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Abstract: Investigating the dynamics of gravitational systems, especially in the regime

of quantum gravity, poses a problem of measuring time during the evolution. One of the

approaches to this issue is using one of the internal degrees of freedom as a time variable.

The objective of our research was to check whether a scalar field or any other dynamical

quantity being a part of a coupled multi-component matter-geometry system can be treated

as a ‘clock’ during its evolution. We investigated a collapse of a self-gravitating electrically

charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our

findings concentrated on the spacetime region of high curvature existing in the vicinity of

the emerging singularity, which is essential for the quantum gravity applications. We

investigated several values of the Brans-Dicke coupling constant and the coupling between

the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving

scalar fields and a function which measures the amount of electric charge within a sphere

of a given radius can be used to quantify time nearby the singularity in the dynamical

spacetime part, in which the apparent horizon surrounding the singularity is spacelike.

Using them in this respect in the asymptotic spacetime region is possible only when both

fields are present in the system and, moreover, they are coupled to each other. The only

nonzero component of the Maxwell field four-potential cannot be used to quantify time

during the considered process in the neighborhood of the whole central singularity. None

of the investigated dynamical quantities is a good candidate for measuring time nearby the

Cauchy horizon, which is also singular due to the mass inflation phenomenon.
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1 Introduction

Time measuring in dynamical gravitational systems is an important and demanding issue,

especially when one considers investigating them within the quantized canonical formu-

lations of the theory of gravity. Any general notion of a time measurer which could be

transferred from the classical to the quantum level has not yet been proposed. One of the

ideas in this regard, which has been widely used in analyses within the fields of canonical

gravity and cosmology, is to employ one of the internal degrees of freedom of a time-

dependent system to act as a ‘clock’ [1]. However, arguments in favor of such a treatment

are limited to certain cases and thus detailed investigations are still required. The current

research addresses the problem of time quantification with the use of scalar fields and also

other dynamical quantities present in evolving coupled multi-component matter-geometry

systems. The studied evolution was a gravitational collapse of an electrically charged scalar

field in the Einstein and Brans-Dicke theories.
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The gravitational collapse of a self-interacting electrically charged scalar field is a toy-

model of a more realistic collapse, which produces the rotating and neutral Kerr black hole.

It leads to the formation of a dynamical Reissner-Nordström spacetime, which possesses

a spacelike central singularity surrounded by the null Cauchy and event horizons [2–5].

The influence of pair creation in strong electric fields on the outcomes of the process was

described in [6, 7]. Its course when the neutralization and the black hole evaporation due to

the Hawking radiation emission are taken into account was studied in [8, 9]. The evolution

of interest was also examined in the dilaton [10, 11], phantom [12] and Brans-Dicke [13, 14]

theories of gravity. The course and results of the electrically charged gravitational collapse

of a scalar field in the de Sitter spacetime were characterized in [15].

The current paper describes the continuation of the studies whose outcomes were

presented in [16], which from now on will be referred to as paper I. The performed analyses

dealt with the problem of a dynamical gravitational collapse of neutral coupled matter-

geometry systems in the context of performing time measurements intrinsically during the

process. A broad discussion on the following topics can be found in paper I:

• the existing approaches to intrinsic time measurements in dynamical gravitational

systems and their specific implementations in quantum gravity and cosmology,

• a discussion on the arguments in favor of the above propositions and the justification

of the undertaken studies in this context,

• a synopsis to the Brans-Dicke theory of gravity, its relations to experimental data,

the Einstein theory of relativity and cosmology,

• a justification for choosing the Brans-Dicke setup for the conducted research and a

brief summary of previous numerical achievements within the theory,

• specific arguments for choosing the particular values of the free evolution parameters

(the Brans-Dicke coupling constant ω and the coupling between the Brans-Dicke and

scalar fields β), which were used during the analyses.

Thus, in order to get acquainted with the above-listed essential issues related to the back-

ground and the core of our research, we refer the Reader to paper I.

As was pointed out at the beginning of the introduction, the issue of using a dynami-

cal quantity present in the coupled matter-geometry system as an intrinsic ‘clock’ during

inspecting its evolution is crucial for the spacetime regions of high curvature. For this rea-

son, the discussion on the results will mainly concentrate on the neighborhood of spacetime

singularities, which emerge during the gravitational collapse of matter. In order to treat

the particular quantity as a time measurer, its constancy hypersurfaces must fulfill two

conditions, at least within the spacetime regions of interest. First, the slices have to be

spacelike in these areas. Second, their parametrization needs to remain monotonic during

the whole evolution.

The current paper was constructed in the following way. Section 2 contains the de-

scription of the theoretical formulation of the investigated problem. The necessary details
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of numerical computations and the results presentation are placed in section 3. The first

general aim of our analyses was to investigate the potential of measuring time with the use

of dynamical quantities during the collapse of a self-gravitating electrically charged scalar

field within the Einstein theory. The related results are presented in section 4. The second

general goal was to address the above problem in the context of a dynamical gravitational

evolution in the Brans-Dicke theory. The obtained outcomes are elaborated in section 5.

The overall conclusions are gathered in section 6, while appendix A contains a comment

on the numerical computations and the code tests.

2 Gravitational evolution of an electrically charged scalar field

2.1 Covariant form of the equations of motion

The action which describes an electrically charged scalar field in the Brans-Dicke theory

with a nontrivial exponential coupling between the two scalar fields present within the

system is

SBD =

∫
d4x
√
−g
[

1

16π

(
ΦR− ω

Φ
Φ;µΦ;νg

µν
)

+ ΦβLEM

]
, (2.1)

where g denotes the determinant of the metric gµν , R is the Ricci scalar, Φ and ω are

the Brans-Dicke field function and coupling constant, respectively, while β is a constant

which controls the coupling between the Brans-Dicke and electrically charged fields. The

Lagrangian of the latter field has the usual form

LEM = −1

2
(φ;µ + ieAµφ)

(
φ̄;ν − ieAν φ̄

)
gµν − 1

16π
FµνF

µν , (2.2)

in which the complex field φ is charged under a U(1) gauge field, whose four-potential is

denoted as Aµ and the coupling between the two is e. The quantity Fµν ≡ Aν;µ − Aµ;ν is

the strength tensor of the gauge field, while i is the imaginary unit.

