MMN g̃−1(∂M g̃) g̃−1(∂N g̃)

]
, (2.64)

where R(d,M) is the Ricci scalar for the internal doubled-space [77]

R(d,M) =
1

8
MMN

(
∂MM

KL
)

(∂NMKL)− 1

2
MMN

(
∂NM

KL
)
(∂LMMK)− ∂M∂NMMN

− 4MMN (∂Md)(∂Nd) + 4
(
∂MM

MN
)

(∂Nd) + 4MMN (∂M∂Nd) . (2.65)

The potential (2.64) corresponds to the one derived in [67] up to the last term.

15Note that the last term from (2.12), i.e. − 1
2
ηMNBµν−N , is absent as Bµν αM are covariantly con-

strained compensating fields solving (2.9) as the internal derivatives (2.47). This sets Bµν−M = 0 .
16Note that the second line of (2.63) can be rewritten as follows:

ẽ e−2d

[
−
(
∂M∂NM

MN
)
− 4MMN (∂Md)(∂Nd) + 4 ∂M (MMN ∂Nd)

− ẽ−1(∂M ẽ)
[
∂NM

MN − 4MMN ∂Nd
] ]

+ ∂M
(
ẽ e−2d

[
∂NM

MN − 4MMN ∂Nd
] )

.
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3 Gauge vectors and non-Abelian deformations

In this section we generalise the previous construction of SL(2)-DFT in two steps:

a) Firstly, the SL(2)-DFT is extended to include 2 × n gauge vectors. This theory does

not descend from a truncation of E7(7)-EFT as the SL(2)×O(6, 6 +n) duality group

cannot be embedded into the exceptional duality group of maximal supergravity.

b) Secondly, this SL(2) × O(6, 6 + n) extended field theory is shown to admit defor-

mations of its generalised Lie derivative. Such deformations are in parallel with the

embedding tensor deformations of N = 4 gauged supergravity in four dimensions.

3.1 SL(2)×O(6, 6 + n) extended field theory

We discuss the SL(2) generalisation of the Abelian DFT constructed in [68]. The latter

is an ordinary DFT coupled to nv = n Abelian gauge vectors that features an enhanced

O(6, 6 + n) duality group. In addition to the internal coordinates dual to momentum and

winding as well as to the n gauge vectors, the SL(2)-DFT considered here contains a second

copy of such coordinates and therefore the full set of coordinates fills the (2,12 + n)

representation of the duality group SL(2) ×O(6, 6 + n) .

The SL(2) × O(6, 6 + n) extended field theory with Abelian gauge vectors is still

formally described by the action (2.18). The theory has generalised internal coordinates

yαM =
(
yαm , yαm , y

αA
)
, (3.1)

where ( yαm , yαm) with m = 1, ..., 6 correspond to O(6,6) coordinates and yαA with

A = 1, ..., n runs over the additional gauge vectors Aµ
αA . As in the previous sections, α =

+,− denotes the SL(2) fundamental index. The structure tensor of the SL(2)×O(6, 6+n)

theory is still given by the expression in (2.2), but this time ηMN denotes the O(6, 6 + n)-

invariant metric. When the O(6,6) block is expressed in light-cone coordinates, it takes

the form

ηMN =

 0 I6 0

I6 0 0

0 0 δAB

 . (3.2)

It is important to mention that, despite the presence of the additional set of 2 × n
gauge vectors, the analysis of the solutions of the section constraints (2.6) does not change.

Any dependence of the fields and parameters on the extra 2 × n coordinates that must

be introduced to fill the (2, 12 + n) irrep of SL(2) × O(6, 6 + n) is forbidden by the

section constraints, analogously to the Heterotic DFT case [68]. This is a consequence of

the δAB block in the metric (3.2). The two solutions of the section constraints described

before now correspond to chiral half-maximal supergravity in six dimensions coupled to

nt = 5 + n tensor multiplets and half-maximal (4 + d)-dimensional supergravity coupled

to nv = 6− d+ n vector multiplets (d ≤ 6).
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3.2 Non-Abelian deformations of SL(2)-DFT

We now discuss the SL(2) generalisation of the non-Abelian DFT constructed in [68]. The

latter is an ordinary DFT coupled to nv = n non-Abelian gauge vectors that formally

preserves O(6, 6 + n), where n is the dimension of the gauge group. To this end, we

will introduce consistent deformations of the generalised diffeomorphisms in SL(2)-DFT.

Importantly, and unlike in [68], we will study deformations of the full SL(2)×O(6, 6 + n)

generalised diffeomorphisms, and not only of the vector sector. We will find non-Abelian

structures both in the gauge and gravity sectors, the latter being associated with turning

on background fluxes for the dilaton and the B-field in the Type I/Heterotic theory. As

we will show, all these deformations can be reabsorbed into field redefinitions except for

the Yang-Mills gauge group structure constants. This is analogous to the EFT case where,

however, there is the one notable exception of the non-trivial deformation corresponding

to the Romans mass parameter in type IIA supergravity [69, 78].

3.2.1 Deformed generalised Lie derivative

Following the original construction in E7(7)-EFT [69], we first introduce a deformed gener-

alised Lie derivative L̃Λ . It acts on a vector UαM of weight λU as

L̃ΛU
αM = LΛU

αM −XβNγP
αMΛβN UγP , (3.3)

where LΛ is the undeformed generalised Lie derivative defined in (2.3), and where the

deformation XαMβN
γP is SL(2) × O(6, 6 + n)-algebra valued such that XαMβN

γP =

ΘαM
β′N ′γ′P ′ [tβ′N ′γ′P ′ ]βN

γP . As in [69], the X deformation is subject to a set of quadratic

constraints necessary for the closure of the generalised diffeomorphisms algebra and of

the Jacobi identity. In addition, the deformation is subject to linear (or representation)

constraints which are required for the consistency of the deformed tensor hierarchy. These

linear constraints allow the following decomposition of the X deformation in terms of the

constant irreducible representations fαMNP = fα[MNP ] and ξαM of the duality group

XαMβN
γP = − δγβ fαMN

P +
1

2

(
δPM δγβ ξαN − δ

P
N δ

γ
α ξβM − δ

γ
β ξ

P
α ηMN + εαβ δ

P
N ξδM εδγ

)
,

(3.4)

or, equivalently,

ΘαM
βNγP =

1

2
εβγ

(
fαM

NP + δ
[N
M ξα

P ]
)

+
1

12 + n
δ(β
α ξγ)

M ηNP . (3.5)

To make the forthcoming formulae lighter, it will prove convenient to introduce hat-

ted index-pairs M̂ = αM , N̂ = βN , etc. These can be understood as Sp(24 + 2n)

fundamental indices which are raised and lowered with the symplectic invariant matrix

ΩM̂N̂ = εαβ ηMN . In terms of these indices, the representation constraints read17

XM̂ [N̂P̂ ] = 0 and X(M̂N̂P̂ ) = 0 . (3.6)

17It is worth noticing that XM̂N̂
M̂ = (4 + n

2
) ξN̂ .
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As explained in [31], it is the second equation in (3.6) that allows one to write the gauge

group generators as in (3.4), and leads to a consistent tensor hierarchy in N = 4 gauged

supergravity.

Closure of the deformed generalised diffeomorphisms algebra requires[
L̃Λ, L̃Σ

]
W M̂ = L̃[Λ,Σ]XW

M̂ , (3.7)

where the X-bracket [·, ·]X is defined as[
Λ,Σ

]M̂
X
≡ 1

2

(
L̃ΛΣM̂ − L̃ΣΛM̂

)
=
[
Λ,Σ

]M̂
X
−X[N̂P̂ ]

M̂ ΛN̂ ΣP̂ . (3.8)

The general analysis of the closure relation (3.7) performed in [69] shows that[
L̃Λ, L̃Σ

]
W M̂ − L̃[Λ,Σ]XW

M̂ = AM̂
N̂P̂ Ŝ

ΛN̂ΣP̂W Ŝ +X[N̂P̂ ]
Q̂ ΛN̂ΣP̂∂Q̂W

M̂

+BM̂Q̂

N̂R̂Ŝ

(
ΛN̂∂Q̂ΣR̂W Ŝ − ∂Q̂ΛR̂ΣN̂W Ŝ

)
,

(3.9)

where the section constraint Y M̂N̂
P̂ Q̂ ∂M̂ ⊗ ∂N̂ = 0 has already been imposed, and where

the tensors A and B take the form

AM̂
N̂P̂ Ŝ

= 2X[N̂ |Q̂
M̂XP̂ ]Ŝ

Q̂ −XQ̂Ŝ
M̂X[N̂P̂ ]

Q̂ ,

BM̂Q̂

N̂R̂Ŝ
= X(N̂R̂)

M̂δQ̂
Ŝ
−XN̂Ŝ

Q̂δM̂
R̂

+ Y M̂Q̂
R̂P̂XN̂Ŝ

P̂ − Y P̂ Q̂
R̂ŜXN̂P̂

M̂ + Y M̂Q̂
P̂ ŜX[N̂R̂]

P̂ − 1

2
Y P̂ Q̂

R̂N̂XP̂ Ŝ
M̂ .

