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1 Introduction

Random matrix theory has flourished as a versatile tool in theoretical and mathematical

sciences over decades [1–3]. In Quantum Chromodynamics (QCD), the development of chi-

ral random matrix theory (chRMT) [4–6] (also called the Wishart-Laguerre ensemble) that

extends the traditional Wigner-Dyson classes has helped us gain a profound understanding

of the link between dynamical mass generation of fermions and spectral statistics of the

Dirac operator [7]. The chRMT has also been used as a simplistic Ginzburg-Landau-type

model of QCD at finite temperature and density [8, 9]. Exact spectral correlations of a

non-Hermitian Dirac operator at nonzero chemical potential were also worked out [10–15].

On the practical side, chRMT has enabled accurate determinations of low-energy constants

in lattice QCD near the chiral limit [16, 17]. We refer to [18–22] for reviews on chRMT.

In RMT there are various choices for the probabilistic weight of random matrix ele-

ments. While the independent Gaussian distribution is the simplest from a mathematical

point of view, it often turns out that distributions that deviate from Gaussian lead to the

same spectral correlations in the limit of large matrices. This robustness of RMT is known

as universality [23]. However, when the deformation of the weight is strong enough, re-

sults begin to differ from those of the Gaussian ensemble. Such random matrix ensembles

with heavy-tailed weights have found applications to disordered conductors and financial

statistics, as reviewed in [24]. In general, when the rotational invariance of matrices is

broken as in the Lévy matrix ensemble [25], the models tend to be analytically intractable.

Alternatively one can also consider heavy-tailed matrix ensembles with rotational invari-

ance, at the expense of losing statistical independence of matrix elements. Both directions

have been actively pursued [26–37], revealing a plethora of exotic behaviors not seen in

Gaussian RMTs.
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So far, applications of chRMT to QCD have been mostly limited to the hadronic phase

with
〈
ψψ
〉
6= 0. Extensions to the high-density regime where the diquark condensate

〈ψψ〉 6= 0 preponderates were explored in a chRMT framework in [13–15, 38, 39]. While

spontaneous symmetry breaking in all these cases can be characterized by a nonvanishing

fermion bilinear condensate, symmetry breaking in general can also be triggered by higher-

order condensates. In QCD it was stressed by Stern that chiral symmetry breaking with

Fπ 6= 0 does not necessitate
〈
ψψ
〉
6= 0 [40, 41]. Indeed one can imagine a situation where

a chiral condensate is forbidden by an anomaly-free discrete subgroup of U(1)A and the

spontaneous breaking SU(Nf )R×SU(Nf )L → SU(Nf )V is driven by a quartic condensate.

(This pattern of symmetry breaking was studied by Dashen long time ago [42].) While this

exotic phase that we call the Stern phase is ruled out by rigorous QCD inequalities at van-

ishing baryon density [43], there are arguments in favor of the Stern phase at finite density.

First, color superconducting phases in dense QCD are examples of the Stern phase due to

the fact that the leading gauge-invariant order parameter that breaks chiral symmetry is

provided by four-quark condensates [44, 45]. Secondly, in phases with spatially modulated

chiral condensates, the phonon fluctuations associated with translational symmetry break-

ing wipe out the spatial order and lead to a phase with quartic condensates [46, 47]. Other

related arguments can be found in [48–53].

In this paper, we propose a heavy-tailed chRMT that corresponds to the Stern phase.

To be precise, we show that our chRMT with N ×N random matrices reproduces, in the

large-N limit, the finite-volume partition function of the Stern phase with K > 4 in the

ε-regime. (Here we label the Stern phase with an index K that specifies the unbroken

subgroup of U(1)A [53].) This implies that all infinitely many sum rules for the Dirac

eigenvalues in the Stern phase [48, 53] are obeyed by microscopic eigenvalues of random

matrices in this chRMT. In the chiral limit, the chRMT considered here coincides with the

model previously considered by Akemann and Vivo [35]. Here we solve the model at large

N with arbitrary quark masses and analytically obtain the microscopic spectral density

and the smallest eigenvalue distribution in dependence of quark masses. In comparison

to [35], this work is new in the following aspects: we derive the chiral Lagrangian at large

N , relate it to the Stern phase in finite-density QCD, compute nontrivial mass dependence

of spectral functions, and discuss the heavy-mass limit.

