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1 Introduction

One of the great successes of string theory is the microscopic explanation of the entropy
of a class of asymptotically flat black holes. An immense literature, which we will not try
to refer to here, followed the seminal paper [1]. No similar result exists for asymptotically
AdS black holes. This is curious since holography suggests that the microstates of the
black hole should correspond to states in a dual conformal field theory. The AdS/CFT
correspondence should be the natural setting where to explain the black hole entropy in
terms of a microscopical theory. Various attempts have been made to derive the entropy of
a class of rotating black holes in AdSj in terms of states of the dual ' = 4 super-Yang-Mills
(SYM) theory [2, 3] but none was completely successful.!

In this paper we consider the analogous problem for asymptotically AdSy black holes.
In AdS, there exist spherically symmetric static BPS black holes,? preserving at least two
real supercharges. The first numeric evidence for these solutions was found in [4], but their
analytic construction was discovered in [5] and further studied by many authors [6-14].
They occur in non-minimal N' = 2 gauged supergravity in four dimensions and they reduce
asymptotically to AdS, with the addition of magnetic charges for the gauge fields in vector
multiplets. This background is sometimes called magnetic AdSs. The full spacetime can
be thought of as interpolating between the asymptotic AdS4 vacuum and the near-horizon
AdS, x S? geometry, leading to a natural holographic interpretation as an RG flow across
dimensions. In particular, we have a flow between a CFT3 and a CFTy, from a three-
dimensional theory compactified on S? to a superconformal quantum mechanics (QM).

To be concrete, we focus on a class of supersymmetric black holes that are asymptotic
to AdS; x S”. The dual field theory is a topologically twisted ABJM theory [15] depend-
ing on a choice of magnetic fluxes n, for the four Abelian gauge fields U(1)* c SO(8)
arising from the reduction on S7. The theory, dimensionally reduced on S?, gives rise to
a supersymmetric quantum mechanics. The holographic picture suggests that it becomes
superconformal at low energies. It also suggests that the original UV R-symmetry of the
three-dimensional theory mixes in a non-trivial way with the flavor symmetries along the
flow, and that some extremization principle is at work to determine the exact linear com-
bination. The setting is indeed very similar to the one in [16, 17], where the dual to the
topologically twisted N =4 SYM compactified on a Riemann surface ¥ was studied. The
gravity solution interpolates between AdSs and AdSs x . In [16, 17], the central charge of
the dimensionally reduced CFTy has been computed via c-extremization and successfully
compared with the gravity prediction.

Here we focus our attention on the entropy of the black hole. We expect that it can be
obtained with a microscopic computation in the dual field theory and we show indeed that
this is the case. To this purpose, we evaluate the topologically twisted index introduced
in [18] for the ABJM theory. This is the partition function of the topologically twisted
theory on S2 x S! and can be computed via localization [18]. The result depends on a set

!They involve counting the 1/16 BPS states of N’ = 4 SYM which is still out of reach of our current
techniques.
2This is not possible in AdSs.



of magnetic fluxes n, and chemical potentials A, for the global symmetries of the theory.
It can be interpreted as the Witten index

Z(ng, Ag) = Tr(f1)F o BH giJala

of the dimensionally-reduced quantum mechanics.?> The magnetic fluxes n, precisely corre-
spond to the magnetic charges of the black hole. The chemical potentials A, parametrize
the mixing of the R-symmetry with the flavor symmetries. We propose that, in order to
find the R-symmetry that sits in the superconformal algebra in the IR, we need to extremize
Z(ng, Ag) with respect to Ag.

The main result of this paper is the evaluation of the topologically twisted index
Z(ng, Ag) for ABJM in the large N limit. We extremize Z(ng, A,) at large N and we show
that the extremum exactly reproduces the black hole entropy:

Relog Z|erit(na) = Ser(Na) -

The critical values of the A,’s coincide with the values of the bulk scalar fields at the
horizon of the black hole, which parametrize the bulk dual to the R-symmetry, in perfect
agreement with supergravity expectations.

One of the technical challenges of this paper is the evaluation of the topologically
twisted index in the large N limit. The index can be expressed as a contour integral,

Z=> fi Zint(z,m)

mEFh

of a meromorphic form Z,; of Cartan-valued complex variables z, summed over a lattice I'y
of magnetic gauge fluxes. The form Zj,; encodes the classical and one-loop contributions to
the path-integral, around BPS configurations. We first perform the sum over the magnetic
flux lattice. Then we solve, at large N, an auxiliary set of equations — which have been
dubbed “Bethe Ansatz Equations” in a similar context in [19] — that give the positions
of the poles of the meromorphic integrand. This part of the computation bears many
similarities with the large N evaluation of the S partition function for N' = 2 three-
dimensional theories in [20, 21], although it is much more complicated. We finally evaluate
the partition function Z using the residue theorem.

Our result opens many questions and directions of investigation. Let us mention two
of them.

First, it is tempting to speculate that, under certain conditions, the exact R-symmetry
in A/ = 2 superconformal QM can be found by extremizing the corresponding Witten index.
This fact would add to the other extremization theorems valid in higher dimensions. We
know that even and odd dimensions work differently. In two and four dimensions, the
exact R-symmetry is found by extremizing central charges: a-maximization works in four
dimensions [22, 23] and c-extremization in two [16]. In odd dimensions, we have so far the

3If we turn on real masses o4, the index becomes a holomorphic function of the fugacities y, = e**a 7%,
This can be used to regularize the index in the case of quantum mechanics with a continuous spectrum

starting at H = 0, like those considered in this paper.



example of three dimensions where the partition function on S® is extremized [21, 24, 25].
The natural candidate for an extremization in one dimension is the partition function on
S1, which is exactly the Witten index.

Secondly, it would be very interesting to understand better the superconformal quan-
tum mechanics corresponding to the horizon of the black hole. Our computation is done
in the topologically twisted three-dimensional theory. The dimensionally reduced QM has
infinitely many states corresponding to different gauge fluxes on S2. The topologically
twisted index defined in [18] depends on fugacities y, = e®e=% and it counts the super-
symmetric ground states, but it necessarily involves a regularization when the fugacities are
pure phases, as it is in our case.* It would be interesting to understand more precisely how
these supersymmetric ground states flow to the microstates of the black hole. This implies
understanding in details the structure of the IR superconformal quantum mechanics. We
leave these very interesting questions for the future.

The paper is organized as follows. In section 2 we write the topologically twisted index
for the ABJM theory. We evaluate it in the large N limit as a function of the magnetic fluxes
n, and the fugacities y, = e*®=. In particular we show that it scales as N3/2. Our compu-
tation is valid for NV > 1, which corresponds to the M-theory limit of ABJM. In section 3
we review and discuss the general features of the static supersymmetric AdS4 black holes.
We emphasize in particular the holographic interpretation. In section 4 we compare the
field theory and supergravity results. We show that the critical value of the index correctly
reproduces the black hole entropy. We also show that the critical values of the chemical
potentials A, match with the horizon values of the scalar fields and we show how this corre-
sponds to the identification of the exact R-symmetry of the problem. In section 5 we give a
preliminary discussion of some open issues, like the Witten index extremization and the cor-
rect interpretation of the superconformal quantum mechanics. Finally, in the appendices we
give a derivation of the near horizon black hole metric from the BPS equations of gauged su-
pergravity, we discuss the simplest case of a superconformal quantum mechanics — the free

chiral field — and we discuss in details the attractor mechanism for our class of black holes.

2 The topologically twisted index of ABJM at large IN

A general 3d N = 2 supersymmetric theory with an R-symmetry and integer R-charges,
can be placed supersymmetrically on S? x S* (in fact on X3 x S') by performing a partial
topological twist on S2. If the theory has also a continuous flavor symmetry, then there is
a discrete infinite family of such twists obtained by mixing the R-symmetry with Abelian
subgroups of the flavor symmetry, and twisting by these alternative R-symmetries. One
can also turn on background flat connections along S!, and real masses. Both can be
thought of as a background for the bosonic fields (the connection along S' and the real
scalar) in external vector multiplets coupled to the flavor symmetry; we collectively call
them “complex flat connections”. One can then compute the path-integral of the theory on

4The o, are real masses that make the spectrum of the Hamiltonian discrete; here all these masses are
Zero.



52 x S' with such a background: this defines the so-called topologically twisted index of the
theory [18]. We briefly review its definition here and then we apply it to the ABJM theory.
We take a metric on S2 x S and a background for the R-symmetry given by

1
ds* = R*(df* + sin® 0 dp?) + B%dt* AR = 3 cos O dy | (2.1)

where ¢t = ¢t 4+ 1 . We take vielbein ¢! = Rdf, €2 = Rsinfdyp, e3> = Sdt. We can
write supersymmetric Yang-Mills and Chern-Simons Lagrangians for a vector multiplet
V: (A“,O',)\,)\T,D)

1 1 1 : :
Lyn =Tr [4FWF‘“’ + 5Dy Do + 5D? — %)\H“D“)\ - %/\T o, )\]} :
, , (2.2)
k 2
Los = _sz Tr [e“”” <AH8,,AP - ;AuAl,Ap) + AT+ 2Da] ,

and for matter chiral multiplets ® = (¢, ¢, F') transforming in a representation R of the
gauge group

Lot = D, ¢ D41 <o2+iD+;]q%2> o+ FIF+ipt (4D, —o)p—itap+iof Ay | (2.3)
where ¢ is the R-charge of the chiral multiplet [18]. In the previous expression, for example,
Yo is a shorthand for ¢ o (T, )4 BwB , where the indices A, B run over the representation
MR and a, § over the Lie algebra. The covariant derivatives in (2.2) and (2.3) contain the
R-symmetry background (2.1). Supersymmetry is preserved by a constant spinor satisfying
Ve=e.

Whenever the theory has flavor symmetries J/, we can turn on supersymmet-
ric backgrounds for the bosonic fields in the corresponding vector multiplet V/' =
(A[L, ol M AT, DF). A Cartan-valued magnetic background for the flavor symmetry

% g Fl=n, (2.4)
is supersymmetric provided that Flf2 = iD/. We can also turn on an arbitrary Cartan-
valued vacuum expectation value for o/ and A,{ . The theory is deformed by various terms
that can be read from the matter Lagrangian (2.3) where we consider the vector multiplet
V= (A0, AT, D) appearing there as running over the gauge as well as flavor symmetries.
The flavor gauge background appears in the covariant derivatives of the matter fields and
in explicit mass term deformations. The magnetic flux n for the flavor symmetry will add
up to the magnetic flux for the R-symmetry, providing a family of topological twists. The
constant potential A{ is a flat connection (or Wilson line) for the flavor symmetry and of
is a real mass for the three-dimensional theory. The nonvanishing value for D/ induces
extra bosonic mass terms in the Lagrangian [18].

One can then compute the path-integral of the theory on S? x S with such a back-
ground using localization techniques [18]. The path integral is a function of the flavor
magnetic fluxes n and fugacities y = e A{+i897) for the flavor symmetries and it defines



the so-called topologically twisted index of the theory [18]. Tt is explicitly given by a contour
integral of a meromorphic form

Z(ny) = “;/‘ m;h é Zins (2,3 m, ) | (2.5)
summed over all magnetic fluxes m in the co-root lattice I'y of the gauge group and inte-
grated over the zero-mode gauge variables z = e (4t+69) where A; runs over the maximal
torus of the gauge group and o over the corresponding Cartan subalgebra. More precisely,
we introduce a variable u = A; +if0 on the complexified Cartan subalgebra gc and, given
a weight p, we use a notation where z” = ¢?(®)  The form Zint(z, y; m, n) receives contribu-
tions from the classical action and the one-loop determinants. The contribution of a chiral
multiplet to the one-loop determinant is given by

0/2 2,p5/2\ P@)+ps(n)—q+1
- ) (2.6)

2 =TI (F= i

PER

where R is the representation under the gauge group G, p are the corresponding weights,

q is the R-charge of the field, and p; is the weight of the multiplet under the flavor

symmetry group. The contribution of a vector multiplet to the one-loop determinant is
instead given by

Z¥e = 11 (1 —a*) (idu)” (2.7)
acG
where « are the roots of GG. The classical action contributes a factor
CS k
chass =T " (28)

where k is the Chern-Simons coupling of G (each Abelian and simple factor has its own
coupling). A U(1) topological symmetry with holonomy ¢ = e?* and flux t contributes

ZWP — gtem (2.9)

class
Supersymmetry selects the contour of integration to be used in (2.5) and determines
which poles of Ziy(x,y;m,n) we have to take. The result can be formulated in terms of
the Jeffrey-Kirwan residue [26], and we refer to [18] for the details.

2.1 The index of ABJM

The low-energy dynamics of N M2-branes on C*/Z;, is described by the so-called ABJM
theory [15]: it is a three-dimensional supersymmetric Chern-Simons-matter theory with
gauge group U(N), x U(N)_j (the subscripts are the CS levels) and matter in bifunda-
mental representations. Using standard A/ = 2 notation, the matter content is described
by the quiver diagram



where 4,7 = 1,2 and arrows represent bifundamental chiral multiplets, and there is a
quartic superpotential

W =Tr (A1 B1A3By — A1Bo A3 By) . (2.10)

For k = 1,2 the theory has N’ = 8 superconformal symmetry, while for £ > 3 it has N' = 6
superconformal symmetry. In the A/ = 2 notation, an SU(2)4 x SU(2)p x U(1)r x U(1)g
global symmetry is made manifest: the first two factors act on A; and Bj, respectively,
as on doublets; U(1)r is the topological symmetry associated to the topological current
Jr =« Tr(F —F) where F, F are the two field strengths; U(1) is an R-symmetry. Working
in components, though, one finds the full SO(6)z symmetry; for &k = 1,2 the R-symmetry
is further enhanced to SO(8) quantum mechanically [15, 27, 28].

To relate the symmetries of the theory to the isometries of C?, let us consider® N =
1 and k¥ = 1 which describes a single M2-brane moving on C*. The theory has gauge
symmetry U(1)y x U(1)z, and denoting U(1) 4,5 the Cartans of SU(2)4,p, the standard
charge assignment is

U(1)y U(1)3/U(1)a U(1)p U(1)r U(1)g
Al 1 -1 1 0 1/2
Al 1 -1 -1 0 0 1/2
Byl -1 1 0 0 1/2 (2.11)
Byl -1 1 0 -1 0 1/2
T/ 1 -11] 0 1 0
T| -1 1 0 -1 0

The monopole T corresponds to the magnetic flux m = (1, —1) while T to m = (—1,1).
These monopoles get their gauge charges from the CS terms. The chosen U(1) g is the super-
conformal R-symmetry of an N’ = 2 superconformal subalgebra. The gauge invariants are
A;T and B;T, which are the coordinates of C* (their R-charge % signals that they are free).

It is convenient to introduce a new basis for the Cartan of global symmetries, where
the flavor symmetries J; 23 act on a copy of C C C* respectively, Jy is an R-symmetry,
and they all have integer charges:

_JptJatJyg—Jr

J _JB—JA+Jg—JT
2 ’ B

Jr—J,
2 ) 3 .