(3.10)

The closure relation in (3.9) then requires

AM̂
N̂P̂ Ŝ

= 0 , X[N̂P̂ ]
Q̂ ∂Q̂ = 0 and BM̂Q̂

N̂R̂Ŝ
∂Q̂ = 0 . (3.11)

The set of conditions (3.11) is not yet final. As for E7(7)-XFT [69], the deformed X-bracket

in (3.8) does not define a Lie algebra since the Jacobi identity is not satisfied. Instead, finds[
[Λ,Σ]X,Γ

]
X

+ cycl. =
1

3

{
[Λ,Σ]X,Γ

}
X

+ cycl. , (3.12)

where the modified version of the symmetric bracket in (2.7) reads

{Λ,Σ}M̂X ≡
1

2

(
L̃ΛΣM̂ + L̃ΣΛM̂

)
= {Λ,Σ}M̂S −X(N̂P̂ )

M̂ ΛN̂ ΣP̂ . (3.13)

Consistency then requires that {Λ,Σ}M̂X corresponds to a trivial gauge parameter such

that L̃{Λ,Σ}X vanishes identically. Using again of the general results in [69], one has

L̃{Λ,Σ}XU
M̂ = CM̂R̂

ŜP̂ Q̂

(
ΛQ̂∂R̂ΣP̂U Ŝ + ∂R̂ΛP̂ΣQ̂U Ŝ

)
−X(P̂ Q̂)

R̂ ΛP̂ΣQ̂ ∂R̂U
M̂

+X(P̂ Q̂)
R̂XR̂Ŝ

M̂ ΛP̂ΣQ̂U Ŝ ,
(3.14)

where the tensor C reads

CM̂R̂
ŜP̂ Q̂

= X(P̂ Q̂)
M̂δR̂

Ŝ
− Y M̂R̂

T̂ Ŝ X(P̂ Q̂)
T̂ − 1

2
Y T̂ R̂

P̂ Q̂XT̂ Ŝ
M̂ . (3.15)
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This time the closure conditions (3.11) have been used. Therefore, the triviality of the

modified symmetric bracket translates into the set of conditions

X(P̂ Q̂)
R̂XR̂Ŝ

M̂ = 0 , X(P̂ Q̂)
R̂ ∂R̂ = 0 and CM̂R̂

ŜP̂ Q̂
∂R̂ = 0 . (3.16)

Combining the various constraints necessary for the consistency of the gauge algebra, we

obtain the following minimal set:

Y M̂N̂
P̂ Q̂ ∂M̂ ⊗ ∂N̂ = 0 ( section constraint )

XM̂N̂
P̂ ∂P̂ = 0 ( X-constraint )(

X(P̂ Q̂)
M̂δR̂

Ŝ
− Y M̂R̂

T̂ Ŝ X(P̂ Q̂)
T̂ − 1

2
Y T̂ R̂

P̂ Q̂XT̂ Ŝ
M̂

)
∂R̂ = 0 ( C-constraint )

XM̂P̂
R̂XN̂R̂

Q̂ −XN̂P̂
R̂XM̂R̂

Q̂ +XM̂N̂
R̂XR̂P̂

Q̂ = 0 ( quadratic constraint )

(3.17)

Note that the B-constraint is absent as it can be shown to follow from the X-constraint.

It is also important to notice at this point that contrarily to the E7(7)-EFT case, the

C-constraint is no longer (at least fully) implied by the X-constraint.

We close this section by giving the expression of the various constraints in terms of

the irreducible components fαMNP and ξαM presented in (3.4). The section constraint

reduces to the relations presented in (2.6) while after some algebra, the X-constraint can

be written as
ξα
M ∂βM = 0 ,

ξα(M ∂|α|N) −
1

12 + n
ηMN ξ

αP ∂αP = 0 ,

fαMN
P ∂βP + ξβ[M ∂|α|N ] = 0 .

(3.18)

The C-constraint imposes further restrictions. Assuming that the section constraints

in (2.6) and the X-constraint (3.18) hold, then the C-constraint is satisfied provided that

δγα ελδ ηN [M CαN βR
|γ|S |λ|P |δ|Q] ∂βR = 0 . This gives the following extra restriction

εαβ fα[MSP ∂|β|Q] = 0 . (3.19)

As in gauged supergravity, the quadratic constraint in (3.17) is the requirement that the

gauge group generators XM̂ = (XM̂ )N̂
P̂ = XM̂N̂

P̂ form a closed set and have commutation

relations [
XM̂ , XN̂

]
= −XM̂N̂

P̂ XP̂ . (3.20)

It decomposes as follows

ξαM ξβ
M = 0 ,

ξ P
(α fβ)PMN = 0 ,

3 fαR[MN f
R

βPQ] + 2 ξ(α[M fβ)NPQ] = 0 ,

εαβ
(
ξ P
α fβPMN + ξαM ξβN

)
= 0 ,

εαβ
(
fαMNR f

R
βPQ − ξ R

α fβR[M [P ηQ]N ] − ξα[M fβN ]PQ + ξα[P fβQ]MN

)
= 0 .

(3.21)

We will come back to the set of consistency constraints in (3.17) when classifying the

deformations compatible with the Type I/Heterotic solution of the section constraint.
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3.2.2 Structure of SL(2)-XFT

Deformations of the generalised Lie derivative based on an embedding tensor like object

X were introduced in the context of E7(7)-EFT in [69]. A set of modifications occurs at the

level of the tensor hierarchy and the action induced by the X deformation (3.4), although

the field content of the theory remains unchanged. We will refer to the deformed theory

as SL(2)-XFT. When taking the fields and parameters to be independent of the internal

space coordinates yαM the SL(2)-XFT reduces to N = 4 gauged supergravity in four

dimensions [31] and the X deformation is identified with the embedding tensor. On the

contrary, when the X deformation is set to zero, the undeformed SL(2)-DFT is recovered.

The implementation of the X deformation in the case of SL(2)-DFT is in direct

analogy with the construction of the E7(7)-XFT in [69]. For this reason we will only give

a minimal presentation of the relevant structures in the presence of an X deformation.

Importantly, when restricted to n = 0, the results presented here can be obtained from

the Z2-truncation of the tensor hierarchy and action of the E7(7)-XFT. The generalisation

to arbitrary n is then immediate and can be argued on the basis of covariance of the

theory with respect to the SL(2) ×O(6, 6 + n) duality group. The various modifications

of the SL(2)-DFT tensor hierarchy presented in section 2.2 are induced by the fact that

the (2,12 + n) vectors Aµ
αM transform under modified generalised diffeomorphisms as

δΛAµ
αM = DµΛαM ≡

(
∂µ − L̃Aµ

)
ΛαM , (3.22)

where Dµ is now further covariantised with respect to the gauge symmetries generated by

the X deformation. As in gauged supergravity, the associated field strengths FµναM are

no longer covariant with respect to such gauge transformations, and must be modified with

Stückelberg-like couplings to tensor fields of the form ΩαMβN ΘβN
γPδQBµν γPδQ where

Bµν γPδQ = εγδ Bµν PQ + ηPQBµν γδ . After using (3.5), one finds

FµναM = Fµν
αM + ∂̂αM [Bµν ] + εαβ

(
fβ
MNP + ηMN ξβ

P
)
Bµν NP + εαβ ξγMBµν βγ ,

(3.23)

which accounts for both the tensor hierarchy of SL(2)-DFT and the one of N = 4 gauged

supergravity. The modification of the vector and tensor gauge transformations (2.15)

induced by the X deformation (more conveniently Θ in order to avoid traces over Γ-

matrices) can be derived following the same steps as in [69]. We will not present here the

modified version of the tensor hierarchy, but it can be verified that

δΛFµναM = L̃ΛFµναM and δΞFµναM = 0 . (3.24)

As for the SL(2)-DFT, the dynamics of SL(2)-XFT can be encoded into a gauge in-

variant pseudo-action supplemented by a set of twisted self-duality equations. The pseudo-

action takes the same form as the SL(2)-DFT expressions (2.17) and (2.18), but with

covariant derivatives and field strengths being now further covariantised with respect to

the X deformation as in (3.22) and (3.23). From the gauge transformations (3.24) of

the field strengths, it should be clear that all the terms remain separately invariant under

vector and tensor gauge transformations with the exception of the potential which requires
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a closer look. Once again in analogy to [69], the potential in SL(2)-XFT can be expressed

as the sum of three contributions

VSL(2)-XFT(M, g,X) = VSL(2)-DFT(M, g) + Vcross(M,X) + VSUGRA(M,X) , (3.25)

where the first term denotes the SL(2)-DFT potential presented in (2.23) while the second

and third terms depend linearly and quadratically on the X deformation, respectively.

When expressed in terms of the irreducible pieces fαMNP and ξαM these are given by

Vcross = − 1

2
MαβMMNMKL fαMK

P ∂βNMPL

− 1

2
MαβMMNMKLηM [K ξαS] η

PS ∂βNMPL

−MαβMMNMγδ ξγM ∂βNMαδ ,

(3.26)

and

VSUGRA =
1

12
fαMNP fβQRSM

αβMMQMNRMPS +
1

4
fαNM

P fβPQ
N MαβMMQ

− 16

9
fαMNP fβQRS ε

αβMMNPQRS +
1

6
fαMNP fβ

MNP Mαβ

+ 12 ξαM ξβN M
αβMMN .