This paper is structured as follows. In section 2 we define the model and discuss its

relevance to QCD. Then we solve the model analytically in the large-N limit and obtain

the microscopic spectral density and the smallest eigenvalue distribution, for an arbitrary

number of flavors and arbitrary quark masses. Section 3 is devoted to conclusions and

outlook.

2 Random matrix theory for the Stern phase of QCD

2.1 Definition of the model and the large-N limit

The matrix model considered in this paper is defined by the partition function

ZS
Nf

({mf}) ≡
∫

CN×N

dX
1

(1 + trX†X)N
2+NNf+1

Nf∏
f=1

det

(
m∗f1N X

−X† mf1N

)
, (2.1)
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where X is a complex N ×N random matrix and dX denotes the flat Cartesian measure.

This integral converges for arbitrary N ≥ 1 and Nf ≥ 0. The weight (2.1) evidently has

three interesting properties: (i) it is invariant under unitary rotations X → V1XV2 for

V1,2 ∈ U(N), (ii) the matrix elements are statistically correlated, and (iii) the distribution

is heavy tailed, i.e., it does not decay exponentially for large matrix elements. This random

matrix ensemble can be seen as an unquenched generalization of previous RMTs [29, 30, 32,

34, 35, 37] that had a heavy-tailed weight similar to (2.1) but with no determinants. If the

weight function 1/(1 + trX†X)N
2+NNf+1 in (2.1) is replaced with a Gaussian distribution,

the model reverts to the standard β = 2 chRMT called the chiral Gaussian unitary ensemble

(chGUE) [4, 5].

In the large-N limit, our chRMT enjoys a sigma-model representation. To see this, we

rewrite (2.1) up to a trivial multiplicative constant as

ZS
Nf

({mf}) ∼
∫

CN×N

dX

∫
C

d2z e−N(1+trX†X)|z|2 |z|2N2+2NNf

Nf∏
f=1

det

(
m∗f1N X

−X† mf1N

)

=

∫
C

d2z e−N |z|
2

∫
CN×N

dX |z|2N2
e−N |z|

2 trX†X

Nf∏
f=1

det

(
z∗m∗f1N zX

−z∗X† zmf1N

)

=

∫
C

d2z e−N |z|
2

∫
CN×N

dW e−N trW †W

Nf∏
f=1

det

(
z∗m∗f1N W

−W † zmf1N

)
, (2.2)

where in the last step we introduced W ≡ zX. The final expression (2.2) is akin to the

standard chGUE except that the mass term is multiplied by another Gaussian random

variable z of order 1/
√
N . This implies that we need a large-N limit with mf = O(1/

√
N),

which is different from the conventional large-N limit with mf = O(1/N). Following the

standard route of bosonization [4], one can easily obtain

ZS
Nf

({mf}) ∼
∫

C
d2z e−N |z|

2

∫
U(Nf )

dU exp
[
N tr(zMU + z∗M †U †)

]
(2.3)

=

∫
SU(Nf )

dU exp
[
N tr(MU) tr(M †U †)

]
, (2.4)

where dU denotes the Haar measure and M ≡ diag(m1, . . . ,mNf
). Equation (2.4) exactly

coincides with the ε-regime finite-volume partition function of QCD in the Stern phase

with K > 4 [43, 48, 53]. Notably, the sigma model (2.4) has no term at O(M) in the expo-

nent, in contradistinction to the standard chiral Lagrangian.1 This reflects that the chiral

condensate
〈
ψψ
〉
→ 0 in the chiral limit. The present chRMT may serve as a toy model for

1Attempts to recover higher-order terms of chiral perturbation theory from chRMT have been made

in [54, 55] with the purpose of studying lattice fermions. The models considered in [54, 55] include not only

O(M2) terms as in (2.4) but also the leading term tr(MU +M†U†). By contrast, the latter term is missing

in (2.4), which puts the present model (2.1) in a different symmetry class from those in [54, 55].

– 3 –
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spontaneous symmetry breaking driven by higher-order condensates. It follows from the

coincidence of mass dependence between chRMT and QCD that infinitely many spectral

sum rules of the Dirac operator in the Stern phase [48, 53] can be reproduced exactly from

chRMT. This suggests that the universal behavior of small Dirac eigenvalues originating

from chiral symmetry breaking could be probed by using this chRMT, which shares the

same pattern of symmetry breaking as the Stern phase of QCD but is much simpler and

analytically tractable. We end this subsection with two supplementary remarks.

