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1 Introduction

Poisson-Lie T-duality [8] is a generalization of T-duality, replacing Abelian Lie groups

(tori) with non-Abelian Lie groups. As in the Abelian case, it is an equivalence of two

(or more) 2-dimensional σ-models. In the simplest case of no “spectator coordinates” it is

given by the following data: a Lie group G with an invariant inner product 〈, 〉 of signature

(n, n) on its Lie algebra g, and a vector subspace E+ ⊂ g of dimension n such that 〈, 〉 is

positive-definite (or at least non-degenerate) on E+.

If H ⊂ G is a closed subgroup such that its Lie algebra h ⊂ g is Lagrangian (i.e.

h⊥ = h) then this data produces a Riemannian metric and a closed 3-form on G/H. If
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H ′ ⊂ G is another Lagrangian subgroup then Poisson-Lie T-duality is an equivalence of

the 2-dimensional σ-models with targets G/H and G/H ′. (In the case of the ordinary

(Abelian) T-duality G,H,H ′ are tori).

Indeed, the sigma models can be almost entirely described just in terms of G and E+,

i.e. independently of H (or H ′). This is best seen for the Hamiltonian descriptions of the

σ-models, but let us summarize also some other features:

Equations of motion. If Σ is a surface with a pseudo-conformal structure, typically a

cylinder, then a map

f : Σ→ G/H

is a solution of the equations of motion iff f admits a lift

g : Σ̃→ G

where Σ̃ is the universal cover of Σ, such that

∂+g g
−1 ∈ E+, ∂−g g

−1 ∈ E− (1.1)

where E− = (E+)⊥ and ∂± are the derivatives in the light-like directions. The lift g, if

it exists, is unique up to right multiplication by a (constant) element of H. If the lift g

is actually a map g : Σ → G then we can project g to a solution of the Euler-Lagrange

equations f ′ : Σ→ G/H ′. This condition is the non-Abelian momentum constraint ; in the

case of Abelian T-duality (when G is a torus), it is the momentum quantization condition.

Various dynamical quantities can be read off the lift g. For example, the energy-

momentum tensor on Σ is equal to the tensor field 1
2g
∗〈, 〉, where we view 〈, 〉 as a tensor

field on G.

Hamiltonian description. The phase space of the G/H (and also G/H ′) σ-model, with

the non-Abelian momentum constraint imposed, is (LG)/G with its standard symplectic

structure (without the constraint it is the space of maps g : R→ G such that g(x+ 2π) =

g(x)h for some h ∈ H, modulo the right action of H by multiplication). The Hamiltonian

is (as can be read off the description of the energy-momentum tensor given above)

H =
1

2

∫
S1

〈∂σg g−1,E ∂σg g
−1〉 dσ

where E : g → g is the map with +1-eigenspace E+ and −1-eigenspace E−. One can then

write the action functional in the “
∫
p dq −H dt”-form [9]

S(g) =
1

2

∫
Σ
〈∂σg g−1, ∂τg g

−1〉 dσ dτ +

∫
Y
g∗η − 1

2

∫
Σ
〈∂σg g−1,E ∂σg g

−1〉 dσ dτ (1.2)

Y
τ

σ
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where Y a solid cylinder with Σ as the boundary tube, and η ∈ Ω3(G) is the bi-invariant

closed 3-form given by

η(u, v, w) =
1

2
〈u, [v, w]〉 (∀u, v, w ∈ g). (1.3)

This gives a duality-invariant description of the problem. The Hamiltonian point of view

was further developed in [3, 18].

In this work we present another duality-invariant description, which is “holographic”

in the spirit: the σ-models are equivalent to the Chern-Simons theory on the solid cylinder

Y , with the (non-topological) boundary condition

∗(A|Σ) = E(A|Σ).

Besides being explicitly Lorentz-invariant (unlike the Hamiltonian description), this de-

scription opens new possibilities for development of Poisson-Lie T-duality. In particular, it

can be seen as a continuous version of the (largely conjectural) quantum Kramers-Wannier

duality from [15], which takes place on the boundary of the Reshetikhin-Turaev-Witten

TQFT corresponding to a suitable quasi-triangular Hopf algebra.

The idea of a 2-dimensional σ-model appearing on the boundary of Chern-Simons

theory is certainly not new: the best-known example is Witten’s observation [19] that the

WZW-model appears in this way. Our treatment is very similar to [11], the main difference

comes from different boundary conditions.

