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Non-Abelian interactions as well as background fluxes are captured by a deformation of
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Scherk-Schwarz ansétze. Such gaugings allow for moduli stabilisation including the SL(2)
dilaton.
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1 Introduction and outlook

Recently, exceptional generalised geometries [1, 2] and exceptional field theories (EFT) [3-6]
have been the stage of intense activity. These frameworks capture the degrees of freedom
and gauge symmetries of maximal supergravities in a way that makes their exceptional
Egi1(a+1) structures manifest, mirroring how O(d,d 4+ n) structures are reproduced in
generalised geometry and double field theory (DFT) [7-10]. Not only do these frame-
works give a better understanding of how duality structures determine the geometrical and
physical properties of maximal supergravities, but they also provide the necessary tools to
study solutions, dimensional reductions and consistent truncations [1, 11-15] on non-trivial
backgrounds.



While most of the recent research has been focused on exploiting the manifest duality
structures of DFT and EFT, it must be possible to introduce generalised geometries and
extended field theories associated to groups different from those of the O(d,d +n) and
Egt1(a+1) series. For instance, several generalised geometries were introduced in [16],
in particular examples based on a Spin(d,d) structure. In [13] it was proven that any d-
dimensional sphere is (generalised) parallelisable in an appropriate GL*(d+1) generalised
geometry. One can look for other relevant structures in the series of duality groups of
supergravity theories. A particularly interesting case is the series of duality symmetries of
half-maximal supergravities which, for specific dimensions (see table 1), contains groups
larger than the O(d,d +n) captured by DFT.! One example arises from the reduction of
ten-dimensional N = 1 supergravity coupled to n, = n gauge vectors [18, 19] down to
D = 4. Thisyields an SL(2)xO(6,6+n) duality group which is larger than the O(6,6+n)
symmetry of DFT. A further reduction to D = 3 gives O(8,8 + n) thus containing the
O(7,74+n) captured by DFT. Also notable is the O(5,n) duality symmetry of N' = (2,0)
supergravity in six dimensions coupled to ny tensors [20-22]. Upon subsequent reduction
to D < 3, these duality symmetries would become infinite-dimensional reaching up to
Dt and B}t very extended Kac-Moody algebras [23, 24] analogous to the Ej; of
the maximal supergravities [25]. It is therefore natural to construct extended field theories
based on the duality groups of half-maximal supergravities for D =4 and D = 3, in the
same fashion as exceptional field theory for the maximal cases [5, 6].

In this paper we investigate the D = 4 case and construct the extended field theory
whose associated duality group is SL(2) x O(6,6 + n). Notice that an SL(2) x O(5,5)
generalised geometry was considered in [26] whereas an SL(2) x O(6,6) one was briefly
mentioned in [27]. Apart from the theoretical motivation of understanding the similarities
and differences between this theory and the DFT with O(6,6 + n) symmetry, having an
enhancement of the duality group with an SL(2) factor is also phenomenologically rele-
vant. This becomes manifest, for example, when studying the issue of moduli stabilisation
in the lower-dimensional gauged supergravities arising from generalised Scherk-Schwarz
(SS) reductions of the extended field theories. In particular, generalised SS reductions of
DFT down to D =4 can only produce electric gaugings of AN’ =4 (half-maximal) super-
gravity, even when allowing for locally non-geometric twists that violate the section con-
straint [28, 29]. Such electric gaugings are subject to the no-go result by de Roo-Wagemans
(dRW) [30] stating the impossibility of stabilising the SL(2) dilaton of the N' =4 theory.
A crucial ingredient for stabilising such a scalar in half-maximal D = 4 supergravity is
the presence of non-trivial SL(2) angles, known as dRW phases, in the gauge group. In
the framework of the embedding tensor which allows to systematically investigate N = 4
gaugings [31], the presence of non-trivial dRW phases requires non-vanishing embedding
tensor components which are SL(2) rotated with respect to each other. Various maximally
symmetric solutions compatible with four-dimensional N = 4 gaugings of this type were
discussed in [32, 33].

It thus becomes crucial to have access to the SL(2) factor of the duality group in the
half-maximal extended field theory in order to generate N = 4 gaugings that may stabilise

nteresting results on reproducing (Heterotic) DFT from D =7 EFT have recently appeared in [17].



D | Maximal sugra / EFT | Half-maximal sugra DFT

9 RT x SL(2) Rt xO(1,1+n) | Rt xO(1,1+n)
8 SL(2) x SL(3) RT x O0(2,2+n) | RT x O(2,2+n)
7 SL(5) RT x0(3,3+n) | RT xO(3,3+n)
6 SO(5,5) Rt x0O(4,4+n) | Rt x0(4,4+ n)
) Ee(6) R x O(5,5+n) | RT x O(5,5+n)
4 Er7(7) SL(2) x O(6,6 +n) | RT x O(6,6 + n)
3 Egs) 0(8,8+n) RT x O(7,7 +n)

Table 1. Relevant duality groups in maximal and half-maximal supergravity as well as in extended
field theory. Only the non-chiral ' = (1, 1) supergravity in D = 6 is displayed. The RT factor in
the duality structure of DFT is actually a combination of an internal Rt contained in the second
column and a trombone rescaling.

the moduli upon reduction to a D = 4 gauged supergravity. One systematic manner
of obtaining N/ =4 gaugings at SL(2) angles is by Zs-truncating gaugings of N' = 8
supergravity [34] for which moduli stabilisation is known to occur, e.g. the CSO(p,q,r)
gaugings (p + ¢ + r = 8) of maximal supergravity [35-38]. Some of these gaugings arise
from consistent reductions of string/M-theory with fluxes,? and without extra spacetime-
filling sources. However, from a phenomenological point of view, these gaugings are not yet
fully satisfactory because they cannot arise from compactifications (without boundaries)
and, at the same time, produce Minkowski or de Sitter (dS) solutions due to the no-go
theorem of [45] (see also [46]). In order to circumvent this no-go theorem, one may add
sources (branes, orientifold planes, KK-monopoles, ...) and/or introduce non-geometric
fluxes [47-51] whose higher-dimensional origin is not yet well understood. The resulting
four-dimensional supergravity is no longer compatible with maximal supersymmetry but
still can preserve some fraction thereof if the sources and fluxes are judiciously distributed
over the internal space. When they are set to preserve N' = 4 supersymmetry, no example
of a perturbatively stable dS vacuum in D = 4 has been found.? More strikingly, while
N = 4 gaugings can arise from either reductions of Type I/Heterotic supergravity [56,
57] or from orientifold reductions of Type II theories [58-61], an analysis based on the
embedding tensor formulation of gauged supergravities shows that the vast majority of
such gaugings lacks a higher-dimensional string/M-theory interpretation. For this reason,
much of the recent activity in the field has been directed towards assessing to what extent
gaugings induced by non-geometric fluxes may have an extended field theory origin.*

2See [14] (and references therein) for a unified account of electric gaugings, as well as [39-41] for dyonic
ones [42-44].

3The only examples of stable dS vacua in half-maximal gauged supergravity have recently appeared in
D =7 [52]. In the context of N/ =1 supergravity in D = 4 including sources and non-geometric fluxes,
the first examples were found in [53, 54] and further investigated in [55].

4An interesting analysis was carried out in [62] within the context of exceptional generalised geometry
and E;(7)-EFT in order to reproduce the family of maximal SO(8) gaugings in D = 4 of [42], also giving
an alternative origin for the family of half-maximal SO(4) gaugings in D =7 of [63].



The above discussion motivates us to construct the SL(2) x O(6,6 +n) extended field
theory with the aim of obtaining N’ = 4 gaugings at non-trivial SL(2) angles upon gen-
eralised Scherk-Schwarz reductions to four dimensions. In this extended field theory, an
R™ x O(6,6 + n) symmetry corresponds to the one captured by Heterotic DFT where
the internal coordinates are extended to fill the vector 12 4+ n representation. To accom-
modate for the enhanced SL(2) factor in the duality group, a further doubling of these
coordinates is necessary to fill the (2,12 + n) representation. We will refer to this theory
as half-maximal extended field theory or SL(2)-DFT. The algebra of generalised diffeomor-
phisms follows the general structure described in [64]. Moreover, in order to supplement
the O(6,6 4+ n) structure with the SL(2) one, a hierarchy of tensor fields must be intro-
duced in analogy with that of gauged supergravities and EFT’s [4, 65, 66]. The SL(2)-DFT
is restricted by two section constraints which admit a maximal solution that keeps two in-
ternal coordinates and allows to capture a six-dimensional theory with O(5,n¢) duality
symmetry, matching N = (2,0) supergravity in six dimensions coupled to ny = 5 + n ten-
sor multiplets. An inequivalent maximal solution of the section constraints, unique up to
duality transformations, keeps six internal coordinates and thus corresponds to the ten-
dimensional half-maximal supergravity coupled to n, = n vector multiplets.” Importantly,
one can also recover the standard formulation of DFT in [67] (with four external dimen-
sions) by dualising away certain fields. In this process, no physical degrees of freedom
are truncated but SL(2) covariance is inevitably lost. Gauge groups for the n, = n ten-
dimensional vectors can be accommodated in the same way as in Heterotic DFT [68] (see
also gauged DFT [29]). In fact, more general deformations are compatible with the ten-
dimensional solution of the section constraints. This is the half-maximal counterpart of the
X deformation introduced in [69] for E7(7)-EFT. However, unlike in Heterotic/gauged DFT
and X-deformed EFT, an additional constraint first mentioned in [69] plays a prominent
role in guaranteeing consistency and restricting the allowed deformations.

Equipped with the SL(2)-DFT, we investigate generalised twisted torus reductions that
reproduce N = 4 gaugings at non-trivial SL(2) angles. More concretely, we find that taking
any two instances of DFT reductions to D = 7 without warping, they can be assembled
into a D = 4 reduction that violates the section constraints but introduces dRW phases
in the final gauge group. As a prominent example of this feature we reproduce families of
SO(3)“~P) x U(1)*" gaugings of N' = 4 supergravity with p=0,...,4. The case p =0
reproduces the most general family of SO(4)xSO(4) gaugings of half-maximal supergravity
recently classified in [70], in terms of a twisted quadruple torus reduction (n = 0). These
gaugings include as a special case the ones obtained from a Zo-truncation of the one-
parameter families of SO(8) and SO(4,4) gauged maximal supergravities of [42, 43], but
also include other N' =4 gaugings which are not permitted by N = 8 supersymmetry.

The paper is organised as follows. In section 2 we construct the SL(2) x O(6,6)
extended field theory (n = 0) as a truncation of E77)-EFT. We present the generalised
Lie derivative, tensor hierarchy and bosonic (pseudo-) action and discuss the solution of

5We are counting vector multiplets from ten dimensions but the general structure of our results applies
also to general SL(2) x O(6,7) groups. Of course no link to ten dimensions is available when 7 < 6, but
the chiral D = 6 theory is captured for any i > 0.



the corresponding section constraints. Various checks in the limit of trivial SL(2) phases
are performed where the action and generalised Lie derivative reduce to those of standard
DFT. We also discuss the embedding of Type II orientifolds within the degrees of freedom
of SL(2)-DFT and identify the set of physical coordinates in cases which are relevant to
the 4 + 6 splitting of ten-dimensional Type IIB supergravity. In section 3 we generalise the
results to include 2 X n extra gauge vectors. First we study the Abelian case and then
consider non-Abelian deformations of the generalised Lie derivative, both in the gauge
and the gravity sectors, and connect them to the embedding tensor of N = 4 gauged
supergravity. In section 4 we investigate the SL(2)-DFT origin of classes of N’ = 4 gaugings
at SL(2) angles that admit full moduli stabilisation. Finally we collect some technical
results in the appendix A.

2 SL(2) x O(6,6) extended field theory

The extended field theory featuring an SL(2) x O(6,6) duality group (n = 0) can be ob-
tained by modding out the E7(7)-EFT by a discrete Zg subgroup of E7(7y. In the supergrav-
ity context, the same prescription was applied in [34] to truncate the four-dimensional max-
imal supergravity to a half-maximal one coupled to six vector multiplets. Eq(7) actually
contains Spin(6,6) as a subgroup, and its Zs extension with respect to SO(6,6) is the
transformation we use to truncate. This Zs flips the sign of SO(6,6) spinorial represen-
tations while leaving the vectorial ones invariant. The induced transformation on fermions
flips the sign of half the gravitini, thus giving rise to an N = 4 truncation as intended.
In the following we focus on the main results of such a truncation of the E;7)-EFT. The
technical details and conventions are gathered in the appendix A.

2.1 Generalised diffeomorphisms

The SL(2) x O(6,6) extended field theory lives on an extended space-time that consists
of an external space-time with coordinates z* and an internal space with coordinates
y*M | The latter sit in the (2,12) representation of SL(2) x O(6,6) with a = +, — and
M =1,...,12 being SL(2) and O(6,6) fundamental indices, respectively. In addition to the
usual internal coordinates in DFT dual to momentum and winding, the theory contains
a second copy of such coordinates which are needed to fill the (2,12) representation of
the duality group. Analogously to the case of exceptional geometry [1, 64], the generalised
diffeomorphisms are defined in terms of a generalised Lie derivative Ly when acting on
covariant R x SL(2) x O(6,6) tensors. For a vector field UM of weight A(U) = Ay,

the action of the latter reads
]LAUaM = ABNagNUaM — UﬁNagNAaM + YQMBNWPCSQ 85NA7P U‘sQ (2 1)
+ (A — w)dsn APNTM '

where A“M(z,y) is the generalised gauge parameter and w = % As in E7(7)-EFT, all

generalised diffeomorphism parameters carry weight A = w. The generalised Lie deriva-
tive (2.1) is expressed in terms of an invariant structure tensor

YOMON  psq = 03 55 N npg + 26 .5 5}‘3@/. (2.2)



The relative coefficient between the two terms in (2.2) follows from the Zs-truncation of
the structure tensor of E7(7)-EFT (see appendix A). Substituting (2.2) into (2.1) one finds

LAUaM _ A’BNagNUaM _ U/BNQQNAQM + 77MN nPQ 65NABP UaQ

2.3
+ 2&‘0‘5 Exs QBNAW[M UWN} + ()\U — w)aﬁNAﬁNUO‘M . ( )

The first line and the density term can be seen as the SL(2) generalisation of the generalised
Lie derivative of DFT. The term with ¢*? is intrinsic to SL(2)-DFT and does not contribute
when restricting the coordinate dependence of all fields and parameters to y™ =yt or
equivalently setting 0_p; = 0 (‘DFT limit’ in the following).