• The partition function (2.4) has no dependence on the gauge-field topology. In the

Stern phase with K > 4, topological sectors with nonzero winding numbers are

suppressed in the leading order of the ε expansion [53]. This deprives us of a physical

motivation to study the model (2.1) with rectangular X. Nevertheless, it could be

mathematically interesting to investigate such extensions in future work.2

• The sign of the leading term in the exponent of (2.4) was fixed unambiguously by

chRMT, despite that both signs are allowed by symmetries. Actually, the sign of the

leading term can be flipped if we modify the fermion determinant in (2.2) as

det

(
z∗m∗f1N W

−W † zmf1N

)
→ det

(
z∗m∗f1N W

W † zmf1N

)
= |z|2N det

(
m∗f1N W/z

W †/z∗ mf1N

)
.

(2.5)

However the Dirac operator is now Hermitian! This means that the anti-Hermiticity

of the Dirac operator imposes a nontrivial constraint on the sign of the low energy

constant. A similar observation was made in chRMT for Wilson fermions [56].

2.2 Microscopic spectral density

When ∀mf ∈ R, the partition function (2.2) becomes

ZS
Nf

(M) =

∫
C

d2z e−N |z|
2 |z|2NNf

∫
CN×N

dW e−N trW †W

Nf∏
f=1

det(mf12N +DS) , (2.6)

with the Dirac operator

DS ≡
1

|z|

(
0 W

−W † 0

)
. (2.7)

Our primary interest is in the spectral statistics of DS on the scale 1/
√
N . In this “mi-

croscopic domain”, the eigenvalue density and eigenvalue correlations are expected to be

universal in the sense that it is solely determined by the pattern of global symmetry

breaking, with no dependence on specific details of UV interactions in QCD that cause

the symmetry breaking. In the following, we derive the microscopic spectral density in the

large-N limit, first in the chiral limit (section 2.2.1) and then for arbitrary quark masses

(section 2.2.2), by making use of a formal similarity of (2.6) to the chGUE. Our notation

is fixed as follows.
2For Nf = 0, this task has already been undertaken in [35].
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•
{
±iλSn

}N
n=1

(with ∀λSn ≥ 0) · · · Eigenvalues of DS

• {±iλn}Nn=1 (with ∀λn ≥ 0) · · · Eigenvalues of

(
0 W

−W † 0

)
.

Obviously, λSn = λn/|z| for every n.

2.2.1 Chiral limit

Let us begin with the chiral limit. The spectral density of DS at finite N is defined as

RS
N,Nf

(λ) ≡

〈
N∑
n=1

δ(λ− λSn)

〉
(2.8)

=

∫
C

d2z e−N |z|
2 |z|2NNf

∫
dW e−N trW †W

[
N∑
n=1

δ(λ− λSn)

] Nf∏
f=1

detDS

∫
C

d2z e−N |z|
2 |z|2NNf

∫
dW e−N trW †W

Nf∏
f=1

detDS

(2.9)

=

∫
C

d2z e−N |z|
2

∫
dW e−N trW †W

[
N∑
n=1

δ

(
λ− λn
|z|

)]
detNfW †W∫

C
d2z e−N |z|

2

∫
dW e−N trW †W detNfW †W

(2.10)

=

∫
C

d2z e−N |z|
2 |z|RN,Nf

(|z|λ)∫
C

d2z e−N |z|
2

, (2.11)

where we have introduced the spectral density in massless chGUE

RN,Nf
(λ) ≡

∫
dW e−N trW †W

[
N∑
n=1

δ(λ− λn)

]
detNfW †W∫

dW e−N trW †W detNfW †W

. (2.12)

The microscopic limit of (2.12) was derived in [5]. Now we use this result to obtain the

microscopic spectral density for our chRMT,

ρSNf
(ζ) ≡ lim

N→∞

1√
N
RS
N,Nf

(
ζ√
N

)
(2.13)

=

∫
C

d2z

π
e−|z|

2 |z| lim
N→∞

1

N
RN,Nf

(
|z|ζ
N

)
(2.14)