(3.27)

As previously stated, when all the fields are independent of the internal coordinates, the

first and second terms in (3.25) vanish while (3.27) reduces to the scalar potential of

N = 4 gauged supergravity [31]. The potential in SL(2)-XFT can formally be derived

by requiring invariance under generalised diffeomorphisms. The first term in (3.25) serves

as the basis of the construction since one should reproduce the SL(2)-DFT potential by

turning off the X deformation. Due to the presence of the deformation in the generalised

Lie derivative (3.3), the variation of this first term under generalised diffeomorphisms does

not vanish as in SL(2)-DFT and gives terms which are linear in the deformation. In order

to cancel these, one must add the second term in (3.25) which however also generates new

terms that are quadratic in the deformation. These eventually cancel against the last term

in (3.25). This scheme ends here as the last term does not contain partial derivatives

along the internal space and therefore does not generate variations of higher-order in the

deformation. For this computation, it is crucial to recall that the X deformation does not

transform covariantly but as

0 = δΛXM̂N̂
P̂ 6= L̃ΛXM̂N̂

P̂ = 2 ∂[M̂ ΛR̂X|R̂|N̂ ]
P̂ + Y P̂ Q̂

R̂N̂ ∂Q̂ΛŜ XŜM̂
R̂ , (3.28)

under deformed generalised diffeomorphisms [69].

A last remark can be made when n = 0 . In this case most of the X-dependent terms

in the potential (3.25) can be systematically obtained by considering the Z2-truncation

of the E7(7)-XFT potential in [69]. Here one must however proceed with care as the

truncated X- and quadratic constraints of E7(7)-XFT might be stronger than the constraints

of SL(2)-XFT (3.17), and therefore could implicitly prohibit the presence of certain terms

originally present in (3.25). In fact, it is already known from the supergravity analysis of [34]

– 26 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
8

that, after the Z2-truncation, the quadratic constraints of E7(7)-XFT correspond to the set

in (3.21) supplemented with two additional quadratic constraints (see eq. (4.25) below). It

can also be shown (see appendix A.4) that the truncated X-constraint of E7(7)-XFT is in

one-to-one correspondance with the X- and C-constraints of SL(2)-XFT. For these reasons,

the Z2-truncation of the potential in E7(7)-XFT must yield the full expression of the cross-

term (3.26) but only part of (3.27). Indeed, due to the two extra quadratic constraints,

the first term of the second line is restricted to its anti-self-dual part while the second term

in the same line is absent.

3.2.3 Deformations of the Type I/Heterotic theory

Let us solve the section constraint in (3.17) by allowing the fields and parameters of the

theory to depend only on the Type I/Heterotic ym ≡ y+m internal coordinates in (3.1),

namely

∂m ≡ ∂+m 6= 0 and ∂+
m = ∂−m = ∂−

m = ∂αA = 0 . (3.29)

An analysis of the X-constraint in (3.18) reveals that the only deformations that are allowed

are of the form

ξ+m , ξ+A and fαmnp , fαmn
C , fαm

BC , fα
ABC . (3.30)

However the C-constraint in (3.19) imposes f−MNP = 0 , thus leaving a final set of defor-

mations

ξ+m , ξ+A and f+mnp , f+mn
C , f+m

BC , f+
ABC . (3.31)

The above parameters have an interpretation in the context of the Type I/Heterotic

theory. First, it is worth noticing that ξ+A is set to zero by the first quadratic constraint

in (3.21). Then the remaining parameters in (3.31) have the following interpretation

ξ+m : dilaton flux ,

f+mnp : Hmnp flux (for C2 in Type I or B2 in Heterotic) ,

f+mn
C : Fmn

C gauge flux ,

f+m
BC : O(n) Scherk-Schwarz flux (compact) ,

f+
ABC : Yang-Mills gauge group in 10D .

(3.32)

Amongst the above deformations only the Yang-Mills structure constants f+
ABC cannot

be generated by field redefinitions in the undeformed SL(2)-DFT theory. The reason being

that they correspond to a non-Abelian deformation already in ten dimensions. In contrast,

the Fm
BC ≡ f+m

BC deformations can be obtained by an O(n)-valued Scherk-Schwarz-like

redefinition of (the internal components of) the ten-dimensional gauge vectors

Am
A(x, y)→ Am

B(x, y)EB
A(y) with EB

A(y) ∈ O(n) . (3.33)

It is worth mentioning that the quadratic constraints (3.21) still impose further restric-

tions on the deformations (3.32). For example, in the absence of any other deformations,
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the Fmn
C ≡ f+mn

C are required to be invariant under the ten-dimensional gauge group

specified by fABC ≡ f+
ABC . In other words, only Abelian field strengths Fmn

C can

induce a deformation by themselves. This restriction is modified in the presence of other

deformations. Also, when taking the DFT limit and restricting the deformation only to

the Yang-Mills piece f+
ABC 6= 0 , the potential (3.25) reduces to the potential in [68] for

the DFT formulation of Heterotic strings coupled to nv = n non-Abelian vector fields.

Except for the Yang-Mills structure constants fABC , all the f -type deformations

in (3.32) can be generated as a Scherk-Schwarz-like redefinition of the vector fields

Aµ
αM (x, y)→ Aµ

αN (x, y) E(y)N
M with

E(y) = exp

 0 bmn am
B

0 0 0

0 −aAn kAB

 ∈ SO+(6, 6 + n) . (3.34)

The E(y) matrix (3.34) is the most general one satisfying the E-constraint of [69], namely

EM
N∂αN = δNM ∂αN , after choosing the Type I/Heterotic solution of the section con-

straints. The associated torsion yields the f -type deformations above. Schematically,

H(3) ∼ db(2) + CS(a(1)) , F(2)
A ∼ da(1)

B (ek)B
A and F(1)A

B ∼ dkAB , (3.35)

where CS(a(1)) is the non-Abelian Chern-Simons term entering the H(3) field strength in

N = 1 ten-dimensional supergravity. Notice that, while b(2) and a(1)
A can be regarded as

background values for scalar fields in the theory, the algebra-valued kA
B ∈ so(n) cannot

and simply induces an SO(n) redefinition of the gauge vectors.

4 Scherk-Schwarz reductions and de Roo-Wagemans angles

Thus far, one of the most successful applications of extended field theories has been the

derivation of consistent reduction ansätze of 11D/10D supergravities on non-trivial internal

spaces by performing generalised Scherk-Schwarz (SS) reductions. While most of the results

are in the context of exceptional field theories [13–15, 78, 79], there are also interesting

constructions in DFT [80]. However, generalised SS reductions of DFT [28, 29] only produce

electric gaugings of N = 4 supergravity: non-trivial de Roo-Wagemans angles [30] cannot

be generated due to the absence of the SL(2) factor in the duality group. The resulting

scalar potential cannot accommodate de Sitter (dS) or anti-de Sitter (AdS) vacua but only

Minkowski or domain-wall solutions. In other words, full moduli stabilisation including the

SL(2) dilaton S in (2.33) is not possible in ordinary DFT.

The SL(2)-DFT constructed here includes the relevant SL(2) factor in the duality

group and potentially allows for generalised SS reductions producing N = 4 gaugings at

non-trivial SL(2) de Roo-Wagemans angles. However such gaugings at SL(2) angles turn

to require a non-trivial dependence of the fields on both y+ and y− types of coordinates

simultaneously, thus violating the section constraints (2.6). This issue is the SL(2) analog

of the violation of the O(d, d+n) section constraint in DFT. Although the construction of

SL(2)-DFT strongly relies on imposing these constraints, we will still proceed and look at
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the classes of N = 4 gaugings with n = 0 that are accessible as generalised SS reductions

when they are relaxed. Similarly to what has been done in DFT [81], developing a flux

formulation of SL(2)-DFT would help to understand this and other related issues. This

goes beyond the scope of the paper and will be investigated somewhere else.

4.1 Generalised frames and torsion

Our starting point is a generalised frame matrix (E−1)αM
βN (y) ∈ R+ × SL(2) × O(6, 6)

for the extended internal space18 taking the general form(
E−1

)
αM

βN = e−λ (e−1)α
β
(
U−1

)
M

N , (4.1)

where eλ(y) ∈ R+ , eα
α(y) ∈ SL(2,R) and UM

M (y) ∈ SO(6, 6) . From now on we will

denote (E−1)αM
βN ≡ EαM

βN , and similarly for (U−1)M
N and (e−1)α

β , whenever we

write indices explicitly. In a Scherk-Schwarz like reduction of SL(2)-DFT, the frame (4.1) is

used to factorise the internal space yαM dependence of the fields. Consequently, quantities

with underlined indices correspond to four-dimensional (xµ dependent) ones.