The equations of motion of the gravitational field resulting from the above theoretical

setup can be written as follows:

Gµν = 8π
(
TBD
µν + Φβ−1TEM

µν

)
≡ 8πTµν . (2.3)

The components of the Einstein tensor Gµν are determined by the selected metric and their

form will be presented in the next section. The stress-energy tensors of the Brans-Dicke

and electrically charged fields are

TBD
µν =

1

8πΦ
(Φ;µν − gµνΦ;ρσg

ρσ) +
ω

8πΦ2

(
Φ;µΦ;ν −

1

2
gµνΦ;ρΦ;σg

ρσ

)
, (2.4)

TEM
µν =

1

2

(
φ;µφ̄;ν + φ̄;µφ;ν

)
+

1

2

(
φ̄;µieAνφ+ φ̄;νieAµφ− φ;µieAν φ̄− φ;νieAµφ̄

)
+

+
1

4π
FµρF

ρ
ν + e2AµAνφφ̄+ gµνL

EM. (2.5)
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The covariant forms of the equations of motion of the Brans-Dicke field, the electrically

charged scalar field and its complex conjugate and the Maxwell field are the following:

Φ;µνg
µν − 8πΦβ

3 + 2ω

(
TEM − 2βLEM

)
= 0, (2.6)

φ;µνg
µν + ieAµ (2φ;µ + ieAµφ) + ieAµ;νg

µνφ+
β

Φ
Φ;µ (φ;ν + ieAνφ) gµν = 0, (2.7)

φ̄;µνg
µν − ieAµ

(
2φ̄;µ − ieAµφ̄

)
− ieAµ;νg

µν φ̄+
β

Φ
Φ;µ

(
φ̄;ν − ieAν φ̄

)
gµν = 0, (2.8)

1

2π

(
F νµ;ν +

β

Φ
F νµΦ;ν

)
− ieφ

(
φ̄;µ − ieAµφ̄

)
+ ieφ̄ (φ;µ + ieAµφ) = 0, (2.9)

where TEM denotes the trace of (2.5).

2.2 Dynamics in double null coordinates

The evolution will be traced in double null coordinates (u, v, θ, ϕ), in which a spherically

symmetric line element is

ds2 = −α (u, v)2 dudv + r (u, v)2 dΩ2, (2.10)

where u and v are retarded and advanced times, respectively, dΩ2 = dθ2 + sin2 θdϕ2 is the

line element of a unit sphere, while θ and ϕ denote angular coordinates. The arbitrary

functions α and r depend on both the retarded and advanced time. Their dynamics reflects

the evolution of spacetime in the investigated system.

The rescaling of the complex field function s ≡
√

4πφ simplifies the form of the equa-

tions of motion. The second-order differential equations were turned into the first-order

ones via the substitutions

h =
α,u
α
, d =

α,v
α
, f = r,u, g = r,v,

W = Φ,u, Z = Φ,v, w = s,u, z = s,v.
(2.11)

The components of the Einstein tensor related to the line element (2.10) are

Guu = −2

r
(f,u − 2fh) , (2.12)

Gvv = −2

r
(g,v − 2gd) , (2.13)

Guv =
1

2r2

(
4rf,v + α2 + 4fg

)
, (2.14)

Gθθ = sin−2 θ Gϕϕ = −4r2

α2

(
d,u +

f,v
r

)
, (2.15)
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while the elements of the stress-energy tensors of the considered theory (2.4) and (2.5) are

the following:

TBD
uu =

1

8πΦ
(W,u − 2hW ) +

ω

8πΦ2
W 2, (2.16)

TBD
vv =

1

8πΦ
(Z,v − 2dZ) +

ω

8πΦ2
Z2, (2.17)

TBD
uv = − Z,u

8πΦ
− gW + fZ

4πrΦ
, (2.18)

TBD
θθ = sin−2 θ TBD

ϕϕ =
r2

2πα2Φ
Z,u +

r

4πα2Φ
(gW + fZ) +

ωr2

4πΦ2α2
WZ, (2.19)

TEM
uu =

1

4π

[
ww̄ + ieAu (w̄s− ws̄) + e2A2

uss̄
]
, (2.20)

TEM
vv =

1

4π
zz̄, (2.21)

TEM
uv =

A2
u,v

4πα2
, (2.22)

TEM
θθ = sin−2 θ TEM

ϕϕ =
r2

4πα2

[
wz̄ + zw̄ + ieAu (z̄s− zs̄) +

2A2
u,v

α2

]
. (2.23)

Due to the gauge freedom fixing, the only nonzero component of the electromagnetic four-

potential is Au [5], which is a function of advanced and retarded times.

The θθ (or ϕϕ) and uv components of the Einstein equations (2.3) can be written

together with the equation of the Brans-Dicke field (2.6) in a matrix form1 1
r

1
Φ

0 1 r
2Φ

0 0 r


d,uf,v
Z,u

 =

AB
C

 . (2.24)

The elements of the right-hand side vector are

A ≡ −2πα2

r2Φ
T̃EM
θθ −

1

2rΦ
(gW + fZ)− ω

2Φ2
WZ, (2.25)

B ≡ −α
2

4r
− fg

r
+

4πr

Φ
T̃EM
uv −

1

Φ
(gW + fZ) , (2.26)

C ≡ −fZ − gW − 2πrα2

3 + 2ω

(
T̃EM − 2βL̃EM

)
, (2.27)

where Q̃ ≡ ΦβQ for any quantity Q and

TEM = − 4

α2
TEM
uv +

2

r2
TEM
θθ , (2.28)

LEM =
1

4πα2
(wz̄ + zw̄) +

ieAu
4πα2

(z̄s− zs̄) +
A2
u,v

2πα4
. (2.29)

An equivalent form of (2.24), appropriate for numerical computations, is d,u = h,v
g,u = f,v
Z,u = W,v

 =
1

r2

r2 −r − r
2Φ

0 r2 − r2

2Φ

0 0 r


AB
C

 . (2.30)
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The remaining of the Einstein equations (2.3), i.e., their uu and vv components, provide

the constraints

f,u = 2fh− r

2Φ
(W,u − 2hW )− rω

2Φ2
W 2 − 4πr

Φ
T̃EM
uu , (2.31)

g,v = 2dg − r

2Φ
(Z,v − 2dZ)− rω

2Φ2
Z2 − 4πr

Φ
T̃EM
vv . (2.32)