= 4

∫ ∞
0

dx x2 e−x
2
ρNf

(2xζ) , (2.15)
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where we have introduced the microscopic spectral density for massless chGUE [5]

ρNf
(ζ) ≡ ζ

2

(
J2
Nf

(ζ)− JNf+1(ζ)JNf−1(ζ)
)
. (2.16)

We remark that the integral expression (2.15) is a special case of eq. (4.7) in [35]. The

integral in (2.15) can be performed analytically, resulting in a compact expression

ρSNf
(ζ) = 2ζ e−2ζ

2
INf

(2ζ2) . (2.17)

Here In(z) is the modified Bessel function of the first kind. In figure 1 we show ρSNf
(ζ)

for several values of Nf . It converges to 1/
√
π = 0.564 . . . as ζ → ∞. As Nf increases,

the density of eigenvalues near zero is depleted because of the determinant in the measure.

Comparing ρSNf
(ζ) with ρNf

(ζ), we notice that ρSNf
(ζ) is flat and monotonic (except for

Nf = 0), showing no oscillatory behavior typical of ρNf
(ζ).3 Let us recall that, in the

chGUE, the oscillation is produced by peaks in the density of individual small eigenvalues.

By contrast, as we will see in section 2.3, the density of individual eigenvalues near zero in

our chRMT is so broad that their superposition smears out each peak completely. Aside

from this difference, ρNf
(ζ) and ρSNf

(ζ) look similar, but once again we emphasize that

ρSNf
(ζ) is the density at the scale λSn ∼ 1/

√
N , whereas ρNf

(ζ) is the density at the scale

λn ∼ 1/N — these two regimes are totally different. It was originally pointed out by

Stern [40, 41] that chiral symmetry could be spontaneously broken when near-zero Dirac

eigenvalues scale as 1/
√
V4 instead of 1/V4 in the thermodynamic limit V4 → ∞. Our

finding within chRMT is fully consistent with Stern’s perspective. While the Stern phase

is ruled out by rigorous QCD inequalities in QCD at zero density [43], its realization

in zero-dimensional chRMT is not prohibited. As a side remark, we mention that the

spectral universality of random matrices on the scale 1/
√
N in the large-N limit of strong

non-Hermiticity has been known since [58]. Its physical applications to dense QCD-like

theories were discussed in [13–15, 22, 39, 59].

Usually one associates the approach of ρNf
(ζ) to a constant value at ζ → ∞ with

a nonzero chiral condensate through the Banks-Casher relation [7]. It must be noted,

however, that the same behavior of ρSNf
(ζ) does not imply a nonvanishing chiral conden-

sate. The reason is that, in this model, the height of the macroscopic spectral density

RS
N,Nf

(λ) at the origin scales as
√
N for N � 1, implying that the chiral condensate

lim
λ→0

lim
N→∞

1

N
RS
N,Nf

(λ) vanishes as ∝ 1√
N

.

An important remark on a preceding work is in order. In [35], with a mathematical

motivation, Akemann and Vivo studied a deformed Wishart-Laguerre ensemble, which is

essentially equivalent to (2.1) with Nf = 0. They derived the microscopic spectral density

in the large-N limit analytically, not only for square X but also for rectangular X of size

(N + ν) × N . In addition, their analysis exhausted all the three symmetry classes with

Dyson index β = 1, 2 and 4. One can show that their model with ν > 0 and β = 2 exactly

3A similar behavior was found in a random matrix model for critical statistics interpolating between

chGUE and a Poisson ensemble [57].
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ρSNf
(ζ)

Figure 1. Microscopic spectral density (2.17) in the chiral limit for various Nf . See [35, figure 4]

where the same spectra have been presented.

coincides with our unquenched model (2.1) with Nf = ν and ∀mf = 0. This is known in

chRMT as the duality between flavor and topology [18]. As a result, (2.15) above can be

obtained from [35, eq. (4.7)] by letting ν = Nf and sending α → 0 there. We confirmed

that our results agree with [35]. Nonetheless we have presented the full derivation above,

firstly because the compact expression (2.17) is new, and secondly because the computation

in the chiral limit is a useful preliminary step for the generalization to the case of arbitrary

nonzero quark masses, which is a genuinely new result of this paper and will be worked

out in the next subsection.