The algebra of the generalised Lie derivative must close for consistency of the SL(2)-
DFT. This condition can be expressed as

[La, Le WM = Ly sy WM, (2.4)

where the SL(2) generalisation of the C(ourant)-bracket of DFT (denoted here S-bracket)
is defined as 1
(A, 2] = 5 LAz —LyuA) (2.5)

for any two vectors A and ¥ of weight A = 1/2. As in DFT/EFT, the closure condi-
tion (2.4) requires to impose a so-called section constraint. There are two such constraints

in SL(2)-DFT which read
T]MN Oart ® O3y =0 and g8 Oam) @ Og Ny =0, (2.6)

and which restrict the dependence of fields and parameters on the internal coordinates
y*M | The first constraint in (2.6) is identified with the SL(2) generalisation of the section
constraint of DFT that forbids simultaneous dependence on a momentum coordinate and
its dual winding. The second constraint is again a genuine feature of SL(2)-DFT and
forbids the dependence on more than one coordinate of type + and its SL(2) duals (of
type — ). This constraint is therefore trivially satisfied in the DFT limit.

The SL(2) generalisation of the C-bracket in (2.5) fails to satisfy the Jacobi identity.
This issue is commonly resolved by noticing that the Jacobiator can be expressed as a
symmetric bracket defined as

(A, )M = % (LASM 4 LyA®M)

1
== O (675 Atp E(SQ]) 3 e P MY 9an (npq A, B5)?)
1

— Z Saﬁ ’I’]MN (EVP%N Ayp + A’)/PalgN E,},p) . (27)

Each of the three terms in (2.7) is a trivial gauge parameter so that L, sy vanishes
identically. Indeed, using the section constraints (2.6), it can be shown that the following
parameters do not generate generalised diffeomorphisms

AaM — EaﬁnMPnNQaBNXPQv AaM — ga’ygﬁénMNaﬂNX'yé and AaM — gaﬁnMNXEN ]
(2.8)



Here xpg = —xq@p and X5 = X5, are respectively in the (1,66) and (3,1) represen-
tations of the duality group and carry weight 1, whereas xgn is in the (2,12), carries
weight 1/2 and is covariantly constrained as

aMBN aMpBN
(P1,1)+(1,66)+(3,1)) g Xam Oy = 0 = (P(1,66)+(3,1)) g XaM XBN (2.9)

where P denotes the projector onto the displayed representations. In particular, it can
be shown that the bracket in the last term of (2.7) satisfies the above constraints. The
necessity for the class of trivial parameters in the (2,12) becomes apparent when facing
the task of constructing a gauge covariant field strength for the vectors A“O‘M , as we will
see next.

2.2 Yang-Mills sector and tensor hierarchy

Generalised diffeomorphisms with parameters A (z,) depending on the external space-
time coordinates x* require the customary covariantisation in extended field theories of
the external derivative with gauge connections A,ﬂM (z,y), namely

Dy, =0,—1La, . (2.10)
The vectors A, carry weight A(4,) = % and are chosen to transform as
oA A, M = DA M = (9, —La, )AM . (2.11)

Due to the non-vanishing Jacobiator, the naive expression for the associated field strength
F = 20),A,—[Au, Ayls fails to transform covariantly under generalised diffeomorphisms.
To cure this, a set of tensor fields is introduced whose variations precisely cancel the non-
covariant terms. The modified field strengths read

Fu®™™M = F,oM 4 2P MPpNQY B, po + e nMN 95n By s — % e*PMNB L, an

(2.12)
where the tensor fields are in the same representations and carry the same weights as the
trivial parameters (2.8), and where B, gy is subject to the covariant constraints (2.9). A
general variation of the modified field strength (2.12) yields

(S.FMVQM =2 'D[‘uéAl,}aM + 2 €aﬁ?7MP77NQ85NABM, PQ

1 (2.13)
+ e nMN9g N AByy 45 — 3 e nMNAB, g
where we have defined the covariant variations
ABy, pg = 0By po + 46 A 1p 040 g
AByy v = 6Bpuy~s +1pq A" 04,59, (2.14)

AB,, N = 0B, N + 5A[VVP85NAH]«,P + A[jpaﬁNéAyhp .



We finally choose the following vector (i.e. generalised diffeomorphism) and tensor gauge
transformations

- - 1 -
6AHQM _ D/.L AaM _ 25&577MP77NQ8,8N'ZMPQ o Ea’ygﬁénMNaﬁN:,wyé + 5 5aﬁ77MN~:,uBN ’

AB/“, PQ =2 D[,u EV}PQ + &y A’Y[P ./T,WJQ} )
ABy s =2 D[M Eyhg +npg A(WP fm,(;)Q ,
ABm,gN = 2D[/J,EI/]5N + J-"uﬂpagNAw + A7P35N.7:M,7p

-+ 8 nSP (85N 875 A[M’YR) EV]pR + 4666 (65]\] 8513 A[MAP> EV]/\(; s

(2.15)
where the tensor gauge parameters Z,pg = —Z,0rP, Zpag = ZSuga and Z,an lie in
the same (1,66), (3,1) and (2,12) representations as the corresponding tensor fields and
also carry weights 1, 1 and 1/2, respectively. After some algebra along the lines of the
E7(7)-EFT case, it can be proven that the modified field strengths (2.12) transform as
R* x SL(2) x O(6,6) vectors of weight A(F,,*M) = 1/2 under generalised diffeomorphisms
and are invariant under tensor gauge transformations, namely

oAFu™™M =Ly F*M and 0=F M =0. (2.16)

2.3 Bosonic pseudo-action

We now present the pseudo-action governing the dynamics of the theory. It can be derived
by Zs-truncating the pseudo-action of E7(7)-EFT [5], as described in the appendix A, and
must be supplemented with the twisted self-duality relations

1
.FHVO‘M S —5 eé‘w,pg?]MNEaﬁ Mﬁ]\hp .FPUVP y (2.17)

where e is the determinant of the vierbein and MMAN = pNfeBAMN s 4 symmetric
matrix parameterising the scalar manifold. The dynamics of the theory is completely
specified by imposing the above twisted self-duality equations after varying the pseudo-
action

R 1 1
SsL(2)-pFT = / d'z d24y € [R + 1 g DMMQB Dy Mus + 3 g DuMMN DyMyn
1 (2.18)

- g af MMN FH QMFMVBN + 6_1 Etop - ‘/SL(Q)-DFT(Ma g) .

The gauge invariance of this pseudo-action is guaranteed by the fact that the section con-
straints (2.6) are in one-to-one correspondence with the truncation of the E(7)-EFT section
constraint. Nevertheless, gauge invariance can be checked explicitly using the fact that the
vierbein and the scalar matrix M*PN transform under generalised diffeomorphisms as
a scalar density and as a symmetric tensor of weight A(e,®) = 1/2 and A(MMEN) = 0,



respectively. This implies® in particular

1
one,* =ANT o pe, + 3 d,pAPe,
SAMOP = NP 8, p M — 2 M@ 9 pADF 4 MOP 9, p AT (2.19)
5AMMN — A'yP 8'yPMMN - 2MP(M a—yPAth) + 2nP(M MN)R a’YPA'yQ NOR -

Equipped with these formulae and the transformations (2.17), it is then possible to verify
that each term in the pseudo-action is invariant under generalised diffeomorphisms and
tensor gauge transformations. The relative coefficients between the various term can be
fixed by requiring invariance under external diffeomorphisms but this computation is more
involved and we expect it to follow the same steps as in Ez7)-EFT.

The kinetic terms: in line with the structure of extended field theories, the Einstein-
Hilbert term is constructed from a modified Riemann tensor

Ru™ = Ry w] + Fu™™ e Ognre,’ (2.20)

where R,,,%°[w] is the curvature of the spin connection in the external space-time and
carries weight A(R,,%[w]) = 0. The corresponding modified Ricci scalar then transforms

~

as scalar of weight \(R) = —1 under generalised diffeomorphims.

The second, third and fourth terms respectively correspond to the kinetic terms for
the M,z € SL(2)/SO(2) scalars, the My n € SO(6,6)/(SO(6) x SO(6)) scalars and the
vector fields in the theory. Furthermore, we will parameterise M, and its inverse as

1 |S|? ReS 1 1 —ReS
Mg = —= and M = _— , (2.21)
ImS \ Res 1 ImS \ _Res |52

where S(z,y) = xo +ie”? is the complex axion-dilaton of SL(2)-DFT. In particular, the
rigid SL(2) symmetry acts linearly on M,z and as a fractional linear transformation on
the complex field S. The specific parameterisation of My;n will not play any role in this
work.

The topological term: the topological term is obtained from the one of E(7)-EFT and
takes the form of a surface term in five dimensions

1
Stop = 21 )y Pz d*y P ego N Fun™™M DpFor™N (2.22)

5There is an ambiguity in how to distribute the density term between the transformation of M*? and
the one of M™Y. Note however that this is irrelevant for the gauge invariance of the pseudo-action (2.18).
In order to recover later on the correct transformation of M™% in DFT, we have chosen here to move the
whole density term to the transformation of M®# .



The potential: the potential resulting from the truncation of the E;;)-EFT expression
takes the following form

1 1
Varioyoer (M, g) = MP MY [ 1 (%MM”’é) (O Mys) = ¢ (Oars M) (95N Mpq)

1 1
+ 3 (3aMM”5) (D5 Mpy) + 5 (Oare M) (95 My p)
+ %MMNMPQ <6aMM0‘5) (OsoMnp)+ %M“ﬁ M (Daps MMQ) (950 Mg-)

1 _ ~ y
—~ ZM‘w MYMN (g7 (Oartg) 97 (0sng) + (Oarsg™) (Osnguv)]

1
— 59" (Oang) I (M“ﬂMMN) :
(2.23)

and depends on both SL(2) and SO(6,6) scalars.

Vector and tensor field equations: the field equations for the vectors AMO‘M can be
derived by varying the Lagrangian (2.18)

1 ~
(5A£ = |:4 DM (26Ma5MMN.7:MV’BN +€uupapraM> +€jVaM +€juaM 5AuaM7

(2.24)
where the first and second terms come from the variation of the kinetic and topological
term,” respectively. The currents J and J in (2.24) are defined by

5»CEH = ejVaM 6AVaM and 5[’kin. scal = € jVOzM 5AVaM ) (225)

and are associated to the Einstein-Hilbert term and the kinetic terms for the scalars,
respectively. Using the twisted self-duality equation (2.17), the field equations for the
vectors (2.24) become

1 .
AL =6A,M igwa DyFpoam +eT amr +eT anr| - (2.26)

The variation of the Lagrangian (2.18) with respect to the tensor fields yields the
twisted self-duality equations (2.17) projected under internal derivatives. It is important
to emphasise the role of the twisted self-duality equations (2.17). They allow for the
manifest duality covariance of this formulation and reflect the on-shell relations between
dual degrees of freedom. As previously mentioned, they can be derived only partially as
field equations for the tensor fields and must be imposed on top of the vector field equations
derived from the pseudo-action (2.18).

2.4 Section constraints and string embedding

We now investigate the solutions of the section constraints (2.6). Let us consider them

acting on any single field ®(z*,y*M) of the theory, namely

aaMaﬁ mM®=0 and 8+[M8_N](I) =0. (2.27)

"This variation is once again easily derived by truncating the expression of E7n-EFT.
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The first equation imposes that any internal coordinate that ® depends on must be null
with respect to the O(6,6) metric ny/n . We now look for a set of coordinates that satisfies
the above constraints. Let us use SL(2,R) x O(6,6) to fix the choice of one first coordinate:
we can choose yt! without loss of generality. Then the second equation combined with
this choice restricts the dependence on the other internal coordinates as

0no_n®=0 = 0.nN®P=0 VN#L1. (2.28)

One thus finds two possible solutions of the section constraints (2.27):

1" as another coordinate independent from y*!. In this case, no

i) We may take y~
extra coordinate dependence is allowed and we have a two-dimensional solution of
the section constraints. Imposing the above coordinate dependence on all fields and
parameters, we obtain a six-dimensional theory. There is an O(5,5) x Rt resid-
ual duality symmetry, where RT acts as a trombone in the entire six-dimensional
spacetime. On the two coordinates y*! there is an action of the GL(2,R) struc-
ture group for the internal manifold obtained from SL(2,R) and an R subgroup of
R* x O(6,6). This leads us to identify this case with a 4 + 2 dimensional split of
six-dimensional chiral N' = (2,0) half-maximal supergravity coupled to five tensor

multiplets [22].

i) The other independent solution is obtained by only allowing for a dependence on
y+tM
and a dependence on up to six mutually null coordinates is allowed. Up to O(6,6)
transformations, we can restrict to y*¢ with d < 6. A GL(d) subgroup of O(6, 6)
acts as structure group of the internal manifold, and global (continuous) symmetries
are broken to Rt x O(6 — d,6 — d). The theory is identified with half-maximal
(4 + d)-dimensional supergravity coupled to n, = 6 — d vector multiplets. If d =2

coordinates. Then the section constraints in (2.27) reduce to those of DFT,

the non-chiral /' = (1,1) six-dimensional supergravity [71, 72] coupled to four vector
multiplets is recovered in a 4+2 split. The (maximal) d = 6 solution is identified with
a 4+6 dimensional split of ten-dimensional A/ = 1 half-maximal supergravity [18, 19]
without vector multiplets.