The evolution of the complex scalar field described by (2.7) and (2.8) is governed by

the equations

z,u=w,v = −fz
r
− gw

r
−ieAuz−

ieAugs

r
− ie

4r2
α2qs− β

2Φ
(Wz+Zw+iesAuZ) , (2.33)

z̄,u= w̄,v = −fz̄
r
− gw̄

r
+ieAuz̄+

ieAugs̄

r
+
ie

4r2
α2qs̄− β

2Φ
(Wz̄+Zw̄−ies̄AuZ) , (2.34)

where the function reflecting the amount of electric charge contained within a sphere of a

radius r (u, v) was defined as [5]

q (u, v) =
2r2Au,v
α2

. (2.35)

The Maxwell field dynamics (2.9) is described by the relations

Au,v =
α2q

2r2
, (2.36)

q,v = − ier
2

2
(s̄z − sz̄)− βqZ

Φ
. (2.37)

3 Details of computer simulations and results analysis

The dynamics of the system containing an electrically charged scalar field described by (2.2)

coupled with the Brans-Dicke field according to (2.1) is governed in double null coordinates

by a set of equations (2.30), (2.33)–(2.37). The constraints, which were used to control the

accuracy of numerical calculations, are provided by (2.31) and (2.32). The computational

domain, within which the evolution was traced, is shown in figure 1. It is presented against

the dynamical Schwarzschild and Reissner-Nordström spacetimes in the (vu)-plane. The

respective diagrams are relevant to the cases, in which the Cauchy horizon does not and

does form in the emerging spacetime. The only freely specifiable initial conditions of the

studied process were the profiles of the complex scalar and Brans-Dicke fields posed on

an arbitrarily chosen u = const. hypersurface, which were the same as in paper I. The

field functions were nonzero only within the interval v ∈ [0, 20] and thus the spacetime

region from within the specified range will be referred to as dynamical. The details of the

numerical code and its consistency tests are presented in appendix A.

The investigated values of the evolution parameters (β and ω) and the justification for

their choice were discussed in paper I. δ ∈ [0, 0.5] controls the character of the scalar field,

which is either real or complex when the parameter is equal and not equal to zero, respec-

tively. Its value was constant in all computations of the current paper and equal to 0.5,

– 6 –
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vu

S

i0

i−

i+

I−

I+

EH

(a) (b)

Figure 1. The computational domain (marked gray) on the background of the Carter-Penrose

diagram of the dynamical (a) Schwarzschild and (b) Reissner-Nordström spacetimes. The central

singularity along r = 0, the event and Cauchy horizons are denoted as S, EH and CH, respectively.

I ± and i± are null and timelike infinities, while i0 is a spacelike infinity.

because obtaining a charged field requires a complex scalar coupled to a U(1) gauge field.

The electric coupling constant was arbitrarily set as e = 0.3 in all conducted simulations, as

changing its value (provided that it was not equal to zero) did not influence the outcomes

qualitatively, and thus also the ultimate conclusions. Spacetimes obtained in the case of

an uncoupled collapse, i.e., for e = 0, will be also presented for a convenient comparison.

The presentation of the results will be based on the Penrose spacetime diagrams

(r = const. lines in the (vu)-plane) and plots of constancy hypersurfaces of adequate dy-

namical quantities (|φ|, Re φ, Im φ, Au and q), also within the (vu)-plane. The singularities

and future infinities are marked as thick black curves on the plots and signed, while the

apparent horizons, situated along the hypersurfaces r,v = 0 and r,u = 0, are marked as

red and blue lines, respectively. The areas, in which the constancy hypersurfaces of the

particular quantity are spacelike are blue, and the regions with their timelike character are

purple. In most cases, the constancy hypersurfaces were plotted only for the real part of

the complex scalar field. For explanations, we refer the Reader to paper I. In order to con-

firm the fact that real and imaginary parts of the complex field behave analogously and to

check additional quantities, which may be of interest during time measuring, the constancy

hypersurfaces of the field modulus, the u-component of the Maxwell field four-potential and

the charge function were plotted for selected cases. The modulus of the field function was

calculated according to the definition from the values of its real and imaginary parts.

The values of the evolution parameters used to generate the particular outcome will be

presented above each diagram. The ranges of the plotted quantities and the steps between

adjacent lines representing their constant values are the following.

• On the diagrams of spacetime structures r differs from r = 0 to r = 40, and the range

is divided into 40 steps.

• On the plots presenting the constancy hypersurfaces of the real and imaginary parts

of the electrically charged scalar field, as well as its modulus, the ranges of Re φ,

Im φ and |φ| from −1.75 to 0.5 are divided into 75 steps.
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• On the plots presenting the constancy hypersurfaces of the Brans-Dicke field, its

ranges, divided into 100 steps in each case, depend on the values of ω and β as

follows.

– For ω > −1.5 and β = 0, the range is from Φ = 0 to Φ = 1.

– For ω > −1.5 and β = 0.5 and 1, Φ ranges from 0 to 10.

– For ω < −1.5 and β = 0, Φ ranges from 1 to 20.9.

– For ω < −1.5 and β = 0.5 and 1, the range is from Φ = 0 to Φ = 2.

• The plots of the constancy hypersurfaces of the quantities related to the electromag-

netic field present Au from −50 to 50 and q from 0 to 10, with both ranges divided

into 100 steps.

4 Einstein gravity

The collapse of a self-gravitating electrically charged scalar field within the Einstein theory

was realized by setting the evolution parameters β and ω as equal to 0 and 1000, respec-

tively, because the Einstein limit of the Brans-Dicke theory is obtained for ω →∞. It was

also checked that the results are consistent with the ones obtained when the Brans-Dicke

field is absent, i.e., the amplitude of its initial profile vanishes and the corresponding con-

stants β and ω are equal to zero. The structure of a spacetime formed during the process

of interest, as well as the plots of constant hypersurfaces of the modulus, the real and

imaginary parts of the evolving field function, together with the u-component of the U(1)

gauge field four-potential and the charge function, are presented in figure 2.

4.1 Spacetime structure

The formed spacetime contains a spacelike central singularity along r = 0 surrounded by

a single apparent horizon at the hypersurface r,v = 0. The horizon is spacelike for small

values of advanced time, indicating the dynamical region of the spacetime, and becomes

null as v → ∞. It is situated along u = const. hypersurface there and specifies the

location of the event horizon in the spacetime, which remains in its stationary state after

the dynamical collapse. The lines of constant r settle along null u = const. hypersurfaces

inside the apparent horizon. It means that there exists a Cauchy horizon in the spacetime,

which is located at v = ∞ null hypersurface inside the event horizon (for clarification,

see figure 1(b)). It is located outside of the computational domain, whose ranges in both

null directions are finite. The obtained outcome is consistent with the results of previous

investigations of the dynamical spacetimes emerging from the collapse of an electrically

charged scalar field [5, 8, 9, 17]. The described structure is also formed during the process

running in the presence of dark matter [18].