Applying a generalised diffeomorphism (2.1) on a vector field EβN with parameter

EαM , where αM and βN must be understood as labels, one encounters

LEαMEβN = −XαMβN
γP EγP . (4.2)

Following the procedure in exceptional generalised geometry [82, 83], the torsion XαMβN
γP

can be written as

XαM βN
γP = WαM βN

γP − WβN αM
γP + Y γP δQ

λRβNWδQαM
λR , (4.3)

in terms of the Weitzenböck connection

WαM βN
γP = e−λeα

αUM
M
[
δβ
γ
(
U−1∂αMU

)
N
P + δN

P
(
e−1∂αMe

)
β
γ + δβ

γ δN
P ∂αMλ

]
.

(4.4)

The torsion (4.3) can be decomposed into the same irreducible pieces as the embedding

tensor of a (trombone) gauging of N = 4 supergravity, namely

XαM βN γP = −εβγfαMNP − εβγηM [N (ξ|α|P ]+2ϑ|α|P ])− εα(βξγ)MηNP − ϑαMεβγηNP .

(4.5)

In (4.5) we have included the trombone gauging parameter19 ϑαM which is not present

in the embedding tensor deformation (3.4) of the N = 4 supergravity action [31]. The

first two terms in (4.5) gauge a subalgebra of SO(6, 6) , whereas the last two terms gauge

respectively a subalgebra of SL(2) and the trombone R+. The expressions for the irreducible

18The frame EαM
βN could still be (x, y) dependent if we regarded it as the generalised frame in a frame

formulation of SL(2)-DFT. We are not considering this possibility here.
19Notice that the trace XαMβN

αM 6= 0 even when the trombone component vanishes. This differs from

the maximally supersymmetric case.
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components in the torsion are given by:20

fαMNP = −3 e−λ eα
α ηQ[M UN

N UP ]
P ∂αNUP

Q ,

ξαM = e−λUM
M∂αMeα

α − e−λeαα∂αMUMM + e−λeα
αUM

M∂αMλ ,

ϑαM =
1

2
e−λ∂αM

(
UM

Meα
α
)
− 3

2
e−λeα

αUM
M∂αMλ .

(4.6)

A generalised Scherk-Schwarz reduction requires these three objects to be constant. Re-

quiring no trombone gaugings, i.e. ϑαM = 0 , corresponds to a generalised unimodularity

condition for the SS ansatz, which guarantees consistency of the reduction not only at the

level of the EOM’s but also at the level of the actions (at least as long as the internal space

is compact).

DFT limit and electric gaugings. In order to make contact with some of the results

found in the DFT literature we must impose the DFT limit (2.47) so that ∂−PEαM
βN = 0 .

As a consequence, only eα
+ appears in the torsion pieces (4.6). We will also assume the

unimodularity condition ϑαM = 0 . The requirement of constant ξαM and fαMNP then

implies e+
+ ∝ e−

+ with a coordinate-independent proportionality constant. Applying

then a constant SL(2,R) transformation in order to set e−
+ = 0 ,21 one sees that all four-

dimensional N = 4 gauged supergravities that can be obtained from (locally) geometric

generalised Scherk-Schwarz reductions of ten-dimensional N = 1 supergravity, or even

from locally non-geometric reductions of DFT, only give rise to electric gaugings. Namely,

gaugings that satisfy f−MNP = ξ−M = 0 , possibly up to a duality redefinition.

Following the above reasoning we now recover the explicit expressions for the torsion

in ref [28]. We will assume dependence on y+M coordinates only and restrict the SL(2,R)

twist matrix as

eα
α =

(
eλ2 eλ2f

(
y+M

)
0 e−λ2

)
. (4.7)

There is no loss of generality in such a restriction as long as we impose unimodularity,

which we will at due time. The function f(y+M ) is arbitrary and drops out entirely from

the torsion. Then, all α = − components of the torsion irrep’s vanish and the other ones

reduce to
f+MNP = −3 e(λ2−λ) ηQ[M UN

N UP ]
P ∂+NUP

Q,

ξ+M = e(λ2−λ)
[
UM

M∂+M (λ+ λ2)− ∂+MUM
M
]
,

−2ϑ+M = e(λ2−λ)
[
UM

M∂+M (3λ− λ2)− ∂+MUM
M
]
.

(4.8)

Performing a bit of algebra we notice that once we set to zero the trombone component,

ϑ+M = 0 , there are some equivalent ways to write ξ+M :

ξ+M = 2UM
M∂+M

(
e(λ2−λ)

)
= e(λ2−λ)

[
−2 ∂+MUM

M + 4UM
M ∂+Mλ

]
. (4.9)

20One could in principle redefine ξαM by terms proportional to ϑαM (and/or vice-versa) and appropriately

modify the last three terms in (4.5). Our definitions are unambiguous in that we identify ξαM with the

source of SL(2) gauging and ϑαM with the trombone one.
21This is a duality transformation in the truncated four-dimensional theory, i.e. the dualisation acts on

the ‘flat’ index α and does not affect the internal derivatives.
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These two relations were identified in [28] as necessary conditions for the Scherk-Schwarz

reduction of DFT to produce an N = 4 gauged supergravity. The first one is needed for the

(external) three-form field strength Hµνρ obtained upon reduction to match the gauged

supergravity form [31]. This is

Hµνρ = 3 ∂[µBνρ] − 3A[µ
M Bνρ] 2UM

M ∂+M (e(λ2−λ)) + . . .

!
= 3 ∂[µBνρ] − 3A[µ

M Bνρ] ξ+M + . . . .
(4.10)

The second one is needed to recover the scalar potential of the N = 4 gauged supergravity.

Finally, the identification between the twist parameters here (left) and in ref. [28] (right)

reads: UM
M = EM

M , λ = d and (λ2 − λ) = γ
2 .

4.2 SO(3)(4−p) ×U(1)3p gaugings at SL(2) angles

In this section we present twist matrices (4.1) whose associated torsion reproduces the

embedding tensor of families of SO(3)(4−p) × U(1)3p gaugings of N = 4 supergravity

with p = 0, ..., 4 .22 These include the most general family of SO(4) × SO(4) gaugings

(p = 0) studied in [70]. To this end, we will construct generalised frames with λ = 0 and

eα
α = δα

α , namely (
E−1

)
αM

βN = δα
β
(
U−1

)
M

N , (4.11)

where U ∈ SO(6, 6) depends on both y+M and y−M coordinates, thus violating the

section constraints (2.6). The form of the frame in (4.11) implies that the unimodularity

condition ϑαM = 0 translates into ∂αMUM
M = 0 and automatically implies ξαM = 0 .

When using light-cone coordinates, the U twist matrix in (4.11) can be parameterised as

UM
N
(
yαM

)
=

(
I6 06

β I6

)(
I6 b

06 I6

)(
u 06

06 u
−t

)
,

=

(
um

n bmp (u−t)pn
βmp up

n (u−t)mn + βmp bpq (u−t)qn

)
,

(4.12)

with yαM = (yαm, yαm̄) and m = 1, ..., 6 . For the sake of simplicity, we will consider

sub-classes of twist matrices of the form

U ∈ SO(3, 3)(1) × SO(3, 3)(2) ⊂ SO(6, 6) . (4.13)

This translates into a further splitting of coordinates of the form yαm = (yαa, yαi) ,

yαm̄ = (yαā, yαī) with a = 1, 2, 3 , i = 4, 5, 6 , and a block-diagonal structure of the twist

parameters

βmn =

(
(β(1))

ab 03

03 (β(2))
ij

)
, bmn =

(
(b(1))ab 03

03 (b(2))ij

)
, um

n =

(
(u(1))a

b 03

03 (u(2))i
j

)
,

(4.14)

22No fundamental matter is charged under the U(1) factors.
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where the (1),(2) labels refer to the SO(3, 3)(1),(2) factors, respectively. We refer the reader

to [63] for an account on SO(3, 3) twist matrices in the context of generalised SS reductions

of DFT to 7D half-maximal gauged supergravity.

The general families of SO(3)(4−p) × U(1)3p gaugings of N = 4 supergravity are

obtained from twisting parameters (4.14) of the form

u(1),(2) =


1 0 0

0 1
2

(
cosY(1),(2) + cos Ỹ(1),(2)

)
−1

2

(
sinY(1),(2) + sin Ỹ(1),(2)

)
0 1

2

(
sinY(1),(2) + sin Ỹ(1),(2)

)
1
2 (cosY(1),(2) + cos Ỹ(1),(2))

 , (4.15)

b(1),(2) =


0 0 0

0 0 1
2 sin

(
Y(1),(2) − Ỹ(1),(2)

)
0 −1

2 sin
(
Y(1),(2) − Ỹ(1),(2)

)
0

 , (4.16)

and

β(1),(2) =


0 0 0

0 0 tan
(

1
2

(
Y(1),(2) − Ỹ(1),(2)

))
0 − tan

(
1
2

(
Y(1),(2) − Ỹ(1),(2)

))
0

 , (4.17)

which depend on four linear combinations of coordinates given by

Y(1) =
(
ω+

1 − h
+
1

)(
y+1 − y+1̄

)
+
(
ω−1 − h

−
1

)(
y−1 − y−1̄

)
,

Ỹ(1) =
(
ω+

1 + h+
1

) (
y+1 + y+1̄

)
+
(
ω−1 + h−1

)(
y−1 + y−1̄

)
,

Y(2) =
(
ω+

2 − h
+
2

)(
y+4 − y+4̄

)
+
(
ω−2 − h

−
2

)(
y−4 − y−4̄

)
,

Ỹ(2) =
(
ω+

2 + h+
2

)(
y+4 + y+4̄

)
+
(
ω−2 + h−2

)(
y−4 + y−4̄

)
.