J1 Js=Jg, Ja=Jp—Jp+

(2.12)

SFor N = 1, the superpotential vanishes and the manifest global symmetry is enhanced to SU(2)a x
SU((2)s x U(1)p x U(1)r x U(1)g of rank 5, where U(1)p gives charge 1 to all chiral multiplets. In fact, in
this case the theory is four free chiral multiplets describing C*, or a NLSM on the orbifold C*/Zj, which
have a rank-4 flavor symmetry and a U(1)r symmetry. In view of the N > 1 case, we will neglect U(1)p.



In terms of charges:

——

U(1)1 U(1); U(1)s U(1),
Al 1 0 0
Asl 0O 1 0
By O 0 1

T| 0 0 0

0
0
0 (2.13)
2
0
T/A o 0 0 0

We will use these symmetries to put the theory on S? x S! with a topological twist. In
particular we call —ny 2 3 the fluxes and ¥ 2 3 the fugacities associated to Ji 2 3. To restore
the symmetry, we can introduce ng and y4 as well, defined by

Zana:2, Haya: 1. (2.14)

In the main body of the paper, we will not introduce separate parameters t,& for the
topological symmetry, essentially because J; + Jo — J3 = J, — Jp, i.e. the topological
background is already included up to a gauge background.

For the ABJM theory, the topologically twisted index is computed using the rules
discussed above and we find

N ~ ~
1 de;  dz; gl Gk emi £ i
Z= (N')2 Z / H 2mix; 2miT; gmET H =2 U I 8

Ly

m,meZN i= 7
N Zi Ya m;—m;—ng+1 \/? m;—m;—n,+1
z i—M;—Na T Y 7
< [T 11 (1_:c> 11 <> - (219)
ij=1a=1,2 z; Ya b=34 N T T U

For the moment, we introduced all possible parameters including redundant ones. How-
ever, the index has a set of symmetries and invariances, some of which correspond to the
aforementioned redundancies.

First of all, the index is actually nonvanishing only if t +t =0 (mod k). This can be
seen by performing the integral over the diagonal U(1). By a change of variables z; = zw;
and #; = z2;/w with sz\il T = Hf\il Z; = 1, we see that each term in the sum (2.15)

contains an integral

/ dz zk(zimfziﬁi)ﬂ#’

2miz
which can be non-zero only if t +t =0 (mod k).
Secondly, the index has nice properties under shift of the arguments:

TP = AT ; &= AR Y12 = Ay Y34 = AYsa Z - NNz

Fi— Ny ; £ — N Y12 = Ay12 Y34 — A 'ysa Z = \Ntz

m; —>m; +p; t—t—Fkp Ny —ni2+p N34 —> N34 — P Z — vz

m; —m+p; =t kp M2 — N2 —p ngy —ngat+p  Z—ENZ,
(2.16)



where each line represents a different transformation and X, A, p, p (with A, A € C* and
p,p € Z) are the parameters. In the first column we indicated the transformation to be
performed on the dummy variables in the expression of Z which gives the transformations
reported in the last four columns. The first two transformations can be used to set £ =
f = 1, and for k = £1 the last two can be used to set t = t = 0. For larger values of k,
the best we can do is to set t + t = 0 since it is a multiple of k. However, since we will be
mainly interested in the case k = 1, we will simply take t = t = 0 from the start.”

Thirdly, the index is invariant under discrete involutions, which we write for simplicity
fort=t=0and & =¢=1:

xiﬁl/xi i’i<—>1/i‘i; ya<—>1/ya k< —k
m; < —my m; <> —m; ; {1,2} < {3,4} Yo <> 1/yq k< —k.
(2.17)

In the first two columns we indicated the transformation to be performed on dummy vari-

ables in the expression of Z. Combining the transformations we see that the index is

invariant under change of sign of k& (corresponding to a parity transformation [15]) and un-

der inversion of the fugacities. We will assume then, without loss of generality, that k > 0.
We thus study the index

Nodw; di &
L [Tl s 2) (1 )
2mix; 2T, i z;
mmGZN 1=1 i#£j
mifﬁjfnaJrl % UYb ﬁj,mi,nb+1
X H 11 ( V > 11 <1Vm]> . (2.18)
i,j=1a=122 b=34 N+ T Yo

The Jeffrey-Kirwan residue selects a middle-dimensional contour in (C*)2V. The integrand
has no residues in the “bulk”, and the only residues are at the boundaries z; = 0,00, Z; =
0,00 of the domain. According to the rules discussed in [18], we need to choose reference
covectors 1, 77 that, combined with the sign of the Chern-Simons coupling, tell us which
residues we have to take. The final result is independent of 1, 17. We choose the covectors
—n=1n=(1,...,1) in such a way that we pick all residues at the origin [18]. Then the
range of the sums over m; and m; are bounded above and below, respectively. We can take
m; < M —1and m; > 1— M for some large integer M. Performing the summations we get

(zB)M

1 Noodry dE T; N
~(N1)2 / H omix; 2mid; H (1 a m) ( > A H eiBi — 1 H 1 (2.19)
C =1 17#] J

where we defined the quantities

A= H 11 ( F )1—% 11 (@)Hb (2.20)

1—%%

i,j=1 a=1,2 b=3,4

SIn fact, it is simple to check that in the large N limit the free energy only depends on t+ .



and

(2.21)
After the summation, the contributions from the residues at the origin have moved to the
solutions to the “Bethe Ansatz Equations” (BAEs)

eBi=1, eBi=1. (2.22)

We borrow this terminology from [19], where a similar structure was found. Notice that if
we take |y,| = 1, then the equations are invariant under the exchange z; <> Z}. Moreover,
taking the product of the equations immediately leads to the constraint”

N N
IESIIER (2.23)
i=1 j=1

As generically all poles are simple, to take the residues we simply insert a Jacobian and
evaluate everything else at the pole, hence we see that the dependence on M disappears.
The partition function takes the compact expression

e [y (1 - ) (1 - &
T % L1, ol Iy, (1= 5)0 = 5)

I € BAE de IB H i,j=1 Ha 1 Q(xj yaxi)l_na Ha:3,4(mi - yajj)l_na
(2.24)
The sum is over all solutions I to the BAEs, modulo permutations of the x;’s and Z;’s

All instances of x;,Z; have to be evaluated on those solutions.
The matrix B appearing in the Jacobian is 2N x 2N with block form

aeiB]‘ B ae’iBj
) = — T
a lBj, ZB]' 8ZU al‘
po Ol e™) | on o | (2.25)
d(log x;, log 7;) 0eiBi 9eiBi

I

T ——=
o 0T / anxan

It is the product of the matrix of derivatives and the diagonal matrix diag(z;, ;). The two
blocks on the diagonal are diagonal matrices, de'Pi /0z; = 0 and 9e'Pi /07, = 0 for j # 1,
while the off-diagonal blocks are more complicated and contain all components. We can

introduce the function
(1—2y3)(1 — zya)

1—zyyH(1—zy37)’

"In particular we can always find “obvious” solutions imposing x; = x, &; = & for all i. From the

D(z) =

(2.26)

constraint, & = wex where wy is a kN-th root of unity. Then

k(1= ysw)V (1 — gawe)™
(1 =y we)N (1 =y we)V

These solutions, however, do not contribute to the original integral because they are killed by the vector

multiplet determinant.

~10 -



which allows to write the BAEs in a compact form:

iBi — iB; _ =TTV zj
!k H] X <$z> ¢'Pi = gt HMD(:@)' (2.27)

Then we can introduce the objects

Olog D(z)
Gijj=———"-= . 2.28
J 3 lOg z Z=I; /:l?l ( )
The blocks of B, imposing 1 = e'Bi = ¢iB; , are
Sk = mey Gim] Gji
Bl p, = i (2.29)
—Gij Sjt[k+ Y me1 G

Notice that, because of the relation between the y,’s, D(0) = D(co) = 1. Moreover the
logarithmic derivative dlog D(z)/0log z vanishes both at z — 0 and z — oco. This behavior
is sometimes called “absence of long-range forces” in the large N matrix model.

For k > 1, given a solution {z;,Z;} to the BAEs (2.21)-(2.22), we can obtain more
solutions multiplying all x;, Z; by a common k-th root of unity wy:

Zy, - {zi, 25} — {wiws, wpd;} . (2.30)

Thus, all solutions are “k-fold degenerate”. One can also check that (2.24) receives the
same contribution from those k solutions: both det B and the rest of the expression inside
the summation are invariant under (2.30). Therefore in (2.24) we could sum over the orbits
of (2.30) and multiply the result by k.

2.2 The Bethe potential

It is convenient to change variables to w;, @;, A4, defined modulo 27:
x; = e | Tj= el Yo = P (2.31)

The relation [], yo = 1 becomes ) A, = 0 (mod 27). Then the Bethe ansatz equations
become

Ofkuz—i—zz [ Z L11 et —uitAa) Z L11 el —ui— a))] — 2mn;

]:V a=3,4 a=1,2 (232)
0=kil; +i) { D Lig (@it fe)) — N " Ly (% a>)} —2mqy
i=1 ~a=3,4 a=1,2

where n;, 7 are integers that parametrize the angular ambiguities. In the following we will
take A, real.
We recall the polylogarithms Li,(z) defined by

Li,(z — 2.33
i Zk (2:33)
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%

Figure 1. Analytic structure of Li, (e®).

for |z| < 1, and by analytic continuation outside the disk. The first two cases are Lig(z) =
z/(1—z) and Li;(z) = —log(1 — z). For n > 1, the functions have a branch point at z =1
and we shall take the principal determination with a cut [1,400) along the real axis. For
different values of n, the polylogarithms are related by

u
Oy Lin(e™) = i Lip_1(e™) , Lip (e™) =i / Lip_1(e™) du’ . (2.34)
+ioc0o

The functions Li, (e*) are periodic under u — u + 27 and have branch cut discontinuities
along the vertical line [0, —ico) and its images, as represented in figure 1. For us the

following inversion formulae will be important:®

Lio(ei") + Lio(eﬂ'“) —
. . 2 2
Lig(e™) + Lig(e™™) = % g % (2.35)
. . L
’ i ? 1T T
Li COWE —uy _ Y 3T 9 i
iz(e™) iz(e™™) 6u 2u + 3 u

for 0 < Reu < 27. The formulee in the other regions are obtained by periodicity. Also
notice that Lip(z) and Li;(z) diverge at z = 1, while Li,(z) for n > 2 have no divergences
on the z-plane.

All the equations in (2.32) can be obtained as critical points of the function

N N
k ~2 2 ~ o~ : (0 —ui +0¢ : (U —u; —Aq
V=) Q(Ui—ui)—Qﬂ(niui—niui)] fz [ 3 Lip (¢! —uit8a) = 5 Lip (£ )
i=1 i,j=1 La=3,4 a=1,2
(2.36)
for some choice of n;, n; and up to constants that do not depend on w;, ;. We call this
function the Bethe potential.

2.3 The BAEs at large IN

Our goal is to evaluate the twisted index (2.24) at large N. In order to do so, we first seek
the dominant solution to the BAEs (2.22) at large N, and then evaluate its contribution

8The inversion formula in the region —27 < Reu < 0 are simply obtained by sending v — —u.
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to (2.24). A convenient way to solve the BAEs at large N is to first evaluate the functional
V and then extremize it. Even with this strategy, it is hard to compute all possible large N
limits in full generality. Following a similar idea in [20], we first study the BAEs numerically
for some large values of N, and extract a plausible ansatz for the large N solution; then
we extremize the Bethe potential with respect to that ansatz.

For the sake of clarity, in the following we focus on the case k = 1. Although most of
the computations straightforwardly generalize to k > 1, there are in fact some subtleties
related to the identification of the full set of solutions, and we defer the study of those
cases to future work. Moreover we are interested in fugacities |y,| = 1, i.e. we will not
consider the addition of real masses here.

The numerical analysis can by done with two different methods. The first one involves
finding numerical solutions to the system (2.21)—(2.22) by iterating the transformation

€T; - i‘j

Ti — (¢1Bi)1/kC Ty = (eigj)l/kC

, (2.37)

where C' is some large positive integer. If ¢?%i is not 1, then to a first approximation we can
move it towards 1 by rescaling xf (and neglecting the effect on the product). The second
method involves introducing a time coordinate and setting up a dynamical system

N

P i) | 3 L () - 3 L () e,
j=1 La=34 a=1,2

(2.38)

di; N (T —aLs (U —us 7
7"% — ki +iY [ 37 Lip (eM@murAa) - 3 Ly (6““3_“““))} — 2mit;

i=1 “a=34 a=1,2

whose solutions should approach the equilibrium solution (2.32) at late times. Here 7
and T are complex numbers that have to be chosen so that the equilibrium solution is an
attractive fixed point. None of the two methods is really stable and both heavily depend
on the choice of constants and initial conditions. However we were lucky enough to find a
couple of enlightening examples that we show in figure 2 and 3.

In figure 2 we plot the distribution of eigenvalues u; and ; in the symmetric case y, = @
(i.e. Ag=7/2) for N =25 and N = 101 (and k = 1). The distribution has been obtained
with the iteration method (2.37). We see that the imaginary parts of u; and @; grow with
N. An analysis for many different values of N reveals that the scaling is consistent with
a behaviour N3. On the other hand, the real parts of u; and %; stay bounded when N
grows. The difference Re(%; — u;) has minimum value —7 and maximum value 5. For
comparison, we also plot the analytical result that we will derive later in this section.

In figure 3 we plot the distribution of w; and ; for the case Ay = 0.3, Ay = 0.4,
Az = 0.5 with >, A, = 27 (and k = 1). The distribution has been obtained with the
dynamical system method (2.38). The integers n; and n; have been chosen in such a way
that the distribution is “continuous” on the wu-plane, as explained below. The plots for
N =50 and N = 75 are again consistent with a N 2 scaling of the imaginary parts of the
eigenvalues. The real parts are not scaling with IV, and there are two tails of the distribution

~13 -



Figure 2. Plots of the eigenvalues u;, @; for N = 25 (in orange) and N = 101 (in blue) for
Yo =t and £ = 1. When N — 4N, the imaginary parts of u;, %; are approximately doubled —
consistently with a scaling N 3 — while the real parts remain constant. For comparison, we also
plot the analytical result.

20}

10 -

Figure 3. Plots of u;, @; for N =50 (on the left) and N = 75 (on the right), A; = 0.3, Ay = 0.4,
Az =0.5 with >° A, =27 and k = 1.

where they are constant. One can check that the two tails occur when @; —u; + Ag = 0 and
u;—u;—A; = 0. These values correspond to logarithmic singularities in the equations (2.32)
and will play an important role in the following. Notice that both in this case and the
previous one, the large N solutions is invariant under the symmetry z; <+ Z;.