Let us briefly discuss what has to be changed on the above picture in the presence of

spectator coordinates. In the Abelian case T-duality is an equivalence of the σ-models given

by two torus fibrations over the same base. In the Poisson-Lie case one needs a principal

G-bundle P → P/G with vanishing first Pontryagin class. If H,H ′ ⊂ G are Lagrangian

subgroups then Poisson-Lie T-duality gives an equivalence of the target spaces P/H and

P/H ′. Chern-Simons theory needs to be replaced by the so called Courant σ-model using

a certain transitive Courant algebroid over P/G.

Exact Courant algebroids and their reduction were introduced in [16]1 as the geometric

structure behind (Poisson-Lie) T-duality. These ideas were rediscovered and extended in [2]

and [4]. The basic idea of the present paper, namely that 2-dimensional σ-models emerge

on the boundary of 3-dimensional Courant σ-models, makes this link much less mysterious.

These examples suggest a natural generalization: to consider the AKSZ models [1]

(Chern-Simons and Courant are AKSZ models in dimension 3) with appropriate non-

topological boundary conditions and to see what kind of (non-topological) models arise

on the boundary and which dualities we can see in this way. This generalization will be

treated in a future work.
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2 Classical boundary conditions of Chern-Simons theory

2.1 Chern-Simons action

Let us recall some basic properties of the Chern-Simons action functional.

Let g be a Lie algebra with an invariant inner product 〈, 〉, G a connected Lie group

integrating g, and Y a compact oriented 3-manifold, possibly with boundary. If A ∈
Ω1(Y, g) is a g-connection on Y , its Chern-Simons action is

S(A) =

∫
Y

1

2
〈A, dA〉+

1

6
〈A, [A,A]〉. (2.1)

The variation of S is

δS(A) =

∫
Y
〈δA, FA〉+

1

2

∫
∂Y
〈δA,A〉

where FA = dA+ [A,A]/2 is the curvature of A. The boundary term

θ∂Y :=
1

2

∫
∂Y
〈δA,A〉

of δS is a 1-form θ∂Y on the space Ω1(∂Y, g), and ω∂Y := δθ∂Y is the Atiyah-Bott symplectic

form on Ω1(∂Y, g) (as is usual, we use δ as the notation of the de Rham differential on an

infinite-dimensional space)

ω∂Y = −1

2

∫
∂Y
〈δA, δA〉, ω∂Y (α, β) = −

∫
∂Y
〈α, β〉.

Under a gauge transformation Ag = g−1dg + g−1Ag (g : Y → G) the action trans-

forms as

S(Ag) = S(A)−
∫
Y
g∗η +

∫
∂Y
〈A, dg g−1〉 (2.2)

where η ∈ Ω3(G) is the bi-invariant closed 3-form given by (1.3). As a result, exp(iS(A)) is

invariant under gauge transformations trivial on ∂Y provided the periods of η are multiples

of 2π. The amplitude exp(iS(A)) then makes sense for a connection A on a principal G-

bundle P → Y , provided a trivialization of P over ∂Y is chosen, and provided there exists

an extension of this trivialization to the entire P → Y . The latter condition is always

satisfied for 1-connected G’s; for other G’s extra care is needed (see [5]), and we will ignore

possible resulting problems in this paper.

2.2 The main boundary condition

Let us now consider a boundary condition which makes the boundary term θ∂Y (δA) =
1
2

∫
∂Y 〈δA,A〉 of δS vanish, and which, as we shall see later, makes Chern-Simons theory

equivalent to a 2-dimensional σ-model.

Let

E : g→ g

– 4 –
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be a reflection, i.e. a linear map such that

E2 = 1, 〈Eu,Ev〉 = 〈u, v〉,

with the additional properties

TrE = 0, 〈u,Eu〉 > 0 (∀u ∈ g, u 6= 0).

The map E is called (in the context of generalized complex geometry) a generalized met-

ric [6]. It is equivalent to a choice of a half-dimensional subspace E+ ⊂ g such that

〈, 〉|E+ is positive-definite and 〈, 〉|E⊥+ is negative-definite: E+ is the +1-eigenspace of E and

E− := (E+)⊥ its −1-eigenspace.