4.2 Dynamical quantities in the evolving spacetime

The dynamics of the complex scalar field is reflected in the behavior of the constancy

hypersurfaces of the real and imaginary parts, as well as the modulus of the field function.

– 8 –
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Figure 2. (Color online) The diagram of r = const. lines in the (vu)-plane for spacetimes formed

during the gravitational evolution of an electrically charged scalar field in the Einstein theory. The

constancy hypersurfaces of the modulus, the real and imaginary parts of the electrically charged

scalar field function (|φ|, Re φ and Im φ, respectively), as well as the u-component of the U(1)

gauge field four-potential (Au) and the charge function (q).

Their values change most considerably in the dynamical region of the spacetime and beyond

the horizon. Nearby the singularity of the former area, the constancy hypersurfaces of

all the quantities characterizing the complex scalar field are spacelike and their changes

are monotonic. Hence, they can be used as time measurers there. This result agrees

with the conclusion for a self-gravitating neutral scalar field [19]. However, in contrast

to the uncharged scalar field, the electrically charged one cannot serve as a ‘clock’ in the

asymptotic spacetime region of high curvature. The constancy hypersurfaces of the real

and imaginary parts and the modulus of the complex field function clearly have either

spacelike or timelike character in the vicinity of the central singularity at large values of v.

The dynamics of the u-component of the Maxwell field four-potential is the biggest near

the apparent horizon at large values of advanced time, while the dynamics of the charge

function is the same as in the case of the above-mentioned characteristics of the complex
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scalar field. The constancy hypersurfaces of the quantity Au are timelike along the whole

singularity. For this reason, it cannot be used to quantify time there. Similarly to the

quantities |φ|, Re φ and Im φ described above, the function q can be employed as a ‘clock’

in the dynamical spacetime region of high curvature, because its constancy hypersurfaces

are spacelike there and the monotonicicty of their parametrization is preserved. It is not a

good candidate for a time measurer nearby the singularity in the asymptotic region, as its

constancy hypersurfaces change their character between spacelike and timelike.

The Cauchy horizon is situated at the null hypersurface v =∞ inside the event horizon.

Although it exists outside of the computational domain, some conclusions can be drawn

about using the dynamical quantities to measure time in its neighborhood, which is also a

region of high curvature due to the mass inflation effect [3, 4, 14, 20–24]. In the region of

large values of v beyond the event horizon, the constancy hypersurfaces of Re φ, Im φ and

|φ| change their character between spacelike and timelike as u changes. The u-component

of the U(1) gauge field four-potential is almost entirely timelike in the region of interest and

the behavior of the charge function is similar to the behavior of the quantities characterizing

the complex scalar field. For the above reasons, none of the dynamical quantities can be

used as a ‘clock’ in the vicinity the Cauchy horizon.

5 Brans-Dicke theory

5.1 Spacetime structures

The structures of spacetimes resulting from the gravitational collapse of an electrically

charged scalar field in the Brans-Dicke theory for β equal to 0, 0.5 and 1 are shown in

figures 3, 4 and 5, respectively.

5.1.1 Uncoupled Brans-Dicke and electrically charged scalar fields

When β equals 0, each spacetime emerging from the studied collapse contains a spacelike

singularity along r = 0, wholly surrounded by an apparent horizon r,v = 0. The horizon

is spacelike in the dynamical region of the spacetime and becomes null and coincides with

the event horizon when the spacetime settles in its stationary state as v →∞. For ω equal

to −1.4 and −1.6, between the two stages there also exists a v-range within which the

horizon is timelike. For all values of the Brans-Dicke coupling constant, additional r,v = 0

apparent horizons are visible nearby the singularity. When ω equals 0, −1 and −1.4, also

the hypersurfaces of the apparent horizons r,u = 0 exist in the spacetime for large retarded

times. In all the forming spacetimes, Cauchy horizons are present at v =∞, what can be

inferred from the fact that beyond the event horizon the r = const. lines settle along null

u = const. hypersurfaces at large advanced times. This fact, together with the existence

of multiple apparent horizons at large u, distinguishes the collapse with e 6= 0 from the

case of the vanishing e, which produces a typical Schwarzschild-type spacetime. Such a

spacetime contains a central spacelike singularity surrounded by a single apparent horizon

r,v = 0, without a Cauchy horizon.
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Figure 3. (Color online) The diagrams of r = const. lines in the (vu)-plane for spacetimes formed

during evolutions of a neutral complex scalar field (left column) and electrically charged scalar field

(right column) in the Brans-Dicke theory for β = 0.
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Figure 4. (Color online) The diagrams of r = const. lines in the (vu)-plane for spacetimes formed

during evolutions of a neutral complex scalar field (left column) and electrically charged scalar field

(right column) in the Brans-Dicke theory for β = 0.5.
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Figure 5. (Color online) The diagrams of r = const. lines in the (vu)-plane for spacetimes formed

during evolutions of a neutral complex scalar field (left column) and electrically charged scalar field

(right column) in the Brans-Dicke theory for β = 1.
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5.1.2 Coupled Brans-Dicke and electrically charged scalar fields

The spacetimes formed during the collapse of interest for β equal to 0.5 and 1 share many

properties. For ω > −1.4, in each of them there exists a central spacelike singularity

at r = 0 surrounded by a single apparent horizon r,v = 0. The horizon is spacelike in

the dynamical part of the spacetime and tends towards a null direction as v increases,

indicating the location of an event horizon. When the Brans-Dicke coupling constant is

equal to −1 and −1.4, an intermediate part of the horizon hypersurface is timelike. The

Cauchy horizon is absent in all spacetimes, analogously to the case with e = 0. A tendency

towards the Cauchy horizon formation can be seen for the Brans-Dicke coupling equal to

10, as this large ω case signifies an approach to the Einstein limit of the theory.

A brief comment is required regarding a bump on the singularity in the case of β = 0.5,

ω = −1.4, e = 0.3. This region, which appears as a black area on the respective plot, covers

the spacetime very close to the singularity, which remains spacelike, just as in the rest of

the spacetime. The fields are highly dynamical there and many horizons seem to be folded.

Since it is an area of extremely high curvature, its physical meaning is limited for the

current studies, which are conducted within the scope of the classical theory of gravity.