Thus, we consider an ansatz where the imaginary parts of u; and @; are equal® and scale

as N® for some power « (having in mind « ~ %), while the real parts remain of order one:
U; = iNati +;, ai = Z'Nati + 771' . (239)

We also define
6v,~ = 772‘ — U; . (2.40)

°One could have considered a more general ansatz where the imaginary parts are unrelated: u; =
iN“t; +v; and 4; = iN%%; + ¥;. In the large N limit this leads to two different density distributions
p(t) = di/Ndt and p(t) = di/Ndi. One can take the large N limit of the BAEs in (2.32) directly, without
passing through the Bethe potential, as we do in (2.66). This leads to two copies of (2.66), one containing
p(t) and one p(t). It follows, for generic values of dv(t), that p(t) = p(t).
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Given the permutation symmetry, we can parametrize the points by the variable ¢ instead
of the index i, by introducing the density

1 di

=——. 2.41
N dt ( )

p(t)

At finite N the density is a sum of delta functions, i.e. p(t) = & >, §(t—t;), while at large N
we assume that it becomes a continuous distribution. Summations are replaced by integrals:

N
N [ dtp(t).
Y o o[

The density distribution is normalized:

Zi 1=N & /dt p(t)=1. (2.42)

In the large N limit, we seek configurations where p(t), v(t), 0(t) and therefore also
0v(t) are continuous functions. Inspecting the BAEs in (2.32) we see that they are singular
whenever dv(t) hits Ao or —Ag4 (or their periodic images), therefore on continuous
solutions dv does not cross those values. We recall that all angular variables are defined
modulo 27. We can fix part of the ambiguity in A, by requiring that

0< v+ A374 < 27, —2m < v — ALQ <0. (2.43)

We can fix the remaining ambiguity of simultaneous shifts dv — dv+ 27, A2 — Ay +2m,
A3z 4 — A3z 4— 27 by requiring that dv(t) takes the value 0 somewhere (led by the numerical
analysis, we assume that for &k = 1, dv(t) = 0 (mod 27) is always solved somewhere). Thus,
our choice for the angular determination simply corresponds to

0<Ag <27, (2.44)

Given the symmetry of all functions and equations under the exchange of ¢« = 1 <+ 2 and
of a = 3 < 4, without loss of generality we can order

AL <Ay, Ay < Ay (2.45)

Later on we will have to distinguish the cases that > A, = 27, 47 or 67 (while the
cases 0 and 87 correspond to y, = 1 and are singular). Combining (2.44) with > A, =27
one finds Ay < 2m — Ay and Ag — 27 < —Ag, therefore the inequalities (2.43) can be put

in the stronger form:
Y o Aj=2r = —A3 <dv<A;. (2.46)
For >, A, = 6m one finds 2m — Ay < Ay and —Agz < Ay — 27, therefore

Y o Aj=6r = Ay — 21 < dv < 21 — Ay . (2.47)
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For )", A, = 4w one finds that there are two possibilities:

—A3<A2—27T<5’U<A1<27T—A4 or A2—27T<—A3<(52)<27T—A4<A1.

(2.48)

At this point we should provide an estimate for what the constants n;, n; are on
solutions. Let us assume that

0<Re(; —u)+Aszq<2r, —2r<Re(dj—u)—A12<0, Vij. (249
We set wu = 4 — u; and estimate the function i}, _5,Li (ei(“+Aa)) -
i) 410 L1 (ei(“’A“)). For large positive imaginary part of u, Li; (ei(“iA)) ~ etuER)

O(e~N), thus the function takes extremely small values. For large negative imaginary part
of u, instead, the function approaches Y A, — 47. The dependence on u is exponentially
suppressed and we observe an “absence of long-range forces” as in [20].}° We conclude that
the integers n;, n; take the values

2mn; = <ZAQ—47T) Z@(Hm(ui—ﬂj)) , 2miij = (Z Aa—47r> ;@(Hm(ui—ﬂj)) :

(2.50)
Given the ansatz, the Heaviside theta function could be replaced by (7 > j) if the points
are ordered by increasing imaginary part. Hence, in the large N limit we will use the

function
| N
52 u —u +Z Z [:I:ng( i(t;— uﬂ:Aa) }4_2 47r ST A, )( j—ui) . (2.51)

=1 i,j=1 a=3,4: + i>7

Notice that from here on we set k = 1.
The leading contribution from the first term in V is easy to compute:

N

1

5 (@7 —uf) =iN'T® / dt p(t)tév(t) + O(N) . (2.52)
i=1

To compute the second term in V, we break

N
Z L12 (1t — ul—i—A _ Z LiQ (ei(ﬁi—ui—i—A ZLI z (t;— ul—&—A +Z LiQ (ei(ﬂj—ui—i—A)) )

2,7=1 =1 i>7 1<J
(2.53)

The first term in this last expression is of O(N) and apparently subleading. However it
should be kept — as we will see — because its derivative is not subleading on part of the
solution when dv approaches Ay or —As 4. Therefore we keep

N/dt o(t) [ a§4Liz (ei(év(t)—f—Aa)) -3 L (61‘(&;@)—%))} ‘

a=1,2

9There is a difference with respect to [20]. In the latter, the matrix model has long-range forces which can-
cel out if all species of eigenvalues have the same density distribution p(¢). In our case, the BAEs do not have
long-range forces at all, and the condition p = p is imposed by the local interactions among the eigenvalues.
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The third term in (2.53) is

S Liy (i) Nz/dtp(t)/dt’p(t’) Liy (/30w +A)y (2.54)

i<j t

We decompose into “Fourier modes”, Liy(e®) = S°7° e®*“/k2. Then we consider the
integral

=t "’

o Ny I -
Ik:/tdt/ p(t/) ezk(u(t )—u(t)+A) :/tdt/ eka (t'—t) Z (t j't) 8:% [p(ﬂ?) ezk(v(m)—v(t)+A)]
P

(2.55)
where in the second equality we have Taylor-expanded the integrand around the lower
bound. Performing the integral in ¢ we see that the leading contribution is for j = 0, thus

p(t) eik(@(t)—u(t)JrA)

. —
K kN

+ O(N~2) (2.56)

Substituting we find

ZLi? (ei(ﬁjfurkA)) _ N2a/dt Lis (ei(év(t)-l-A)) ,O(t)2 + O(N2720<) ) (257)

With the second term in (2.53), where the summation is over i > j, we should be more
careful because, in order to achieve a localization of the integral to the boundary, we should
first invert the integrand. Consider first the case that 0 < Re(@; — u; + Az 4) < 27: the
formula to use is

- o i — g+ Agg)? 2
Lip (107085) = Ly (0 0r-80) o Lo Sk oy )+ T
(2.58)

Following the same steps as before, the summation ), of the first term in the latter

expression gives something similar to (2.57) but with — Lis (e‘i(‘sv(tHA&‘l)) in place of Lis.

The two contributions can then be combined using (2.35), and result in a cubic polynomial

expression. Then consider the case that —2m < Re(%; —u; —Aq2) < 0: the formula to use is
@5 — up — Ap2)? - w2

Wy i = B2l iy - Ava) -
2 3

(2.59)

which differs from the previous one by a sign. Again, the result of the summation )

— Liy (ei(ﬁj*’ui*Al,Z)) = Lis (ei(ui*ﬂj‘i’Alj)) _

1>]
can be combined with that of ), _ ; to give a cubic polynomial expression. The remaining
terms from (2.58) and (2.59), throwing away the constants which do not affect the critical

— (47r = Aa) > (i — ) -

1>7

points, are

This term is precisely canceled by the last term in (2.51).
To have a competition between the leading terms of order Nt and N2~%, we need

o = — .

2
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Including a Lagrange multiplier 1 to enforce the normalization of p(t), the final result is
the following large N expression (up to constants independent of p and Jv):

v
— :/dt ltp(t)év(t)—!—p(t)Q( > gr(Gvt) +A0) = > g_(év(t)—Aa))
iNz a=3,4 a=1,2
| fatot -1 = 55 [aroo)| 3 wia (0r0r2) - 3wy (el0r0-a)) |
a=3,4 a=1,2
(2.60)
where we introduced the polynomial functions
TSR P & , u? w2
_wW_ T T v T 2.61
g+(u) 5 T + 3> 9o (u) 5 Fru+ 3 (2.61)

We remind that the last term can be neglected when computing the value of the functional
V, because Lis does not have divergences — however it becomes important when computing
the derivatives of V because Li; (e™*) diverges when u — 0.

The special case y, = ¢. This case, corresponding to A, = 7, produces a particularly
simple numerical solution that we reported in figure 2. The function V simplifies to

2

Yo = [t |entrso) 4 mptt? (T - 500?) — o) £ oY) 2o

Setting to zero the variations with respect to p(t) and dv(t), we get the equations

3
tov(t) + 7T?p(t) — 27p(t) v (t)? = tp(t) = 2mp(t)*u(t) . (2.63)
On the support of p(t), the solution is p(t) = 2u/7® and dv(t) = w2t /4p. Calling [t_,t,]
the support of p, then t, —t_ = 73/2u from the normalization. Plugging back into V and
extremizing with respect to u and t_ we obtain yu = 72/2v/2 and t+ = +7/+/2. Finally

1 t

=g Su(t) = —— for t € [ (2.64)

T o
Since dv(t+) = £7/2, in the solution duv(t) barely reaches Aj o or —Ag 4 at the boundaries
of the support, and the last term in (2.60) of order N =3 can be safely neglected, as we
did. This solution, corresponding to the solid grey line in figure 2, precisely reproduces the
numerical simulation.

The general case. To obtain the large N solution to the BAEs in the general case, we
again set to zero the variations of V in (2.60) with respect to p(t) and dv(t). The latter
equation, though, can be obtained as the large N limit of the BAEs directly, and it is
instructive to do so first.!!

Consider the first equation in (2.32): we manipulate it as we did with the functional
V. In particular, we break the sum Z;Vzl into > i, +> i+ (j — ). We find:

1 As noted in footnote 9, such a computation also allows to determine p(t) = p(t) if one starts with an
ansatz with two independent density distributions.
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0= N+ N'"%(t) [Za:u g (6v(t) + Ag) — Za:m g (6v(t) — A,)
T Za:“ Li; (ei(5v(t)+Aa)) _ Za:1 | Lit (ei(év(t)—Aa)> LONT2) £ O(1) . (2.65)

The first term comes from wu; with correction O(1); the second term comes from the sum-
mation },,; with corrections O(N 1720y and 27n; with corrections O(1); the terms on the
second line come from j = i.

In order to have a competition between the leading terms it must be a = % As long
as 6v(t) + Asg 4 # 0 and dv(t) — Ay # 0, the terms on the second line are O(1) and can
be neglected. One finds the equation

0=t+ p(t) [ Z g (dv(v) + Ag) — Z g~ (6v(t) — Aa)] . (2.66)

a=3,4 a=1,2

However, when év(t) approaches Aj o or —As4 the terms on the second line blow up (in
particular, smooth solutions never cross those values) and may compete with those on the
first line. In order to have a competition it must be

1
Su(t) = eq (Aa — e—NQYa(t)) ga = (1,1,—1,-1) (2.67)

for some value of a = 1,2,3,4 and with Y,(¢) > 0 of order one. Then the second line
contributes —NésaYa(t) + 5+ O(e‘N1/2), which competes with the other leading terms.
One finds the equation

eYa(t) =t + p(t) { Z g (gala + D) — Z g (galg — Ab)} ) (2.68)
b=34 b=1,2

The equations (2.66) and (2.68) correspond to 9V /d duv(t) = 0.

The variation of V with respect to p(t) is not affected by the terms suppressed by
N~=1/2in (2.60), because Lia(e™) has no divergences. Thus we find that the large N limit
of the BAEs is the system of equations:

M:t6v+2pZ:{igi(5viAb)} ZZ: Z

0=t+p> [ig’i(aviAb)] if 0 2 0l

* 1
€Yy, =1+ ’Ozb [:I: gy (eaAg £ Ab)] if v = ¢, (Aa — e_NQY“>
as well as 1 = [dtp, p > 0 on its support and Y, > 0.

The solution for Y A, = 2w. We then proceed to solve the equations. First we solve
the system (2.69) for generic values of dv, which we call the “inner interval”. It turns out
that p(t) is a linear function, while dv(t) is the ratio of two linear functions and the sign
of its derivative equals the sign of u. This solution is reliable until one of the conditions
—2m < 6v — A2 < 0 or one of 0 < dv + A3y < 27 is saturated. This defines the “inner
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interval” [t-,t~]: one saturation happens on one side and one on the other side. The
inequalities (2.46) fix that in the inner interval dv(t) goes from —Ajs to A;. Imposing
that p > 0 at the extrema fixes p > 0, therefore dv(t) is increasing. Outside the inner
interval, in two regions that we call the “left and right tails” respectively, dv remains
frozen at its limiting values —As and A; up to exponentially small corrections, and the
equations determine p(t) and the correction Y; 3(¢). The end of the tails is where p(t) = 0.
Reassuringly, p(t) turns out to be increasing in the left tail and decreasing in the right tail.
Summarizing, the inner interval is [t<,¢~] with

t< s.t. 5U(t<) = —Ag s t> s.t. 5U(t>) = Al . (270)

The points t~ and ¢- are also those where Y31 = 0. Then we define t« and ts as the
values where p = 0 and those bound the left and right tails. Schematically:

te te ts ts
p:() 5UZ—A3 5U:A1 p:O
Y;5=0 Y1 =0

Finally we fix u by requiring that [ dtp(t) = 1.
The solution is as follows. The transition points are at

t«:—&, t<:—Ai4, t>:Aﬁ2, t>>:Ai1' (2.71)
In the left tail we have
. w+tAs
(Bi+8s)(A2 + AS)(A;‘A Ba) te <t<te. (2.72)
—layg —
ov=—Ag, Y3 = A A,
In the inner interval we have
. 27Tu+t(A3A4 — AlAg)
P A1+ Ag)(Dg + Ag) (A + Ag)(Ag + Ay)
e <t<ts (2.73)
Su — (ALY — AgAy) + 1> e DaDpAc
27r,u + t(A3A4 - AlAg)
and 0v" > 0. In the right tail we have
_ p—tA
P A+ M)A + A (A — AY)
Ay —p ts <t <ts. (2.74)
ov=2»4A1, Y] = H

Finally, the normalization fixes

n=/ 2A1A2A3A4 . (275)

The solution satisfies [ dt p(t) dv(t) = 0.

In figure 4 we consider a case with generic A,’s — the same case considered in figure 3
— and compare the numerical simulation of the large N solution to the BAEs, with the
analytical result: we plot the density of eigenvalues p(t) and the function dv(t).
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Figure 4. Plots of the density of eigenvalues p(¢) and the function év(¢) for N = 75, A; = 0.3,
Ay =0.4, Ag = 0.5 with ) A, = 27 and k = 1. The blue dots represent the numerical simulation,
while the solid grey line is the analytical result.

The solution in the other ranges. For > A, = 4, it turns out that there are no
consistent solutions to the large N BAEs. One can run an argument similar to the one we
had before, concluding that it is not possible to construct a solution with an inner interval
where Jv(t) transits between two singular values, and two tails where dv is frozen while
p(t) dies off to zero. This implies that, for such a range of parameters, the order of the
index Z(A,) is smaller than for the other ranges.

The solution for > A, = 67 is very similar to the one in (2.71)—(2.75). The function
ov(t) is decreasing from 27w — Ay to Ay — 2w, as prescribed by (2.47), and p < 0. The
solution is obtained from (2.71)—(2.75) by performing the substitutions

Azy = Agz, Ary = Ay, v — —ov, po—= =i

where ﬁa =27 — A,.