Type IIB orientifolds and physical coordinates. The Z, discrete group we have
used to truncate E;;)-EFT and obtain SL(2)-DFT can be identified with applying an
orientifold projection in Type IIB string theory. This amounts to modding out the Type
IIB theory by the worldsheet orientation-reversal transformation 2, the fermion number
projector for left-moving fermions (—1)fZ and an internal space involution oop Wwhich
must be an isometry of the internal space and is induced by an Op-plane. Here we are
interested in the behaviour of the six physical internal coordinates (upon solving the section
constraints) under the orientifold involution g, in the presence of an Op-plane. The group
theoretical decomposition of the 56 generalised coordinates of E7(7)-EFT under ordinary
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SL(6) internal diffeomorphisms that is relevant to discuss Type IIB orientifolds reads

E;7) D SL(2)s x SO(6,6) D SL(2)s x SL(6) x Rf.

56 — (2,12) = (2,6) ;1) + (2,67 (1)
(1,32) — (1,6") 4y + (1,20) ) + (1,6)
S SL(6) x RY x R, (2.29)

9 b
A E NSRS R R

— 67(0,41) +20(0,0) + 6(0,—1) -
——

o0R3

For the sake of clarity, we have attached a label S to the SL(2) factor of the duality group
of SL(2)-DFT which acts as fractional linear transformations on the axion-dilaton S.

When considering an O3-plane in Type IIB, the six internal coordinates are reflected
by oo3 implying that they are parity-odd. Then the element 6’ 1) must be identified
with the six internal derivatives 823 , the SL(2)g factor of the duality group corresponds
to Type IIB S-duality® and the scalar field ImS is the Type IIB dilaton [73]. The R;
charge is then identified with the combination of the rescaling of the coordinates of the
internal space Mg and of the ten-dimensional metric that leaves the D = 4 Einstein
frame metric invariant. We can thus write

and R+ RT

03 .
8m 7& 0: R =R} Me scaling *

ouB

(2.30)

Note that the physical coordinates descend from the spinor representation (1,32) in order
to flip sign under the orientifold action and therefore are projected out by the Zs-truncation.
As a result, SL(2)-DFT does not capture Type IIB backgrounds with O3-planes, neither
does ordinary DFT.? This clarifies some confusion in the literature.

When considering an O9-plane in Type IIB, the six internal coordinates are left in-
variant by oog implying that they are parity-even. Recalling that only the coordinates
descending from the (2,12) are Zs-even, one must select one of the 6”’s coming from
this representation to be the physical derivatives 809. Up to SL(2)s rotations, we can
select the 6’ (-1-1) without loss of generality. The Zs-truncation will now be interpreted
as the truncatlon of the Type IIB theory to the pure supergravity sector of the Type I
theory, equivalently Type IIB with O9-plane. However, since the physical derivatives are
not singlets under the SL(2)g factor of the duality group, the latter can no longer be iden-
tified with the S-duality of Type IIB. An alternative interpretation of the same physical
derivatives is in terms of the Heterotic ones d!I¢*. The distinction between the Type I and
Heterotic pictures turns out to be a matter of conventions. First of all, the axion ReS
is associated with either the internal Cg of Type IIB or Bg of Heterotic depending on

8This implies that O(6, 6) is not identified with the Type IIB T-duality in this case.

9We are not considering DFT supplemented with an additional “layer” of Ramond-Ramond (RR) poten-
tials in the 32’ of O(6,6) needed to formulate the Type IIB theory [74]. Even in this case, our identification
of physical derivatives 8% holds.
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the conventions. On the other hand, RJSF is a combination of the Type IIB dilaton scaling
The correct matching of charges is

n
) (E?) : (2.31)

We see that the charge assignment that reflects the interpretation of the SL(2)-DFT in
terms of its Type I/Heterotic origin has now changed to

R;HB and the scaling of the internal space RX% scaling -

+ 1
oype I/Het _ ) ( +R¢IIB ) — <+§ :

M scaling 2

given by

DN

E7¢7) D SL(2)s x SO(6,6) D SL(6) x R;HB X RM scaling

) )
I S R G A R O e RN T
8Type I/Het
— (1,32) — 6’(_%7_%)+20(070)+6(+%’+%) .

This charge assignment shows that the internal physical coordinates are invariant under
shifts of the ten-dimensional dilaton. In fact they are invariant under the full SL(2)mg,
though it is broken by the Zs-projection. Applying an SL(2);p transformation will ex-
change representations with opposite ]R;fHB charges in (2.32). This translates into the
mixing of representations coming from the (2,12) and the (1,32). Indeed, the Zs action
does not commute with SL(2);g. We stress that the physical coordinates are by defini-
tion always SL(2)1p singlets. Since the dictionary between E(7)-EFT fields and Type IIB
ones is also fixed only up to SL(2)yp transformations, it is entirely a matter of conventions
whether the truncation to the (2,12) indicated in (2.32) with 6’ 4y as physical coordi-
nates is to be identified with the action of an O9-plane, and hence with the supergravity
sector of Type I, or with its Syig-dual giving the supergravity sector of Heterotic. The
0(6,6) factor in the duality group of SL(2)-DFT is then interpreted as the T-duality of
Type I or of Heterotic supergravity.

Finally, under SL(2)g, the 3,1;Lype [/Het _ 8y(?'m derivatives in the 6’ ;1) are rotated
into the ByL_m in the 6’( oLy Notice that there is no simple ten-dimensional interpreta-

tion for this dualisation: in terms of its action on fields, this duality mixes metric degrees of
freedom with Cg ones (or Bg), and Cy (or Bg) degrees of freedom with the dual graviton.
As already emphasised, such a dualisation has nothing to do with the Sip-duality relating
Type I and Heterotic.

Summarising, only the Type I/Heterotic theories retain physical coordinates which
are all “bosonic” inside E77) and thus survive the Zsg-truncation halving E77)-EFT to
SL(2)-DFT. They belong to the unique orbit of six-dimensional solutions of the section
constraints of SL(2)-DFT which, in turn, corresponds to the unique half-maximal super-
gravity in ten dimensions. It is known that full moduli stabilisation cannot be achieved
either in Type I or Heterotic compactifications without invoking non-geometric fluxes that
activate non-trivial SL(2)g de Roo-Wageman angles [30]. We will show that these can be
obtained from generalised Scherk-Schwarz [75] reductions of SL(2)-DFT that necessarily
violate the section constraints in (2.6), e.g., by including dependence on coordinates re-
lated to each other by SL(2)g dualisation. As we stressed above, despite the conventional
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name this is not the string theory S-duality evident in Type IIB, and in particular does
not exchange Type I and Heterotic degrees of freedom.

2.5 SL(2)-DFT in the electric frame

The main advantage of the SL(2)-DFT pseudo-action we have provided is that invariance
under generalised diffeomorphisms is manifest term by term except for the scalar potential.
However, it requires one to treat vector fields and their duals in a democratic approach and
to impose (2.17) on top of the field equations. In this section we provide a true'® action
in a symplectic frame where only the A,ﬁM vectors are treated as propagating and have
a kinetic term. This has the double purpose of allowing for a more direct comparison with
the gauged supergravity literature [31] where usually such an action is used, and facilitate
the discussion of the connection between our theory and the formulation of DFT provided
in [67]. Indeed, in the latter an action with true kinetic terms for the physical vector fields
is provided and the appropriate gauge-fixing and dualisation procedures that we will need
to carry out are much simpler if we also start with true kinetic terms. In such an action,
the manifest SL(2) covariance is broken in the vector kinetic terms and in the topological
term.

0O(6,6) covariant electric frame. We choose an Sp(24) symplectic frame where the
twelve vectors A#+M are identified as physical electric vectors. This by no means implies
that the AH*M vectors disappear from the Lagrangian. They become non-dynamical but
still enter the theory via the covariant derivatives D,,, the non-Abelian structure of the
S-bracket and a new topological term /:'top. Similarly to what happens in gauged super-
gravity, the Yang-Mills and topological terms lose their manifest SL(2) duality covariance.
However, the field equations derived from such an action, denoted as §SL<2)_DFT, remain
SL(2)-covariant and reproduce those of the original SL(2)-DFT formulation presented in
section 2.3. After moving to the electric frame, the action is given by

_ . 1 _ 1
L —— / d*rd*ye | R — ————= " D,SD,S + < g" D, M"Y D, Myy
2(ImS)? 8 (2.33)

+ ZV + et Z:Vtop - VSL(2).DFT(M7 9) |,

resembling the one of N' = 4 gauged supergravity [31]. In this formulation, only a subgroup
SO(1,1) x O(6,6) is realised off-shell. The potential remains unaffected by the choice of
symplectic frame and is still given by the expression in (2.23). We also chose to rewrite
the kinetic term for the SL(2) scalars in terms the complex field S. This kinetic term can
be further decomposed to make the dilaton and the axion appear explicitly

1 _ 1 B 1 )
— Wgﬂy D/,LSDVS = igr‘“/’DH(e‘z’)'Dy(e ¢) _ 5 €2¢ g,u ,D,LLXO DVXO . (234)

Note in passing that (2.19) implies
spe”? = A*Moopre? + e PO AM (2.35)

ONote that in order to actually perform integration in the internal space it is still generally necessary to
first solve the section constraint and restrict the integration measure accordingly.
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In the electric frame, the kinetic term and the generalised #-term for the dynamical
vectors A, "M take the form

~ 1 1
Ly = = eImS My Fu ™ F TN = 2 ReS M myn Fiu ™M Fpe™ . (2:36)

In order to discuss how the choice of electric frame affects the structure of the theory, we
introduce a symplectic vector QWO‘M = (QWJFM , QW_M ) defined as

M _ M
guy+ — Jruu+ ’

M MN oLy 1 MN po +P M (2.37)
G = €Euvpo IMS N p M F + ReS F ,

—pMNg ihdad AN
KT OF pot™N 2
where we use a “mostly plus” external spacetime metric and where eg103 = +1. There-
fore QW*M denotes the dual of the electric field strength. Following the construction of
gauge invariant Lagrangians in the presence of electric and magnetic charges [76], the new
transformations of the various fields under generalised diffeomorphisms are now given by

6AA,uaM — leu Aon7
1)
ArBuwpg = evs N p G’ ) » (2.38)
AABuu'yzS =nNrPQ A(fyP g;uz 6)Q )

A/\B;u/ BN — guuypaﬁNA'yP + AfypaﬁNg;w P 5

which in turn induce modifications in the transformation of the field strengths (2.12). By
comparing (2.38) and (2.15) one sees that only the transformations of the tensor fields
under generalised diffeomorphisms are modified. In order to ensure gauge invariance of
the Lagrangian under generalised diffeomorphisms, which is spoiled by the new Ly term
in (2.36), the following topological term is needed

= 1 1
Etop = ghvro |:3 [AU" Ay]gM TIMN (apAg+N — 1 [AP,AU]§N>

1 _ 1 _
+ 5 U A many (0,407 = 114, 4015 )

1
- Z ( 2 nMPnNQa—NBuV PQ + 77MN8+NB,LLV —_

1 _
- WMNa—NBuu —+ = inMNBW —N> MR Fpo f

- % MNP o B, np (nRS 0+rBpr s — % Bs+0 ) ] : (2.39)
Note the dependence of the above expression on the magnetic vectors AM*M . This will be
relevant later on when recovering ordinary DFT.

The tensor gauge transformations are not affected by the choice of electric frame and
can still be read off from (2.15). To check the invariance of the Lagrangian under such
transformations it is convenient to first compute the general variation of EV and Ztop
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with respect to the various fields

~ 1 1 ~
5A,B EV = 5 ghvpe NMN g,uyiM Dp5A0+N + Z 5MVPU77MN g,uuiM aJrN [ABpO'] )
) X (2.40)
5A,B £t0p = _5 ghvr? NMN fuu+M Dp(SAo'_N - Z E'pranMN ]:,UJ/_M 8+N [ABpo'] )

where we have introduced the following notation for the projection onto the space of trivial
gauge parameters

oM [ABW] =2 50‘577MP77NQ85NABW PQ + nMNganﬁ‘S@gNABWW; — %50‘577MNABW5N .

(2.41)
This projection plays an important role and has appeared, for example, in the form of a
Stiickelberg coupling in the expression of the covariant field strengths ]-"W‘"M in (2.12). In
particular, it can be shown using (2.15), that E;O‘M[ABW] = 2Dy, §oM [Z,)]. From (2.40),
it is possible to verify that both Ly and Liop are invariant under tensor gauge trans-
formations (up to total derivatives for the latter). This requires the use of the section
constraints'! and of a Bianchi identity of the form

3Dy Foy™™M = 0°M [H) (2.42)

0]

where the field strengths M., pPq, Huvpys and H,,,sn associated to the tensor fields
B, pqg, Buv~s and By, gy are defined up to terms that vanish upon projection with oM
Of particular relevance will be the expression for the three-form field strengths in the (3,1)
representation

1
P P
Hiuvprs =3 <D[#Blm] 76 = NPQ Alu(y aVAP]5)Q T 3 1PQ Aty [Avs Aglls 5)Q> » (243)
which displays a generalised Chern-Simons like modification based on the S-bracket. This
is the SL(2) analog of the structure found in DFT [67].

The general variation of the Lagrangian (2.33) with respect to the various vector and
tensor fields reads'?