Entirely distinct structures are observed for β 6= 0 and ω = −1.6. When β equals 0.5,

the central spacelike singularity does not extend to large values of advanced time. It is

surrounded by the r,v = 0 apparent horizon, which is spacelike and then timelike for larger

values of v. At the point of their coincidence another apparent horizon, i.e., r,u = 0 appears

and extends to infinity, initially in a spacelike, and then in a null direction. The future

infinity is situated beyond it. For β = 1, only the r,u = 0 apparent horizon, which is

spacelike in the dynamical spacetime region and becomes null as v → ∞, is visible in the

spacetime. Again, the future infinity is located within it. Such exotic structures were

observed previously [12, 13] and they can be formed during the collapse with ω = −1.6,

because in the ghost limit the weak cosmic censorship can be violated.

5.1.3 Overall dependence on evolution parameters

Similarly to the case of an uncharged collapse studied in paper I, the variety and complexity

of the emerging spacetime structures decrease as β increases. The exotic structures formed

for ω = −1.6 and β 6= 0 constitute an exception in this regard. It is worth emphasizing

that in none of the cases the collapse proceeds similarly to the process running in the

Einstein gravity, whose outcome was described in section 4.1. The Cauchy horizon forms

when the Brans-Dicke field is not coupled with the complex scalar one and its emergence

is prevented for the remaining values of β. The existence of the Cauchy horizon is always

accompanied by the presence of multiple apparent horizon hypersurfaces within the event

horizon. Negative values of the parameter ω favor an existence of a timelike part of the

apparent horizon r,v = 0 between its spacelike and null sections. A summary of causal

structures of spacetimes obtained as a result of the examined process is presented in figure 6

in the form of Carter-Penrose diagrams.
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Figure 6. (Color online) The Carter-Penrose diagrams of spacetimes formed during evolutions of

a scalar field in the Brans-Dicke theory, for the following sets of evolution parameters: (a) β = 0,

ω = 10, (b) β = 0, ω = 0,−1, (c) β = 0, ω = −1.4, (d) β = 0, ω = −1.6, (e) β 6= 0, ω > 0, (f)

β 6= 0, ω = −1,−1.4, (g) β = 0.5, ω = −1.6 and (h) β = 1, ω = −1.6. The central singularity along

r = 0, the event and Cauchy horizons, as well as the future infinity are denoted as S, EH, CH and

FI, respectively.

5.2 Dynamical quantities in evolving spacetimes

The evolution of the Brans-Dicke and electrically charged scalar fields (2.6)–(2.7) in double

null coordinates is governed by the following equations:

Φ,uv = −fZ + gW

r
+

Φββ q2α2

2r4 (3 + 2ω)
− Φβ (1− β)

3 + 2ω

[
wz̄ + zw̄ + ieAu (z̄s− zs̄)

]
, (5.1)

φ,uv = −fz + gw

r
− ieAuz −

ieAugs

r
− ie

4r2
α2qs− β

2Φ
(Wz + Zw + iesAuZ) . (5.2)

The evolution of the u-component of the U(1) gauge field four-potential and the charge

function in the (vu)-plane is governed by equations (2.36) and (2.37), respectively. As may

be inferred from (5.1), the case of ω = −1.5 is a singular point of the evolution equation.

5.2.1 Type IIA model

The hypersurfaces of constant values of the Brans-Dicke field and the real part of the

electrically charged scalar field for the evolutions proceeding with β = 0 are shown in

figure 7. The Brans-Dicke and the electrically charged fields become more dynamical as

the singularity is approached except the latter when ω equals −1.4, for which the opposite
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Figure 7. (Color online) The constancy hypersurfaces of the Brans-Dicke field (left column) and

the real part of the electrically charged scalar field function (right column) for evolutions conducted

within the Brans-Dicke theory for β = 0.
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tendency is observed. The Brans-Dicke field varies more substantially in the dynamical

region of spacetime as ω decreases, except the case of ω = −1.6, in which the changes of

the field values are less considerable in comparison to, e.g., ω = −1.4. The Brans-Dicke

parameter does not influence the tendencies in the dynamics of the electrically charged

scalar field, whose values vary in a similar manner within the dynamical area for all the

studied values of ω.

In all the emerging spacetimes the constancy hypersurfaces of the Brans-Dicke field

are spacelike nearby the central singularity in its dynamical part. It means that the field is

a good candidate for a time measurer in this area, also because its values change monoton-

ically there. For larger values of advanced time, the character of the hypersurfaces changes

in the vicinity of the singularity and they are either spacelike or timelike there. Hence,

the Brans-Dicke field cannot be used a ‘clock’ in the asymptotic spacetime region. This

result is in general consistent with the outcomes obtained in paper I for the uncharged case.

The only difference is that in the dynamical area, the Brans-Dicke field can be employed

to quantify time further away from the singularity, as in the current case there are none

nonspacelike hypersurfaces reaching r = 0, even at single points.

The constancy hypersurfaces of the real part of the electrically charged scalar field are

spacelike in the dynamical spacetime region of high curvature. They also change mono-

tonically there and thus, the field is a potential time measurer in this area. On the con-

trary, similarly to the above-mentioned case of the Brans-Dicke field, when v increases to

the values at which the apparent horizon settles along a null hypersurface, the constancy

hypersurfaces are either spacelike or timelike near the singularity. For this reason, the

electrically charged scalar field cannot play a role of a ‘clock’ there. The conclusions are

in agreement with the neutral case of paper I.

The constancy hypersurfaces of the Brans-Dicke field, as well as the modulus, the real

and imaginary parts of the electrically charged scalar field function for the sample evo-

lution with β = 0 and ω = −1.4 are shown in figure 8. The behavior of the constancy

hypersurfaces of the imaginary part of the complex field and its modulus is similar to their

behavior for the real part of the field function. The field dynamics is most apparent in

the dynamical spacetime region and beyond the event horizon, where it decreases as the

singularity is approached. The constancy hypersurfaces are spacelike and change monoton-

ically in the close neighborhood of the singularity for small v, and their character is either

spacelike or timelike as v →∞. For these reasons, all the characteristics of the electrically

charged scalar field can be used as ‘clocks’ in the highly curved dynamical area and are

excluded in this regard for large values of advanced time.