In fact, notice that > A, = 67 is equivalent to > A, = 2, therefore there is a pairing
between points in the two ranges of the parameter space, and a corresponding map between
BAE solutions. It turns out that, when evaluated on paired solutions, the twisted index
Z takes the same value. This can be understood by the following argument. The matrix
model for Z in (2.18) is invariant — possibly up to a sign — under the three involutions
in (2.17). These transformations can be combined to show invariance of Z under each of
the three operations:

ko —k (12) ¢ (34) Yo © — . (2.76)

Ya
The last one, in particular, corresponds to A, <+ 27 — A, and allows to map every solution
for >~ A, = 27 to a solution for Y A, = 67, which produces the same value of the index Z.
2.4 The entropy at large IV

We are interested in the large N limit of the twisted index, or partition function, (2.24)
and more precisely of its logarithm — the entropy. With the dominant solution to the
BAEs at large N in hand, we can compute the large N limit of the expression in (2.24)
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and plug the solution in. After various manipulations, we can recast the twisted index in
a particularly convenient form:
np—1 no—1 % 1 N 2 =\ 2
_ (_1\N(utn) (Y1 Yo" 2: = _t _ T
Z= ( 1) ( n3—1, na—1 det B H 1 €; 1 T;
7>

Y3~ Yy I € BAE
5. G ng—1 5 ng—1
VA T — 1
<115 11 (1—y%> 11 (1—ya1m>
i “ta=34 v a=1,2 v
T ng—1 oy ng—1 7 ng—1 T ng—1
UL (02) (o) I () )
T; T; T; T

j>ia=34 a=1,2
(2.77)

into the diagonal parts [[, and
j>i solely. Notice that the first two
factors are just phases that can be neglected, as we will be interested in log |Z|.

We start with the products Hj>i‘ The terms on the third line are treated as in

section 2.3. For a = 3,4 using 0 < dv + Az 4 < 27 we find

.’i" nafl Ts nafl
Ky—34= 10gH (1 - ya;) (1 - yaljj)
KA

§>i ¢

This time we have already reorganized the products Hl j
the off-diagonal parts, the latter written in terms of []

_ —N%(na —1) /dt p(t)2 |:Lig (ei(6v+Aa)) + Liy (efi(6v+Aa))} + O(N) (2.78)
— N — 1) / dt p(t)2g', (50(t) + Ag) + O(N) .
Instead, for a = 1,2 using —27 < dv — A2 < 0 we find

.%A ﬂafl T nafl
Ki—12= 10gH <1 - ya1;> (1 - ya:;>
1 1

j>i (2.79)
= —N2(n, — 1) /dt p(t)?q" (dv(t) — A,) + O(N) .

The contribution of the Vandermonde determinant is similar:
.iL'j 2 i’j 2 3 27 2 )
1 - = 1——]) =—-N2 — [ dtp(t O(N) . 2.80
w1 (1-2) (1-2) =5 % [apwr+om). @0

Then we consider the products [[,. The term

N I~
log [ | % = iN / dt p(t) sv(t) = O(N) (2.81)

i=1

is subleading. The term

~ \ ha—1 ,
Sraa=toe ] (1= 2 ) = Nlwa =) [ e p(e (1 - 0042
i (2.82)

— N 1) /5 dt p(t) Ya(t) + O(N)

VR —A3’4
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only contributes in the tail where év ~ —A34, and the term

~ ng—1
Ja=12 = log H (1 — ya_lxl:> =N(n,—1) /dt p(t) log (1 — ei(‘;”_A“))
i i (2.83)
— NP 1) / dt p(t) Ya(t) + O(N)
v Ar 2
only contributes in the tail where dv ~ Aj .

The last term to evaluate is —logdet B. Suppose that all entries of the matrix B are
of order one and bounded by some constant c¢. Then detB = Zperm o Bio1) .- Bano(2n)
and then

logdetB ~ log [(2N)!¢*N] = O(Nlog N) ,

which is subleading. Therefore we only get a contribution if some entries diverge with N.
If we decompose B = B + By where the entries of B diverge, while those of By are bounded,
we have

log det B = log det B 4 log det(1 + B~ 'By) .

Therefore, provided that B! exists and its entries are bounded, the leading term is
log det B. Following the discussion after (2.25), the matrix B evaluated on the solutions to
the BAEs takes the form

[k =32 Gjm] Giji
By = (2.84)
—Glj 5jl [k? + Zm ij]
with
z z z 4
G = n _ _ . 2.85
Tm-z -z oyt -z oyt -z =gy (2.85)

The function G(z) diverges at z = y;2 and z = Ys, i which are phases, therefore the only

terms that can diverge are the diagonal ones G;;. We see that we can choose B to have
diagonal matrices in all four blocks. Reorganizing the indices, B can be rewritten as a
block-diagonal matrix made of 2 x 2 blocks M;: B = diag(M;) with

1= G G

M; = ( “ ) = det M; = Gy (2.86)
—Gii Gii

when Gj; diverges, and M; = 15 when Gj; does not. We made a choice of the O(1) terms

such that M; is invertible and the inverse has bounded entries. We then compute

—logdetB = —log [ [ Gii + O(Nlog N) = —N/ dt p(t) log G(t) + O(Nlog N)
; G(t) =0
i (2.87)
= —N3 [ dtp(t)Ya(t) + O(Nlog N)

v e Ay

using the behavior dv = ¢, (Aa — e_Nl/QY“) in the tails.
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Putting everything together we find the following functional for the entropy at large NV:

Relog Z = — /dtp( [+ Z o — 1)l (dv(t) £ Ay)

’

L2 (2.88)

—N2Zna/ dtp a(t)

v xeqalqg

up to corrections of order IV log N. We took the real part to get rid of irrelevant phases in Z.

Finally we should take the solution to the BAEs, plug it in the functional (2.88)
and compute the integral. From the solution for > A, = 27, we obtain the following
surprisingly simple expression for the entropy:

3
N2 ng
Relog Z = ——= /201808504 ) A (2.89)

Notice that this expression is symmetric under permutations of the indices a = 1,2, 3,4.
Such a symmetry is expected for k = 1, because the index parametrizes the four complex
factors in the C* fiber of the normal bundle to the M2-branes.

3 AdS, black holes in N' = 2 supergravity

We now move to discuss a class of supersymmetric static asymptotically AdS4 black holes,
holographically dual to the ABJM theory twisted on S? that we have discussed so far. We
first present the general features of this class of black holes, and then we depict their holo-
graphic interpretation, focusing on the asymptotic AdS, region and the AdSs x S? horizon.

The BPS black-hole solutions in AdS4 — similarly to many higher dimensional solu-
tions a la Maldacena-Nufiez [4, 17, 29-35] — preserve supersymmetry due to the topological
twist on the internal space S? (or more generally on any Riemann surface ¥). The note-
worthy feature in four dimensions is the existence of full analytic solutions for a completely
general set of parameters, as first discovered in [5], elaborated upon in [6, 7] and further
generalized in various directions in [8, 11-14] and references therein. The complete space-
time can be thought of as interpolating between the asymptotic AdSs vacuum and the
near-horizon AdSs x ¥ geometry, leading to a natural holographic interpretation of those
black holes as RG flows across dimensions.

Here we are specifically interested in solutions to the maximal D = 4 N’ = 8 gauged
supergravity, which can in turn be embedded in eleven-dimensional supergravity with an
M-theory interpretation as wrapped M2-branes. In particular we focus on black holes that
are asymptotic to AdS, x S7. The topological twist on the internal two-dimensional space
requires a background SO(2) gauge field turned on, and therefore without loss of generality
we can restrict our attention to the N = 2 truncation of the maximal supergravity [36, 37].12
We follow the standard conventions of [39] and consider the so-called magnetic STU model

12Gee also [38] for the embedding of these black holes in 11D.
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with electric FI gaugings that arises exactly as a truncation of N' = 8 supergravity. It con-
sists of three vector multiplets (in addition to the gravity multiplet) with the prepotential

F=—2iVX0XTX2X3 (3.1)

and can be seen from the 11D point of view as a Kaluza-Klein reduction on S7 (the X*
are the holomorphic sections of the underlying special Kdhler manifold). In addition, the
gravitino R-symmetry is electrically gauged as specified by the FI parameters

50251252253237 (3.2)

which complete the N' = 2 data necessary for the unique definition of the Lagrangian and
BPS variations. Further details about the supergravity model can be found in [5, 7] and in
appendix A, where for completeness we present an explicit derivation of the BPS equations
and the near-horizon geometry that eventually leads to the crucial entropy formula.

Before presenting the black hole solution, a word on notation is in order. The N = 2
STU model has four gauge fields that correspond to the Cartan subalgebra of the SO(8)
isometry of S”. The standard N = 2 supergravity symplectic index A = {0,1,2,3} used
above is actually somewhat unnatural from the point of view of maximal supergravity and
the field theory side, where the four gauge fields appear symmetrically. Therefore, with
an abuse of notation we will introduce the index a = {1,2, 3,4}, and identify the original
A =1{0,1,2,3} with a = {4,1,2,3} in this order. The index a is the same as that used in
section 2 and it allows to write all formulee in a manifestly permutation-invariant way. We
do not distinguish between the upper and lower position of the index a.

The 4D black hole metric'? is compactly written as

2 —K(X) dr2
ds® = —KX) (gr - c) dt? + T 420K 12(a92 +sin20dg?) ,  (3.3)
2gr (gr _ ﬁ)

where g and ¢ are parameters while the Kahler potential is

e M) = (XAF) — XA F)) = 8VXOXIX2X3 = 8/ X1 Xo X3Xy . (3.4)

The real sections X, are constrained in the range 0 < X, < 1 and satisfy >, X, = 1.
They are given by

1B .
x,=t 0 > Ba=0, (35)

in terms of parameters 3, subject to the above constraint and further ones spelled below.
The solution for the sections above defines also the background values for the physical
scalar fields, which are typically chosen as

X1 7’—4ﬁ1 5 :& T—4ﬂ2 _&_7’—4,@3 (36)
X4_7“—4ﬁ4’ 2= '

)(4_7’—4ﬂ47 23:X4_T‘—4,34.

3Here we only consider the case of spherical horizon, mostly following the notation of [7]. The case
of higher-genus Riemann surfaces is analogous, and it is discussed together with the spherical case in
appendix A.
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The parameters (3, also specify the constant ¢, which is related to the value rj of the radial
coordinate at the horizon:

(3.7)

N —

ri=c=4(8] + 55 + B3+ B]) —

We already set the unit of the AdS4 curvature g = 1/4/2, i.e. the parameters 3, have been
rescaled in the appropriate units more suitable for holographic use. The black hole has a
regular horizon only for a restricted region in the parameter space of 3, that ensures that
rp, is real and the scalars X, are positive.

Another crucial element of the solution is given by the background fluxes that carry

magnetic charges through the sphere:

Fo =0, Fg, = —% sin . (3.8)

The four magnetic charges of the black hole n, are integer and fulfil the twisting relation
> oma=2, (3.9)
a=1,2,3,4

which ensures that two out of the original eight supercharges are preserved by the black
hole solution. Supersymmetry further relates the magnetic charges to the parameters (3,
that specify how the scalars run along the RG flow:

1
M= 5= 1632 — 4Zb BE. (3.10)
Let us define the following quantities:'4

1
II = g(l‘ll +n9 —ng —1’14)(111 —ng +1n3 —1‘14)(111 —112—113—|—1‘I4)

1 1 ) (3.11)
F= 3 gnanb -1 za:na , O = (Fy)” — 4nynangny .

a

It is easy to check that

II=(1-n3—ng)(l—n;—n3)(l—ng—n3) = 212(514-52)2(51 +53)2(52+53)2 >0. (3.12)
We can then invert the relations in (3.10), up to a common sign:

g o Ana = )" 1= 5
¢ 16V/II '

Here the sign equals the sign of —(81 + 52)(81 + B3)(52 + P3), in other words the sign is
correlated with that of

(3.13)

VIT = £64(B1 + B2)(Br + B3) (B2 + Bs) - (3.14)

1The signs in II are chosen in such a way that each term contains two positive and two negative signs,

and there is one n, which always enters with positive sign.
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With a little bit of algebra, we find

C) 2112

2 —2IC

Th = I e ) = = (F, £V0) . (3.15)
One can also write the first relation as

ng = 1682 — 12 = —(rp, +4B.) (rn — 48,) = r = —% > % . (3.16)

Although both signs in the formulse above are compatible with supersymmetry, it turns
out (see appendix A) that smooth solutions exist only if three of the n, are negative, and
in that case one should take the upper sign.

The black hole above preserves two supercharges, packaged in the corresponding Killing

EA:e’C/‘l,/r—;E%, (3.17)

written in terms of a constant spinor £ obeying the following relations:

spinor solution,

€% = eap 7553’0 ) €Y =3By (3.18)
where the hatted indices are flat. Note that the Killing spinors are constant in time and on
the sphere and therefore the group of rotations on the sphere commutes with the fermionic
symmetries, leading to the corresponding symmetry algebra U(1]1) x SO(3).

This is the general black hole solution we want to describe holographically, and in the
following we analyze separately the asymptotic region that defines our UV theory, and the
near-horizon IR region related to a 1D superconformal quantum mechanics. Afterwards
we discuss the definitions of the black hole entropy and the R-symmetry from the N' = 2
supergravity point of view.

3.1 The asymptotic AdS,; vacuum

It is easy to take the limit 7 — oo of the full black hole solution (3.3)—(3.8): one gets the
metric

d 2
dsy ~ —r?dt® + r% + 72 (d02 + sin? 0dq§2) ) (3.19)

constant scalars z; = zo = 23 = 1 and non-vanishing magnetic field strengths as in (3.8).
This background was dubbed “magnetic AdS,” in [40]: not all Killing vectors of AdSy
are preserved by the magnetic fluxes, the usual supersymmetry enhancement does not
take place, and the corresponding symmetry group remains U(1]|1) x SO(3) as explained
in detail in the reference. As standard in cases of twisting, the isometries of the internal
manifold S? commute with the supersymmetries and therefore the fermions effectively
become scalars under rotation. Of course, as we further go in the UV the background
asymptotes to standard AdS, and the field strengths (which in vielbein coordinates read
Fgf‘d; = —n,sin0/v/2r2) go to zero, since magnetic AdS, is a non-normalizable deformation
of AdSy.
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The complementary boundary picture is also clear: the dual boundary theory is a
relevant deformation of the maximally supersymmetric ABJM theory, semi-topologically
twisted by the presence of the magnetic charges. The fluxes n, give a family of twisted
ABJM theories whose Euclidean version is precisely the one discussed in section 2. The
holographic dictionary can be made precise, as discussed in details in [41]. The boundary
values of the gauge fields and the scalar fields z; correspond to relevant deformations of
the ABJM Lagrangian: the gauge fields introduce a magnetic background for the R- and
global symmetries, while the scalars z; induce mass deformations for the boundary scalar
fields. In the Euclidean version the latter precisely correspond to the terms induced in
the matter Lagrangian (2.3) by a constant auxiliary Df. Finally, the bulk spinor (3.17)
restricts to a constant boundary spinor, as appropriate for a topological twist.