2.2.2 Nonzero masses

Reinstating quark masses in (2.10) and replacing z by z/
√
N , we obtain

RS
N,Nf

(λ,{mf})

=

∫
C

d2z e−|z|
2

∫
dW e−NtrW †W

[
N∑
n=1

δ

(
λ−
√
Nλn
|z|

)] Nf∏
f=1

det

(
|z|2m2

f

N
1N+W †W

)
∫

C
d2z e−|z|

2

∫
dW e−NtrW †W

Nf∏
f=1

det

(
|z|2m2

f

N
1N+W †W

)
(2.18)

=
1√
N

∫ ∞
0

dx x2e−x
2

∫
dW e−NtrW †W

[
N∑
n=1

δ

(
xλ√
N
−λn

)] Nf∏
f=1

det

(
x2m2

f

N
1N+W †W

)
∫ ∞
0

dx xe−x
2

∫
dW e−NtrW †W

Nf∏
f=1

det

(
x2m2

f

N
1N+W †W

) .

(2.19)

The microscopic limit is achieved by sending N to infinity with
√
NλSn ∼

√
Nmf ∼ O(1).

With rescaled masses defined as µf ≡
√
Nmf , we now extend (2.13) to nonzero masses

– 7 –
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and obtain

ρSNf
(ζ,{µf})

≡ lim
N→∞

1√
N
RS
N,Nf

(
ζ√
N
,

{
µf√
N

})
(2.20)

= lim
N→∞

1

N

∫ ∞
0

dx x2e−x
2

∫
dW e−NtrW †W

[
N∑
n=1

δ

(
xζ

N
−λn

)] Nf∏
f=1

det

[(xµf
N

)2
1N+W †W

]
∫ ∞
0

dx xe−x
2

∫
dW e−NtrW †W

Nf∏
f=1

det

[(xµf
N

)2
1N+W †W

]
(2.21)

= lim
N→∞

∫ ∞
0

dx x2e−x
2
SN,Nf

({xµf
N

}) 1

N
RN,Nf

(
xζ

N
,
{xµf
N

})
∫ ∞
0

dx xe−x
2
SN,Nf

({xµf
N

}) , (2.22)

where we have introduced the partition function for chGUE (cf. [60–62])

SN,Nf

({ x
N
µf

})
≡
∫

dW e−N trW †W

Nf∏
f=1

det

[(xµf
N

)2
1N +W †W

]
(2.23)

∼
∫
U(Nf )

dU exp
[
2x Re tr(µU)

]
for N � 1 (2.24)

∝ 1

∆Nf
({−(2xµf )2})

det
1≤i, j≤Nf

[
(2xµj)

i−1Ii−1(−2xµj)
]

(2.25)

with

µ ≡ diag(µ1, . . . , µNf
) and ∆Nf

({ai}) ≡
∏
i>j

(ai − aj) , (2.26)

whereas the spectral density for massive chGUE is given by

RN,Nf
(λ, {mf}) ≡

∫
dW e−N trW †W

[
N∑
n=1

δ(λ− λn)

] Nf∏
f=1

det(m2
f1N +W †W )

∫
dW e−N trW †W

Nf∏
f=1

det(m2
f1N +W †W )

. (2.27)

The microscopic limit of (2.27) was computed in [63, 64] as

lim
N→∞

1

N
RN,Nf

(
xζ

N
;
{xµf
N

})
= 2ρNf

(2xζ, {2xµf}) (2.28)

– 8 –
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with

ρNf
(z, {mf}) ≡ −

1

2

det



J−1(z) zJ0(z) · · · zNf+1JNf
(z)

J0(z) zJ1(z) · · · zNf+1JNf+1(z)

I0(−m1) m1I1(−m1) · · · m
Nf+1
1 INf+1(−m1)

...
...

. . .
...