Since none of the above quantities can be used to measure time along the whole central

singularity at r = 0, the u-component of the U(1) gauge field four-potential and the charge

function were also tested in this respect. Their constancy hypersurfaces for the sample

evolution with β = 0 and ω = −1.4 are shown in figure 9. The former is mostly dynamical

for large advanced times in the vicinity of the event horizon. The constancy hypersurfaces of

Au are timelike along the whole singularity, so it definitely cannot serve as a time quantifier

in the regions of high curvature during the collapse. The values of the charge function

change considerably in the dynamical region of the spacetime and the dynamics increases
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Figure 8. (Color online) The constancy hypersurfaces of the Brans-Dicke field Φ, as well as the

modulus, the real and imaginary parts of the electrically charged scalar field function (|φ|, Re φ

and Im φ, respectively) for the evolution described by the parameters β = 0 and ω = −1.4.
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Figure 9. (Color online) The constancy hypersurfaces of the u-component of the U(1) gauge field

four-potential (Au) and the charge function (q) for the evolution described by the parameters β = 0

and ω = −1.4.

for all v when the singularity is approached. The nature of the constancy hypersurfaces of

q is either spacelike or timelike nearby the singularity and for this reason this quantity is

not a good candidate for a ‘clock’ during the examined process.

As may be inferred from figures 7 and 8, as the Cauchy horizon is approached the

nature of the hypersurfaces of constant Re φ, Im φ and |φ| change between spacelike and

timelike as u changes. For this reason, these quantities cannot be used as time measurers

nearby the Cauchy horizon. As can be seen in figure 9, the u-component of the U(1) gauge

field four-potential is timelike in almost the whole region of interest and the behavior of

the charge function is similar to the behavior of the quantities characterizing the complex
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scalar field. Thus, Au and q are also excluded as time quantifiers as the Cauchy horizon is

approached. This result obtained for the vicinity of the Cauchy horizon is the same as in

the case of the collapse proceeding in the Einstein gravity, described in section 4.2.

5.2.2 Type I and heterotic models

The constancy hypersurfaces of the Brans-Dicke field and the real part of the electrically

charged scalar field for the evolutions proceeding with β equal to 0.5 and 1 are shown in

figures 10 and 11, respectively. The values of the Brans-Dicke field function vary more and

more considerably as the central singularity is approached along both null directions. Its

dynamics in the dynamical spacetime region is less apparent and it increases as ω decreases.

In the case of ω = −1.6, the Brans-Dicke field function values change dynamically nearby

the point, at which the r,v = 0 and r,u = 0 apparent horizons meet the singularity and the

future infinity. The electrically charged scalar field is most dynamical within the v-range,

in which the r,v = 0 apparent horizon is spacelike. The values of the real part of its field

function change significantly in the dynamical spacetime region and this behavior does

not depend on the parameter ω. The field becomes more dynamical as the singularity is

approached and this phenomenon diminishes as ω decreases.

When both scalar fields present in the system are coupled, the constancy hypersurfaces

of the Brans-Dicke field are spacelike nearby the whole singularity. The field function values

vary monotonically in the region of high curvature. When β equals 0.5, there can exist a

single point at the singularity, at which a nonspacelike constancy hypersurface reaches it.

However, as was explained in paper I, such isolated points do not exclude the field from

being a time quantifier. For the above reasons, the Brans-Dicke field can be employed to

measure time in the neighborhood of the singular r = 0. The above outcomes obtained for

the charged scalar field collapse are different from the results achieved for the neutral one in

paper I. When a real or complex uncharged scalar field accompanied the Brans-Dicke field

during the process, the latter could be a time measurer only in the dynamical spacetime

region when β was equal to 0.5. Hence, the existence of electric charge in the spacetime

enables the Brans-Dicke field to become a good candidate for a ‘clock’ in the entire vicinity

of the central singularity for both examined values of β 6= 0.

The hypersurfaces of constant values of the real part of the electrically charged scalar

field are spacelike along the singularities in all cases with a nonvanishing β, except ω = 10

and β = 1. There can only exist separated points, at which a nonspacelike hypersurface can

reach the singularity. These points, as was mentioned above, do not prevent the quantity

from being a ‘clock’ nearby the singularity. Moreover, the field function values change

monotonically when the singularity is approached. Hence, the charged scalar field can be

treated as a time measurer along the central singularity for all the cases apart from ω = 10

with β = 1, for which timelike constancy hypersurfaces reach the singularity at large values

of advanced time. This exceptional behavior probably signals an approach of the Einstein

limit of the theory, which appears for large values of the Brans-Dicke coupling.

The hypersurfaces of constant values of the Brans-Dicke field, as well as the modulus,

the real and imaginary parts of the electrically charged scalar field function for the evolution

with β = 0.5 and ω = −1 are shown in figure 12. The same set of quantities for the collapse
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Figure 10. (Color online) The constancy hypersurfaces of the Brans-Dicke field (left column) and

the real part of the electrically charged scalar field function (right column) for evolutions conducted

within the Brans-Dicke theory for β = 0.5.
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Figure 11. (Color online) The constancy hypersurfaces of the Brans-Dicke field (left column) and

the real part of the electrically charged scalar field function (right column) for evolutions conducted

within the Brans-Dicke theory for β = 1.
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Figure 12. (Color online) The constancy hypersurfaces of the Brans-Dicke field Φ, as well as the

modulus, the real and imaginary parts of the electrically charged scalar field function (|φ|, Re φ

and Im φ, respectively) for the evolution described by the parameters β = 0.5 and ω = −1.

running for β = 1 and ω = −1.4 is shown in figure 13. Both the imaginary part of the field

function and its modulus behave analogously to the real part of the complex scalar field.

They are spacelike nearby the central singularity and they change monotonically there.

Although there can exist separated points, at which a nonspacelike hypersurface reaches

the singularity, both of the quantities can be treated as ‘clocks’ in the whole region of high

curvature. Since all the investigated field characteristics provide a time measure in the area

of interest, there does not exist the need for examining other quantities in this respect.

5.2.3 Overall dependence on evolution parameters

The dynamics of the Brans-Dicke field is most evident as the central singularity is ap-

proached for all the investigated values of β and ω. The field function values change more

significantly for smaller retarded times as ω decreases, with one exception of β = 0 and

ω = −1.6. The nature of the Brans-Dicke field constancy hypersurfaces strongly depends

on whether the parameter β vanishes or not. Thus, it can be suspected that it is mainly

related to the second term of the right-hand side of the equation (5.1). In the latter case,

the hypersurfaces are spacelike in the whole region of high curvature, while in the former

case they can be timelike nearby the singularity for large values of v. Whatever the value

of β and ω, the real part of the electrically charged scalar field is most dynamical in the

dynamical spacetime region and its values vary more significantly in the vicinity of the

singularity, apart from β = 0 and ω = −1.4, in which the latter tendency is reversed.