3.2 The near-horizon geometry AdS; x S2

Taking the opposite limit, » — 73, leads instead to!® the AdSs x S? metric

e_K(Th)

ds? = dsids2 + 2¢7K0n) 12 ds%s (3.20)

with e7X(n) = 8, /X7 (r),) X2(rp) X3(r1) X4 (71 ), and the same magnetic charges n, as before.
We defined the unit-radius spaces dsids2 = (—dt? + dz?)/2* and ds%, = df* + sin® 6 d¢*.
All isometries of AdSs are preserved by the background gauge field. This in turn leads
to the appearance of new fermionic symmetries, and the full symmetry group becomes
SU(1,1]1) x SO(3) as discussed in [41]. The Killing spinors in this case are full Killing
spinors on AdS, and are obtained from the general ones by dropping the first relation
in (3.18), still keeping them constant on the sphere. We can therefore talk about a genuine
superconformal symmetry in the IR, leading to a dual superconformal quantum mechanics.
Making use of the relations (3.10)—(3.15), we can express the near-horizon metric in
terms of the magnetic charges n, (see also [13, 14] for similar expressions in the literature).
Recalling that smooth solutions are obtained only with the upper sign in those expressions,
we find the IR metric
ds® = Rigs, dsiqs, + Rez dske (3.21)
with
II 1

Rias, = 756 (Fy+vO)"* R%, = E(FQ +v0)"?, (3.22)

where the quantities II, F», O are defined in (3.11). The physical scalars are given by

2(ng + ng)(n1 — ng)? — (g +1n4) [(ng — n3)? + (01 — ng)?] + 4(ng — n1)VO

= 2ny(ng —ng +ny —nz)(ng —ng — ng + ng)

- 2(n1 + ng)(ng — ng)? — (n2 4 n4) [(n1 — n3)? + (n2 — ng)?] + 4(ng — n2)VO (3.23)
2ng(ng + 11 —n2 —n3)(ng —ng — N2 +n3)

vy = 2(n1 + ng)(n3 — ng)? — (n3 4 1n4) [(n1 — 1) + (n3 — ng)?] + 4(ng — n3)VO .

2ng(ng +ny —ng —ng)(ng —ng +ny —n3)

150ne performs the standard change of variables r = r;, + € and expands at leading order in e.
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The sections at the horizon are then obtained from

21,23 X, = 1
1421 +20+ 23" 1421 +20+ 23

X123 = (3.24)
Smooth solutions are found if exactly three of the n, are negative. More details are given
in appendix A.

These expressions can be further related to the different quartic invariants of the
symplectic group and can be justified by the implicit electromagnetic duality of 4D N = 2
supergravity, see [13, 14] for more details. Electromagnetic duality will likely play a more
important role for generalizing our results to solutions with electric charges on top of the
magnetic ones we consider.

3.3 The entropy and R-symmetry

At leading order, the entropy of the black hole is given by the area of the horizon via the
Bekenstein-Hawking formula
Area WR%Q V21g?

1/2
4Gyp Guap Gap (F+v6) ™, (3:25)

SBH

where G4p is the four-dimensional Newton constant and we reinstated g for dimensional
reasons. We can also write the entropy in a more suggestive form using the symplectic
sections X, to compare more directly with the field theory expression (2.89),

n

O AR N e g (3.26)

Let us stress that this is only the leading contribution to the gravitational entropy, which

SBH = —

should be supplemented by the higher-derivative corrections following the Wald formalism,
and possibly by other quantum corrections. The leading answer for the entropy was con-
firmed by verifying the first law of thermodynamics in the canonical and grand-canonical
ensembles for black holes in AdSs [42]. Here we will not consider any corrections to the
above formula, in accordance to the fact that we focused only on the leading N3/2 contri-
bution to the index on the field theory side.

As a last important remark about the supergravity solutions, let us note that the
theory under consideration has four U(1) gauge fields, which can be thought of as the four
Cartan generators of the original SO(8) R-symmetry in the maximal gauged supergravity
in 4D. The U(1) R-symmetry of N' = 2 supergravity is gauged by a particular combination
of those four U(1)’s, called the graviphoton. As shown in [43] for general matter-coupled
N = 2 supergravities, in asymptotically AdS spacetimes the graviphoton field strength Fy
is given by

FeP =2 XAR (3.27)

nr =

where F) are the field strengths of the four gauge fields. This formula is correct only in the
case of purely real (or purely imaginary, depending on conventions) sections X*, which is
the case here. In the context of the AdS/CFT correspondence, such a formula allows us
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to extract the exact R-symmetry from supergravity and it tells us how it changes from the
boundary, where XA = 1/4, to the horizon, where we find X (ry,).

The notion of R-symmetry defined in (3.27) exists everywhere in the bulk, however it
gets a clear holographic meaning only in the UV and the IR, where there is a corresponding
exact R-symmetry for the superconformal 3D QFT and quantum mechanics, respectively.
In the next section we will compare the field theory parameters A, with the sections X, (r,)
at the horizon.

3.4 The attractor mechanism

The notion of attractor mechanism in black hole solutions refers to the way the expectation
values of the scalars are fixed at the horizon in terms of the black hole charges. This has
been explored carefully in the literature and we elaborate on it in appendix C, while here
we present a shortened version for the black holes we consider.
Let us first notice that there is a simple quantity that exists at generic points in
spacetime,
R = Zu Fung, (3.28)

which is properly defined in an electromagnetic invariant way in appendix C for more
general black holes. The sections F, = 0F/0X, are derived from the prepotential (3.1):

Fp=—— /X1 Xo X3 X4 . (3.29)
Xa

It is therefore easy to see that |R| at the black hole horizon gives the entropy (3.26), up to

a numerical prefactor.

Unlike the entropy, R is defined for all values of the sections X, at any point in
spacetime, and for a static geometry it is a function of the radial coordinate r only. It
is therefore a natural measure of the holographic RG flow between the asymptotic AdSy
and the near-horizon AdSs x S? geometry. We observe that R matches functionally the
index (2.89), if we assume a proportionality between X, and A, (see section 4).

The quantity R is interesting for the attractor mechanism since it provides a function
that the scalars extremize at the horizon,

OR
0X o 'horizon

=0, (3.30)

under the constraint ), X, = 1, and this determines the sections X,(rj) and correspond-
ingly the physical scalars z;(r) in terms of the charges n,. We refer to appendix C for
the derivation of the above formula in the general context of half-BPS attractors in N' = 2
gauged supergravity.

4 Comparison of index and entropy

We can finally compare the field theory and gravity results. We show that the topologically
twisted index |Z| in the large N limit is extremized at a value of A, which is proportional
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to the value of the sections X at the horizon, and that the value of log |Z| at the critical
point precisely reproduces the entropy of the black hole.

The topologically twisted index is a function of the magnetic fluxes n, and the chemical
potentials A,, while the black hole entropy only depends on n,. The physical interpretation
of the A, is the following. The path integral of the topologically twisted theory can be
interpreted as the Witten index

Z(0a, Ag) = Tr (—1)F e=FH i a1 Tl (4.1)

of the supersymmetric quantum mechanics obtained by reducing the theory on S? in the
presence of the magnetic fluxes n, [18]. Here J, denote the currents associated with the
global symmetries, as defined in section 2, and the Hamiltonian depends explicitly on the
fluxes n,. The N/ = 2 quantum mechanics has supersymmetry algebra u(1|1):

Q2:Q2:Oa {Q,@}:QH, [Ra Q]:Qa [R,Q]Z—Q, (4'2)

where @ = Qf and R is the R-symmetry generator. The R-symmetry R is not unique,
however. The generators J, of flavor symmetries, by definition, commute with H, Q, Q,
R — therefore any other symmetry R’ = R+ ), ¢,Jq is an equally good R-symmetry.

Fis a discrete R-symmetry transformation, which

In particular, the fermion number (—1)
often is part of the continuous family of R-symmetries. In ABJM, the fermion number can
be written in terms of the 3D superconformal R-symmetry Ry that assigns charge % to the
chiral multiplets A; and Bj:

(—1)F = ¢i™Ro =% Tz Ja (4.3)

The topologically twisted index can then be written as'6

Z(ng, Ag) = Tr (=1)F(Ba) o=BH (4.4)

as a function of the trial R-symmetry

1 3 s
R(Ag) = Ro+ — ; (Aa - 2) Ja . (4.5)

Thus, the fugacities A, parametrize the mixing of the R-symmetry with the flavor symme-
tries, i.e. the space of trial R-symmetries. Given the AdSs factor at the horizon, we expect
that our quantum mechanics becomes superconformal at low energies. The IR supercon-
formal algebra will single out a particular R-symmetry — the one sitting in the algebra —
and a particular value for A,. It is natural to ask how to find the exact IR superconformal
R-symmetry.

We can probe the mixing of the R-symmetry with the flavor symmetries using the
dual supergravity solution. As already discussed, the graviphoton field strength Fjp =

16By the notation (—1)R<A“) we mean '™ 1H(8a)
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K2 XAR A,uv in (3.27) depends on the radial coordinate through the sections X A and it is
different at the boundary and at the horizon. Its expression suggests the identification

Aq X1 Ag Xo Az _ &

E:E’ E:E’ A Xy (4.6)
The constraint ), A, = 27n is compatible with ), X, = 1 valid everywhere in the bulk.
Let us assume to be in the range > , A, = 2m. At the boundary, where the solution
asymptotes to AdSy x S7, the scalar fields X, are all equal and we find A, = 7/2. This
reproduces the UV superconformal R-symmetry of ABJM. At the horizon, on the other
hand, the values of the scalars depend on the charges n, and, using (3.24), we find

21,2,3 A4 1
y _—= X4(’r'h) =
14214+ 20+ 23 27 14214+ 204 23

A123

o = Xi23(rn) =
T

(4.7)

in terms of the horizon values of the scalars in (3.23). We can argue that A, determine,
through (4.5), the exact R-symmetry of the IR superconformal quantum mechanics.

Here comes the main result of our paper. First, with an explicit computation one can
check that A, is a critical point of the function |Z|:

ORelog Z

A,)=0. 4.
8A1,273 ZaAa:27r( ) 0 ( 8)

In fact, A, is the only critical point of log|Z| in the range 0 < A, < 27 (with >, A, = 27).
Setting to zero the derivatives of (2.89) with respect of Ay 2 3 and expressing them in terms
of 21 23, one precisely obtains the equations (A.38)—(A.40) that are solved in appendix A:
they lead to the two solutions in (A.46), but only the one with upper signs can possibly
satisfy 21,23 > 0.

Second, we can then compare the value of log|Z| at the critical point A, with the
black hole entropy. Using (3.26) and the relation!”

s _2ve N3/2 Z3
Gup 3 g ’ (49)
we find
Relog Z| .. (n,) = BH Entropy (n,) . (4.10)

Thus, we have reproduced the black hole entropy with a microscopic counting of ground
states in a dual field theory, at the leading order N3/2.

Let us notice that A, is a critical point of the function RelogZ, but it is not a
maximum. The Hessian of Relog Z has one negative and two positive eigenvalues, therefore
the critical point is a saddle point. In fact, we should have expected this from the general
large N expression (2.89) of Relog Z: since, generically, at least one of the integers n, is
negative (and in fact three of them should be negative to have regular black hole solutions),
it follows that Relog Z diverges to positive infinity when the corresponding A, goes to zero.

17See for example [44].
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4.1 The case with three equal fluxes

To give a concrete example, we consider the simple case where
m=ng=ng=n, ny=2-3n. (4.11)
From (3.11) we have
Fy=—(6n* —6n+1), O =(1-6n)(1—2n), (4.12)

which lead to smooth supergravity solutions with regular horizon for n < 0.

Consider the field theory expression in (2.89). For our particular choice of fluxes, we
expect the critical point to lie along the submanifold Ay = Ay = A3 = A, Ay = 27 — 3A,
with 0 <A< %ﬁ We can therefore restrict Z to such a submanifold:

3
ON'S 2A
Relog Z(A) = —— ’ V3m—gx (Bm+ (1—6m)a) . (4.13)

In the range 0 < A < %’r and for n < 0, which is the region in the flux parameter space

where a black hole with regular horizon exists, the function has a critical point at

N =) a

that is also a positive maximum.'® At the maximum the function takes the value

— 2m 3

Relog Z(A) = N2\ F + Ve, (4.15)

which precisely matches the entropy of the black hole (3.25).

Let us stress that, while restricted to the symmetric locus A; = As = A3 = A
the index has a maximum, in the full parameter space spanned by the three independent
parameters A1, Ay and Ag the critical point is a saddle point.

5 Discussion and conclusions

In this paper we have computed the large N limit of the topologically twisted index of the
3D ABJM theory, which counts (with phases) the ground states of the theory compact-
ified on S? with R- and flavor magnetic fluxes. We have argued that this is relevant for
understanding the physics of magnetically charged BPS black holes in AdS,, arising in 4D
maximal N = 8 gauged supergravity. Each black hole can be given a holographic interpre-
tation as the RG flow from the 3D ABJM theory twisted by the corresponding magnetic
fluxes to a 1D superconformal quantum mechanics, whose ground states are counted by the
index. Indeed, the leading N3/2 contribution to the index precisely reproduces the leading
Bekenstein-Hawking entropy of the black hole.

The matching proceeds in two steps. First, the index Z(ng, A,) is a function of fugaci-
1A

ties e'2e as well as of magnetic fluxes n, for the flavor symmetries, and one has to extremize

B8For n > 0, instead, the function has a negative minimum in the range for A.
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Z with respect to the A,’s. Comparing with supergravity, we observe that this procedure
selects the exact superconformal R-symmetry in the IR su(1,1|1) superconformal algebra.
Second, we observe that the index at the critical point, Z (na, A, (na)), precisely reproduces
the black hole entropy Spm(ng).

A possible interpretation could be the following. We are evaluating a partition function
with chemical potentials A, for the flavor symmetries. The vanishing of the derivative with
respect to A, is equivalent to the vanishing of the electric charge of the system, which must
be zero since the black hole is electrically neutral. It is then conceivable that we get the
entropy by extremization. However this argument is not completely satisfactory. The
partition function we are computing is supersymmetric and treats bosons and fermions
with different sign. Moreover the argument makes no use of the exact superconformal
R-symmetry, whose role in the game is strongly suggested by the supergravity analysis.

It would be more interesting to have a clear mapping of the states counted by the topo-
logically twisted index of the 3D ABJM theory to the black hole microstates. Although we
do not yet have a clear understanding of this point, let us make some general observations.