I0(−mNf
) mNf

I1(−mNf
) · · · mNf+1

Nf
INf+1(−mNf

)


Nf∏
f=1

(z2 +m2
f ) det

1≤i, j≤Nf

[
mi−1
j Ii−1(−mj)

] . (2.29)

In the chiral limit (2.29) reduces to (2.16). Now, substituting (2.25) and (2.28) into (2.22),

we finally arrive at the microscopic spectral density of DS with Nf massive flavors,

ρSNf
(ζ, {µf}) = − 2

Nf∏
f=1

(ζ2 + µ2f )

∫ ∞
0

dx e−x
2
x(3−Nf )(2+Nf )/2 det

[
ΞNf

(x, ζ, {µf})
]

∫ ∞
0

dx e−x
2
x−Nf (Nf−1)/2+1 det

1≤i, j≤Nf

[
µi−1j Ii−1(−2xµj)

] ,
(2.30)

with

ΞNf
(x, ζ, {µf}) ≡



J−1(2xζ) ζJ0(2xζ) · · · ζNf+1JNf
(2xζ)

J0(2xζ) ζJ1(2xζ) · · · ζNf+1JNf+1(2xζ)

I0(−2xµ1) µ1I1(−2xµ1) · · · µ
Nf+1
1 INf+1(−2xµ1)

...
...

. . .
...

I0(−2xµNf
) µNf

I1(−2xµNf
) · · · µNf+1

Nf
INf+1(−2xµNf

)

 . (2.31)

Let us examine the simplest case closely. For Nf = 1, (2.30) can be simplified to

ρSNf=1(ζ, µ) = −4
e−µ

2

ζ2 + µ2

∫ ∞
0

dx e−x
2
x3 det

J−1(2xζ) ζJ0(2xζ) ζ2J1(2xζ)

J0(2xζ) ζJ1(2xζ) ζ2J2(2xζ)

I0(−2xµ) µI1(−2xµ) µ2I2(−2xµ)

 . (2.32)

In the limit µ → 0 (2.32) reproduces (2.15) for Nf = 1, as it should. We plot ρSNf=1(ζ, µ)

in figure 2 for several values of µ. Clearly ρSNf=1(ζ, µ) increases with µ. The asymptotic

value at ζ � 1 depends on µ, and appears to diverge as µ→∞. This means that a heavy

flavor does not decouple — ρSNf=1(ζ, µ) does not reduce to the quenched density at large

µ.4 This is quite unusual compared to what is known for standard chRMT [63, 64], where

the microscopic spectral density approaches 1/π asymptotically for any number of flavors

and any masses, and where the decoupling of heavy flavors holds in the sense that, when

4Non-decoupling of heavy flavors also occurs in non-Hermitian chRMT for dense QCD-like theories [15,

22]. In this case the origin of non-decoupling is physically understood: the Cooper pairing between quarks

requires that we send masses of an even number of flavors to infinity simultaneously. Otherwise the Dirac

spectrum becomes singular in the infinite-mass limit.
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ρS1(ζ, µ)

Figure 2. Microscopic spectral density (2.32) for Nf = 1.

ρS2(ζ, {µ1, µ2})

Figure 3. Microscopic spectral density for Nf = 2.

some of the masses are sent to infinity, the massive spectral density reduces to that for a

reduced number of flavors. By contrast, figure 2 reveals that neither property persists in

the Stern phase. For comparison, we also display the massive spectral density for Nf = 2

in figure 3, which exhibits a similar mass dependence to Nf = 1. We look into this curious

behavior in more detail in the next subsection.

2.2.3 Large-mass limit

Why does a heavy flavor fail to decouple? Let us examine what happens to the spectral

density when one of the masses is made large compared to the others. Our starting point

is the ε-regime partition function (2.4) of the Stern phase for Nf light flavors,

ZS
Nf

({µf}) ∼
∫

U(Nf )

dU exp
(
| tr(µU)|2

)
. (2.33)

If µNf
is by far the largest among µf ’s, the fluctuation of U over U(Nf ) would be effectively

restricted to U(Nf−1), hence U '

(
Ũ 0

0 1

)
with Ũ ∈ U(Nf−1). By plugging this into (2.33)
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and introducing a reduced mass matrix µr ≡ diag(µ1, . . . , µNf−1), we get

ZS
Nf

({µf}) ∼
∫

U(Nf−1)

dU exp
(
|µNf

+ tr(µrŨ)|2
)

(2.34)

∼ exp
(
µ
2
Nf

) ∫
U(Nf−1)

dU exp
[
2µNf

Re tr(µrŨ)
]
, (2.35)

which is nothing but the partition function of chGUE with Nf − 1 flavors [4]. Hence one

cannot recover ZS
Nf−1 from ZS

Nf
by sending one of the masses to infinity; this is how our

naive expectation of decoupling fails. Instead, one ends up with the conventional chiral

Lagrangian with an O(M) term whose coefficient is set by µNf
. This implies that a large

explicit mass µNf
induces large chiral condensates

〈
ψfψf

〉
for the other Nf − 1 flavors.