~ 1 _ ~
d4+,4-,B LsL)-ppr = 5A, M [_2 nun € DyGpo N e NASSYE \7”+M}

1 N
+ 64, M [ 3 TN eMP? D, ngJrN +eJ" _mte j”_M] (2.44)

1 ~ _

— @M [ABW v [F 6] Y

where the currents j and J were defined in (2.25). The variation of the Lagrangian
with respect to the tensor fields thus yields a projected duality relation between electric

and magnetic vectors while the variation with respect to the magnetic vectors gives the

"1Tn particular, it can be shown that terms of the form e, nm N goM [o] PN [] reduce to a total derivative
by virtue of the section constraints (2.6).
12Up to total derivatives and terms that vanish as a result of the field equations for tensors.
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duality relation between the tensor fields and the scalars. Observe that the combined field
equations can be written covariantly as

1 N
5 ghvpe DygpcraM = egaﬁ 77MN [ju,b’N + jMﬁN] )
77 9N [AByw] carymuap [F = G] 7N =0, (2.45)

and correctly reproduce the field equations in (2.26) for the vectors obtained from the
manifestly SL(2) covariant pseudo-action of SL(2)-DFT.

Let us finally point out that when taking all the fields to be independent of the internal
generalised coordinates 3™ and y~ | the action (2.33) reduces to the one of ungauged
N = 4 supergravity in four dimensions [31]. In particular, all the magnetic vectors and ten-
sors drop out of the Lagrangian except for two remainders that come from the topological
term and the kinetic term for the electric vectors and that combine into

1, _
5" Bu-m [F =G, M (2.46)
where G ,~™ denote the duals of the Abelian electric field strengths (as defined in (2.37)).
The field equation for the tensors then simply reflects the vector-vector duality in four

dimensions.

2.6 DFT limit and x( <+ By, dualisation

Our goal now is to make contact with the formulation of DFT in [67]. As already mentioned,
SL(2)-DFT must be equivalent to DFT when fields and parameters only depend on y™ =

yt™ coordinates, namely

(Dar, O—11) = (Oa1,0) . (2.47)

The DFT action of [67] contains a dynamical tensor field B, = [t77]7~ B,,__ while
the axion yo is absent. In contrast, both fields appear in the action (2.33) of SL(2)-DFT
although only xo has a kinetic term (2.34). The two fields are dual to each other with their
duality relation being enforced by the field equations for the magnetic vectors in (2.45).
By an appropriate use of the duality relations and after gauge fixing, we will dualise away
the dynamical axion xo from the action (2.33) in favor of a dynamical By, tensor field,
thus recovering the DFT formulation of [67]. In the process, the topological term Ztop will
be absorbed into the kinetic term for B, .

Let us start by applying the DFT limit (2.47) to the equations of motion of the magnetic
vectors in (2.45). In this case it is easy to verify that

ejM—MZOa

e J"_nr = O [e'DM (MB’YMNP) M—VMMP} — oy [ee?d’D“XO] . (2.48)

Using now the definition of the symplectic vector (2.37) in combination with the Bianchi
identity (2.42), the field equations for the magnetic vectors reduce to

1
O ( G Hupo + e*? D“XO) =0, (2.49)
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with Hypo = [t77]7" Hypo—— and where the expression of the three-form field strength
Huvp can be obtained from (2.43) and reads

1
Hywp =3 <D[MBVP] + A[M_N Oy Ap-N — 3 A[M—N [Av, Agls —N> : (2.50)

Note that, in the DFT limit (2.47), [A, E]érM reduces to the C-bracket and that there-
fore (2.50) matches the corresponding expression in [67].

We continue with the gauge fixing of the axion yo = ReS. Applying the DFT limit
to a generalised diffeomorphism (with parameter A“M) acting on the scalar fields of the
theory, one finds that A= only'? affects the gauge transformation of xq

Sp-x0 = oA, (2.51)

and that o transforms as a scalar with respect to AT transformations. The quantity
Op A~ is the parameter of an axionic shift symmetry (both z* and y* dependent)
while D, xo only involves AH*M in the gauge connection

Dyxo = Ouxo — O A~ (2.52)

As a result we can then gauge-fix the A~ transformations by setting yo = 0. This
is the standard procedure for Peccei-Quinn symmetries that allows to remove from the
Lagrangian the generalised #-term: yonyn Tr FTM A FHN | We thus arrive at

and, since A, are non-dynamical in the SL(2)-DFT action (2.33), we can integrate
them away. Substituting (2.53) into the field equations of the magnetic vectors (2.49)
one finds

1
om (6 P H e — %P gM N A, TN > =0. (2.54)
These equations are solved by setting
oA, ™M =e2 (M), +c, with  Ipc, =0, (2.55)

where (xH)¥ = % el ghvpo Hypo is the Hodge dual of H,,; and is a proper four-dimensional
vector.

The last step in the dualisation process is to substitute (2.55) into the relevant terms in
the Lagrangian. These are the kinetic term for yg and Etop . Importantly, it can be shown
that the axion yo drops out of the potential (2.23) when taking the DFT limit. Moreover,
by noticing that only the component [A4,,A,]q M of the S-bracket depends (linearly) on
A/[M in the DFT limit, it is straightforward to observe that magnetic vectors appear at
most linearly in every term of the topological term (2.39). Notice also that only B,
appears, and that the definition of AB,, __ does not contain (5AH*M . This means that

B3Importantly, no other fields entering the Lagrangian are affected by A~ transformations.
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we can simply use the variation (2.40) to deduce a compact expression for Ztop in the
DFT limit. After some algebra one arrives at

[fkin—xg = _% 6€2¢ g'm/ (8MAN7M) (8NAV7N) )
. (2.56)
Liop = 57 (00 Au™) Hupo -

Upon substitution of (2.55) into (2.56), the integration constant ¢, only appears in a term
x c,ct and is thus set to vanish by its own field equation. The remaining terms combine
into the kinetic term for B, , namely

~ 1
Ekin—xo + Etop = —e €_2¢E HHP /H/“,p . (2.57)

Lastly, in order to recover the DFT action in [67] which is presented in the string
frame, we perform a change of variables of the form

G =€’ g, e*l=e?, (2.58)

which in turn induces é = e?? e. The transformations of €, and e~2¢ under generalised

diffeomorphisms with parameter A” = AT can be derived from (2.19) and (2.35) after
using (2.58). They read

Sne = AP 0pe,®  and  dpe 2= AP Ope 2+ e 2 9pAY = 9p (e*Z‘dAP) (259
so that, as wanted, €, and e~24 respectively transform as a scalar and a scalar density
under the A transformations of DFT [67]. Note that the transformation of the SO(6,6)
scalar matrix M™% can be straightforwardly deduced from (2.19) and also matches the
DFT expression. The density term in the transformation of e3¢ is associated with an RJ]SFT
which appears explicitly in the right column of table 1, and which is a linear combination'*
of the original RT in SL(2)-DFT and the R* C SL(2). Furthermore, the rescaling of the

external metric is responsible for a shift of the modified external Ricci scalar, as is usual
when moving from the Einstein to the string frame in four dimensions

. N B o
Ri(e) = e?R(e) + 5 ¢” §" Dud Dy + 3¢ 3" DDy (2.60)

Here 15# is the spacetime derivative covariantised with respect to both external and in-
ternal generalised diffeomorphisms (i.e. it contains generalised Christoffel symbols). When
substituted into the action, the last term is integrated by parts. In the process, one directly
drops a total D, derivative. This is allowed since it acts on a scalar density of weight 1
under R ... Note also that the rescaling (2.58) has no effect on the F,, ™ term in the
modified Ricci scalar. After taking the DFT limit, dualising the axion yg into a tensor

4 As mentioned before, the correct weights in the DFT limit of the various fields under Rf.. were
already assigned through the choice of the coefficients for the density terms in (2.19).
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field By, and moving to the string frame, the action (2.33) then reduces to

- 1
Sppr = / dtz dPyée 2 [R(é) +4DHdD,d + 3 DHMMYN D, My

. ) (2.61)
= 13 Huwp H"? = 3 Magx Fyu M FH N = Vopr (d, Mur, 9) |
where the field strengths of the electric vectors read'®
Ful =Fu, ™M =F, ™ - nMNoyB,, (2.62)

and where external space-time indices are now raised and lowered with the rescaled metric
Juv - Finally, the part of the Lagrangian containing the potential takes the form

Lpot = — é€_2d Vorr
_ _aqll 1
—ge 3 MMN 9y MEEY (OnMkr) — 3 MMN (9 MEE) (0p M)

— 2(0ud) (OnMMN) + 4 MMN (0prd) (Ond) (2.63)

1 - w1 ~7 o R
g MY O On g™+ MM G OMG) G (0n)
1 L -
— 2MMN (9yd) G (OnG) + 3 (O MM g 1(5Ng)] :

As previously stated, the axion xo cancels out in the above expression. Dropping a total
derivative'® and using é71(0y€) = 5§71 (01 7) , the potential (2.63) can be expressed as

1 1 . N e -
Looe = ¢ 2[RI M) + 3 MY gy Og™ + 3 MY g7 (0:9) ' (0v0) | . (264)
where R(d, M) is the Ricci scalar for the internal doubled-space [77]

1 1
R(d, M) = 3 MMN (3MMKL) (ONMkr) — 5 MMN (3NMKL)(8LMMK) — 8M6NMMN
— A MMN (0pd)(Ond) + 4 (O MMYY (Ond) + 4 MMN (9p0nd) . (2.65)

The potential (2.64) corresponds to the one derived in [67] up to the last term.

5 Note that the last term from (2.12), i.e. f% 77MNBW,_N7 is absent as B, om are covariantly con-
strained compensating fields solving (2.9) as the internal derivatives (2.47). This sets B, —am = 0.
16Note that the second line of (2.63) can be rewritten as follows:

ée_Qd |: — (8M(3NMMN) — 4 MMN (8Md) (8Nd) +40nM (MMN aNd)

— e (Omr@) [aNMMN —4MMN aNd] ] +Oum ( Ge 2 [aNMMN —4MMN aNd] ) :
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3 Gauge vectors and non-Abelian deformations
In this section we generalise the previous construction of SL(2)-DFT in two steps:

a) Firstly, the SL(2)-DFT is extended to include 2 x n gauge vectors. This theory does
not descend from a truncation of E77y-EFT as the SL(2) x O(6,6+n) duality group
cannot be embedded into the exceptional duality group of maximal supergravity.

b) Secondly, this SL(2) x O(6,6 + n) extended field theory is shown to admit defor-
mations of its generalised Lie derivative. Such deformations are in parallel with the
embedding tensor deformations of N/ =4 gauged supergravity in four dimensions.

3.1 SL(2) x O(6,6 + n) extended field theory

We discuss the SL(2) generalisation of the Abelian DFT constructed in [68]. The latter
is an ordinary DFT coupled to n, = n Abelian gauge vectors that features an enhanced
O(6,6 +n) duality group. In addition to the internal coordinates dual to momentum and
winding as well as to the n gauge vectors, the SL(2)-DFT considered here contains a second
copy of such coordinates and therefore the full set of coordinates fills the (2,12 + n)
representation of the duality group SL(2) x O(6,6 +n).

The SL(2) x O(6,6 + n) extended field theory with Abelian gauge vectors is still
formally described by the action (2.18). The theory has generalised internal coordinates

y M = (y*™, Y,y (3.1)

where (3™, y%,) with m = 1,...,6 correspond to O(6,6) coordinates and y®4 with
A =1,...,n runs over the additional gauge vectors AMO“A . As in the previous sections, o =
+, — denotes the SL(2) fundamental index. The structure tensor of the SL(2) x O(6,6+n)
theory is still given by the expression in (2.2), but this time 7y/n denotes the O(6,6 + n)-
invariant metric. When the O(6,6) block is expressed in light-cone coordinates, it takes
the form

0 Ig| O

NMN = (3.2)

It is important to mention that, despite the presence of the additional set of 2 x n
gauge vectors, the analysis of the solutions of the section constraints (2.6) does not change.
Any dependence of the fields and parameters on the extra 2 x n coordinates that must
be introduced to fill the (2,12 4+ n) irrep of SL(2) x O(6,6 + n) is forbidden by the
section constraints, analogously to the Heterotic DFT case [68]. This is a consequence of
the dap block in the metric (3.2). The two solutions of the section constraints described
before now correspond to chiral half-maximal supergravity in six dimensions coupled to
ny = 5+ n tensor multiplets and half-maximal (4 + d)-dimensional supergravity coupled
to ny = 6 —d+ n vector multiplets (d < 6).
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3.2 Non-Abelian deformations of SL(2)-DFT

We now discuss the SL(2) generalisation of the non-Abelian DFT constructed in [68]. The
latter is an ordinary DFT coupled to n, = n non-Abelian gauge vectors that formally
preserves O(6,6 + n), where n is the dimension of the gauge group. To this end, we
will introduce consistent deformations of the generalised diffeomorphisms in SL(2)-DFT.
Importantly, and unlike in [68], we will study deformations of the full SL(2) x O(6,6 4+ n)
generalised diffeomorphisms, and not only of the vector sector. We will find non-Abelian
structures both in the gauge and gravity sectors, the latter being associated with turning
on background fluxes for the dilaton and the B-field in the Type I/Heterotic theory. As
we will show, all these deformations can be reabsorbed into field redefinitions except for
the Yang-Mills gauge group structure constants. This is analogous to the EFT case where,
however, there is the one notable exception of the non-trivial deformation corresponding
to the Romans mass parameter in type IIA supergravity [69, 78].