A naive argument. Let us first give a superficial argument that originally motivated
our investigation. Suppose that the quantum mechanics describing the modes on S? is
gapped with a finite number of ground states. Then the index reduces to

Z(Ag) = Trg—q (—1)F el X dade = Try_o (—1)F(Ba) (5.1)

where the Hamiltonian H is a function of n,. In the last expression we have written the
index as a function on the space of R-symmetries of the theory (assuming that all IR R-
symmetries are visible in the UV, i.e. there are no accidental ones). Then further suppose
that, at low energies, the system develops 1D A = 2 superconformal symmetry and the
ground states are invariant under sl(2,R) conformal transformations: these assumptions
follow from the fact that the supergravity solution develops an AdSs factor at the horizon.
Then the su(1,1|1) algebra implies that the ground states have R, = 0, where R, €
su(1,1]1) is the superconformal R-symmetry. In other words, we conclude that in the
space of all possible R-symmetries, there is one that assigns (—1)% = 1 to all ground
states. But then, since (5.1) is a finite sum of phases, it is clear that it is mazimized when
all phases are 1. Since, as stressed in [18], the overall phase of the index defined through
the path-integral is ambiguous because of fermionic Fock space quantizations, we conclude
that |Z| is maximized:

max 1 Z(Aa)] = max | Trr—o (—1)39)| = | Tryg—o (—1)%| = Trp—o 1 .

Thus, an argument of this kind “would prove” two statements: (1) that the index function
12(80)| = | Tepa (-1 _
equals the IR superconformal R-symmetry, R(A,;) = R.; (2) that the index evaluated at the

has a maximum at the point A, where the trial R-symmetry

maximum, }Z (A,)|, computes the number of ground states (as opposed to a weighted sum).
Unfortunately, this argument is too superficial and it does not apply to the black holes.

First of all, if at low energies we just have a finite number of zero-energy ground states
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separated from the rest by a gap, then the low-energy theory is just H = 0: a bunch of states
with no dynamics. An example is a collection of |n| 1D free Fermi multiplets (which can be
obtained from a 3D free chiral multiplet on S?, with negative magnetic flux n): the index is

g2 \" '
|Zchira1(n7 A)| = ‘ ( ) with y = ¢®
I—y
which, for n < 0, is maximized at y = —1 with |Zepjai(n, 7)| = 2% (correct number of

states in the fermionic Fock space). On such theories su(1,1]1) simply does not act, and
therefore it is hard to understand how this trivial superconformal quantum mechanics can
be dual to AdSs (although compare with [45]).

A non-trivial superconformal quantum mechanics with states with H > 0 necessarily
has a continuous spectrum that spans R, just because the spectrum must be invariant
under dilations. Then the states are necessarily non-normalizable, and computing an index
(for instance of L2-normalizable states as in [46]) is in general very difficult. In such cases,
our index — which is an equivariant index as opposed to an L? index — is defined by first
deforming the Hamiltonian with real masses o, (that make the spectrum discrete), and
then performing analytic continuation to o, = 0 exploiting holomorphy in A, + iSo,. In
this setup the argument above does not apply.

Indeed, the ABJM index in (2.89) diverges when some A, vanish.!” This excludes the
possibility of a finite Hilbert space of normalizable ground states gapped from the rest,
and so the superficial argument does not apply. In fact, the index has a saddle — not a
maximum — at the point that corresponds to the superconformal R-symmetry and that
reproduces the BH entropy.

The I-extremization principle. We would like to propose that the I-extremization
principle, stating that

1. the index is extremized at the superconformal R-symmetry, and
2. the value of the index at the extremum is the regularized number of ground states,

has a general validity in A/ = 2 superconformal quantum mechanics, under certain assump-
tions suitable for the black holes. Obviously, it would be desirable to precisely understand
what assumptions are necessary, and to have a rigorous proof.

A better understanding of all these issues necessarily involves a better understanding
of the superconformal quantum mechanics with su(1,1]|1) symmetry. Here we just notice
that a simple example of superconformal quantum mechanics with continuous spectrum is
provided by a free chiral multiplet (this can be obtained from a 3D free chiral multiplet on
S? with n > 0). We study this example in some details in appendix B. It turns out that
the index diverges at A = 0, it has a minimum at the superconformal R-symmetry and

19Some divergence had to be expected. The BPS black holes are the near-horizon geometry of N M2-
branes wrapping the S? in the Calabi-Yau geometry ®2:1 Lo(—ng) P!, which is the total space of four line
bundles over P! with first Chern classes —n,. When some 1, < 0, there are non-trivial holomorphic sections
and the M2-branes can be well separated, giving rise to flat directions. This, however, only explains O(N)
divergences, not O(N3/?),
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its value gives the zeta-regularized number of states: % In this case, extremization can be
proven from time-reversal invariance and integrality of the R-charge spectrum.

Relations with the literature and future directions. Let us briefly comment about
the connection between our results and several other streams of ideas in the literature.
The 3D topologically twisted index considered in this paper becomes an equivariant Wit-
ten index for the dimensionally reduced quantum mechanics. We should notice that there
exist another chiral index in N/ = 2 superconformal quantum mechanics — the supercon-
formal index — which makes use of Ly that has discrete spectrum [47-49], as reviewed in
appendix B.3. The relation between the equivariant and the superconformal indices is not
obvious and deserves investigation.

It would be interesting to better understand the relation of our procedure with other
extremization mechanisms that appear in the physics of black holes. As we showed in
section 3 and appendix C, the entropy can be obtained by extremizing with respect to
the value of the scalar fields at the horizon. This has a natural interpretation in terms of
an attractor mechanism [50], which plays an important role in asymptotically flat black
holes. We also recognize many similarities with Sen’s entropy function formalism [51], of
which we might provide a supersymmetric version. In this context one could investigate
the relation between the twisted index before extremization and Sen’s entropy function.

If the I-extremization principle turned out to be correct, it should be added to the
list of well-established theorems in other dimensions: a-maximization in 4D [22, 23], F-
maximization in 3D [21, 24, 25] and c-extremization in 2D [16, 17].

To provide tests of the proposed I-extremization principle, one could study more gen-
eral black holes in the same supergravity model, but with both magnetic and electric
charges: we are currently investigating this direction. Other obvious generalizations are
to look at the twisted index for CS level k£ > 1, and on higher-genus Riemann surfaces.
In fact, as discussed in appendix A, there are analogous families of BPS black holes with
toroidal and higher-genus horizons. It would also be interesting to generalize our com-
putations to other less symmetric theories, from the 11D point of view. For instance,
starting with the geometries AdS, x SE7 and their field theory duals (possibly considering
toric Sasaki-Einstein cones as in [52-57]) and placing them on a Riemann surface, one can
obtain %—BPS black holes in broad families of 4D N = 2 gauged supergravities.

A very important question is whether the index provides the ezact number of black
hole microstates, beyond the leading contribution in N. It is known that in some examples
(e.g. [58]) the black hole represents only part of the conformally-invariant states, while
other ones are represented by graviton waves or other modes. It would be interesting to
compute 1/N corrections, both in supergravity and in the large NV expansion of the index,
to clarify the issue.

On a different note, let us also emphasize that the integral expression for the topologi-
cally twisted index found in [18], as the one for the elliptic genus in [59, 60], provides a novel
type of large N “matrix models”: the integrands are standard, but they are integrated along
non-trivial contours. These models probably have a rich mathematical structure deserving
its own attention.
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A Supergravity solutions

In this appendix we derive the black hole horizon solutions, in order to study in what region
of the parameter space the solutions are smooth with regular horizon. For completeness
we consider the general case with AdSy x ¥g horizon, where ¥ is a Riemann surface of
arbitrary genus g.

A.1 4D N = 2 gauged supergravity from N = 8

We use the Lagrangian and BPS equations given in [31], which conveniently summarizes the
results in [36, 37]. Note that this is not the standard N' = 2 gauged supergravity notation,
but rather the natural notation imposed from the reduction of 11D supergravity on S”.
For the bosonic fields we use the normalization and index structure from the main text,
and make explicit comments about the relation with the conventions in [31] when needed.

The S” reduction of 11D supergravity gives the 4D N = 8 SO(8) gauged supergrav-
ity. Using the reduction ansatz of [36] one finds a consistent reduction to U(1)* gauged
supergravity:

1

7 (dp2 + p2(dpa + gAq)?)

2
ds® = A% ds? + ———
P g Za:

1
2 2 -
Gi=V2g E (Lips — A Lyg) 64—ng E L' (+dLq) A dpg (A1)
2
— \gg g L2dp2 A (dpg + gAg) A *Fy .

Here a = 1,...,4, the L, satisfy L1LoL3Ls = 1 and parametrize the scalars, A, are 1-
forms with field strengths F, = dA,, A = Y, Lou?2 is the warp factor, >, p2 = 1 and
0 < g < 27 parametrize S7, U(1)* € SO(8) is parametrized by (,, * is the Hodge operator

on ds? and e, is its volume form.?

20The A, here are the same from the main text, related to the A, in [31] by Aq = 2A, and g =e.
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The reduction gives a 4D theory with bosonic action

_ 1 g _Loage_1L G dp2 _
L=55|R=5007 -5 ™IF ~V(e) (A2)
where
V= —492(cosh @12 + cosh ¢13 + cosh ¢14) . (A.3)

In this Lagrangian we have parametrized the constrained scalar fields L, with?!

—

¢ = (¢12, P13, P14) - (A.4)

We can combine them into a symmetric tensor ¢,p, which is self-dual (¢34 = @12, P21 = d13
and ¢o3 = ¢14) and zero on the diagonal, ¢4, = 0. The L, are then given by

Lo = e~0a9/2 (A.5)
with
ap = (1, 1, 1) , ao = (1, —1, —1) , as = (—1, 1, —1) , Ay = (—1, -1,1). (A.G)

In fact (A.2) is the bosonic action of 4D N = 2 U(1)* gauged supergravity with the three
axions set to zero [36]. We stress that (A.2) is not a consistent reduction without the three
axions [36]. They are sourced by F' A F, so it is consistent to set them to zero only if
F AN F =0. We can still consider either electric or magnetic charges.

The fermionic fields of the N' = 8 SO(8) gauged supergravity are the gravitini 1/1{1 and
the spin—% fields /] where I,.J, K are SO(8) indices. We can decompose I in the pair
(a,i) with a =1,...,4 and 7 = 1,2. The gravitini variations are (see (2.15) in [37])

. . o oo | o o
(51/15’ =V, " —g Z QabAZ&?” e —i—r\g/i Z e*ab'¢/2’yueaz+74\/§ Z Qabea”'qs/QFll,’)\’y”)‘fyua” e
b

bj buj
(A.7)
where €% is the antisymmetric tensor, € are the Killing spinors and
11 1 1
1111 —-1-1
Q== . (A.8)
211-11 -1
1-1-11

The spin—% fermions /&l are totally antisymmetric. It turns out [37] that UKl = 0
unless at least two indices have the same a (then different i because of antisymmmetry),
but they cannot all three have the same a because of antisymmetry. One can then write

(5Xai bjck _ 5Xack5ab€ij + 5Xbai5bc€jk + 5X0bj50‘15ki (A.g)

21This is yet another parametrization of the physical scalars. To compare with the main text, the functions
L, are proportional to the section X, so that we can write z1,2,3 = L1,2,3/L4.
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which is automatically antisymmetric in the pairs (a, i) etc., where

5Kabi = _\}i Z ’y'ua,uQSabeiijj -9 Z Zachcde_ad.(Z;/2€ij€bj + % Z Qadeid'd_?‘/Qij,ywlebi
Hi cdj dpw
(A.10)
if a # b while 5&“‘” = 0. Clearly dx in (A.9) vanishes if a # b # d, while if a = b then
ox = 5&‘“’“6’7’ . The BPS equations then reduce to 5&““ = 0. In the formula, ¢, is defined
above and
leabe] for a,b,c # 1
Eabc = 556 fora=1 (All)
Oac forb=1

0 otherwise.

At this point we can choose the gauge coupling constant
g=1/vV2, (A.12)

such that the UV metric is the unit-radius AdS, as in the main text; the coupling constant
g can be reinstated at the end by sending L, — v/2 gL,.

A.2 Wrapped M2-branes

The black-hole solutions can be thought of as the near-horizon geometry of a large number
of M2-branes wrapping a Riemann surface ¥;. To construct them, we consider the metric
ansatz

ds? = 21 (—dt? + dr?) 4 2221 (dz? 4 dy?) (A.13)

where f1 5 are functions of r and A is a function of x,y. We choose vielbein e; = efdt,
e; = elldr, e; = eMtf2dz, €5 = eltf2dy. We fix

T for 8
e ={ o for T2 (A.14)
L for H?

Y

so that ds? = e2"(dz? + dy?) is a constant curvature metric on the Riemann surface with
Ry, = K gy » R” =2k, (A.15)

and k = 1 for S?, Kk = 0 for T2, and x = —1 for H2. The range of coordinates are
(z,y) € R? for S?, (z,y) € [0,1)? for T?, and (x,7) € R x Ry for H2. In the H? case
the upper half-plane has to be quotiented by a suitable Fuchsian group to get a compact
Riemann surface ¥4-1. The ranges are chosen in such a way that

2lg—1| forg#1

(A.16)
1 forg=1

Vol(%,) = / e*dx dy = 2 n= {
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where we defined the positive number 7. The case of genus g > 1 follows from the Gauss-
Bonnet theorem 1 [ R¥ dvoly, = 47 (1 — g).
The field strengths are taken as

n n
FO= 2 Mgy A dy = ——2 dvoly; . A7
ﬁe T Ady 7 voly, (A.17)

On curved Riemann surfaces we can choose a gauge connection proportional to the spin

connection: defining w,, = 2 ﬁbsab on X4, we have
RZ

The parameters n, will be quantized later. Notice that the ansatz considered here contains,

for k = 1, the supergravity solution presented in section 3, however the radial coordinate

used here is not the same as the one used in (3.3), as it is obvious by comparing with (A.13).
We choose the following projectors on spinors:

et = € 0= Oz ye™ Yeg€™ = —9eY e =0fora=23,4. (A.19)

The first two conditions generically select the Poincaré supercharges (versus possible con-
formal supercharges on AdS); the second is a symplectic reduction for M2-branes on Xg;
the fourth one — to be compared with €2 in (A.8) — means that we only keep the diagonal
supercharge coupled to all fluxes with charge +1 (additional supercharges arise if some
fluxes are zero and so other rows of {2 vanish), as in [31].