Let us choose a pseudo-conformal structure on ∂Y and impose the boundary condition

∗ (A|∂Y ) = E(A|∂Y ) (2.3)

where ∗ : Ω1(∂Y )→ Ω1(∂Y ) is the Hodge star. In local isotropic coordinates t+, t− on ∂Y

we have ∗dt+ = dt+, ∗dt− = −dt−; if

A|∂Y = a+dt+ + a−dt−,

the boundary condition says

a+ ∈ E+, a− ∈ E−.

The boundary condition (2.3) implies that the boundary term 1
2

∫
∂Y 〈δA,A〉 of δS

vanishes, as it makes 〈δA|∂Y , A|∂Y 〉 ∈ Ω2(∂Y ) vanish. As a result, solutions of the Euler-

Lagrange equations are flat connections on Y satisfying the boundary condition. Notice

that if A = −dg g−1 for a map g : Y → G then g|Σ satisfies (1.1).

Let us note that for a generic E our system is invariant only under the gauge trans-

formations vanishing at ∂Y . More precisely we should thus say that solutions of equations

of motions are flat connections on Y satisfying the boundary condition, modulo gauge

transformations vanishing on ∂Y .

2.3 A topological boundary condition

Suppose that h ⊂ g is a Lagrangian Lie subalgebra, i.e. that h⊥ = h, and let us impose the

condition

A|∂Y ∈ Ω1(∂Y, h) ⊂ Ω1(∂Y, g).

This condition again makes the boundary term of δS vanish.

Let H ⊂ G be the connected subgroup integrating h ⊂ g; let us suppose that H is

closed. Let us consider gauge transformations

g : Y → G such that g(∂Y ) ⊂ H.

Equation (2.2) then shows that exp(iS(A)) is invariant under these transformations pro-

vided the relative cohomology class [η] ∈ H3(G,H;R) lies in the image of H3(G,H; 2πZ)

(the class [η] is well defined, as η|H = 0).
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A more invariant version of this boundary condition is as follows: we have a principal

G-bundle P → Y , a reduction of P over ∂Y to a principal H-bundle (i.e. a submanifold

Q ⊂ P which is a principal H-bundle Q → ∂Y ), and consider only connections on P

which are compatible with the reduction (i.e. which restrict to a connection on Q). With

this boundary condition Chern-Simons theory remains (at least on the classical level) a

topological theory.

2.4 General boundary conditions

Let us now discuss more general boundary conditions (b.c.’s) given by exact Lagrangian

submanifolds of Ω1(∂Y, g). We shall consider only those b.c.’s that don’t depend on deriva-

tives of A. This section is not needed for the rest of the paper, but it is useful for un-

derstanding of the general structure. We leave as an exercise to the interested reader to

extend the remainder of this paper to these more general boundary conditions.

Let Tx := Tx(∂Y ) be the tangent space at x ∈ ∂Y . On the vector space Wx := T ∗x ⊗ g

we have a (constant) symplectic form

ωx :
∧2Wx →

∧2T ∗x

with values in the 1-dimensional vector space
∧2T ∗x , given by

ωx(α⊗ u, β ⊗ v) = −〈u, v〉α ∧ β,

and also a (non-constant) 1-form θx such that dθx = ωx, given by

θx =
1

2
iεxωx

where εx is the Euler vector field on the vector space Wx. They are “pointwise versions”

of ω∂Y and θ∂Y .

Let now Lx ⊂ Wx be an exact Lagrangian submanifold, i.e. Lx is Lagrangian and

there is a
∧2T ∗x -valued function fx on Lx such that θx|Lx = dfx. Let us also suppose that

Lx’s depend smoothly on x in the sense that their union is a smooth submanifold L of

W := T ∗(∂Y ) ⊗ g, and also that fx depends smoothly on x, i.e. that fx’s combine to a

smooth map f : L→
∧2T ∗∂Y .

The b.c. we impose on A|∂Y is that it is a section of L 7→ ∂Y (the b.c.’s considered

above are of this form, with f = 0). We need to add a boundary term

S∂(A) :=

∫
∂Y
f(A|∂Y )

to the action S(A). The variation of the action S + S∂ (under the b.c.) is

δ(S + S∂) =
1

2

∫
Y
〈δA, FA〉,

i.e. the boundary term of the variation disappears.