3.2.1 Deformed generalised Lie derivative

Following the original construction in E(7)-EFT [69], we first introduce a deformed gener-

Uon

alised Lie derivative Ly . It acts on a vector of weight Ay as

LAUM = Lp\UM — X, poMAPN UP (3.3)

where L, is the undeformed generalised Lie derivative defined in (2.3), and where the
deformation XQMBNVP is SL(2) x O(6,6 + n)-algebra valued such that XaMgN'YP =
Oun N [tﬁer/p/]ﬁN'YP . As in [69], the X deformation is subject to a set of quadratic
constraints necessary for the closure of the generalised diffeomorphisms algebra and of
the Jacobi identity. In addition, the deformation is subject to linear (or representation)
constraints which are required for the consistency of the deformed tensor hierarchy. These
linear constraints allow the following decomposition of the X deformation in terms of the
constant irreducible representations faoymnp = founp) and Ean of the duality group

1
Xamipn " = =0} fanrn” + 3 (5]51 04 Ean — 6N 03 Eanr — 64 EXNMN + €ap ON Eonr 857) ;
(3.4)
or, equivalently,

1
124 n

1
(“)QMBNVP _ 76’67 (faMNP + 6E\]}[ gap]> + 6&3 é"Y)MnNP ) (35)

2
To make the forthcoming formulae lighter, it will prove convenient to introduce hat-
ted index-pairs M =aM, N = BN, etc. These can be understood as Sp(24 + 2n)
fundamental indices which are raised and lowered with the symplectic invariant matrix
Q5 = €apnun - In terms of these indices, the representation constraints read !’

XM[NP] =0 and X(]V[Nﬁ) =0. (36)

"It is worth noticing that Xy, ™ = (4 + 2) &5 -
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As explained in [31], it is the second equation in (3.6) that allows one to write the gauge
group generators as in (3.4), and leads to a consistent tensor hierarchy in N' = 4 gauged
supergravity.

Closure of the deformed generalised diffeomorphisms algebra requires

[EA,HNJZ] WM =Ly s, WM, (3.7)
where the X-bracket [-,:]x is defined as
o . -
(ATl = 5 (Caz¥ —Loa) = [A,T) — X" AV EP (3.8)

The general analysis of the closure relation (3.7) performed in [69] shows that

g M T M _ M NP8 ) ANP N
(Lo, Lo | W — Ljp sy W = Al AVSPWS 4 X @ AN 5P, W
. (3.9)
MQ N sRiyi7S 4 ARyNyi8
+BYS, (A 9 =FWS — 9 APV W )
where the section constraint Y MV PO 0y ® 05 = 0 has already been imposed, and where
the tensors A and B take the form

Mo _ox My Oy Ny O
AN e = 2X 6™ X 5159 = X o™ X g

NPS [NP]
MQ _ M 5Q 3 M
Bygs = Xm0 — Xng“g (3.10)
a a N A a - NN N 1 a a -
M P P M M P P M
+Y MO X s = YT s X g™ + Y M 5 Xy —3Y e Xpg" -

The closure relation in (3.9) then requires
Mo _ Q. — MQ 5 _
AN =0, XgpQ05=0 and By 05=0. (3.11)
The set of conditions (3.11) is not yet final. As for E7(7)-XFT [69], the deformed X-bracket
in (3.8) does not define a Lie algebra since the Jacobi identity is not satisfied. Instead, finds

1
[[A, Y)x, F]X + cycl. = 3 {[A, Yx, F}X + cycl., (3.12)
where the modified version of the symmetric bracket in (2.7) reads
. 1 /~ N . N N N N N
e =3 (LAzM + ]LZAM) = {A S~ X gp AT 2P (3.13)

Consistency then requires that {A, Z}% corresponds to a trivial gauge parameter such
that LLyj sy, vanishes identically. Using again of the general results in [69], one has

g M MR ) PrrS PvO7rS R A PO M
Lo sy UM = O (AQ055PU + 0507 SOUS) = X g B APR2 05U -
R N A PxOrr8 ’
+ X poy " Xpg™ ATECUT,
where the tensor C reads
~ A ~ ~ NN ~ 1 ~ A N
MR __ . MsR MR . T _ - yTR .M
Clbe = Xpe)" 08 — Y15 X pg)" = 5V pg Xp6™ (3.15)

~ 93 -



This time the closure conditions (3.11) have been used. Therefore, the triviality of the
modified symmetric bracket translates into the set of conditions

R M _ R _ MR _
X(PQ) X}A%S' —0, X(PQ) GR—O and CS‘?Q 8R—O. (3.16)
Combining the various constraints necessary for the consistency of the gauge algebra, we
obtain the following minimal set:

YMN[JQ Oy @05 =0 ( section constraint )
XMNP dp =0 ( X-constraint )

MR MR T TR M '
(X(PQ) 05 =Y s Xpg) — 5V Tpo Xis ) 95=0 ( C-constraint )

X slX & pQ =0 ( quadratic constraint )

(3.17)
Note that the B-constraint is absent as it can be shown to follow from the X-constraint.

) R : R
i Xgp® = Xgp " Xyp® + Xy "X

It is also important to notice at this point that contrarily to the E77)-EFT case, the
C-constraint is no longer (at least fully) implied by the X-constraint.

We close this section by giving the expression of the various constraints in terms of
the irreducible components foanvp and E,pr presented in (3.4). The section constraint
reduces to the relations presented in (2.6) while after some algebra, the X-constraint can

be written as u
& O =0,

N 7 ap =0, (3.18)

& dam) ~ 575,

farin® 9ap + €501 Qo) = 0.
The C-constraint imposes further restrictions. Assuming that the section constraints
in (2.6) and the X-constraint (3.18) hold, then the C-constraint is satisfied provided that
v A8 aN BR _ o . .
da €™ NN [M C\W\S\AlPlé\Q] Ogr = 0. This gives the following extra restriction
z’:‘aﬁ fa[MSP a‘mQ} =0. (3.19)

As in gauged supergravity, the quadratic constraint in (3.17) is the requirement that the
gauge group generators X = (X ;) NP =Xy NP form a closed set and have commutation
relations .
P
(X Xx) = —Xun' Xp - (3.20)
It decomposes as follows
Carr €M =0,
5(5 foypun =0,
3 farMN fﬁPQ]R + 28 foyneg =0, (3.21)
e (& fapun + Eanr €pn) =0,
e’ (faMNR fapo ™ = &5 farpap noiny — Eapnr fanipg + alp fﬁQ]MN) =0.

We will come back to the set of consistency constraints in (3.17) when classifying the
deformations compatible with the Type I/Heterotic solution of the section constraint.
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3.2.2 Structure of SL(2)-XFT

Deformations of the generalised Lie derivative based on an embedding tensor like object
X were introduced in the context of E77y-EFT in [69]. A set of modifications occurs at the
level of the tensor hierarchy and the action induced by the X deformation (3.4), although
the field content of the theory remains unchanged. We will refer to the deformed theory
as SL(2)-XFT. When taking the fields and parameters to be independent of the internal
space coordinates y*™ the SL(2)-XFT reduces to N = 4 gauged supergravity in four
dimensions [31] and the X deformation is identified with the embedding tensor. On the
contrary, when the X deformation is set to zero, the undeformed SL(2)-DFT is recovered.

The implementation of the X deformation in the case of SL(2)-DFT is in direct
analogy with the construction of the E;(7)-XFT in [69]. For this reason we will only give
a minimal presentation of the relevant structures in the presence of an X deformation.
Importantly, when restricted to n = 0, the results presented here can be obtained from
the Zs-truncation of the tensor hierarchy and action of the E(7)-XFT. The generalisation
to arbitrary n is then immediate and can be argued on the basis of covariance of the
theory with respect to the SL(2) x O(6,6 + n) duality group. The various modifications
of the SL(2)-DFT tensor hierarchy presented in section 2.2 are induced by the fact that
the (2,12 + n) vectors A,*M transform under modified generalised diffeomorphisms as

SpAM = D, AM = (au L Au) AM (3.22)

where D,, is now further covariantised with respect to the gauge symmetries generated by
the X deformation. As in gauged supergravity, the associated field strengths ]-'WaM are
no longer covariant with respect to such gauge transformations, and must be modified with
Stiickelberg-like couplings to tensor fields of the form Q@MAN @/3N'YP 5QBW ~PsQ Where
By vpsq = €45 Buw Pg + 1@ By 45 - After using (3.5), one finds

f/u/aM = F;waM + 5QM[B;W] + 5a5 (fﬂMNP + 77MN gﬂp) BMZ/NP + 50[5 {yMB,uuﬂ’y s
(3.23)
which accounts for both the tensor hierarchy of SL(2)-DFT and the one of N’ =4 gauged
supergravity. The modification of the vector and tensor gauge transformations (2.15)
induced by the X deformation (more conveniently © in order to avoid traces over I'-
matrices) can be derived following the same steps as in [69]. We will not present here the
modified version of the tensor hierarchy, but it can be verified that

Op Fu®M =Ly FpoM and 6= Fu®™M = 0. (3.24)

As for the SL(2)-DFT, the dynamics of SL(2)-XFT can be encoded into a gauge in-
variant pseudo-action supplemented by a set of twisted self-duality equations. The pseudo-
action takes the same form as the SL(2)-DFT expressions (2.17) and (2.18), but with
covariant derivatives and field strengths being now further covariantised with respect to
the X deformation as in (3.22) and (3.23). From the gauge transformations (3.24) of
the field strengths, it should be clear that all the terms remain separately invariant under
vector and tensor gauge transformations with the exception of the potential which requires
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a closer look. Once again in analogy to [69], the potential in SL(2)-XFT can be expressed
as the sum of three contributions

Var)-xrr(M, 9, X) = Vsr2)-prr (M, 9) + Veross(M, X) + Vsugra(M, X),  (3.25)

where the first term denotes the SL(2)-DFT potential presented in (2.23) while the second
and third terms depend linearly and quadratically on the X deformation, respectively.
When expressed in terms of the irreducible pieces forrnp and &qpr these are given by

1
Veross = — 5 MQBMMNMKL faMKP a51\7A7\4PL

1
2
— MPMMNM & v Opn Mas

MEBppMN MKLnM[K €as) P8 Oan Mpy (3.26)

and

1 1
Vsugra = B faminp faors MOPMMONNEAPS 4 1 fann” fapg™ MOPMMC

16
-9 farinp foqrs e®P MMNPQRS

+ 12 &ans Ean MOP MMV

1
+ 6 faMNP fﬁMNP Maﬂ (327)

As previously stated, when all the fields are independent of the internal coordinates, the
first and second terms in (3.25) vanish while (3.27) reduces to the scalar potential of
N = 4 gauged supergravity [31]. The potential in SL(2)-XFT can formally be derived
by requiring invariance under generalised diffeomorphisms. The first term in (3.25) serves
as the basis of the construction since one should reproduce the SL(2)-DFT potential by
turning off the X deformation. Due to the presence of the deformation in the generalised
Lie derivative (3.3), the variation of this first term under generalised diffeomorphisms does
not vanish as in SL(2)-DFT and gives terms which are linear in the deformation. In order
to cancel these, one must add the second term in (3.25) which however also generates new
terms that are quadratic in the deformation. These eventually cancel against the last term
in (3.25). This scheme ends here as the last term does not contain partial derivatives
along the internal space and therefore does not generate variations of higher-order in the
deformation. For this computation, it is crucial to recall that the X deformation does not
transform covariantly but as

0= (SAXMNP 7& EAXMNP = 28[M ARX‘EN}P + YPQRN 8QAS XS’MR’ (3.28)
under deformed generalised diffeomorphisms [69].

A last remark can be made when n = 0. In this case most of the X-dependent terms
in the potential (3.25) can be systematically obtained by considering the Zs-truncation
of the E77)-XFT potential in [69]. Here one must however proceed with care as the
truncated X- and quadratic constraints of E7(7)-XFT might be stronger than the constraints
of SL(2)-XFT (3.17), and therefore could implicitly prohibit the presence of certain terms

originally present in (3.25). In fact, it is already known from the supergravity analysis of [34]
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that, after the Zo-truncation, the quadratic constraints of E77)-XFT correspond to the set
in (3.21) supplemented with two additional quadratic constraints (see eq. (4.25) below). It
can also be shown (see appendix A.4) that the truncated X-constraint of E(7)-XFT is in
one-to-one correspondance with the X- and C-constraints of SL(2)-XFT. For these reasons,
the Zo-truncation of the potential in E77)-XFT must yield the full expression of the cross-
term (3.26) but only part of (3.27). Indeed, due to the two extra quadratic constraints,
the first term of the second line is restricted to its anti-self-dual part while the second term
in the same line is absent.

3.2.3 Deformations of the Type I/Heterotic theory

Let us solve the section constraint in (3.17) by allowing the fields and parameters of the
theory to depend only on the Type I/Heterotic y™ = y™™ internal coordinates in (3.1),
namely

Om=0im#0  and 9y =0_p =0_™ =0, =0. (3.29)

An analysis of the X-constraint in (3.18) reveals that the only deformations that are allowed
are of the form

€+m ) §+A and famnp ) fozmnc ) famBC ) faABC . (330)

However the C-constraint in (3.19) imposes f_pnvp = 0, thus leaving a final set of defor-
mations

Exm, &+a and f-l-mnp > f+mnc ) f-i-mBC , f-i-ABC . (3-31)

The above parameters have an interpretation in the context of the Type I/Heterotic
theory. First, it is worth noticing that £, 4 is set to zero by the first quadratic constraint
in (3.21). Then the remaining parameters in (3.31) have the following interpretation

&m ¢ dilaton flux,
fomnp @ Hpmnp flux (for Cy in Type I or By in Heterotic) ,

frmnC ¢ Fun© gauge flux | (3.32)

fimP€ : O(n) Scherk-Schwarz flux (compact) ,

f+ABC . Yang-Mills gauge group in 10D .