Similarly to the Brans-Dicke field function, Re φ is always spacelike in the neighborhood of

the singularity when β 6= 0 and can be timelike at large advanced times when β vanishes.
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Figure 13. (Color online) The constancy hypersurfaces of the Brans-Dicke field Φ, as well as the

modulus, the real and imaginary parts of the electrically charged scalar field function (|φ|, Re φ

and Im φ, respectively) for the evolution described by the parameters β = 1 and ω = −1.4.

6 Conclusions

The dynamical collapse of a self-gravitating electrically charged scalar field was examined

within the frameworks of the Einstein gravity and the Brans-Dicke theory. In the latter

case, a set of values of the Brans-Dicke coupling constant and the coupling between the

Brans-Dicke and the electrically charged scalar fields was considered. The assumed values

of ω allowed us to investigate the large ω, f(R), dilatonic, brane-world and ghost limits of

the theory. The chosen values of the β parameter were motivated by the type IIA, type I

and heterotic string theory-inspired models.

Apart from the emerging spacetime structures, which were described in each of the

investigated cases, a possibility of measuring time with the use of dynamical quantities

present in the system was assessed. The current paper broadens the scope of [19] and

complements the analyses described in paper I, which referred to the neutral scalar field

collapse in the general relativistic and Brans-Dicke regimes, respectively.

The outcome of the collapse of an electrically charged scalar field in the Einstein gravity

is a dynamical Reissner-Nordström spacetime. The central spacelike singularity along r = 0

is surrounded by a single apparent horizon r,v = 0, which settles along the event horizon

of the spacetime in the region, where v → ∞. The Cauchy horizon is situated at the null

hypersurface v =∞ beyond the event horizon.

The real and imaginary parts of the complex scalar field function, as well as its modulus

and the charge function are most dynamical in the spacetime region, in which the apparent

horizon is spacelike. Their values change more and more considerably as the singularity
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is approached. The variations of the values of the u-component of the Maxwell field four-

potential are most significant nearby the horizon at large values of advanced time. Nearby

the singularity, all the quantities characterizing the electrically charged scalar field and the

charge function can be employed as ‘clocks’ in the dynamical spacetime region, because

their constancy hypersurfaces are spacelike and their values change monotonically in the

area. For larger values of v, measuring time with their use in the region of high curvature is

impossible, because the character of the constancy hypersurfaces changes between spacelike

and timelike. The quantity Au cannot be used to quantify time, as the hypersurfaces of

its constant values are timelike along the whole singularity. None of the above-mentioned

quantities is a good candidate for a time measurer in the neighborhood of the Cauchy

horizon, due to the possible timelike character of their constancy hypersurfaces as the

horizon is approached.

In comparison to the neutral scalar field collapse described from the viewpoint of

time quantification using a dynamical field in [19], the results obtained in the case of an

electrically charged scalar field case support the conclusion that the evolving scalar field has

a potential for measuring time in the dynamical spacetime region nearby the singularity.

On the contrary, the existence of electric charge in the spacetime excludes the possibility of

using the scalar field as a ‘clock’ in the asymptotic region of high curvature, i.e., for large

values of advanced time in the vicinity of the singularity.

During the collapse proceeding in the Brans-Dicke theory, when β equals 0 each of the

emerging spacetimes contains a central spacelike singularity surrounded by an apparent

horizon r,v = 0, which coincides with the event horizon as v tends to infinity. In the

vicinity of the singular r = 0 line, there exist several additional hypersurfaces of r,v = 0

and r,u = 0. The Cauchy horizon is present in each spacetime within the event horizon

at v = ∞. For the nonvanishing β parameter, each of the spacetimes forming during

the collapse with ω > −1 consists of a spacelike singularity along r = 0 surrounded by a

single apparent horizon r,v = 0, whose location for large values of advanced time indicates

the event horizon position in the spacetime. Neither additional apparent horizons nor the

Cauchy horizon exist in the spacetimes. In the ghost limit of β 6= 0, i.e., for ω = −1.6,

the future infinity is situated at large u and surrounded by an apparent horizon r,u = 0.

Additionally, when β = 0.5, from the point of coincidence of the two a spacelike central

singularity extends along r = 0 towards smaller values of v and larger retarded times. The

singularity is fully surrounded by an r,v = 0 apparent horizon.

The dynamics of both Brans-Dicke and electrically charged scalar fields becomes more

significant when the singularity is approached, apart from the case of β = 0 and ω = −1.4.

The variations of the field functions values are also considerable in the dynamical area

of the spacetime, which is more apparent in the case of a complex scalar field. The u-

component of the electromagnetic field four-potential is most dynamical at large v nearby

the event horizon, while the charge function dynamics is analogous to the complex scalar

field behavior described above. In all the investigated cases, both the Brans-Dicke and the

electrically charged scalar fields can act as time measurers in dynamical spacetime regions

of high curvature, as their constancy hypersurfaces are spacelike and their values changes

are monotonic there. The existence of separated points, at which single nonspacelike hyper-
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surfaces of constant field functions can reach the singularity does not spoil this possibility.

The feasibility of treating the dynamical quantities as ‘clocks’ in the asymptotic spacetime

regions as the values of v increase mainly depends on the value of β. When the parameter

vanishes, the Brans-Dicke field, as well as the real and imaginary parts of the complex

scalar field function, along with its modulus and the charge function, are either spacelike

or timelike near the singularity for all values of ω. Hence, all these quantities are excluded

from being time quantifiers. Moreover, Au is timelike along the whole singularity, so it also

cannot be used to measure time there. On the opposite, when β 6= 0 the constancy hyper-

surfaces of Φ, Re φ, Im φ and |φ| are spacelike in the neighborhood of the singular r = 0

and they change monotonically there, except the case of β = 1 and ω = 10. This means

that all these quantities can be used as ‘clocks’ in the vicinity of the singularity as v →∞.

The conducted analyses revealed that there does not exist a good dynamical time

measure in the spacetime region neighboring the Cauchy horizon, because all the examined

quantities may be timelike in this area. The conclusions regarding the Cauchy horizon,

which is present in the spacetimes formed during the Einstein collapse and the Brans-Dicke

collapse with β = 0, are similar to the ones drawn in the case of a neutral scalar field collapse

in the ghost regime with the vanishing β. In this case presented in paper I, measuring time

with the use of dynamical quantities was also excluded nearby the emerging Cauchy horizon.