(4.18)

These gaugings are specified by eight arbitrary parameters that activate sixteen components

inside the fαMNP piece of the torsion:

f+abc = h+
1 , f+abc̄ = ω+

1 , f+āb̄c = h+
1 , f+āb̄c̄ = ω+

1 ,

f+ijk = h+
2 , f+ijk̄ = ω+

2 , f+īj̄k = h+
2 , f+īj̄k̄ = ω+

2 ,

f−abc = h−1 , f−abc̄ = ω−1 , f−āb̄c = h−1 , f−āb̄c̄ = ω−1 ,

f−ijk = h−2 , f−ijk̄ = ω−2 , f−īj̄k = h−2 , f−īj̄k̄ = ω−2 .

(4.19)

The eight arbitrary parameters can be mapped to four gauge couplings and four SL(2)

orientations, one pair for each SO(3) or U(1)3 factor of the gauge group. The twist

matrix U constructed from (4.15)–(4.17) satisfies ∂αMUM
M = 0 , which in turn implies

ξαM = ϑαM = 0 .

Let us take a closer look at the (purely f ) four-dimensional gauge algebra determined

by the commutation relations [XαM , XβN ] = fαMN
P XβP . Moving temporarily to con-

ventions where ηMN = diag(−I6, I6) , an analysis of the components of the embedding
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tensor ΘαM
βNγP = 1

2 ε
βγ fαM

NP shows that these families of N = 4 gaugings involve

SO(6, 6) generators tMN and vector fields Aµ
αM of the form

SO(3, 3)(1)

 tab :
(
ω+

1 − h
+
1

)
εabcAµ

+c +
(
ω−1 − h

−
1

)
εabcAµ

−c ,

t(6+a)(6+b) :
(
ω+

1 + h+
1

)
εabcAµ

+(6+c) +
(
ω−1 + h−1

)
εabcAµ

−(6+c) ,
(4.20)

SO(3, 3)(2)

 tij :
(
ω+

2 − h
+
2

)
εijk Aµ

+k +
(
ω−2 − h

−
2

)
εijk Aµ

−k ,

t(6+i)(6+j) :
(
ω+

2 + h+
2

)
εijk Aµ

+(6+k) +
(
ω−2 + h−2

)
εijk Aµ

−(6+k) .
(4.21)

Each of the sets of generators tab , t(6+a)(6+b) , tij and t(6+i)(6+j) corresponds to an

SO(3) factor inside SO(3, 3) × SO(3, 3) . By taking identifications amongst the param-

eters in (4.20) and (4.21), it is possible to decouple some of these SO(3)’s to obtain

SO(3)(4−p) ×U(1)3p gaugings with p = 0, ..., 4 . For any value of p , the N = 4 quadratic

constraints in (3.21) are satisfied. The gauging parameters in (4.19) correspond then to a

consistent superposition of f+ and f− configurations, each of which contains two copies

of a three-dimensional chain H → ω → Q→ R of non-geometric T-dual fluxes [50]

f+abc = H(+)
abc , f+abc̄ = ω(+)

ab
c , f+āb̄c = Q(+)ab

c , f+āb̄c̄ = R(+)abc,

f+ijk = H(+)
ijk , f+ijk̄ = ω(+)

ij
k , f+īj̄k = Q(+)ij

k , f+īj̄k̄ = R(+)ijk,

f−abc = H(-)
abc , f−abc̄ = ω(-)

ab
c , f−āb̄c = Q(-)ab

c , f−āb̄c̄ = R(-)abc,

f−ijk = H(-)
ijk , f−ijk̄ = ω(-)

ij
k , f−īj̄k = Q(-)ij

k , f−īj̄k̄ = R(-)ijk.

(4.22)

Hence, a higher-dimensional interpretation in terms of Type I/Heterotic T-folds [84, 85]

could generically be available when f− = 0 (or f+ = 0 ).

Section constraint violating terms and non-geometry. Section constraint violating

terms have been an indicator of non-geometry in the DFT literature [63]. More concretely,

when working with a frame formulation of DFT [28] (see also [29, 68]), a section constraint

violating term of the form
1

6
eφ(x) fMNP f

MNP , (4.23)

was introduced in order to reproduce the scalar potential of N = 4 (electrically) gauged

supergravity upon generalised Scherk-Schwarz reductions. The term (4.23) is just the

(α, β) = (+,+) component of the SL(2)-covariant expression

1

6
Mαβ(x) fαMNP fβ

MNP . (4.24)

The contraction fαMNP fβ
MNP was identified with one of the two additional quadratic

constraints that must be imposed on an N = 4 gauging with n = 0 for it to be liftable

to an N = 8 one. More concretely, these two additional constraints read [34]

fα[MNP f
α
QRS]

∣∣∣
SD

= 0 and fαMNP fβ
MNP = 0 , (4.25)
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where SD stands for the self-dual part of the SO(6, 6) six-form. Note that if f = f+ then

the contractions in (4.25) reproduce the unique section constraint violating term (4.23)

of DFT. It is also worth emphasising that the second constraint in (4.25) can be formally

extended to arbitrary n whereas the first one is defined only if n = 0 . It is only in this case

that the field content of the Type I/Heterotic theory can be mapped to the universal sector

of the Type II theories. We can adopt the same criterion as in DFT and use the violation

of the constraints in (4.25) as an indicator of non-geometry. Note that the reverse is not

true: satisfying (4.25) does not guarantee the existence of a higher-dimensional description

of the corresponding gauging, as we will see in a moment.

It will prove convenient to introduce two-dimensional flux vectors ~h± ≡ (h±1 , h
±
2 ) and

~ω± ≡ (ω±1 , ω
±
2 ) . In terms of these, the explicit computation of the additional quadratic

constraints (4.25) in the case of the SO(3)(4−p) ×U(1)3p gaugings gives

~h+ × ~h− = 0 , ~ω+ × ~ω− = 0 and ~h+ · ~ω− = ~h− · ~ω+ , (4.26)

coming from the first (SD) condition, as well as

~h+ · ~ω+ = 0 , ~h− · ~ω− = 0 and ~h+ · ~ω− = −~h− · ~ω+ , (4.27)

coming from the second condition. In the Type I/Heterotic solution of the section con-

straints, these additional constraints are not automatically satisfied due to the presence of

(T-dual) non-geometric Q and R fluxes. Importantly, moduli stabilisation is not yet possi-

ble in this setup due to the absence of relative SL(2) orientations between the gauge factors.

SO(4)×SO(4) gaugings and S3×S3 reduction ansätze. As an example, let us look

at the family of SO(4) × SO(4) gaugings (p = 0) which depends on the eight parameters

in (4.19). The counting of parameters agrees with the N = 4 results of [70].23

A first interesting subclass of SO(4) × SO(4) gaugings is given by the choice of pa-

rameters
~h− = ~ω− = 0 . (4.28)

In this case the gaugings are purely electric and can be interpreted as Type I/Heterotic

backgrounds with (T-dual) non-geometric fluxes. Of course, an analogous family with only

magnetic fluxes exists. The set of additional quadratic constraints in (4.26) and (4.27)

gives just one relation
~h+ · ~ω+ = 0 , (4.29)

coming from the latter. According to the criterion for non-geometry stated before, a higher-

dimensional geometrical interpretation of these electric SO(4) × SO(4) gaugings is only

23The dictionary to the parameterisation used in [70] reads:

h+
1 + ω+

1 ≡ 1√
2
h1 cosβ1 , h−1 + ω−1 ≡ 1√

2
h1 sinβ1 ,

h+
1 − ω

+
1 ≡ 1√

2
g0 cosα0 , h−1 − ω

−
1 ≡ − 1√

2
g0 sinα0 ,

h+
2 + ω+

2 ≡ 1√
2
h2 cosβ2 , h−2 + ω−2 ≡ 1√

2
h2 sinβ2 ,

h+
2 − ω

+
2 ≡ 1√

2
g cosα , h−2 − ω

−
2 ≡ − 1√

2
g sinα .
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possible when (4.29) holds. By further setting ~ω+ = 0 , the relation (4.29) is satisfied and

the frame (4.1) depends on the coordinates

Y(1) = −h+
1

(
y+1 − y+1̄

)
, Ỹ(1) = h+

1

(
y+1 + y+1̄

)
,

Y(2) = −h+
2

(
y+4 − y+4̄

)
, Ỹ(2) = h+

2

(
y+4 + y+4̄

)
.