Amongst the above deformations only the Yang-Mills structure constants f.48¢ cannot
be generated by field redefinitions in the undeformed SL(2)-DFT theory. The reason being
that they correspond to a non-Abelian deformation already in ten dimensions. In contrast,
the F,B¢ = f,,,B¢ deformations can be obtained by an O(n)-valued Scherk-Schwarz-like
redefinition of (the internal components of) the ten-dimensional gauge vectors

Apz,y) = AnB(z,y) Es?(y)  with  Epd(y) € O(n) . (3.33)

It is worth mentioning that the quadratic constraints (3.21) still impose further restric-
tions on the deformations (3.32). For example, in the absence of any other deformations,
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the Fn® = frmn© are required to be invariant under the ten-dimensional gauge group
specified by fABC = f,ABC  In other words, only Abelian field strengths F,,¢ can
induce a deformation by themselves. This restriction is modified in the presence of other
deformations. Also, when taking the DFT limit and restricting the deformation only to
the Yang-Mills piece f{4B¢ £ 0, the potential (3.25) reduces to the potential in [68] for
the DFT formulation of Heterotic strings coupled to n, = n non-Abelian vector fields.

Except for the Yang-Mills structure constants fAPC | all the f-type deformations
in (3.32) can be generated as a Scherk-Schwarz-like redefinition of the vector fields
A M(z,y) — AN (z,y) E(y)v™ with

€ SO™(6,6 +n) . (3.34)

The E(y) matrix (3.34) is the most general one satisfying the E-constraint of [69], namely
EuyNoun = 511\\74 JaN , after choosing the Type I/Heterotic solution of the section con-
straints. The associated torsion yields the f-type deformations above. Schematically,

H(3) ~ db(g) + CS(CL(l)) y F(Q)A ~ da(l)B (ek)BA and F(l)AB ~ dk‘AB s (3.35)

where CS(a(y) is the non-Abelian Chern-Simons term entering the H(s) field strength in
N =1 ten-dimensional supergravity. Notice that, while b(z) and a(l)A can be regarded as
background values for scalar fields in the theory, the algebra-valued k4” € so(n) cannot
and simply induces an SO(n) redefinition of the gauge vectors.

4 Scherk-Schwarz reductions and de Roo-Wagemans angles

Thus far, one of the most successful applications of extended field theories has been the
derivation of consistent reduction ansétze of 11D /10D supergravities on non-trivial internal
spaces by performing generalised Scherk-Schwarz (SS) reductions. While most of the results
are in the context of exceptional field theories [13—15, 78, 79|, there are also interesting
constructions in DFT [80]. However, generalised SS reductions of DET [28, 29] only produce
electric gaugings of N’ = 4 supergravity: non-trivial de Roo-Wagemans angles [30] cannot
be generated due to the absence of the SL(2) factor in the duality group. The resulting
scalar potential cannot accommodate de Sitter (dS) or anti-de Sitter (AdS) vacua but only
Minkowski or domain-wall solutions. In other words, full moduli stabilisation including the
SL(2) dilaton S in (2.33) is not possible in ordinary DFT.

The SL(2)-DFT constructed here includes the relevant SL(2) factor in the duality
group and potentially allows for generalised SS reductions producing N = 4 gaugings at
non-trivial SL(2) de Roo-Wagemans angles. However such gaugings at SL(2) angles turn
to require a non-trivial dependence of the fields on both y* and y~ types of coordinates
simultaneously, thus violating the section constraints (2.6). This issue is the SL(2) analog
of the violation of the O(d,d+n) section constraint in DFT. Although the construction of
SL(2)-DFT strongly relies on imposing these constraints, we will still proceed and look at
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the classes of N’ =4 gaugings with n = 0 that are accessible as generalised SS reductions
when they are relaxed. Similarly to what has been done in DFT [81], developing a flux
formulation of SL(2)-DFT would help to understand this and other related issues. This
goes beyond the scope of the paper and will be investigated somewhere else.

4.1 Generalised frames and torsion

Our starting point is a generalised frame matrix (E~1),0/%" (y) € RT x SL(2) x O(6,6)
for the extended internal space'® taking the general form
(B )™ =eMe " (U), ", (4.1)

aM M

where e*¥) € Rt e,2(y) € SL(2,R) and Up2(y) € SO(6,6). From now on we will
denote (E~1)o0PN = E,u®V, and similarly for (U71)yY and (e7!),”, whenever we
write indices explicitly. In a Scherk-Schwarz like reduction of SL(2)-DFT, the frame (4.1) is
used to factorise the internal space y** dependence of the fields. Consequently, quantities
with underlined indices correspond to four-dimensional (z* dependent) ones.

Applying a generalised diffeomorphism (2.1) on a vector field Egy with parameter
Eqoym , where aM and SN must be understood as labels, one encounters

L, Esn = —Xarmpn™ Eyp . (4.2)
Following the procedure in exceptional generalised geometry [82, 83], the torsion X,z NE
can be written as

WP yaPeQ

Xar pvIE = Wan sn2E — Won am AR N WoQan™™, (4.3)

in terms of the Weitzenbock connection

Want g2 = e e *Upr™ [%1 (U™ 0antU) y 2 + 52 (e Bunre) 2 + 357 05" 8aM)\] .

- (4.4)
The torsion (4.3) can be decomposed into the same irreducible pieces as the embedding
tensor of a (trombone) gauging of N' =4 supergravity, namely

Xam pN 1P = —€gy faunp = €gyMuN (€la|P) T2V jal P)) — Sa(ply MNP — Vamepg,Np -
(4.5)
In (4.5) we have included the trombone gauging parameter'? 9,5, which is not present
in the embedding tensor deformation (3.4) of the AN/ = 4 supergravity action [31]. The
first two terms in (4.5) gauge a subalgebra of SO(6,6), whereas the last two terms gauge
respectively a subalgebra of SL(2) and the trombone R*. The expressions for the irreducible

18The frame Fon2Y could still be (x,y) dependent if we regarded it as the generalised frame in a frame
formulation of SL(2)-DFT. We are not considering this possibility here.

9Notice that the trace )(0471%@71\;M # 0 even when the trombone component vanishes. This differs from
the maximally supersymmetric case.
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components in the torsion are given by:?’

farnp = =3¢ ey nQM Un™ UB]P danUp2,

é‘m = e‘AUMMaaMeQO‘ — 6_)‘egaaaMUMM + e‘AeQO‘UMMaaM)\, (4_6)
1 3
19% = 567)‘8&]\/1 (UMMega) — §€7A€QQUMM8QM/\ .

A generalised Scherk-Schwarz reduction requires these three objects to be constant. Re-
quiring no trombone gaugings, i.e. Y,n = 0, corresponds to a generalised unimodularity
condition for the SS ansatz, which guarantees consistency of the reduction not only at the
level of the EOM’s but also at the level of the actions (at least as long as the internal space
is compact).

DFT limit and electric gaugings. In order to make contact with some of the results
found in the DFT literature we must impose the DFT limit (2.47) so that 0_pE,?Y = 0.

+

As a consequence, only e, appears in the torsion pieces (4.6). We will also assume the

unimodularity condition Y,n = 0. The requirement of constant .,y and famnp then
implies e T x €;+ with a coordinate-independent proportionality constant. Applying
then a constant SL(2,R) transformation in order to set e_+* =0 ,2! one sees that all four-
dimensional N' = 4 gauged supergravities that can be obtained from (locally) geometric
generalised Scherk-Schwarz reductions of ten-dimensional N = 1 supergravity, or even
from locally non-geometric reductions of DFT, only give rise to electric gaugings. Namely,
gaugings that satisfy f_pnp =E&_p =0, possibly up to a duality redefinition.

Following the above reasoning we now recover the explicit expressions for the torsion
in ref [28]. We will assume dependence on y*# coordinates only and restrict the SL(2,R)

ea® = (eM e/\zf(erM)) | n

twist matrix as

0 e~ 2

There is no loss of generality in such a restriction as long as we impose unimodularity,

which we will at due time. The function f(y*") is arbitrary and drops out entirely from
the torsion. Then, all & = — components of the torsion irrep’s vanish and the other ones
reduce to N N »
fiunp = —3eP2” )WQ[M U™ Upy" 04 nUP2,
Eonr = 2N (UMD (A + No) = OpnUn™] (4.8)

—2 ﬁﬂ = 6()‘2_>‘) [UMM8+M (3/\ — AQ) — 8+MUMM] .
Performing a bit of algebra we notice that once we set to zero the trombone component,
Y4m = 0, there are some equivalent ways to write &y :

Eonr = 2UnM0 (G(AQ—A)> = P2 N[220, 3 Un™ + 4UnM parh] (4.9)

200ne could in principle redefine £, by terms proportional to ¥, asr (and/or vice-versa) and appropriately
modify the last three terms in (4.5). Our definitions are unambiguous in that we identify &,ap with the
source of SL(2) gauging and ¥onm with the trombone one.

21This is a duality transformation in the truncated four-dimensional theory, i.e. the dualisation acts on
the ‘flat’ index o and does not affect the internal derivatives.
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These two relations were identified in [28] as necessary conditions for the Scherk-Schwarz
reduction of DFT to produce an N = 4 gauged supergravity. The first one is needed for the
(external) three-form field strength H,,, obtained upon reduction to match the gauged
supergravity form [31]. This is

Hyuwp =303, By = 343, By 2Un™ Opar (¢ 7V) + (4.10)
| .
= 33[#31,[,] — 3A[uMBVp] fﬂ + ...

The second one is needed to recover the scalar potential of the N' = 4 gauged supergravity.
Finally, the identification between the twist parameters here (left) and in ref. [28] (right)
reads: Uy™ = Ey™, A=d and (A —\) = 1.

4.2 SO(3)* P x U(1)° gaugings at SL(2) angles

In this section we present twist matrices (4.1) whose associated torsion reproduces the
embedding tensor of families of SO(3)(*~?) x U(1)? gaugings of N' = 4 supergravity
with p = 0,...,4.22 These include the most general family of SO(4) x SO(4) gaugings
(p = 0) studied in [70]. To this end, we will construct generalised frames with A =0 and
eq” = 0,", namely

(B an ™ =07 (U, Y (4.11)

where U € SO(6,6) depends on both y™ and y=™ coordinates, thus violating the
section constraints (2.6). The form of the frame in (4.11) implies that the unimodularity
condition ¥Jop = 0 translates into JpnUn™ = 0 and automatically implies &4 = 0.
When using light-cone coordinates, the U twist matrix in (4.11) can be parameterised as

N (. aM\ _ ]16 06 ]16 b u 06
o= (i) () (o)
(4.12)

_ U™ bmp (u™")Py
o\ pme up™ (U_t)mﬂ + 5P bpg (U_t)qn ,

with oM = (y y*™) and m = 1,...,6. For the sake of simplicity, we will consider
sub-classes of twist matrices of the form

U e SO(3,3)(1) X 80(3,3)(2) C 80(6,6) . (4.13)
This translates into a further splitting of coordinates of the form y®™ = (y®,y),

YoM = (y2a yo?) with @ = 1,2,3, i = 4,5,6, and a block-diagonal structure of the twist
parameters

an _ (ﬁ(l))ab 03 y b _ (b(l))ab 03 unn — (U(l))ab O3 .
05 (B4 ) ™ 03 (b)) ) 03 (u@))d )’
(

*2No fundamental matter is charged under the U(1) factors.
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where the (1) (5) labels refer to the SO(3,3)(1) (o) factors, respectively. We refer the reader
to [63] for an account on SO(3,3) twist matrices in the context of generalised SS reductions
of DFT to 7D half-maximal gauged supergravity.

The general families of SO(3)*~?) x U(1)? gaugings of ' = 4 supergravity are
obtained from twisting parameters (4.14) of the form

1 0 0
uay@ = | 03 (COSY(I),@) +0085~’(1>,(2>) -3 (Sin Yoo + Sinf’(lw)) ; (4.15)
0 4 (sin Yo, +sin ¥y ) § (cos ¥iay o) +cos V)
0 0
by =| Y 0 2 sin (Yu),@) - Y(1>,<2>) : (4.16)
0 =4 sin (Y~ Yoy 0
and
0 0 0
. -
By,2) = 0 0 tan <§ (Y(1),(2) - Y(1),(2))) , (4.17)
0 —tan (4 (Yo, ~ Yo ) 0
which depend on four linear combinations of coordinates given by
Yoy = (@i = b)) (v =) + (wr =) (v = v77).
(4.18)

(y+4 — y”) + (wy —hy) (y_4 — y“i) :
= (wf +hi <y+4 + y”) + (wy +hg) (gf‘l + y*‘i) .

These gaugings are specified by eight arbitrary parameters that activate sixteen components
inside the f,a/np piece of the torsion:

frave =h{,  frae=wi s fiape =P figpe = w1,

frigp="hs, frgp=ws, fagp=hi, figp=ws, (4.19)
flbc:hl_v flbézwl_a fi&::hl_v f—aBE Wy ‘
foigk=hy s fyp=wo s fagp=hy, fagp=wy

The eight arbitrary parameters can be mapped to four gauge couplings and four SL(2)
orientations, one pair for each SO(3) or U(1)® factor of the gauge group. The twist
matrix U constructed from (4.15)(4.17) satisfies 9onUpn™ = 0, which in turn implies
é‘M = ﬂm =0.

Let us take a closer look at the (purely f) four-dimensional gauge algebra determined
by the commutation relations [ Xqa, Xgn] = fMB Xgp . Moving temporarily to con-
ventions where nyn = diag(—Is, ), an analysis of the components of the embedding
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tensor QPP = %5’8—7 farrME shows that these families of N = 4 gaugings involve

SO(6,6) generators tyn and vector fields A, of the form

tab Do(wf b)) eabe A+ (w0 = hy) €abe A=E

S0(3.3) 1) L oy L Cory (420)
tera)ere): (W +hT) €abe A + (wi +hy) Eape Ap—
tij : (w;r - h;) €ijk Auﬂ + (W; - h;) €ijk Au;k )

SO(3, 3)(2) - T T —(64k) (4.21)

toriyor): (W3 +h3) eogn A 4+ (wy + hy) e A, =CH

Each of the sets of generators tap, f(6ra)(64+b), fij and f(eii)6+j) corresponds to an
SO(3) factor inside SO(3,3) x SO(3,3). By taking identifications amongst the param-
eters in (4.20) and (4.21), it is possible to decouple some of these SO(3)’s to obtain
SO(3)(4=P) x U(1)% gaugings with p =0, ...,4. For any value of p, the N' =4 quadratic
constraints in (3.21) are satisfied. The gauging parameters in (4.19) correspond then to a
consistent superposition of fi and f- configurations, each of which contains two copies
of a three-dimensional chain H — w — @ — R of non-geometric T-dual fluxes [50]

frave =HM e, frave =P a®,  frape = Q% fiu, = R

frije = H frir = wh ik fiige = Qi Tk = Rk,

fabe = H(_)Lbcv foabe = w(_)@gv fil_zc: Q(')@g, fil_f: R(')Lbc’
Foige =HOO 4, foijk = WOk f = QDY i = RO,

(4.22)

Hence, a higher-dimensional interpretation in terms of Type I/Heterotic T-folds [84, 85]
could generically be available when f_ =0 (or f; =0).