The generation of such induced condensates has been discussed in [49] for large-Nc QCD,

and our analysis based on chRMT is totally consistent with [49].

As there is a generic correspondence between sigma models and spectral statistics, one

can expect that the spectral density for the Stern phase at large µNf
would reduce to that

of chGUE whose Gaussian distribution parameter is set by µNf
. In fact, when µNf

� 1

and ζ ∼ µf ∼ O(1/µNf
)� 1 for 1 ≤ f ≤ Nf − 1, there exists a relation

ρSNf
(ζ, {µf}) ' 2µNf

ρNf−1(2µNf
ζ, {2µNf

µf}) . (2.36)

This can be shown from (2.30) by using the Laplace expansion of a determinant and

approximating the modified Bessel function by its asymptotic form. The relation (2.36)

explicitly provides a novel link between the spectral density in the Stern phase and that

in chGUE. To assess the accuracy of (2.36), we display ρSNf=1(ζ, µ) for µ = 5 and 10

in figure 4, together with the r.h.s. of (2.36). While the agreement is good for small ζ,

deviations emerge for ζ & 1/µ. An oscillatory behavior not present in the chiral limit

gradually sets in as µ increases.

2.3 Smallest eigenvalue distribution

Next we turn to the smallest eigenvalue distribution in the large-N microscopic limit of

the chRMT for the Stern phase. As in the previous sections, we work with the rescaled

masses µf =
√
Nmf . We first define the so-called gap probability

EN,Nf
(ζ) ≡

〈
N∏
n=1

Θ
(√
NλSn − ζ

)〉
, (2.37)

which is the probability that none of {
√
NλSn}n falls into the interval [0, ζ]. By definition,

lim
ζ→+0

EN,Nf
(ζ) = 1. The factor

√
N in (2.37) indicates that we are probing the microscopic

domain with λSn ∼ N−1/2. The importance of the gap probability stems from the relation

EN,Nf
(ζ) =

∫ ∞
ζ

dζmin PN,Nf
(ζmin; {µf}) (2.38)
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Figure 4. ρSNf=1(ζ, µ) [(2.32)] for µ = 5 (left, red line) and µ = 10 (right, red line) in comparison

to the asymptotic form [RHS of (2.36)] (black dashed lines). Note the difference of scales in the

two figures.

with PN,Nf
the smallest eigenvalue distribution. Now, by applying the method of [64], it

is somewhat tedious but straightforward to show

PN,Nf
(ζ;{µf})=−

d

dζ
EN,Nf

(ζ) (2.39)

= lim
λ→+0

ζ

λ

∫ ∞
0

dx x3e−(1+ζ
2)x2

SN,Nf

({ x
N

√
µ2
f+ζ2

}) 1

N
RN,Nf

(
λ

N
;
{ x
N

√
µ2
f+ζ2

})
∫ ∞
0

dx xe−x
2

SN,Nf

({ x
N
µf

}) ,

(2.40)

where SN,Nf
and RN,Nf

are the partition function and the spectral density of chGUE,

respectively, as defined in (2.23) and (2.27). Then it is easy to take the large-N microscopic

limit by exploiting (2.25) and (2.28), with the result

PNf
(ζ; {µf}) ≡ lim

N→∞
PN,Nf

(ζ; {µf}) (2.41)

= 2ζ

∫ ∞
0

dxx3 e−(1+ζ
2)x2 1

∆Nf
({−(2x)2(µ2f + ζ2)})

ΩNf

({
2x
√
µ2f + ζ2

})
∫ ∞
0

dxx e−x
2 1

∆Nf
({−(2xµf )2})

det
1≤i, j≤Nf

[
(2xµj)

i−1Ii−1(−2xµj)
]

(2.42)

= 2ζ

∫ ∞
0

dxx3−Nf (Nf−1) e−(1+ζ
2)x2 ΩNf

({
2x
√
µ2f + ζ2

})
∫ ∞
0

dxx1−Nf (Nf−1) e−x
2

det
1≤i, j≤Nf

[
(2xµj)

i−1Ii−1(−2xµj)
] , (2.43)
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where

ΩNf
({mf}) ≡ − lim

α→0

1

α

det



J−1(α) αJ0(α) · · · αNf+1JNf
(α)

J0(α) αJ1(α) · · · αNf+1JNf+1(α)

I0(−m1) m1I1(−m1) · · · m
Nf+1
1 INf+1(−m1)

...
...