– 6 –
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3 From Chern-Simons to a Hamiltonian system

3.1 Chern-Simons action on a cylinder

Let D be a disk, I an interval, and Y = D× I. Let Σ = (∂D)× I ⊂ ∂Y . On Σ we impose

the boundary condition (2.3). We use the standard pseudo-Riemannian metric −dτ2 +dσ2

on Σ, where τ is the coordinate on I and σ is the angle along the circle S1 = ∂D. In these

coordinates we have

∗dτ = dσ, ∗dσ = dτ.

The boundary condition thus requires A|Σ to be of the form

A|Σ = aσ dσ + E(aσ) dτ, aσ : Σ→ g. (3.1)

Let us now analyze the Chern-Simons action (2.1) on Y = D × I with the boundary

condition (3.1). Let us use the notation

A = aτ dτ + Ã (aτ : Y → g),

where Ã is a τ -dependent g-valued 1-form on D, and

FÃ := dhÃ+ [Ã, Ã]/2

where dh is the de Rham differential on D (as opposed to Y ). A simple calculation gives

1

2
〈A, dA〉+

1

6
〈A, [A,A]〉 = dτ ∧

(
〈aτ , FÃ〉+

1

2

〈∂Ã
∂τ

, Ã
〉)

+
1

2
d〈aτ dτ, Ã〉

and thus

S(A) =

∫
I

(∫
D
〈aτ , FÃ〉+

1

2

∫
D

〈∂Ã
∂τ

, Ã
〉
− 1

2

∫
∂D

〈
aσ,E(aσ)

〉
dσ

)
dτ. (3.2)

The first term in (3.2) (with aτ a Lagrange multiplier) imposes the constraint FÃ = 0.

If we set Ã = −dhg g−1, where g is a map g : D × I → G, then the action (3.2) gets

equal to the action S(g) given by (1.2). We thus recovered the Hamiltonian description of

Poisson-Lie T-duality.

3.2 Chern-Simons on a cylinder as a Hamiltonian system

Let us now discuss the meaning of the action (3.2) in more detail. As we observed, in the

first term aτ is a Lagrange multiplier, i.e. it gives us a constraint

FÃ = 0.

The remaining terms depend only on Ã, which is a (time-dependent) flat g-connection on D.

Taking into account the gauge invariance of the action (3.2) under gauge transformations

vanishing on the boundary, we should rather consider gauge classes of flat connections Ã,

i.e. their moduli space MG(D, ∂D). The space MG(D, ∂D) is the subspace of Ω1(S1, g)

given by the unit holonomy constraint.

– 7 –
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The second term in (3.2) is ∫
I
(Ã)∗θD (3.3)

where we understand Ã as a map I → Ω1(D, g) and θD is the 1-form on Ω1(D, g) given by

θD =
1

2

∫
D
〈δA,A〉.

The symplectic form ωD = δθD on Ω1(D, g), when restricted to the subspace of flat con-

nections, becomes degenerate, but it descends to a symplectic form (of Atiyah and Bott)

on MG(D, ∂D). The term (3.3) thus means that we have a Hamiltonian system on the

symplectic manifold MG(D, ∂D), with the Hamiltonian given by the third term of (3.2),

H =
1

2

∫
∂D

〈
aσ,E(aσ)

〉
dσ. (3.4)

3.3 Chern-Simons on a hollow cylinder as a Hamiltonian system

Let D∗ be an annulus (obtained from the disk D by removing a smaller disk), and let let

us consider Chern-Simons action for Y ∗ = D∗× I. On the outer cylinder Σout = S1× I we

impose the same boundary condition ∗(A|Σout) = E(A|Σout) as before, while on the inner

cylinder Σinn we impose the condition

A|Σinn ∈ Ω1(Σinn, h),

or more generally (as discussed in section 2.3), we choose a reduction of P over Σinn to a

principal H-bundle, and consider only compatible connections on P .

We then get

S(A) =

∫
I

(∫
D∗
〈aτ , FÃ〉+

1

2

∫
D∗

〈∂Ã
∂τ

, Ã
〉
− 1

2

∫
S1

〈
aσ,E(aσ)

〉
dσ

)
dτ.

We thus still have a Hamiltonian system, but with a slightly larger phase space MG,H

defined as follows: MG,H is the moduli space of flat g-connection on the annulus D∗, which

restrict to a h-valued 1-form on the inner boundary circle, modulo gauge transformations

vanishing on the outer circle and taking values in H ⊂ G on the inner circle.