Section constraint violating terms and non-geometry. Section constraint violating
terms have been an indicator of non-geometry in the DFT literature [63]. More concretely,
when working with a frame formulation of DFT [28] (see also [29, 68]), a section constraint
violating term of the form

1

G e?@ frnp FUNE (4.23)
was introduced in order to reproduce the scalar potential of N = 4 (electrically) gauged
supergravity upon generalised Scherk-Schwarz reductions. The term (4.23) is just the

(a, B) = (+,+) component of the SL(2)-covariant expression

é M2(2) fanrp 502 (4.24)

The contraction farmnp f3MYE was identified with one of the two additional quadratic

constraints that must be imposed on an N = 4 gauging with n = 0 for it to be liftable
to an N =8 one. More concretely, these two additional constraints read [34]

Jaunr F2qrs) | =0 and fanrnp fgE =0, (4.25)
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where SD stands for the self-dual part of the SO(6,6) six-form. Note that if f = f, then
the contractions in (4.25) reproduce the unique section constraint violating term (4.23)
of DFT. It is also worth emphasising that the second constraint in (4.25) can be formally
extended to arbitrary n whereas the first one is defined only if n = 0. It is only in this case
that the field content of the Type I/Heterotic theory can be mapped to the universal sector
of the Type II theories. We can adopt the same criterion as in DFT and use the violation
of the constraints in (4.25) as an indicator of non-geometry. Note that the reverse is not
true: satisfying (4.25) does not guarantee the existence of a higher-dimensional description
of the corresponding gauging, as we will see in a moment.

It will prove convenient to introduce two-dimensional flux vectors ht = (hE, h¥) and
ot = (wf,in). In terms of these, the explicit computation of the additional quadratic
constraints (4.25) in the case of the SO(3)(4~P) x U(1)%* gaugings gives

htx h- =0, dTx& =0 and hT-& =h -a&t, (4.26)

coming from the first (SD) condition, as well as

- -

ht-@t=0, hm-@ =0 and hT- -G =-h" @, (4.27)

coming from the second condition. In the Type I/Heterotic solution of the section con-
straints, these additional constraints are not automatically satisfied due to the presence of
(T-dual) non-geometric @ and R fluxes. Importantly, moduli stabilisation is not yet possi-
ble in this setup due to the absence of relative SL(2) orientations between the gauge factors.

SO(4) x SO(4) gaugings and S3 x S3 reduction ansiitze. As an example, let us look
at the family of SO(4) x SO(4) gaugings (p = 0) which depends on the eight parameters
in (4.19). The counting of parameters agrees with the A/ = 4 results of [70].23
A first interesting subclass of SO(4) x SO(4) gaugings is given by the choice of pa-
rameters
=& =0. (4.28)

In this case the gaugings are purely electric and can be interpreted as Type I/Heterotic
backgrounds with (T-dual) non-geometric fluxes. Of course, an analogous family with only
magnetic fluxes exists. The set of additional quadratic constraints in (4.26) and (4.27)

gives just one relation
Rt Gt =0, (4.29)

coming from the latter. According to the criterion for non-geometry stated before, a higher-
dimensional geometrical interpretation of these electric SO(4) x SO(4) gaugings is only

#3The dictionary to the parameterisation used in [70] reads:

Rf +wl = %hl cos 1, hi +w; = %hl sin f1 ,
hf—wiz%gocosao, hf—wfz—%gosinao,
hi 4+ wi = %hgcosﬁg, hy +wy, = %thinﬂg,
hy —wy = Jsgcosa, hy —wy = —Jsgsina.
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possible when (4.29) holds. By further setting @' = 0, the relation (4.29) is satisfied and
the frame (4.1) depends on the coordinates

Yu) = —ht (y“ _ y+i) ’ 17(1) e (y“ I y+i> 7

) ) (4.30)
Yioy = —hi <y+4 B y+4) , Yooy =hi (y+4 " y+4> ‘
One then has a realisation of the gaugings in terms of Type I/Heterotic fluxes (4.22) of
the form

H® o = Q2 — pf and H®) = QM = hi (4.31)
While the SS ansatz we provide is still a non-geometric toroidal reduction,?* this case has re-
cently been uplifted to A = 1 ten-dimensional supergravity on S* x S® in [80], giving one
more example of a globally geometric compactification beyond the toroidal setup that in-
duces non-geometric Q-fluxes. In addition, there is a T-dual solution of (4.29) with AT =0
which is described in terms of fluxes w(+)@9 — R(H)abe — wf and w(+)ijE = Rk — w; .
The most general solution of (4.29) contains three arbitrary parameters (two moduli and
one overall phase) and involves all types of T-dual fluxes. It is also straightforward to
check that two copies of the section constraint violating S® generalised frames discussed
in [62] can be combined into an SO(6, 6) non-geometric frame reproducing the full set of
electrically gauged SO(4) x SO(4) gaugings. All the twist matrices based on S® mentioned
here however require a non-trivial A function and e,® matrix, as a consequence of the
non-trivial warping of the resulting backgrounds. This makes it difficult, if not impossible,
to introduce further modifications of these ansétze that can induce magnetic couplings and
moduli stabilisation in the resulting gauging.

A second interesting subclass of SO(4) x SO(4) gaugings is given by the choice of

parameters
B 1+ sin2w n 1 —sin2w L cos2w L cos2wm
= —-—-—m—— y w = - y = — y w. = —_—
! 212 ! 212 2 22 2 22 (432)
1 —sin2w 1+ sin2w cos 2w _ cos2w '

h —_— Y, Wy = =, =, Wy = .
2 2\/5 2 2\/5 1 2\/§ 1 2\/5

This one-parameter? family of SO(4) x SO(4) gaugings of N' = 4 supergravity corre-
sponds to the Zs-truncation of the one-parameter family of SO(8) gaugings of N/ = 8
supergravity presented in [86]. As such, they satisfy the additional quadratic constraints
in (4.26) and (4.27) for any value of w. The existence of an N = 1 ten-dimensional
origin of these N = 4 gaugings has been less explored. The case @ = 0 of course corre-
sponds to a truncation to half-maximal supergravity of eleven-dimensional supergravity on
ST [87]. This is not the ansatz we provide here, which is instead toroidal with a coordinate

Z4Notice in particular that the internal space metric resulting from our ansatz is always flat.
#5We are denoting the parameter @ instead of w [86] in order to avoid confusion with the metric flux.
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dependence of the form

(4.33)

This N' = 4 gauging allows for full moduli stabilisation [38], which prevents it from
having a Type I/Heterotic description. It would be interesting to investigate the relation
between this gauging and the one resulting from a Type IIB orientifold reduction on
83 x 83 with O3-planes, although this setup cannot be directly accommodated within
SL(2)-DFT. The case w # 0 seems even more challenging as there are no-go results
against a higher-dimensional lift of the SO(8) gaugings to Type II or eleven-dimensional
supergravity [62, 88].

The two subclasses of SO(4) x SO(4) gaugings we have just discussed satisfy the set
of additional quadratic constraints in (4.26) and (4.27). This implies that they can also
be obtained from generalised Scherk-Schwarz reductions of E77)-EFT. On the contrary,
genuinely N = 4 gaugings not satisfying (4.26) and (4.27) cannot be obtained in this way
but, due to the larger number of gauging parameters they contain, they represent a more
promising arena for phenomenological applications like the study of moduli stabilisation in
non-geometric flux backgrounds.

Remarks on moduli stabilisation. Let us briefly come back to the issue of moduli
stabilisation in generalised Scherk-Schwarz reductions of SL(2)-DFT. We have already ar-
gued that moduli stabilisation requires non-trivial de Roo-Wagemans angles, and these a
violation of the section constraints (2.6) as the frame (4.1) must simultaneously depend
on both y* and y~ coordinates. The violation of the section constraints clashes with the
consistency of the SL(2)-DFT, which requires them to hold at several stages in its construc-
tion. Building upon previous results in the literature obtained in a frame formulation of
DFT [28, 29, 68, 81, 89] and EFT [12, 82, 90], relaxing the section constraints would require
the introduction of additional section constraint violating terms in the action in order to
restore invariance under gauge transformations. Such terms would encode the presence
of sources in the background [34, 81, 91]. Adopting a Type I/Heterotic description, these
would include NS-branes (see [92] and references therein) as well as their SL(2) duals. Only
when adding sources, the full scalar potential of N' = 4 gauged supergravity could arise
upon a generalised Scherk-Schwarz reduction of SL(2)-DFT. Their contributions to the
potential, which are a priori related to contractions like (4.25) (if n = 0), play a central
role in the moduli dynamics as they induce specific moduli couplings that are crucial to
achieve stabilisation [46].

We will postpone to future work the construction of the frame formulation of SL(2)-
DFT and the addition of section constraint violating terms to the action. Nevertheless,
motivated by its phenomenological relevance, let us assume for the time being that such
a formulation becomes available. Then, starting from it and performing a generalised
Scherk-Schwarz reduction based on the twist matrix U in (4.15)—(4.17), one would obtain
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an actual A = 4 scalar potential. For the sake of simplicity, we will focus on the SO(3)-
invariant subsector of the N' = 4 theory which preserves N' = 1 supersymmetry [61]. This
N =1 subsector contains three chiral fields S (axion-dilaton), T" (overall K&hler modulus)
and U (complex structure modulus) parameterising three copies of the scalar manifold
Mecalar = SL(2)/SO(2), and it is usually referred to as STU-model in the literature.
The scalar potential can then be obtained from a K&éhler potential K and a flux-induced
superpotential W of the form

K= —log|[-i(S—5)] —3log[—i(T—T)] —3log [-i (U—-U)]
W= (h —hfU?)+3T (wf U +wi U)+37% (hi U? = hfU)+T° (wf +wj U?)
— S[(hy —hiU?) + 3T (w; U? + w3 U) 4+ 372 (hy U? — h{U) + T?(wy +wy U%)]
(4.34)
by using standard A = 1 formulae. Similar STU-models have been investigated in the
context of Type I/Heterotic flux compactifications. Following the notation of [51], the
superpotential takes the form of an integral over the internal space

w= | [ (HW - SHH) + (w<+> - st) J.

(4.35)
+(Q) - 5Q) 1) + (R - sRO)) J®] g,

where J. is the complexified Kahler form and 2 is the holomorphic three-form of Mg .
Only the terms induced by fluxes H*) and w(*) can be understood from higher dimen-
sions as gauge and metric fluxes [93-95]. Importantly, note the presence in W of terms
linear in S which are induced by non-geometric Type I/Heterotic fluxes of f_ type. These
are needed to stabilise the axion-dilaton modulus. Various AdS, dS and Minkowski vacua
have been found in this type of STU-models [61].
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A Zs-truncation: from EFT to SL(2)-DFT (n = 0)

In this appendix we collect the details of the group theoretical Zs-truncation of Eq(7)-EFT
to an SL(2) x O(6,6) extended field theory, i.e. an SL(2)-DFT with n = 0.
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A.1 Notation and conventions

We adopt the NorthWest-SouthEast (NW-SE) conventions of ref. [5] to rise and lower Er ;)
fundamental indices M, N = 1,...,56 with the Sp(56)-invariant skew-symmetric Qan
matrix, e.g. Ung = UV Qaraq. In order to Zo-truncate the E7(7)-EFT we will make use of
the decomposition of different representations of E7(7) under its SL(2) x SO(6,6) maximal
subgroup. Of special interest are the following branching rules

56 — (2,12) + (1,32), (A.1)
133 — (1,66) + (3,1) + (2,32, (A.2)
912 — (2,12) + (2,220) + (1,352") + (3,32), (A.3)

where 32 and 32’ respectively denote left- and right-handed Majorana-Weyl (M-W) spino-
rial representations of SO(6,6) and similarly for the other spinorial irrep’s.?® The decom-
position of the 56 in (A.1) amounts to the index splitting M = (o, M) & i, where o = +
is an electric-magnetic SL(2) index, M = 1,...,12 refers to an SO(6,6) vector index
and o = 1,...,32 denotes a M-W left-handed spinorial index. Analogously, an index
p=1,...,32 will denote a M-W right-handed spinor. To carry out the truncation one has
to apply a discrete Zs-projection?®”

Zo:  Erm — SL(2) x SO(6, 6) (A4)

under which different SL(2) x SO(6,6) indices acquire a parity. In particular, the bosonic
indices @ and M are even whereas the spinorial indices i and & become odd. The
Zo-truncation keeps only states which are parity even. As a result, the skew-symmetric
Qv matrix becomes block-diagonal with bosonic and spinorial blocks

Qanmpn| 0 EagnmnN| O
Qmn = = . (A.5)

0 [Quw 0 |Cuw
It is worth observing that the bosonic part involves the Levi-Civita tensor e,g (with
e4— = 1) associated to the SL(2) factor as well as the SO(6,6)-invariant metric nasn,
whereas the spinorial part contains the SO(6,6)-invariant charge conjugation matrix Cpyp.
We denote K!“, with I,J = 1,...,133 being adjoint E7(7) indices, the inverse of the

E7(7) Killing-Cartan metric

K1y =Te(trty) = [trlmw [tslpo Q7Y M9, (A.6)

which, in turn, also depends on the [t7]apma symmetric generators of E7(7) in the fun-
damental representation. By virtue of the decomposition (A.2), the general form of the
SL(2) x SO(6,6) generators in the (2,12) and (1, 32) representations are given by

[tanign ], psg = €ap evs [tun]pg + 1N 1PQ [tas)ys
1 (A7)
[tonﬁN][“; = g CaB ['YMN][W'
263ce the appendix in [34] for conventions about M-W spinorial irrep’s of SO(6,6).
2In a string theory realisation of maximal supergravity, this Z-projection corresponds to orientifolding
the theory (see section 2.4).
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Using the above expressions for the generators, the E;(7) Killing-Cartan metric (A.6) in-
duces an SL(2) x SO(6,6) metric?® and its inverse? of the form

2

1 1
KaM,BN,’yP&Q _ af o KMN,PQ MN , PQ Kaﬁ,’y5 )
ox12° © Taept

KaMpN~PsQ = — €ap€vs Kmn,pg + 1200 N 1P Kap s,

(A.10)

The latter can be used to obtain the following expression for the SL(2) xSO(6,6) generators

TPQ 1 1 "
[taMﬁN} _ ﬁeaﬁeyé [tMN]PQ I WUMN 77PQ [taﬁ} 7 (A.11)

that appears at several places in the main text. When considering the extension to
SO(6,6 + n) in section 3, the expressions in (A.10) and (A.11) are still valid after re-
placing the factors of 12 by 12+ n.