. . .
...

I0(−mNf
) mNf

I1(−mNf
) · · · mNf+1

Nf
INf+1(−mNf

)


Nf∏
f=1

(α2 +m2
f )

(2.44)

= det


I2(−m1) · · · m

Nf−1
1 INf+1(−m1)

...
. . .

...

I2(−mNf
) · · · mNf−1

Nf
INf+1(−mNf

)

 . (2.45)

This is a new result. For small Nf , integrals in (2.43) can be carried out analytically and

yield simple expressions:

P0(ζ) =
2ζ

(1 + ζ2)2
, (2.46a)

P1(ζ;µ) =
2ζ(µ2 + ζ2)

(1 + ζ2)3
exp

(
(1− µ2)ζ2

1 + ζ2

)
, (2.46b)

P2(ζ; {µ, µ}) =
2ζ

(1 + ζ2)2
exp

(
2(1− µ2)ζ2

1 + ζ2

) I2

(
2(µ2+ζ2)
1+ζ2

)
I0(2µ2)− I1(2µ2)

. (2.46c)

They are correctly normalized to 1 when integrated over 0 ≤ ζ ≤ ∞. The result for P0

agrees with [35]. In P2 the masses were set equal for simplicity.

A salient feature of (2.46) is that they decay only polynomially (∝ ζ−3) at large ζ, in

contrast to a Gaussian decay in chGUE [64–66]. This long tail of PNf
(ζ) could be a signal

of weak eigenvalue repulsion in this model. Actually, the decay ∼ ζ−3 can be shown for

any Nf and any masses, on the basis of (2.40). If we rescale the variable as x→ x/ζ in the

numerator of (2.40), we get an additional overall factor ζ−4 while the rest of the integral

tends to a well-defined large-ζ limit. Combined with ζ at the head of (2.40), the prefactor

becomes ζ−3.

In figure 5, PNf
(ζ) for Nf = 1 and 2 are plotted and compared to the microscopic

spectral density (2.30). PNf
nicely fit the near-zero part of the spectral density. They tend

to be more localized near the origin and represent a peak in the density when the masses

are increased, as anticipated from the reduction to chGUE discussed in section 2.2.3.

We expect that the extension of our analysis to the k-th smallest eigenvalue distribution

for general k ∈ N would be straightforward along the lines of [67].

3 Conclusions and outlook

In this paper we studied an unorthodox chiral random matrix model with a heavy tail.

This model, which is an unquenched generalization of the model in [35], is a one-parameter

– 13 –
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P1(ζ;µ) P2(ζ; {µ, µ})

Figure 5. Smallest eigenvalue distribution (2.46) for Nf = 1 (left) and Nf = 2 (right) for varying

masses. The microscopic spectral density for each mass is also shown for comparison (black dashed

lines).

reweighting of the standard chGUE and can be solved exactly. We discussed potential

relevance of this model to the Stern phase of QCD, where chiral condensate is zero but

chiral symmetry is broken by higher-order condensates. We analytically obtained the

microscopic spectral density and the smallest eigenvalue distribution in the large-N limit

and discussed their dependence on the number of flavors and quark masses. Our model is

not only useful as a conceptual toy model for the Stern phase but may also help a numerical

evaluation of low-energy constants in future lattice simulations through fitting to the lattice

Dirac spectrum.

There remain several issues that call for further investigation. While we only solved the

model with unitary symmetry (β = 2), it would be technically straightforward to generalize

it to β = 1 and 4; in fact, this has already been done for the case of Nf = 0 in [35]. One

can also build a non-Hermitian extension of this model in the spirit of [10] by replacing

the matrix X in (2.1) by a sum of two independent random matrices. Such extensions are

of interest to study the Stern phase in QCD at finite quark density. Another unanswered

question is whether the present model could be applied to QCD in three dimensions. To

the best of our knowledge, there is so far no study of a Stern-like phase in 2+1 dimensions.

We wish to address some of these issues in future work.
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