As we shall see,MG,H can be interpreted as the cotangent bundle of the free loop space

L(G/H) (twisted by a closed 3-form on G/H), and the Hamiltonian system is equivalent

to a σ-model with the target G/H.

Notice thatMG(D, ∂D) is obtained fromMG,H by symplectic reduction: if we restrict

the holonomy along the inner circle to be trivial, which gives a coisotropic submanifold in

MG,H , and we mod out by its null leaves, we obtain MG(D, ∂D).

The Hamiltonian system on MG(D, ∂D) (Chern-Simons on the full cylinder), is

duality-invariant (i.e. H-independent) part of the Hamiltonian system on MG,H , corre-

sponding to the non-Abelian momentum constraint.

– 8 –
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4 The Hamiltonian system as a σ-model

In this section we shall show that the Hamiltonian system on MG,H with the Hamiltonian

H (i.e. Chern-Simons theory on a hollow cylinder with the boundary conditions described

in section 3.3) is equivalent to a 2-dimensional σ-model with the target space G/H. A

conceptual explanation uses Courant σ-models and reduction of Courant algebroids; we

postpone it to section 6, where we also deal with spectator coordinates.

4.1 G/H as the target of a 2-dimensional σ-model

Let us choose an auxiliary connection A ∈ Ω1(G, h) on the principal H-bundle G→ G/H.

The H-invariant closed 3-form

ηA := η +
1

2
d〈A, g−1dg〉 (4.1)

is basic, i.e. it is the pullback of a closed 3-form from G/H, which we will also denote

by ηA.

Let us suppose that the horizontal spaces of the connection A are Lagrangian w.r.t. the

inner product 〈, 〉; we shall say that such a connection is Lagrangian. (There is a canonical

choice for a Lagrangian connection: we extend the inner product (u, v)E := 〈u,Ev〉 on g

to a right-invariant Riemann metric on G, and let A be the connection whose horizontal

spaces are (, )E-perpendicular to the vertical spaces.)

The Lagrangian connection A can now be used to identify the bundle TG with p∗
(
(T⊕

T ∗)(G/H)
)
, where p : G → G/H is the projection: the horizontal subbundle of TG is

identified with T (G/H) and the vertical with T ∗(G/H) (via 〈, 〉). The subbundle (E+)R ⊂
TG (the right-translated E+) thus becomes the graph of a bilinear form

EA ∈ Γ
(
(T ∗)⊗2(G/H)

)
.

The symmetric part of the tensor field EA is a Riemann metric. If A,A′ are two

Lagrangian connections then, as an easy calculation shows,

EA′ = EA −B, ηA′ = ηA + dB

for some 2-form B. (EA is symmetric iff A is the canonical Lagrangian connection.)

We can use EA and ηA to define a σ-model with the target G/H, with the standard

action functional (for f : Y → G/H, where Y is a solid cylinder with the boundary Σ)

S(f) =

∫
Σ
EA(∂+f, ∂−f) +

∫
Y
f∗ηA (4.2)

where df = ∂+f + ∂−f is the splitting of df to the (1, 0) and the (0, 1)-components.

4.2 The Hamiltonian system is the σ-model with target G/H

Let us now explain why the Hamiltonian system on MG,H is, in fact, the σ-model with

the target space G/H, given by the tensor field EA and by the closed 3-form ηA. First of

all, we need to identify the phase space MG,H with T ∗L(G/H).

– 9 –
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The moduli space MG,H can be naturally identified with the space of quasi-periodic

maps

g : R→ G such that g(x+ 2π) = g(x)h for some h ∈ H

modulo right multiplication by elements of H. Indeed, for any [A] ∈ MG,H (where A ∈
Ω1(D∗, g) is a flat connection) we choose a map g : D̃∗ → G such that A = −dg g−1

(where D̃∗ is the universal cover of the annulus D∗) and such that g takes values in H on

(the cover of) the inner circle of D∗; restricting g to the cover of the outer circle we get a

quasi-periodic map as needed.

We can now identify MG,H with T ∗(L(G/H)): g project to a map f : S1 → G/H, i.e.

to an element of L(G/H), and the vertical part (w.r.t. A) of dg is a f∗(T ∗(G/H))-valued

1-form on S1, i.e. gives us a covector at f ∈ L(G/H).