A.2 Structure tensor, generalised Lie derivative and section constraints

Our starting point is the structure Y-tensor of the E7(7)-EFT [5] which has the form
1
Y MVpo = 12 KM [t MV [t]po — 5 MV po, (A12)

and specifies a generalised Lie derivative with a gauge parameter AM of the form
LaUM = AN oy UM —UN o AM + Y MN 56 0 AP U2+ Ay —w) O AN UM, (A.13)

Using the definitions (A.7) and (A.10) in the previous section, as well as the index
decomposition (A.1), an explicit computation of the Zs-even components of the structure
tensor (A.12) yields

YOMIN psg = 05 05 MY npq + 26 e5 610

1
MEN MN MN
y M8 ,33:—560‘5(77 Cﬁ&+[7 ],3&)’

s 1 I i (A.14)
Y™ypsq = —5 e ( npQ C* — [vpql ) ;
. 1 . 1 ..
po = pv [ MN v o
Y56 = 3 [yaen]™ [y ]ﬁ& 9 CM Cps-
2The SL(2) x SO(6,6) metric computed from the generators [tampn], psq in (A7) reads
Kiﬁ;?;i%%ﬁém =2¢eapeyvs Kmun,pg + 120N 1P Kasys » (A.8)

and differs from the expression in (A.10) because of the contribution of the spinor representation to the
SO(6,6) trace.

29We have taken [tns]"’ = 55]6;?, [t*F],s = 7(5(0;6?), [taslys = —Kap~s and [t2°]7° = K70 ag
well as [tMN]PQ = (5;&%, [tMN]pQ = *5?3/[(5], [t]v[N]pQ = 7K1WN,pQ and [t]MN]PQ = KMN.PQ  This is

consistent with the definitions

Ko s = €a(y €6)3 and Kunpg = -—NMMpnQIn A
9
KozB,wts = 6a(w 65)ﬁ and KMN,PQ = 777]%[13 nQ]N ( )
of the SL(2) and SO(6,6) metrics and their inverses. In particular, note that K™+~ = [tt+]7~ = 1.
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Of particular importance is the component
YOMIN psq = 85 85 N npg + 2% 35630 (A.15)

which plays the role of structure tensor in SL(2)-DFT when only a dependence on the y®M
coordinates is allowed. In this case the generalised Lie derivative with parameter A®M

can be obtained from (A.13) using (A.15), and takes the form
]LAUaM — AﬁNaﬂNUaM . UﬁNagNAaM + nMN nPQ aﬁNAﬁp UaQ
+ 2% e 5 gy A UIOIN] - PNTroM (4.16)
+5 O8N + Ay —w)Ogn AT UM .

The section constraints in SL(2)-DFT can be obtained in a similar fashion by decom-
posing the one of E;(7)-EFT. Starting from [5]

YMN b0 O @Oy =0, (A.17)
and allowing only a dependence on the y*™ coordinates, one finds
QN @Oy =0 — PN 90 @ Isn =0,
EM Vo @O =0 — e O ® Dgny =0, (A.18)
M Oair ® Opyn =0

corresponding to (1,1), (1,66) and (3,1) irrep’s of SL(2) x SO(6,6), respectively. They
can be more concisely expressed as

77MN Oamt ® O3y =0 and g8 8a[M| & 85|N} =0. (A.19)

In addition to (A.17), the remaining constraints needed for the closure of the generalised
Lie derivative in the E7(7)-EFT (see ref. [64] for a general study of closure constraints)

(YM(PTQYTW)RS—YM(PRS%V)) (Opdn) =0

<YM/\/ - QyTP(SR) +2yMN(R|T|YTPS)Q_YMN(RS) 55—2YMN (| 9‘577;))6[ N ®0p =0
(A.20)
are also satisfied when M = aM , N = BN, etc., provided (A.19) holds. This can be seen
as a crosscheck of the SL(2)-DFT structure tensor (A.15) obtained upon truncation.

A.3 Truncating the E;7)-EFT action

We will continue our program and obtain the bosonic action of SL(2)-DFT by Zs-truncating
the one of E(7)-EFT. Following ref. [5], the starting bosonic action reads

~ 1 1
Sermreer = / Tadvye [R TRy D MM Dy Moy — s M FuME N

+ 6_1 Etop - VE7(7)-EFT(M7 g) :| .
(A.21)
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We will proceed with the truncation of each piece in the above action separately in order
to obtain the SL(2)-DFT action

A 1 1
SsL(2)-pFT = / d'z d24y € [R + 1 g DuMaﬁ Dy, Map + ) g DMMMN DyMyn
(A.22)
1 _
— g Mos Mury FrvoMp PN e Liop — Varayorr(M, g) |-

Einstein, kinetic and topological terms.

e The Zs-truncation of the Einstein term reads

~

leab — ijab[w] + ]:;WM e 8./\/16,01) N ijab — leab[w] +]:,u1/aM e aaMepb.
(A.23)

e The Zs-truncation of the kinetic terms of the scalars proceeds as for the supergravity
case studied in ref. [34]. Its action on the scalar coset of E;(7)-EFT reads

E77) SL(2) SO(6,6)

Zs : SU(8) - SO(2) x SO(6) x SO(6)

(A.24)

and reduces the number of scalar fields in the truncated theory from 70 to 2+36. The
parameterisation of the E7;)/SU(8) coset is given by a symmetric My matrix
which, after the truncation, becomes block-diagonal,

MQWN‘ 0 Mg MMN\ 0

My = ] 1 MNPQRS ’
0 [ My 0 Gl Munprors [ ]

j11%

(A.25)
with a bosonic Mqaasny and a spinorial My, block. The former contains the SL(2)
and the SO(6,6) scalars Myg and My of the SL(2)-DFT whereas the latter now
involves a contraction with the [yMNPQRS] . anti-self-dual (ASD) matrix. This time
it is contracted with the SO(6,6) six-form

MMNPQRS = EmnpqrsVMmVN nVP pVQ qVR TVS s s (A26)
where V denotes an SO(6,6)/SO(6) x SO(6) Zwdlfbein such that M = VVT and

the index m only runs over the six time-like directions [31].

The truncation of the kinetic term for the scalars proceeds as follows

1 1 .
e gt 'DMM'MN DMy — T gt (DMMaMﬁN Dy Mampn + Dy MP? DVMﬁ3>
1 1
= 19" D M*? D, M5 + 59" Dy MMN D, My .
(A.27)
As noticed in [34], the spinorial contribution to the trace is crucial in order to recover
the right normalisation of the kinetic term of the SO(6,6) scalars.
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e The Zo-truncation of the kinetic terms of the vectors reads

1 1
_g MMN F'LWMF/LVN — _g MonBN f'wjaMfuuﬁN

1
- _g afs MMN -ijaMfuuﬁNy

(A.28)

where the field strengths ]-'WO‘M are obtained upon truncation of the E;7)-EFT
ones [5] and read

1
]:,u,VaM — FﬂVaM+2€aﬁnMPnNQ86NBMVPQ+77MN€O[’Y€5586NBMV’}/5_ 5604,6’77MNBMV/B]V )

(A.29)

The above field strengths contain tensor fields in the (1,66) @ (3,1) and (2,12)
given by

B;waMﬁN = €ap B;WMN+77MN Buyaﬁ and BW,QM, (A.30)

which satisfy B,, vy = —Bu,nm and By,a3 = Buuga - The tensor fields enter

the field strengths (A.29) in the form of trivial parameters of the SL(2)-DFT (see
section 2.2).

e The Zs-truncation of the topological term reads
eMPT F M D For i — eMPT eg0 nun Fn™™ DpF oY (A.31)

Scalar potential. The potential in SL(2)-DFT can be also obtained by Za-truncating
the potential in E77)-EFT [5]

1 1
VEW)_EFT(M, g) = — e MMN aMM’“ On M + 3 MMN 8/\4MIC£ Or Mnk

1 1 B )
— 50 Omg MM — L MM gL 0g g g (A.32)

1
~1 MMN 900" NG -

We will look at each term in the above potential separately. The first term yields

1 1
-5 MMN G UMEE Oy Mycp — — MOPMMN [4 (&lMMWS) (D M)

(A.33)
1

+3 (Oars MF9) (aBNMPQ)] ’

where, as for the case of the scalar kinetic terms, the spinorial contribution to the trace is
important in order to get the coefficient é . The second term yields

%MMN OMMFE 9 My — % [M“ﬁMMN (0ar M) (95 M)

+ MMM (0aps MTC) (D5 M p)

(A.34)
+ MMNMPQ (6aMMa6) (85QMNP)

+ MPM (Jqps MM Q)(a(;QMM)] :
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The third, fourth and fifth terms (g,,-dependent) yield

1 1
—59 "0y I MMN ~597" (Garrg) [(aBNMaﬂ) MMN 4 (955 MMV Maﬂ} ,

1 - - L e - -
— MM g omg g™ Ong = =g M MM g7 Dareg) 97 Gsvg)

1 1
1 MMN omgh” a/\fg;w - T MeP pMN (aocMgW) (8BN9W) .
(A.35)
Bringing all the terms together we get the expression of the SL(2)-DFT potential which
takes the form
1 1
Vi-oer(M, g) = M MMN [_ 1 (a“M M 75) (O M5) = 2 (Oare M FQ) (93n Mpq)

+ %((%[MM’YJ) (85NM57) +

1 1
+ MMV PR <8QMM“5) (9sQMnp)+5 MM (9021 MM?) (950 Ms,)

%(%MM Pe) (aﬁQMNP)]

- ég_l (Oang) K%NMO‘B) MMN (aﬁNMMN)Maﬁ]

1

- ZMo‘ﬁ MYN (g7 (0artg) 97" (0sng) +(0artg™) (DN guw)] -

(A.36)

A.4 Deformations and constraints in SL(2)-DFT

The X deformation was introduced in the context of E(7)-EFT where X N7 €912 was
shown to be subject to so-called X and C' constraints of the form [69]
XMNP&P =0,

1 (A.37)
C‘%Q = X(pQ)MaS — YMRTSXU;Q)T(?R — §YTR7JQX7’5M8R =0.

In E77)-EFT the C-constraint is redundant as it is implied by the X-constraint, i.e.
P
- A MN
(2,220) + (2,12) just by replacing M — M = aM , N — N =N, etc. However, a
detailed analysis of such constraints in this case reveals that the C-constraint is no longer

Xgrr = Cgpr. The same constraints formally appear also in SL(2)-DFT for X,

implied by the X-constraint, i.e. Xgr,2).prT # Csn2)-prr- Here we will show that the
two SL(2)-DFT conditions (X and C) descend from the X-condition of E7)-EFT and
viceversa,

Xprr < Xsr2)prr  and  Csp(2).pFT (A.38)
when assuming that the section constraint of Eq7)-EFT holds with J(;32) = 0, and
that X" only contains foymnp and Eqpr irreducible pieces when decomposed un-
der (A.3) [34], namely, no trombone [96, 97] or spinorial deformations [73].

The first direction of the double implication in (A.38) is straightforward to prove.
It was shown in [69] that Xgppr = Cgpr. Moreover, under the assumptions discussed
above, Xgpr = Xgp(2)-prT and Cerr = Csp2)-prT just by setting M — M = aM , ete.
Therefore, one has that

Xgrr = Xgr2)-prr  and  Cgp2)-ppr - (A.39)
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To prove the reverse implication in (A.38) we just need to focus on the contribution
XpF 0,p =0, (A.40)

to the X-constraint of E77)-EFT, and use the decomposition [34]

1 1
M M P N MP
X = 2 e ™ [y oo T 575 Fra” MY,
(A.41)
1 MN 1 M
8 eEN [y ]ﬂﬁ 8 e & Cao -

The +’s and C are orthogonal to each other, so we can decompose (A.40) into three
constraints

%\?N : (faMNP - ga[M(s]]\Dq) Oapr =0,
ch . €My =0, (A.42)
TMNPQ fapunp9g =0-
The first two constraints correspond to the X-constraint of SL(2)-DFT in (3.18) upon

appropriate contractions. The last one is precisely the projection of the C-constraint of
SL(2)-DFT in (3.19). Therefore,

Xsr2)-prr  and  Csp2)-prT = XEFT, (A.43)
under the assumptions discussed before.
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