Let us start with the gravitino variation. If a # 1 then (W)Zi = (0 automatically. We
then define €' = €'*, and get

; : 1 | . 1 o
1 2 : b § : E : —1pb vA
= (w,f = V,u,ez - 2\@ AMEWGJ + g Lb')/iueZ + ﬁ Lb FVA’}/ "}’NEUEJ . (AQO)
b b b

From p = £ we get

e~ 2/

_ 1
0= [ S By T
b
From g = 7, and using 0y = e~ /19, we get

1
- -f ,E —
0—[26 187»+4bLb

Z nyL, } . (A.21)

e~ 2/

anL } . (A.22)

Combining the two we get 0,.€’ =3 Ll

Ei(T) — efl(7")/2 6’6 , €9 = const . (A23)
From p = 2 we get
0= _| L —rnp h+iZAIZ ciigi i |Le=ripry L anL (A.24)
2 Vo E 2 278
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which gives two equations. We have an analogous equation for p = §j. Combining the two
we find

Za ng, = 2k, (A.25)

and an equation for f.

abi

Now let us look at the gaugino variation dx**. Given our ansatz for e’ it follows that

we obtain non-trivial equations only for b = 1 and therefore for a # 1. We get
0=—— [e_fl Orda1 + Z Qualag — e 22 Z Qadl’ldLgl] gl (A.QG)
d d

These are three equations for a = 2, 3, 4.
The final full set of BPS equations is:

—2f2

1
e fi = =7 (Lt Lo+ Ly + La) + £

6_2f2

(l‘llLl_l + nQLz_l + Ilngl + 114L21)

1
e ffy == (Li+ Lo+ Ly + La) — (mLi'+nly " +ngLyt +maly)

6_2f2

—_ 7 1 1 2 3 N
e N = —5(Li+ Lo — Ly — La) + (L7 +noLy' — gLyt —ngLgt) (A.27)

6_2f2

- 1
e gy = -3 (L1 — Lo+ L3 — Lg) + (mLit —noLyt + 3Lyt —nyL)t)

6_2f2

(L7t —nolyt —ngLgt +nyL)t)

To understand the quantization condition, consider the case of M2-branes on 7% i.e.
take na34 = 0 and n; = 2k. In this case we know that on T*52 ~ CQ/Z2 there are two
(negative) units of flux, and on T3y~ there are 2(g — 1) units of flux. We conclude that
the quantization condition is

2
ng € %Z . (A.28)

In the case of S? considered in the main text, the n, are integers. On a higher genus
Riemann surface, a more refined quantization is possible.

A.3 AdS; X X4 solutions

We could solve the BPS equations in (A.27), which are a system of coupled ODEs, to
find the complete black hole solutions discussed in the main text and their generalization
with Xy horizon. Instead, we will here analyze only the near-horizon geometry AdSs x ¥,
for which the equations become algebraic. This will be enough to study the region in
parameter space where smooth solutions with regular horizon exist.

We set €2/1(") = ¢2/ /r2 and all other functions constant. We get the algebraic system:

4
— = <L1+L2+L3+

o ) — 22 (nlLl_l + n2L2_1 + tlngl + 114L1L2L3) (A.29)

LyLoLs
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Li+ Lo+ Ls+

+e 22 (L7 F gLyt gLyt 4 gL LaLs) (A.30)
L1L2L3

—2f2 l‘llL + ngL T tlgL 1 114L1L2L3) (A.?)l)

— Lo+ Lg — —e —2f2 111L L 1‘12L + 1’13L - 114L1L2L3) (A32)

. )
(e B

L1L2L3

0= <L1 — Ly — L3+ > —e 2P (L7t — oLy — gLyt +nyL1LoLs) (A.33)

L1L2L3

together with > n, = 2k. We have substituted LiLoLsL4 = 1.
First notice that it must be L, > 0 for all a. Then consider a linear combination
of (A.30)-(A.33) with coefficients equal to the last row of Q (A.8): it gives

2e2? = ny L3313 —nyLoL3 —noL3Ly — n3Li Lo . (A.34)

The combination (A.29) + (A.30) gives

201 LsL
f— . G 5 (A.35)
1+ LyLoL3 + L1L5L3 + L1LoL3
We can define the positive non-vanishing variables
zZ1 = L%Lng N zZ9 = LlL%Lg y z3 = L1L2L§ s (A36)

which correspond to the physical scalars used in the main text. In fact, they are simply
given by 2123 = L123/ L4.%2 The relations above are inverted by

3 3 3

z z z 1

=", ILj=—"2%, IL3=—, Li= : (A.37)
2223 2173 2122 212273

Taking three linear combinations of (A.30)—(A.33), with coefficients equal to the first
three rows of Q (A.8), we get

0= (n12z9 + noz1)z3(zs — 1) + (n3 — ngz3)2122(23 + 1) (A.38)
0= (ﬂng + ngzg)zl(zl — 1) + (111 — n421)2’223(21 + 1) (A39)
0= (1112’3 + ngzl)ZQ(ZQ — 1) + (112 — n42’2)2123(2’2 + 1) . (A.40)

Solving the first or the second equation for zo, we get

1122’123(23 — 1) _ 1122’123(21 — 1)

11123(2’3 — 1) + (‘(13 — n423)21 (2’3 + 1) a _n3z1 (2’1 — 1) + (n1 — n4z1)z3(z1 +(1A) ’ )
41

Each of the two expressions is valid if its numerator and denominator are both non-

2y = —

vanishing. Unless ng = 0 or z; = 23 = 1, at least one of the two expressions is valid;
we can then substitute in (A.38) or (A.39), respectively, obtaining

0= 11123(23 — 1) — 1‘1321(21 — 1) + 1142123(21 — 23) . (A.42)

22The L, are proportional to the X,.
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If we substitute the first expression of zo (A.41) in (A.40) we obtain a complicated equation:

0= n%z3(23—1)2+z%(n3—n423)(ng(l—z3)+(n3—n4)(1+z3))+n1z1(z3—1)(n3(223+1)—n4z3(z3+2)) .
(A.43)

However the combination (A.43) — nj(z3 — 1)(A.42) gives a linear equation in z;:

2ny(ng —ng)zz(23 — 1)
(n3 - n423) [(nl - ‘(12)(2:3 — 1) + (‘(13 — n4)(23 + 1)] )

zZ1 =

(A.44)

Finally, we substitute this back into (A.42) obtaining a quadratic equation in zs:

0= (114 +ny —ng — 1’13)(1’14 — Ny +no — ng)(n4z§ + 1‘13)
+ <(113 + n4) [(nl — n2)2 + (ng — n4)2] —2(ng + 112)(113 — n4)2)23 . (A.45)

This gives two solutions for z3, and substituting back into (A.44) and (A.41) we find the
values of the other scalars as well.
Hence, we find two solutions for the scalars:

2(ng +n3)(ng —ng)? — (N1 + ny) [(n2 —n3)% + (ng — ﬂ4)2] +4(ng —n1)VO

2n4(ng — ng +ng —n3g)(ng —ny —ny +n3)
_2(ng +ng)(ng —ng)? — (ng 4 ng) (1 —n3)% + (np —ng)?] £ (ng — n2)VO (A.46)
2= 2ny(ng +np —ng —ng)(ng —ny — ng +ng) '

2(111 + 1‘12)(1‘13 — 1’14)2 — (113 + 114) [(nl — 1‘12)2 + (1‘13 — 1’14)2] + 4(1’14 — 113)\/@

zZ1 =

23 = ,
3 2ng(ng +np —ng —ng)(ng — ng + ng — ng)

where
0= () —dmmamans. B =23 -3 w oY w) Sly

2 1H2t3t4 -, 2 2 a<b attb 4 a a 4 a a 2 a a *

(A.47)
Let us also define
1
H:7(u1+n2—n3—n4)(n1—n2+n3—n4)(n1—ng—n3+n4) (A.48)

8

as in the main text. The squares of the metric functions take the simple expressions

€4f _ 162’12’223 H2

= (BR+Ve
(I+21+ 20+ 23)4 2072 ( 2 ) (A.49)
9 .
N12223 + N22123 + N32122 — NY21222 1
e4f2:(123 22123 + N32122 4123) :f(ng:\/@).
4212223 2
As we show in section A.3.2; in the special case that the n,’s are equal in pairs and Kk = —1,

a one-parameter family of solutions emerges.

To write down the metric functions directly, we first need to understand the positivity
conditions on the fluxes n,, such that a smooth regular horizon can exist. Such conditions
are that z123 >0, © >0 and T > 0 where

T = ny212923 — N1 2023 — N92123 — N32129 . (A.50)
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With a little bit of algebra one can prove the following equalities:

Fo4+nmng—n —ng—n C]
1+z1+zQ+z3:ix@[2 (g =t — 1 = tg) F VO]

114H
s _[F2+n4(n4—u1—n2—n3):F\/@4(F2i\@) (A1)
s 32ni112 '
Y _ [F2+n4(n4—ﬂ1—ﬂ2—ﬂ3):F@Q(FQﬂ:\/@)
B 4nZ1T '

The first one shows that, under the assumption that ny # 0 and II # 0 (those special cases
are analyzed in section A.3.2), 2123 > 0 guarantees that © # 0 and the square bracket
is non-vanishing. The second one then guarantees that F» &+ +/© > 0, and the third one
shows that II and T have the same sign. Summarizing:

2123>0, ©>0, II>0 =3 FBEVO >0, T>0.(A52)

Under those conditions, the metric functions are

M= g (BEVE) e L (meVE) (A

which give the radii of AdS, and Xy, respectively.

A.3.1 Analysis of positivity

We want to precisely identify the region in the parameter space {na ’ Yoala = 2/-@} where
the near-horizon solutions exist. First, let us impose the positivity constraints on the
parameter space {n,}, with no restriction on ) n, and assuming ny4,IT # 0 (the special
cases ny = 0 or IT = 0 are analyzed in section A.3.2):

D: = {nq|255>0,0>0,11>0} CR', (A.54)

where zf2’3 are the two solutions for the scalars in (A.46). It turns out that both domains
are linear, in the sense that they are bounded by hyperplanes.
The domain D_ is easy to write:

D_={II>0,n,<0}. (A.55)

This domain is unbounded. Actual solutions to the BPS equations follow from imposing
the further constraint Y, n, = 2k. On S? and T? clearly there are no solutions. On H?

we can rewrite the region as

D_(HQ) = {(‘ﬂl +n2+1)(n1 +n3+1) (n2+n3+1) <0, n23<0, ny+ng+ng> —2}
(A.56)
in terms of ny 2 3. This domain in bounded.

The domain Dy is
D; = {II > 0, three n,’s <0} . (A.57)
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The domain is unbounded, and D_ C D,. Now let us impose ) n, = 2k. For H 2 we do
not have further simplifications:

D, (H?) = {H >0, Zna = —2, three n,’s < O} . (A.58)
a

For T2 we can write the resulting region as
D+(T2) = {Z ng = 0 ‘ three ﬂa’S < 0} (A59)
a

because the condition II > 0 is automatically satisfied, or equivalently as
D+(T2) = {n1,273 < 0} U {“1,2 < 0, nq + ng2 + ng > 0} U permutations (A.60)

in terms of ny 2 3 only. For S2 we can write
D, (S?) = {Zna = 2| three ny’s < 0} , (A.61)
a

or equivalently
D+(Sz) = {n17273 < 0} U {nLQ < 0, n; + ng + nzg > 2} U permutations (A.62)
in terms of n; 2 3 only.

A.3.2 The special cases

First, starting from the beginning, it is easy to see that if two, three or all four of the n,’s
are zero, then there are no regular solutions. These are precisely the cases with enhanced
supersymmetry. The case n, = x = 0 corresponds to M2-branes on T2 preserving 1D
N = 16 supersymmetry. The case ny = 2k # 0 and na34 = 0 or permutations thereof
corresponds to M2-branes on the (local) hyperkahler space T*%,, preserving 1D N = 8
supersymmetry. The case n3 4 = 0 or permutations thereof corresponds to M2-branes on a
local Calabi-Yau threefold, preserving 1D A = 4 supersymmetry.

If one of the n,’s vanishes, then © = F and it is clear that we should choose the upper
sign. If one of n; 5 3 vanishes, then the formulse above are directly applicable. If ny = 0 we
do not expect anything special to happen, because the final result is symmetric under per-
mutation of the n,’s, however the formula for the scalars are singular and one should either
take the limit carefully, or repeat the computation from scratch. Either way, one obtains

o (n1+n2—n3)(n1 —ng—i-ng) b — (m—i—nz—ng)(—nl—i-ng—i—ng)
! AF, ’ 2 AF,
(A.63)
e (1‘11 — Ny —|—1’13)(—111 +n2+n3)
3 AF,

as well as e2f =11/ F21 /2 and €22 = F21 /2 These solutions only exist on H? and are already
contained in Dy (H?).
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More interesting is the case that II = 0. Suppose that only one of the three factors
in IT vanishes: this implies that the set {n,} contains at least three values — and we can
assume that they are all non-vanishing, otherwise we are in one of the previous cases. In
this case there are no regular solutions.

If two, but not three, of the factors in II vanish, then ny = ny # n3 = ng (or permu-
tations thereof). In this case on finds a one-parameter family of solutions in which the
scalars are

1 4n 1 4n
z] = 2<z3+1i\/(23 +1)% - 12’3) ) 22 = 2<23+1:F\/(23 +1)% - 1Z3> (A.64)

n3 n3

in terms of the free value of z3. The metric functions are

2 — /% ( 3 22 = \/umg | (A.65)
3

23+ 1)2 ’
and the solutions exist for

mo_ (1)

n <0, ng <0, >
ns 423

(A.66)
because ¥ = —nyz3. These solutions only exist on H2. This one-parameter family of
solutions should be thought of as a “conformal manifold” of exactly marginal deformations
of the superconformal quantum mechanics. The entropy (as the central charges in higher
dimensions) is constant on the conformal manifold.

If all three factors in II vanish, then n; = ny = n3 = ngy = § and we can assume that
they are non-vanishing. Again we find a one-parameter family of solutions:

= 1 5 = 5 2f = 5 2 = —— A67
21 29 = 23 e 1) e 5 ( )
and permutations of the 212 3. These solutions only exist on H?, where k = —1.

A.3.3 The full analytic black hole solutions

In the case of S? (i.e. x = 1), the full analytic black hole solutions are in (3.3)(3.15).
Notice, however, that the radial coordinate r used there is not the same radial coordinate
used at the beginning of this appendix and, in particular, in (A.27).

For g > 0 the solutions are still written as in (3.3), with e *(¥) = 8/X1 X5 X3 X, and

1 fa
Xo=7-"1, Zaﬁa:(), (A.68)
however the constant c related to the horizon radius 7y is
2 _ 2 K
rh=c=4)  B-3 (A.69)

and the relation between the parameters 3, and the fluxes n, is

Kk 2 2
o — o = 1657 — 4Zbﬁb : (A.70)
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implying >, n, = 2k. The latter can also be written as
n, = 1682 —ri . (A.71)

The inverse formula is )
d(na — 5)" + K% =3y nf
1611 ’

where IT is the same as in (3.11). The expressions in (3.15) remain valid.

Bo=F (A.72)

From the radial profile of the scalars X, in (A.68) it is clear that whenever the near
horizon solution is regular — in particular X,(rp) > 0 and the horizon radius r}, is positive
— the full black hole solution is regular. Therefore the analysis of positivity we did in
section A.3.1 gives the region in parameter space where smooth black hole solutions with
regular horizon exist. In particular, for the case of H? (i.e. K = —1), when the parameters
lie inside D_ (H?) one finds two black hole solutions with different entropy.

B I-extremization: the example of a free chiral multiplet

In this appendix we examine in details the N' = 2 quantum mechanics of a free chiral
multiplet. Although seemingly trivial, the model contains some useful information. In par-
ticular, the index is extremized in correspondence with the exact R-symmetry of the model.