A straightforward calculation now shows that the identification

MG,H
∼= T ∗(L(G/H))

is a symplectomorphism provided we add to the standard symplectic form on T ∗(L(G/H))

the closed 2-form on L(G/H) obtained from −ηA by integration over S1 (i.e. we twist the

cotangent bundle) and that the Hamiltonian H coincides with the Hamiltonian of the σ-

model (4.2). In place of doing these calculations here we present a conceptual explanation

in section 6.4.

5 Courant algebroids and dg symplectic manifolds

In this section we summarize some basic definitions and facts concerning Courant

algebroids.

5.1 Exact Courant algebroids

Courant algebroids, introduced in [10], are a generalization of Lie algebras with invariant

inner product. By definition, a Courant algebroid (CA) is a vector bundle V →M endowed

with an inner product 〈 , 〉V on its fibres, with a vector bundle map aV : V → TM called the

anchor, and with a bilinear map [ , ]V : Γ(V )×Γ(V )→ Γ(V ) such that for all u, v, w ∈ Γ(V )

and f ∈ C∞(M)

[u, [v, w]V ]V = [[u, v]V , w]V + [v, [u,w]V ]V

aV
(
[u, v]V

)
= [aV (u), aV (v)]

[u, fv]V = f [u, v]V + (aV (u)f)v

a(u)〈v, w〉V = 〈[u, v]V , w〉V + 〈v, [u,w]V 〉V
[u, u]V = atV

(
d〈u, u〉V /2

)
where atV : T ∗M → E∗

〈,〉V−−→ E is the transpose of aV .

A CA is exact if the sequence

0→ T ∗M
atV−−→ V

aV−−→ TM → 0 (5.1)
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is exact. As shown in [16], exact CAs are classified by H3(M,R): if we split the exact

sequence (5.1) so that TM ⊂ TM⊕T ∗M ∼= V is 〈 , 〉V -isotropic then the 3-form η ∈ Ω3(M)

given by

η(u, v, w) := 〈[u, v]V , w〉V ∀u, v, w ∈ Γ(TM) ⊂ Γ(V )

is closed and its cohomology class is independent of the splitting. The Courant bracket

[, ]V on V ∼= TM ⊕ T ∗M is

[(u, α), (v, β)]V =
(
[u, v], Luβ − ivα+ η(u, v, ·)

)
∀u, v ∈ Γ(TM), α, β ∈ Γ(T ∗M).

5.2 CAs and dg symplectic manifolds

Courant algebroids are equivalent to non-negatively graded manifolds with a symplectic

form of degree 2 and with a function Θ of degree 3 satisfying the classical master equation

{Θ,Θ} = 0 [13, 17]. Namely, if V is such a graded manifold then the vector bundle V →M

is given by Γ(V ) = C∞(V)1, C∞(M) = C∞(V)0, with the Courant algebroid structure

[u, v]V = {{Θ, u}, v}
〈u, v〉V = {u, v}
aV (u)f = {{Θ, u}, f}

In local coordinates xi, deg xi = 0, ea, deg ea = 1, pi, deg pi = 2, such that the symplectic

form on V is

ω = dpi dx
i + gab de

a deb (5.2)

for some constant symmetric matrix gab, we have

Θ = aia(x)pie
a − 1

6
c(x)abce

aebec (5.3)

where aV (ea) = aia∂/∂x
i and cabc = 〈[ea, eb]V , ec〉 (here ea = gabe

b).

In particular, if V → M is an exact Courant algebroid, the corresponding V is

T ∗[2]T [1]M , with Θ = d + η (where the de Rham differential d, which is a vector field

on T [1]M , is seen as a function on T ∗[2]T [1]M). In local coordinates xi, ξi = dxi, πi, pi,

we have ω = dpi dx
i + dπi dξ

i and Θ = piξ
i − 1

6ηijk(x)ξiξjξk.

5.3 Equivariant CAs and reduction

If g is a Lie algebra with a (possibly degenerate) invariant symmetric bilinear pairing 〈, 〉g, a

(g, 〈, 〉g)-equivariant CA is a CA V →M together with a linear map ρ : g→ Γ(V ) satisfying

[ρ(u), ρ(v)]V = ρ([u, v]), 〈ρ(u), ρ(v)〉V = 〈u, v〉g.