(4.30)

One then has a realisation of the gaugings in terms of Type I/Heterotic fluxes (4.22) of

the form

H(+)
abc = Q(+)ab

c = h+
1 and H(+)

ijk = Q(+)ij
k = h+

2 . (4.31)

While the SS ansatz we provide is still a non-geometric toroidal reduction,24 this case has re-

cently been uplifted to N = 1 ten-dimensional supergravity on S3 × S3 in [80], giving one

more example of a globally geometric compactification beyond the toroidal setup that in-

duces non-geometric Q-fluxes. In addition, there is a T-dual solution of (4.29) with ~h+ = 0

which is described in terms of fluxes ω(+)
ab
c = R(+)abc = ω+

1 and ω(+)
ij
k = R(+)ijk = ω+

2 .

The most general solution of (4.29) contains three arbitrary parameters (two moduli and

one overall phase) and involves all types of T-dual fluxes. It is also straightforward to

check that two copies of the section constraint violating S3 generalised frames discussed

in [62] can be combined into an SO(6, 6) non-geometric frame reproducing the full set of

electrically gauged SO(4)× SO(4) gaugings. All the twist matrices based on S3 mentioned

here however require a non-trivial λ function and eα
α matrix, as a consequence of the

non-trivial warping of the resulting backgrounds. This makes it difficult, if not impossible,

to introduce further modifications of these ansätze that can induce magnetic couplings and

moduli stabilisation in the resulting gauging.

A second interesting subclass of SO(4) × SO(4) gaugings is given by the choice of

parameters

h+
1 =

1 + sin 2$

2
√

2
, ω+

1 = −1− sin 2$

2
√

2
, h+

2 =
cos 2$

2
√

2
, ω+

2 =
cos 2$

2
√

2
,

h−2 =
1− sin 2$

2
√

2
, ω−2 = −1 + sin 2$

2
√

2
, h−1 =

cos 2$

2
√

2
, ω−1 =

cos 2$

2
√

2
.

(4.32)

This one-parameter25 family of SO(4) × SO(4) gaugings of N = 4 supergravity corre-

sponds to the Z2-truncation of the one-parameter family of SO(8) gaugings of N = 8

supergravity presented in [86]. As such, they satisfy the additional quadratic constraints

in (4.26) and (4.27) for any value of $ . The existence of an N = 1 ten-dimensional

origin of these N = 4 gaugings has been less explored. The case $ = 0 of course corre-

sponds to a truncation to half-maximal supergravity of eleven-dimensional supergravity on

S7 [87]. This is not the ansatz we provide here, which is instead toroidal with a coordinate

24Notice in particular that the internal space metric resulting from our ansatz is always flat.
25We are denoting the parameter $ instead of ω [86] in order to avoid confusion with the metric flux.
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dependence of the form

Y(1) = − 1√
2

(
y+1 − y+1̄

)
, Ỹ(1) =

1√
2

(
y−1 + y−1̄

)
,

Y(2) = − 1√
2

(
y−4 − y−4̄

)
, Ỹ(2) =

1√
2

(
y+4 + y+4̄

)
.

(4.33)

This N = 4 gauging allows for full moduli stabilisation [38], which prevents it from

having a Type I/Heterotic description. It would be interesting to investigate the relation

between this gauging and the one resulting from a Type IIB orientifold reduction on

S3 × S3 with O3-planes, although this setup cannot be directly accommodated within

SL(2)-DFT. The case $ 6= 0 seems even more challenging as there are no-go results

against a higher-dimensional lift of the SO(8) gaugings to Type II or eleven-dimensional

supergravity [62, 88].

The two subclasses of SO(4) × SO(4) gaugings we have just discussed satisfy the set

of additional quadratic constraints in (4.26) and (4.27). This implies that they can also

be obtained from generalised Scherk-Schwarz reductions of E7(7)-EFT. On the contrary,

genuinely N = 4 gaugings not satisfying (4.26) and (4.27) cannot be obtained in this way

but, due to the larger number of gauging parameters they contain, they represent a more

promising arena for phenomenological applications like the study of moduli stabilisation in

non-geometric flux backgrounds.

Remarks on moduli stabilisation. Let us briefly come back to the issue of moduli

stabilisation in generalised Scherk-Schwarz reductions of SL(2)-DFT. We have already ar-

gued that moduli stabilisation requires non-trivial de Roo-Wagemans angles, and these a

violation of the section constraints (2.6) as the frame (4.1) must simultaneously depend

on both y+ and y− coordinates. The violation of the section constraints clashes with the

consistency of the SL(2)-DFT, which requires them to hold at several stages in its construc-

tion. Building upon previous results in the literature obtained in a frame formulation of

DFT [28, 29, 68, 81, 89] and EFT [12, 82, 90], relaxing the section constraints would require

the introduction of additional section constraint violating terms in the action in order to

restore invariance under gauge transformations. Such terms would encode the presence

of sources in the background [34, 81, 91]. Adopting a Type I/Heterotic description, these

would include NS-branes (see [92] and references therein) as well as their SL(2) duals. Only

when adding sources, the full scalar potential of N = 4 gauged supergravity could arise

upon a generalised Scherk-Schwarz reduction of SL(2)-DFT. Their contributions to the

potential, which are a priori related to contractions like (4.25) (if n = 0), play a central

role in the moduli dynamics as they induce specific moduli couplings that are crucial to

achieve stabilisation [46].

We will postpone to future work the construction of the frame formulation of SL(2)-

DFT and the addition of section constraint violating terms to the action. Nevertheless,

motivated by its phenomenological relevance, let us assume for the time being that such

a formulation becomes available. Then, starting from it and performing a generalised

Scherk-Schwarz reduction based on the twist matrix U in (4.15)–(4.17), one would obtain
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an actual N = 4 scalar potential. For the sake of simplicity, we will focus on the SO(3)-

invariant subsector of the N = 4 theory which preserves N = 1 supersymmetry [61]. This

N = 1 subsector contains three chiral fields S (axion-dilaton), T (overall Kähler modulus)

and U (complex structure modulus) parameterising three copies of the scalar manifold

Mscalar = SL(2)/SO(2) , and it is usually referred to as STU-model in the literature.

The scalar potential can then be obtained from a Kähler potential K and a flux-induced

superpotential W of the form

K = − log
[
−i
(
S − S̄

)]
− 3 log

[
−i
(
T − T̄

)]
− 3 log

[
−i
(
U − Ū

)]
W =

(
h+

2 − h
+
1 U

3
)

+ 3T
(
ω+

1 U
2 + ω+

2 U
)

+ 3T 2
(
h+

2 U
2 − h+

1 U
)

+ T 3
(
ω+

1 + ω+
2 U

3
)

− S
[(
h−2 − h

−
1 U

3
)

+ 3T
(
ω−1 U

2 + ω−2 U
)

+ 3T 2
(
h−2 U

2 − h−1 U
)

+ T 3
(
ω−1 + ω−2 U

3
)]

(4.34)

by using standard N = 1 formulae. Similar STU-models have been investigated in the

context of Type I/Heterotic flux compactifications. Following the notation of [51], the

superpotential takes the form of an integral over the internal space

W =

∫
M6

[ (
H(+) − SH(−)

)
+
(
ω(+) − Sω(−)

)
Jc

+
(
Q(+) − SQ(−)

)
J (2)
c +

(
R(+) − SR(−)

)
J (3)
c

]
∧ Ω ,

(4.35)

where Jc is the complexified Kähler form and Ω is the holomorphic three-form of M6 .

Only the terms induced by fluxes H(+) and ω(+) can be understood from higher dimen-

sions as gauge and metric fluxes [93–95]. Importantly, note the presence in W of terms

linear in S which are induced by non-geometric Type I/Heterotic fluxes of f− type. These

are needed to stabilise the axion-dilaton modulus. Various AdS, dS and Minkowski vacua

have been found in this type of STU-models [61].
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A Z2-truncation: from EFT to SL(2)-DFT (n = 0)

In this appendix we collect the details of the group theoretical Z2-truncation of E7(7)-EFT

to an SL(2)×O(6, 6) extended field theory, i.e. an SL(2)-DFT with n = 0.
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A.1 Notation and conventions

We adopt the NorthWest-SouthEast (NW-SE) conventions of ref. [5] to rise and lower E7(7)

fundamental indices M,N = 1, ..., 56 with the Sp(56)-invariant skew-symmetric ΩMN
matrix, e.g. UM = UN ΩNM . In order to Z2-truncate the E7(7)-EFT we will make use of

the decomposition of different representations of E7(7) under its SL(2)×SO(6, 6) maximal

subgroup. Of special interest are the following branching rules

56 −→ (2,12) + (1,32) , (A.1)

133 −→ (1,66) + (3,1) + (2,32’) , (A.2)

912 −→ (2,12) + (2,220) + (1,352’) + (3,32) , (A.3)

where 32 and 32’ respectively denote left- and right-handed Majorana-Weyl (M-W) spino-

rial representations of SO(6, 6) and similarly for the other spinorial irrep’s.26 The decom-

position of the 56 in (A.1) amounts to the index splitting M = (α,M) ⊕ µ̂ , where α = ±
is an electric-magnetic SL(2) index, M = 1, . . . , 12 refers to an SO(6, 6) vector index

and µ̂ = 1, . . . , 32 denotes a M-W left-handed spinorial index. Analogously, an index

µ̇ = 1, . . . , 32 will denote a M-W right-handed spinor. To carry out the truncation one has

to apply a discrete Z2-projection27

Z2 : E7(7) −→ SL(2)× SO(6, 6) (A.4)

under which different SL(2)× SO(6, 6) indices acquire a parity. In particular, the bosonic

indices α and M are even whereas the spinorial indices µ̂ and µ̇ become odd. The

Z2-truncation keeps only states which are parity even. As a result, the skew-symmetric

ΩMN matrix becomes block-diagonal with bosonic and spinorial blocks

ΩMN =

ΩαMβN 0

0 Ωµ̂ν̂

 =

 εαβ ηMN 0

0 Cµ̂ν̂

 . (A.5)

It is worth observing that the bosonic part involves the Levi-Civita tensor εαβ (with

ε+− = 1) associated to the SL(2) factor as well as the SO(6, 6)-invariant metric ηMN ,

whereas the spinorial part contains the SO(6, 6)-invariant charge conjugation matrix Cµ̂ν̂ .