B.1 The massive case

Consider an N’ = 2 quantum mechanics with u(1|1) supersymmetry algebra
QO =H -0, Q?=0" =0, QH|=[Q.J]=0, (B
where J is a flavor symmetry of the theory, [J, H] = 0 and Q = Qf. The Witten index
T =Tr(-1)F e ¢ BH = Ty (—1)F ¢i(AtiB0)J e 3{2.9) (B.2)

is independent of 8 and it receives contributions only from “chiral” supersymmetric ground
states that satisfy H = oJ. As a result, it is a holomorphic function of the complex fugacity
y = e'AF89) and it can be written as

T ="Trg—es(-1)"y” . (B.3)

Such an index for N' = 2 quantum mechanics has been considered in [61] and evaluated
by localization therein. It is also related to the topologically twisted index of a three-
dimensional theory by dimensional reduction on S? [18]. In the three-dimensional language,
H is the Hamiltonian of the dimensionally reduced theory (and it depends on the magnetic
fluxes), while A and o are expectation values for the background vector multiplet associated
with the flavor symmetry J: A is a flat connection on S* and ¢ is a real mass [18].
We consider a model with a complex scalar z = 1 + iz2 and a complex fermion
satisfying
[, pk] = 051 , {v, 9} =1, PP =1 =0. (B.4)
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The Hamiltonian and the flavor symmetry J are

-9 =2
H=b 105 =0y, =g -+ 300, (B

The fields z and 1) have charge 1 with respect to J, and o plays the role of a real mass.
The model can be obtained by reducing on S? the topologically twisted theory of a free
three-dimensional chiral multiplet of R-charge 0 [18].

We construct the spectrum using oscillators. The bosonic ones are
M p; ay + iag ai — 1ao

x;+ , a, = ——, az; = —— . B.6
2 Y 20| z NG z NG (B.6)

a; =

They satisfy [aj,a;i] = 01, as well as [az,al] = [as, i] =1, [as, 2] = 0 and conjugate. We
have a bosonic Fock space generated from |0) (defined such that a,|0) = az|0) = 0) by the
action of al and al. The fermions give rise to a fermionic Fock space {[1),]l)}. They are
defined such that ||} = 0 and [1) = ||). The fermion number is F = ).

The Hamiltonian and the charge can be written as
g —
H = (afgag +ala, + 1)|o| - 5[@&,1/)] , J =alaz —ala, + [@b Y] . (B.7)
Notice that [H,.JJ] = 0. The supercharges can be constructed as

= -2 2 Q = 2iy/|o|ag
Q Vo ay foro >0, o] oz for o <0 (B.8)

Q =2iVoaly Q = —2i\/|o|azyp
and satisfy the algebra (B.1).

For o > 0, the ground state of the total Hamiltonian is |0) ® [): it is bosonic and has
H=0/2 J = % All excited states are obtained by acting with 1, ai, a; Since all of
them shift H — H + o, the first two shift J — J — 1 while the last one shifts J — J+1, it
turns out that all states satisfy H > o|.J| and the only states with H = o.J are (al)?[0,1).

The normalized “chiral” states are
(al)"

Vn!

and are annihilated by Q and Q. The supersymmetric index Z in (B.2) is then

10,7)

1/2

o0 1
I=Tros (-D)'y’ =Y~y == . (B.9)

Since y = €297 for ¢ > 0 the series is in fact convergent.

For o < 0, the ground state is |0) ® |}): it is fermionic and has H = |o|/2, J = —3.
All excited states are obtained by acting with v, al, a; They all shift H — H + |o|, but
1 and ag shift J — J + 1 while al shifts J — J — 1. Therefore all states satisfy H > loJ|,
while the normalized “chiral” states satisfying H = oJ are
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and are annihilated by Q and Q. The supersymmetric index is

1/2

o0 1
T=Trs (D) == v 3" =1 . (B.10)

as before. This series is convergent for o < 0 as it should.

From the example, it appears that the index is only defined in the massive theory. The
states counted by the index do not have a well-defined limit as ¢ — 0 (this is manifest in
the Schrodinger representation), and the two series would not converge for o = 0. Thus
the index for zero real mass is defined as the limit of the index with ¢ # 0. However, for
the free chiral case we can still make sense of the index in the massless ¢ = 0 case if we
use generalized states |Z) (or |p)) in the Schrédinger representation. Let us compute

T=Tr(-1)f e P = )" / dp (Fa|(-1)F e e PH |5 a) (B.11)
a="1]

with H = $2/2 and y = e*®. The trace factorizes:

1A 7 = 1 — —
D S R o el o (B.12)
a="T,]

The fermionic trace is easily computed to be y'/2—y~1/2. To compute the bosonic trace, we
notice that the operator e?/bos rotates the z-plane and p-plane by an angle A. We thus find

- 1 1
&2p (R_ Fle 1|5 :/d2 —85%/2 §@)(R_pf— )= = :
/ p (R_aDle 7) pe (R-apP — D) ‘det(R_A—ﬂ){ 2(1—cosA)

Notice that, eventually, only the ground state |’ = 0) with H = 0 contributes, however
the correct contribution depends crucially on the density of states in a neighborhood of

H = 0. Finally » " »

I:2(1—COSA) - 1—y

(B.13)

as before.

Notice that the expression (B.13) is not a single-valued function of y due to an anomaly
for the flavor symmetry. In three dimensions this is due to a parity anomaly and it can
be cured by adding a Chern-Simons term for the background flavor field [18]. In quantum
mechanics we should add a Wilson line [61].

B.2 The massless case

A

The case of interest for this paper is the massless case. By setting y = e’® we have

i
T=——.

= B.14
2sin 3 ( )

This is extremized at A = (2k + 1) with integer k, which corresponds to y = —1. The
value of the index is |Z(A = m)| = 1/2 which is not an integer. We can understand this
value as a zeta-function regularization

I(A:ﬂ):%:i(l—l—i—l—l—i—...),
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which is consistent with the geometric series expansion of (B.13) for y = —1. As we have
seen, unfortunately, the index in the massless case should be suitably regularized. Only if
we define it as a limit of the massive case we can make sense of it as a sum over states of
the discrete spectrum.

On the other hand, we also have good news. In the massless case there can be a
superconformal algebra and the free chiral theory provides an example of that. In the
massless limit ¢ — 0 we find

_ _ 1 _ 72
Q — pip, Q— v, H=§{Q,Q}:%, (B.15)

where we defined the holomorphic momentum p = p;+ips. The theory also gains conformal
symmetry. We can define the operators

-9 2 o = 2
K:xi’ D:w’ (B.16)
2 2
that satisfy the s[(2,R) ~ s0(2,1) ~ su(1,1) conformal algebra
(D, H] = 2iH , D, K] = —2K , [H,K] = —iD . (B.17)

Here D is the generator of dilations, and K of special conformal transformations. We can
also define the conformal supersymmetries

S=2z21, S=2zv¢ (B.18)

with & = ST, and the R-symmetry current

R= pz%ﬁ*‘ [, 9] = wap1 — x1p2 + [V, ] = =T — %[@J/J] =—J+F- % , (B.19)

which satisfy

[Q, K] = —iS, {9,8} ={9,8} =0, {9,8} =D —iR. (B.20)

All together these operators satisfy an N' = 2 superconformal algebra [47-49, 62, 63].
We can write it in a compact way by defining the operators

_H+K _QFiS
R "1 V2 B.21
I _H-K=¥iD GlzéiFig (B-21)
= +1 7
We find indeed
— 2
(Lims Ln] = (m =) Lin-n LG = 55" Ger [RG]=G
_ _ — r_ — —
(Gr.Gs} = 2Ly s + (r — )6, _sR L, Go] = 5 e [R,G,] =G,

{Gr,Gs} =1{Gr,G:s} =0
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with m,n =0,£1 and r,s = i%, where we recognize the su(1,1]1) superalgebra in the Vi-
rasoro form. The Hermiticity properties are L = Ly, Lll = L+1, Ql = EJF 1 and R" = R.

The R-symmetry operator R is uniquely singled out by the sugerconformal algebra.
This is the exact R-symmetry of the superconformal quantum mechanics. We can relate it
to the extremization of the index as follows. The critical point of }I (A)’ isat A =m. At

that point, using (B.19), we have
T(A =7)=Tr (-D)F(=1) e P =iTr (—1)Fe PH (B.23)

In other words, the extremization precisely singles out the exact R-symmetry!

We may ask if there is some symmetry at work in this simple example behind the
selection of R by extremization. The index Z is purely imaginary and its extremization
Oa|Z| = 0 is equivalent to

—iOAT = Tr(=1)FJed e PH = (B.24)
Then A = 7 is an extremum if
Tr(-1)fgePH =0, (B.25)

But the theory is invariant under time-reversal: H is invariant while the currents J, R
change sign. Also (—1)f in invariant since R, as defined in (B.19), has integer spectrum:
the bosonic part is the generator of a rotation in the z-plane (the component J, of angular
momentum with eigenvalues m € N) and [¢, 1] is integer-valued on the fermionic states
{1, 1)} Being odd under time-reversal, Tr (—1)%.J e=## must be zero.

Notice that, since H has a continuum spectrum, all the previous traces must be regu-
larized, using the generalized eigenstates of the momentum or by taking a suitable limit of

the massive theory.

B.3 The alternative superconformal index

Using the superconformal algebra we can define an alternative superconformal index mak-
ing use of the operator Ly that has integral spectrum [47-49]. From {G_ 1 N 1 }=2Lp—R
we see that

T. = Tr (—1)Fe=AR2Lo=HR) (B.26)

is an index, independent of § and which takes contribution only from states annihilated
by G_ 1 and 6% . By analyzing the representation theory of the superconformal algebra,
one can show that Z. gets contributions only from singlets and chiral primaries in (short)
chiral representations (annihilated by G, 1 and G 1 ).
In the case of a free chiral,
2Ly = %172 + %52
is the Hamiltonian of a harmonic oscillator. In fact we can formally map the massless

(B.27)

problem to that of a massive chiral field with o = —1. By explicitly computation we find

2Lo— R=Hye_1+J (B.28)
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and

g%:—i 2a,¢, G%:—’L’ 2(15@?
_ - (B.29)
G_1=iv2aly, G_1=iv2aly,
2 2
where H,—_1 is the Hamiltonian (B.7) for ¢ = —1 while a, and a3 are the oscillators (B.6)
foro = —1: a, = Z;’p , 4z = #. The chiral primary states of the superconformal algebra
are (al)”|0, 1) with R-charge 1 — n, so that the superconformal index is
_ o0 _1\1-n _ _}
7. = ano( iTt=—o. (B.30)

We see that even the superconformal index requires a regularization, since there are in-
finitely many chiral primaries, and it coincides (up to a phase) with the regularized Witten

index that we have computed above: —iZ = Tr (—1)Fe=PH.

C Attractor mechanism for half-BPS horizons in A/ = 2 supergravity

Here we derive a particularly useful identity for half-BPS near-horizon solutions in gauged
supergravity that clarifies the attractor mechanism,?® following the standard N/ = 2 super-
gravity conventions [39]. In view of our results in the main text, we rewrite in a particularly
useful way the known attractor equations, with the goal to provide a clearer holographic
picture of the topologically twisted index.

The attractor mechanism for AdS4 black holes in gauged supergravity was studied in
details e.g. in [5-7, 13, 14]. Here we follow [6] as it provides a general picture with both
electric and magnetic charges, but we make a particular choice for the sections as in [7].
Let us introduce the main quantities we deal with. The “central charge” is

Z = l/? (FApA — XAqA) = PR (C.1)

where the last equality serves as a definition for the quantity R. The electric and magnetic
charges ga, p" are defined by the corresponding fluxes through a sphere at any point of
spacetime and are conserved via the Maxwell equations and Bianchi identities, respectively.
The “central charge of the gaugings” is

L=eM? (gFpAe — gXPep) = —2geax™ (C.2)

where in the second equality we set £€* = 0 since we do not consider magnetic gaugings.>*
Now let us focus on the BPS equations that hold at the black hole horizon, as derived in [6]
(egs. (3.9) and (3.5) respectively),

Z=iR% L, D;Z=iR%L D;L Vj, (C.3)

23The discussion in this section includes all attractors of asymptotically AdSs black holes, but it is
not restricted to them: examples of the same type of attractor behavior can be found in extremal non-
BPS black holes in Minkowski space, and in other BPS black holes with more exotic asymptotics such as
hyperscaling-violating Lifshitz.

240One can always symplectically rotate a given gauged theory to this choice of gauging frame, so there is
no loss of generality in this choice.
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where the derivatives are with respect to the complex scalars z;, D; = 0; + K;/2 and
Kj; = 0;K. These are the BPS attractor equations for AdS, black holes that are written
in a completely general symplectic-invariant way. In particular, there is still a scaling
symmetry for the choice of symplectic sections X* since the number of physical scalars
is one less. This scaling symmetry is a remnant of the conformal symmetry in off-shell
supergravity and one can always make a gauge choice for it, if needed. Here we decide to

make the particular gauge choice
26 XN =1. (C.4)

This choice was already implicitly made in the main text, and it was built in the “ansatz”
for the solutions in [7]. One can further see that the choice (C.4) leads to the explicit

K'in the warp factor, which follows from the extra BPS flow

appearance of the function e
equation we are not considering here.?> This choice is made at the level of the theory, and it
holds everywhere in spacetime, not just at the horizon. Such a choice does not lead to any
physical observable, as the metric, scalars and gauge fields are gauge invariant. However
it does change their functional dependence on the sections, and choosing (C.4) we put the
physical solution in a form that is most convenient for us.

Another reason for choosing (C.4) is the simplification in the holographic dictionary. As
we saw in the dual field theory, the chemical potentials A, obey a similar relation and can be
identified with X, up to a proportionality constant. A different gauge choice would have led
to a different identification and a more cumbersome notation. In this sense what we derive
below for R is not a gauge-invariant statement, but this does not change the underlying
physical picture. One can always refer back to (C.3) for the scale-invariant equations.

With the gauge choice (C.4), the first attractor equation in (C.3) gives at the horizon:
R = _7RSQ = ‘R’ x Spm, (0.5)

meaning that |R| is equal to the entropy up to a proportionality constant. This result
is valid in two-derivative supergravity, and will generically change with higher derivative
corrections. Keeping in mind that R is a function of the sections, the second equation
in (C.3) gives

0=0;R+K, <R+ Z§R§2> = R =0. (C.6)

This is valid in the gauge (C.4) that determines, say, X° in terms of the other sections.
Therefore the derivative with respect to the physical scalars z; can be traded for a
derivative with respect to the sections, if we impose (C.4). We finally find

OR

8XA horizon =0 ’ (C7>

that the function R is extremized at the horizon. This fixes the values of the complex
scalars, and it can be thought of as an attractor equation. Furthermore the value of

*The additional BPS equation (2.33) of [6] fixes 2R3 45, = e~* on the horizon in accordance with the
solution we presented in the main text.
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R at the extremum is proportional to the black hole entropy. This is valid for all
supersymmetric asymptotically AdSy black holes, with a general choice of electric and
magnetic charges and complex sections X under the constraint (C.4).

Due to the exact match between the twisted index and the quantity R in the particular
case considered in the main text, it is natural to expect that this continues to hold for all
AdS, black holes with a field theory dual (note that (C.7) holds for other BPS horizons
as well). It is then tempting to speculate about a more general correspondence between
R and the Witten index of the dual 1D superconformal quantum mechanics also in cases
without AdS4 asymptotics.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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