The derivations [ρ(u), ·]V give in this case an action of g on V . If this action integrates

to an action of a connected group G with the Lie algebra g, we shall say that V is

(G, 〈, 〉g)-equivariant.

Equivariant exact CAs can be classified in the case of free and proper actions [16].

Suppose that G, a connected Lie group with Lie algebra g, acts freely and properly on P ,
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i.e. that P → P/G is a principal G-bundle. Let us choose a connection A on this principal

G-bundle and let FA be its curvature. Then there is a bijection between isomorphism

classes of G-equivariant exact CAs V → P and solutions of

dα =
1

2
〈FA, FA〉g, α ∈ Ω3(M/G) (5.4)

modulo exact 3-forms on P/G. In particular, V → P exists iff the Pontryagin class

[〈FA, FA〉] ∈ H4(P/G,R) vanishes. Explicitly, if α is a solution of (5.4) then V = (T⊕T ∗)P
with the closed 3-form

η = α−
(

1

2
〈A, dA〉g +

1

6
〈A, [A,A]〉g

)
and with

ρ(u) =

(
uP ,

1

2
〈u,A〉g

)
is the corresponding equivariant exact CA over P .

Equivariant CAs can be reduced in the following way [2, 16]. If V → P is a G-

equivariant CA as above, let

(V/G)x := (ρx(g))⊥/ρx(g′) (∀x ∈ P )

where g′ ⊂ g is the kernel of 〈, 〉g. After taking quotient by G, V/G becomes a vector bundle

V/G → P/G, and the CA structure on V → P descends to a CA structure on V/G → P/G.

If V is exact and 〈, 〉g = 0 then V/G is also exact; for general 〈, 〉g the CA V/G is only

transitive (i.e. its anchor map is surjective).

The reduction of CAs can be seen as a symplectic reduction [17]. The cone Cg of g

(Cg is the differential graded Lie algebra Cg = g[ε] with deg ε = −1 (and thus ε2 = 0) and

dε = 1) has a central extension

0→ R[2]→ C̃g→ Cg→ 0

given by

[uε, vε] = 〈u, v〉g s

where s = 1 ∈ R[2] is the generator of the center, and ds = 0. A CA V → P is g-

equivariant iff the corresponding dg symplectic manifold V is equipped with a dg Poisson

(i.e. moment) map

µ : V → (C̃g)∗[2]

such that 〈µ, s〉 = 1. The reduction of V is then equivalent to the symplectic reduction of

V at the moment value (1, 0) ∈ R[2]⊕ (Cg)∗[2] = (C̃g)∗[2].

6 Spectator coordinates and Courant σ-models

In this section we shall see how replacing Chern-Simons with more general Courant σ-

models we can get Poisson-Lie T-duality with spectator coordinates, and how it gives a

more conceptual explanation of what we did above. A central role is played by a link

between exact Courant algebroids and 2-dimensional σ-models.
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6.1 AKSZ and Courant σ-models

Let us briefly recall the AKSZ models introduced in [1]. Suppose that V is a graded

manifold with a symplectic form ω of degree n > 0 and that Θ is a function on V of degree

n+1 such that {Θ,Θ} = 0; in particular Q := {Θ, ·} is a homological vector field on V. Let

θ :=
1

n
iεω

where ε is the Euler vector field given by εf = (deg f)f for any homogeneous function f

on V. Since Lε ω = nω, we have dθ = ω.

For any oriented compact n + 1-manifold Y and any map F : T [1]Y → V the AKSZ

action functional is

S(F ) =

∫
T [1]Y

id(F
∗θ)− F ∗Θ

(where d is the de Rham differential on Y , seen as a vector field on T [1]Y ; the integral over

T [1]Y is the usual integral of differential forms over Y ). The stationary points of S are

the differential graded maps T [1]Y → V. (While the main idea of [1] is BV quantization of

this theory, we shall simply consider the action functional S for grading-preserving maps

F , just as we did for Chern-Simons theory.)

Let us now restrict to the case of n = 2, and suppose that V is non-negatively graded.

In this case V is equivalent to a Courant algebroid V → M ; the corresponding AKSZ

model is called the (V -)Courant σ-model [7, 14]. In the local Darboux coordinates xi, ea, pi
satisfying (5.2) we have

θ = pi dx
i +

1

2
gab e

a deb.