We denote KIJ , with I, J = 1, ..., 133 being adjoint E7(7) indices, the inverse of the

E7(7) Killing-Cartan metric

KIJ = Tr(tI tJ) = [tI ]MN [tJ ]PQ ΩPN ΩMQ , (A.6)

which, in turn, also depends on the [tI ]MN symmetric generators of E7(7) in the fun-

damental representation. By virtue of the decomposition (A.2), the general form of the

SL(2)× SO(6, 6) generators in the (2,12) and (1,32) representations are given by

[tαMβN ]γPδQ = εαβ εγδ [tMN ]PQ + ηMN ηPQ [tαβ ]γδ ,

[tαMβN ]µ̂ν̂ =
1

4
εαβ [γMN ]µ̂ν̂ .

(A.7)

26See the appendix in [34] for conventions about M-W spinorial irrep’s of SO(6, 6) .
27In a string theory realisation of maximal supergravity, this Z2-projection corresponds to orientifolding

the theory (see section 2.4).
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Using the above expressions for the generators, the E7(7) Killing-Cartan metric (A.6) in-

duces an SL(2)× SO(6, 6) metric28 and its inverse29 of the form

KαMβN,γPδQ =
12

2
εαβ εγδKMN,PQ + 12 ηMN ηPQKαβ,γδ,

KαMβN,γPδQ =
1

2× 12
εαβ εγδKMN,PQ +

1

(12)3
ηMN ηPQKαβ,γδ .

(A.10)

The latter can be used to obtain the following expression for the SL(2)×SO(6, 6) generators[
tαMβN

]γPδQ
=

1

12
εαβ εγδ

[
tMN

]PQ
+

1

(12)2
ηMN ηPQ

[
tαβ
]γδ

, (A.11)

that appears at several places in the main text. When considering the extension to

SO(6, 6 + n) in section 3, the expressions in (A.10) and (A.11) are still valid after re-

placing the factors of 12 by 12 + n .

A.2 Structure tensor, generalised Lie derivative and section constraints

Our starting point is the structure Y -tensor of the E7(7)-EFT [5] which has the form

YMNPQ = −12KIJ [tI ]
MN [tJ ]PQ −

1

2
ΩMNΩPQ , (A.12)

and specifies a generalised Lie derivative with a gauge parameter ΛM of the form

LΛU
M = ΛN∂NU

M−UN∂NΛM+YMNPQ ∂NΛP UQ+(λU −ω)∂NΛNUM . (A.13)

Using the definitions (A.7) and (A.10) in the previous section, as well as the index

decomposition (A.1), an explicit computation of the Z2-even components of the structure

tensor (A.12) yields

Y αMβN
γPδQ = δαδ δ

β
γ η

MN ηPQ + 2 εαβ εγδ δ
MN
PQ ,

Y αMβN
ρ̂σ̂ = −1

2
εαβ

(
ηMN Cρ̂σ̂ +

[
γMN

]
ρ̂σ̂

)
,

Y µ̂ν̂
γPδQ = −1

2
εγδ

(
ηPQ Cµ̂ν̂ − [γPQ]µ̂ν̂

)
,

Y µ̂ν̂
ρ̂σ̂ = −1

8
[γMN ]µ̂ν̂

[
γMN

]
ρ̂σ̂
− 1

2
Cµ̂ν̂ Cρ̂σ̂.

(A.14)

28The SL(2)× SO(6, 6) metric computed from the generators [tαMβN ]γPδQ in (A.7) reads

K
SL(2)×SO(6,6)
αMβN,γPδQ = 2 εαβ εγδKMN,PQ + 12 ηMN ηPQKαβ,γδ , (A.8)

and differs from the expression in (A.10) because of the contribution of the spinor representation to the

SO(6,6) trace.
29We have taken [tαβ ]γδ = δ

(γ
α δ

δ)
β , [tαβ ]γδ = −δα(γδ

β
δ) , [tαβ ]γδ = −Kαβ,γδ and [tαβ ]γδ = Kαβ,γδ , as

well as [tMN ]PQ = δPQMN , [tMN ]PQ = −δMN
PQ , [tMN ]PQ = −KMN,PQ and [tMN ]PQ = KMN,PQ . This is

consistent with the definitions

Kαβ,γδ ≡ εα(γ εδ)β and KMN,PQ ≡ −ηM [P ηQ]N ,

Kαβ,γδ ≡ εα(γ εδ)β and KMN,PQ ≡ −ηM [P ηQ]N ,
(A.9)

of the SL(2) and SO(6, 6) metrics and their inverses. In particular, note that K++,−− = [t++]−− = −1 .
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Of particular importance is the component

Y αMβN
γPδQ = δαδ δ

β
γ η

MN ηPQ + 2 εαβ εγδ δ
MN
PQ , (A.15)

which plays the role of structure tensor in SL(2)-DFT when only a dependence on the yαM

coordinates is allowed. In this case the generalised Lie derivative with parameter ΛαM

can be obtained from (A.13) using (A.15), and takes the form

LΛU
αM = ΛβN∂βNU

αM − UβN∂βNΛαM + ηMN ηPQ ∂βNΛβP UαQ

+ 2 εαβ εγδ ∂βNΛγ[M U |δ|N ] + (λU − ω)∂βNΛβNUαM .
(A.16)

The section constraints in SL(2)-DFT can be obtained in a similar fashion by decom-

posing the one of E7(7)-EFT. Starting from [5]

YMNPQ ∂M ⊗ ∂N = 0 , (A.17)

and allowing only a dependence on the yαM coordinates, one finds

ΩMN∂M ⊗ ∂N = 0 −→ εαβ ηMN ∂αM ⊗ ∂βN = 0 ,

[tI ]
MN∂M ⊗ ∂N = 0 −→ εαβ ∂α[M | ⊗ ∂β|N ] = 0 ,

ηMN ∂(α|M | ⊗ ∂β)N = 0 ,

(A.18)

corresponding to (1,1), (1,66) and (3,1) irrep’s of SL(2) × SO(6, 6) , respectively. They

can be more concisely expressed as

ηMN ∂αM ⊗ ∂βN = 0 and εαβ ∂α[M | ⊗ ∂β|N ] = 0 . (A.19)

In addition to (A.17), the remaining constraints needed for the closure of the generalised

Lie derivative in the E7(7)-EFT (see ref. [64] for a general study of closure constraints)(
YM(P

T QY
T |N )

RS−YM(P
RSδ

N )
Q

)
(∂P∂N ) = 0(

YMNT QY
T P

[SR]+2YMN [R|T |Y
T P
S]Q−YMN [RS]δ

P
Q−2YMN [S|Q|δ

P
R]

)
∂(N ⊗ ∂P) = 0(

YMNT QY
T P

(SR)+2YMN (R|T |Y
T P
S)Q−YMN (RS)δ

P
Q−2YMN (S|Q|δ

P
R)

)
∂[N ⊗ ∂P] = 0

(A.20)

are also satisfied when M = αM , N = βN , etc., provided (A.19) holds. This can be seen

as a crosscheck of the SL(2)-DFT structure tensor (A.15) obtained upon truncation.

A.3 Truncating the E7(7)-EFT action

We will continue our program and obtain the bosonic action of SL(2)-DFT by Z2-truncating

the one of E7(7)-EFT. Following ref. [5], the starting bosonic action reads

SE7(7)-EFT =

∫
d4x d56y e

[
R̂ +

1

48
gµν DµMMN DνMMN −

1

8
MMN FµνMFµνN

+ e−1 Ltop − VE7(7)-EFT(M, g)

]
.

(A.21)
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We will proceed with the truncation of each piece in the above action separately in order

to obtain the SL(2)-DFT action

SSL(2)-DFT =

∫
d4x d24y e

[
R̂ +

1

4
gµν DµMαβ DνMαβ +

1

8
gµν DµMMN DνMMN

− 1

8
MαβMMN Fµν αMFµνβN + e−1 Ltop − VSL(2)-DFT(M, g)

]
.

(A.22)

Einstein, kinetic and topological terms.