The dynamical quantities which can be used to quantify time in evolving gravitational

systems are gathered in table 1, which summarizes the investigations of potential time

measurements nearby the singularities emerging during the collapse within the Einstein

and Brans-Dicke theories. The outcomes of the research concerning the charged collapse

in the Brans-Dicke theory support the conclusions about using dynamical quantities as

time variables within the evolving spacetimes during dynamical gravitational evolutions of

coupled matter-geometry systems, which were formulated on the basis of investigating the

neutral collapse in paper I. First, the spacelike character of the constancy hypersurfaces of

the quantities and the monotonicity of their parametrization are not retained within the

whole spacetime. Second, there does not exist a good time measure for the areas nearby

the Cauchy horizons. Third, in attempts to use dynamical quantities as ‘clocks’, special

attention should be paid to the values of the free evolution parameters, as they can strongly

influence this possibility.

In general, in comparison to the collapse of a neutral scalar field, the presence of

the electric charge in the spacetime modifies the feasibility of time quantification using the

evolving quantities in the following way. In the case of uncoupled Brans-Dicke and complex

scalar fields, i.e., for β = 0, the charge spoils the possibility of measuring time with their

use, while when the fields are coupled, that is β is not equal to zero, the charge enhances

it. In the studied charged collapse, there also exist two more potential time measures, i.e.,

the charge function and the nonzero component of the Maxwell field four-potential. In the

context of time quantification, the former behaves analogously to the complex scalar field

dynamical characteristics. On the other hand, the latter does not provide a good time

measure, as its constancy hypersurfaces are timelike in the regions of high curvature.

During the gravitational collapse of an electrically charged scalar field, the mass infla-

tion phenomenon can appear in the spacetime. If so, a super-Planckian surface develops
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scalar field collapse in the Einstein theory

neutral [19] charged

D A D A
φ φ, q −

scalar field collapse in the Brans-Dicke theory

neutral [16] charged

D A D A
β = 0 Φ, φ (1) Φ, φ, q −
β = 0.5 Φ, φ Φ, φ, q

β = 1 φ Φ, φ, q (2)

Table 1. Feasibility of using dynamical quantities of a coupled matter-geometry system to quantify

time nearby the singularity emerging during the gravitational evolution. The dynamical (v 6 20)

and asymptotic (v → ∞) spacetime regions are denoted as D and A, respectively. The scalar

and Brans-Dicke fields are φ and Φ, respectively, while q denotes the charge function (2.35).

Notes: (1)except the vicinity of the Cauchy horizon for ω = −1.6, (2)except the asymptotic

region for ω = 10.

outside the true singularity [9]. Within the region encompassed by it the spacetime curva-

ture reaches values excluding the usage of a classical theory of gravity. Hence, quantized

gravity should be applied not around the singularity in this case, but around the mass

inflation super-Planckian surface. It is possible that in the vicinity of this hypersurface one

of the quantities discussed above or their combination could provide a good time measure.

However, since the proposed construction depends on the cutoff of the super-Planckian

region, it requires more detailed studies on the region itself at first, as the determination

of its boundaries could be only arbitrary without any specific analyses. For this reason, we

leave the announced topic for future researches.
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A Numerical computations

The solution of the evolution equations (2.30), (2.33)–(2.37) was provided numerically with

the use of an enhanced version of the code prepared for the needs of paper I. The modules

governing the evolution of the gravitational, Brans-Dicke and scalar fields were modified

in order to account for the presence of an electrically charged scalar field instead of a

neutral one. The program was also supplied with a module governing the evolution of

the Maxwell field. The quantities Au and q were set as equal to zero along the initial
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Figure 14. (Color online) Monitoring of the constraints. The values of the equations (A.1)

and (A.2) were calculated along three null hypersurfaces of constant u equal to 5, 10 and 15.

v = 0 hypersurface, because due to the form of the evolving field, the center of the shell

was not affected by matter. The u-component of the electromagnetic field four-potential

and the charge function along the initial u = 0 hypersurface were calculated according

to (2.36) and (2.37).

The accuracy checks of the numerical code will be presented for a sample evolution

running for the parameters β = 0, ω = −1.4 and e = 0.3. The consistency of the computa-

tions was monitored during all evolutions using the constraints (2.31) and (2.32). Figure 14

presents the descendant quantities

Cons1 ≡
2
∣∣∣r,uu − 2fh+ r

2Φ (W,u − 2hW ) + rω
2Φ2W

2 + 4πr
Φ T̃EM

uu

∣∣∣
|r,uu|+

∣∣∣2fh− r
2Φ (W,u − 2hW )− rω

2Φ2W 2 − 4πr
Φ T̃EM

uu

∣∣∣ , (A.1)

Cons2 ≡
2
∣∣∣r,vv − 2dg + r

2Φ (Z,v − 2dZ) + rω
2Φ2Z

2 + 4πr
Φ T̃EM

vv

∣∣∣
|r,vv|+

∣∣∣2dg − r
2Φ (Z,v − 2dZ)− rω

2Φ2Z2 − 4πr
Φ T̃EM

vv

∣∣∣ , (A.2)

calculated along three arbitrary null hypersurfaces for the evolution with parameters spec-

ified above. The values of Cons1 and Cons2 ought to be smaller than 2 in order to satisfy

the constraints well (except the case when r,uu or r,vv vanishes). As can be inferred from

the plot, the error is less than 1% within almost the whole integration domain. Since the

constraint equations are stable, the simulations are consistent.

The outcome of the convergence check of the numerical code for the sample evolution is

presented in figure 15. The values of a quantity constructed from the r function obtained on

two grids with a quotient of integration steps equal to 2 were calculated at three arbitrary

u = const. hypersurfaces. An overlap between two profiles of the defined quantity at each
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Figure 15. (Color online) The convergence of the code presented through the prism of the values

of the quantity |r(k×k) − r(2k×2k)|/|r(k×k)| with k = 0.5, 1 calculated at the same hypersurfaces

of constant u as in figure 14. (k × k) denotes the resolution of the numerical grid, on which the

computations were conducted.

u = const. was obtained when the result from finer grids was multiplied by 4. Thus, the

code displays a second order convergence. The discrepancy between each two profiles at

each constant u hypersurface is less than 10−4% except a close vicinity of the singularity.
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