• The Z2-truncation of the Einstein term reads

R̂µν
ab = Rµν

ab[ω] + FµνM eaρ ∂Meρ
b → R̂µν

ab = Rµν
ab[ω] + FµναM eaρ ∂αMeρ

b .

(A.23)

• The Z2-truncation of the kinetic terms of the scalars proceeds as for the supergravity

case studied in ref. [34]. Its action on the scalar coset of E7(7)-EFT reads

Z2 :
E7(7)

SU(8)
−→ SL(2)

SO(2)
× SO(6, 6)

SO(6)× SO(6)
, (A.24)

and reduces the number of scalar fields in the truncated theory from 70 to 2+36 . The

parameterisation of the E7(7)/SU(8) coset is given by a symmetric MMN matrix

which, after the truncation, becomes block-diagonal,

MMN =

MαMβN 0

0 Mµ̂ν̂

 =

MαβMMN 0

0
1

6!
MMNPQRS

[
γMNPQRS

]
µ̂ν̂

 ,

(A.25)

with a bosonic MαMβN and a spinorial Mµ̂ν̂ block. The former contains the SL(2)

and the SO(6, 6) scalars Mαβ and MMN of the SL(2)-DFT whereas the latter now

involves a contraction with the [γMNPQRS ]µ̂ν̂ anti-self-dual (ASD) matrix. This time

it is contracted with the SO(6, 6) six-form

MMNPQRS ≡ εmnpqrsV m
M V n

N V p
P V

q
Q V

r
R V s

S , (A.26)

where V denotes an SO(6, 6)/SO(6) × SO(6) Zwölfbein such that M = V VT and

the index m only runs over the six time-like directions [31].

The truncation of the kinetic term for the scalars proceeds as follows

1

48
gµν DµMMN DνMMN →

1

48
gµν

(
DµMαMβN DνMαMβN +DµMρ̂σ̂ DνMρ̂σ̂

)
=

1

4
gµν DµMαβ DνMαβ +

1

8
gµν DµMMN DνMMN .

(A.27)

As noticed in [34], the spinorial contribution to the trace is crucial in order to recover

the right normalisation of the kinetic term of the SO(6, 6) scalars.
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• The Z2-truncation of the kinetic terms of the vectors reads

−1

8
MMN FµνMFµνN → −

1

8
MαMβN Fµν αMFµνβN

= −1

8
MαβMMN Fµν αMFµνβN ,

(A.28)

where the field strengths FµναM are obtained upon truncation of the E7(7)-EFT

ones [5] and read

FµναM = Fµν
αM+2εαβηMP ηNQ∂βNBµνPQ+ηMNεαγεβδ∂βNBµνγδ−

1

2
εαβηMNBµνβN .

(A.29)

The above field strengths contain tensor fields in the (1,66) ⊕ (3,1) and (2,12)

given by

Bµν αMβN = εαβ Bµν MN + ηMN Bµν αβ and Bµν αM , (A.30)

which satisfy Bµν MN = −Bµν NM and Bµν αβ = Bµν βα . The tensor fields enter

the field strengths (A.29) in the form of trivial parameters of the SL(2)-DFT (see

section 2.2).

• The Z2-truncation of the topological term reads

εµνρστFµνMDρFστM → εµνρστ εβα ηMN FµναM DρFστ βN . (A.31)

Scalar potential. The potential in SL(2)-DFT can be also obtained by Z2-truncating

the potential in E7(7)-EFT [5]

VE7(7)-EFT(M, g) = − 1

48
MMN ∂MMKL ∂NMKL +

1

2
MMN ∂MMKL ∂LMNK

− 1

2
g−1∂Mg ∂NMMN −

1

4
MMN g−1∂Mg g

−1∂N g

− 1

4
MMN ∂Mgµν ∂N gµν .

(A.32)

We will look at each term in the above potential separately. The first term yields

− 1

48
MMN ∂MMKL ∂NMKL → −MαβMMN

[
1

4

(
∂αMM

γδ
)

(∂βNMγδ)

+
1

8

(
∂αMM

PQ
)

(∂βNMPQ)

]
,

(A.33)

where, as for the case of the scalar kinetic terms, the spinorial contribution to the trace is

important in order to get the coefficient 1
8 . The second term yields

1

2
MMN ∂MMKL ∂LMNK →

1

2

[
MαβMMN

(
∂αMM

γδ
)

(∂δNMβγ)

+ MαβMMN
(
∂αMM

PQ
)
(∂βQMNP )

+ MMNMPQ
(
∂αMM

αδ
)

(∂δQMNP )

+ MαβMγδ
(
∂αMM

MQ
)
(∂δQMβγ)

]
.

(A.34)
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The third, fourth and fifth terms (gµν-dependent) yield

−1

2
g−1∂Mg ∂NMMN → −

1

2
g−1 (∂αMg)

[(
∂βNM

αβ
)
MMN +

(
∂βNM

MN
)
Mαβ

]
,

−1

4
MMN g−1∂Mg g

−1∂N g → −
1

4
MαβMMN g−1(∂αMg) g−1(∂βNg) ,

−1

4
MMN ∂Mgµν ∂N gµν → −

1

4
MαβMMN (∂αMg

µν) (∂βNgµν) .

(A.35)

Bringing all the terms together we get the expression of the SL(2)-DFT potential which

takes the form

VSL(2)-DFT(M, g) = MαβMMN

[
− 1

4

(
∂αMM

γδ
)

(∂βNMγδ)−
1

8

(
∂αMM

PQ
)

(∂βNMPQ)

+
1

2

(
∂αMM

γδ
)

(∂δNMβγ) +
1

2

(
∂αMM

PQ
)

(∂βQMNP )

]
+

1

2
MMNMPQ

(
∂αMM

αδ
)

(∂δQMNP )+
1

2
MαβMγδ

(
∂αMM

MQ
)
(∂δQMβγ)

− 1

2
g−1 (∂αMg)

[(
∂βNM

αβ
)
MMN + (∂βNM

MN )Mαβ
]

− 1

4
MαβMMN

[
g−1(∂αMg) g−1(∂βNg) +(∂αMg

µν) (∂βNgµν)
]
.

(A.36)

A.4 Deformations and constraints in SL(2)-DFT

The X deformation was introduced in the context of E7(7)-EFT where XMN
P ∈ 912 was

shown to be subject to so-called X and C constraints of the form [69]

XMN
P∂P = 0 ,

CMSPQ ≡ X(PQ)
M∂S − YMRT SX(PQ)

T ∂R −
1

2
Y T RPQXT S

M∂R = 0 .
(A.37)

In E7(7)-EFT the C-constraint is redundant as it is implied by the X-constraint, i.e.

XEFT ⇒ CEFT . The same constraints formally appear also in SL(2)-DFT for XM̂N̂
P̂ ∈

(2,220) + (2,12) just by replacing M → M̂ = αM , N → N̂ = βN , etc. However, a

detailed analysis of such constraints in this case reveals that the C-constraint is no longer

implied by the X-constraint, i.e. XSL(2)-DFT ; CSL(2)-DFT . Here we will show that the

two SL(2)-DFT conditions (X and C) descend from the X-condition of E7(7)-EFT and

viceversa,

XEFT ⇔ XSL(2)-DFT and CSL(2)-DFT , (A.38)

when assuming that the section constraint of E7(7)-EFT holds with ∂(1,32) = 0 , and

that XMN
P only contains fαMNP and ξαM irreducible pieces when decomposed un-

der (A.3) [34], namely, no trombone [96, 97] or spinorial deformations [73].

The first direction of the double implication in (A.38) is straightforward to prove.

It was shown in [69] that XEFT ⇒ CEFT . Moreover, under the assumptions discussed

above, XEFT ⇒ XSL(2)-DFT and CEFT ⇒ CSL(2)-DFT just by setting M→ M̂ = αM , etc.

Therefore, one has that

XEFT ⇒ XSL(2)-DFT and CSL(2)-DFT . (A.39)
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To prove the reverse implication in (A.38) we just need to focus on the contribution

Xµ̂ν̂
γP ∂γP = 0 , (A.40)

to the X-constraint of E7(7)-EFT, and use the decomposition [34]

Xµ̂ ν̂
αM =

1

8
εαγ fγPQ

M
[
γPQ

]
µ̂ν̂

+
1

24
εαγ fγPQ

N
[
γN

MPQ
]
µ̂ν̂

+
1

8
εαγ ξγN

[
γMN

]
µ̂ν̂
− 1

8
εαγ ξMγ Cµ̂ν̂ .

(A.41)

The γ’s and C are orthogonal to each other, so we can decompose (A.40) into three

constraints
γµ̂ν̂MN :

(
fαMN

P − ξα[Mδ
P
N ]

)
∂αP = 0 ,

Cµ̂ν̂ : ξαM∂αM = 0 ,

γµ̂ν̂MNPQ : fα[MNP∂
α
Q] = 0 .

(A.42)

The first two constraints correspond to the X-constraint of SL(2)-DFT in (3.18) upon

appropriate contractions. The last one is precisely the projection of the C-constraint of

SL(2)-DFT in (3.19). Therefore,

XSL(2)-DFT and CSL(2)-DFT ⇒ XEFT , (A.43)

under the assumptions discussed before.
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