The AKSZ action functional is thus (using the expression (5.3) for Θ)

S =

∫
Y
pi dx

i +
1

2
gab e

a deb − aia(x)pie
a +

1

6
c(x)abce

aebec (6.1)

where the fields are xi ∈ Ω0(Y ), ea ∈ Ω1(Y ), pi ∈ Ω2(Y ) (dimY = 3).

Chern-Simons theory is a special case of the Courant σ-model, namely when V = g

(or equivalently, when there are no xi’s and pi’s, only ea’s).

6.2 Boundary conditions for the Courant σ-models

The variantion of the action functional (6.1) is

δS =

∫
∂Y

(
pi δx

i − gab ea δeb
)

+

∫
Y

(
δpi
(
dxi −Qxi

)
+ gab δe

a
(
deb −Qeb

)
− δxi

(
dpi −Qpi

))
.

The boundary term of δS is a 1-form θ∂Y on the space of graded maps T [1]∂Y → V, and

ω∂Y := δθ∂Y is a symplectic form on this space.

As in section 2 we now impose a boundary condition given by a Lagrangian submanifold

on which θ∂Y vanishes (or, at least, is exact). Namely, if we choose, as in section 2.2, a
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generalized metric on V , i.e. a linear transformation E : V → V of the vector bundle

V →M satisfying

E2 = 1, 〈Eu,Ev〉 = 〈u, v〉, TrE = 0, 〈u,Eu〉 > 0 (∀0 6= u ∈ Γ(V )),

then the boundary condition (where ∗ is the Hodge star given by a pseudo-Riemannian

metric on ∂Σ)

∗ ea = Eab e
b, pi =

1

2
ea gab

∂Ebc
∂xi

ec (6.2)

satisfies our requirements. (We wrote the boundary condition using coordinates on V, but

notice that the condition on pi’s is forced by the condition on ea’s and by vanishing of θ∂Y ,

which are coordinate-independent.)

As in section 3 we can reinterpret the Courant σ-model on a solid cylinder Y with

the boundary conditions (6.2) as a Hamiltonian system. Namely, if we split the forms ea

and pi to their horizontal and vertical parts (for any form β on Y = D × I we have β =

βhor + dτ βvert where βvert, βhor are τ -dependent forms on D) then (ea)vert and (pi)vert are

Lagrange multipliers forcing (xi, (ea)hor, (pi)hor) to be a (t-dependent) dg map T [1]D → V.

The Hamiltonian (which appears as the boundary term after integration by parts) is

H =
1

2

∫
S1

gab(e
a)σ(eb)σ dσ

where (ea)σ dσ = ea|S1 , and the phase space is the space of all dg maps T [1]D → V modulo

homotopy relative to the boundary (where by homotopy we mean a dg map T [1](D ×
I) → V), with the symplectic form ωD. We shall denote this phase space by MV(D, ∂D)

or MV (D, ∂D).

6.3 Exact Courant algebroids and 2-dimensional σ-models

In the case of exact Courant algebroids the action (6.1) becomes after integration by parts

S =

∫
Y

(
pi(dx

i − ξi) + πi dξ
i +

1

6
ηijk(x)ξiξjξk

)
+

1

2

∫
Σ
πiξ

i.

In the bulk integral pi and πi are Lagrange multipliers imposing ξi = dxi and dξi = 0. We

thus have a map f : Y →M (with components xi) and the bulk integral is
∫
Y f
∗η.

The generalized metric E : V → V is (in our case of V = (T ⊕ T ∗)M) equivalent to

a linear map E : TM → T ∗M (with positive-definite symmetric part) whose graph is the

+1-eigenbundle of E. The boundary condition (6.2) is

(πi)+ = Eij(ξ
i)+

(πi)− = −Eji(ξi)−

(we don’t write the boundary condition for pi, as it is not needed). The boundary part of

S is therefore
∫

ΣEij(ξ
i)+ (ξj)−. Using the constraint ξi = dxi we thus get

S =

∫
Σ
E(∂+f, ∂−f) +

∫
Y
f∗η (6.3)
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which is the standard σ-model action with the target M given by the tensor field E and

the closed 3-form η.

The Hamiltonian approach of section 6.2 gives in this case the Hamiltonian description

of the σ-model with the target M .

(We should stress that there is a global problem that we didn’t solve. The action (6.3),

or rather exp(iS), should be defined (in the appropriate sense) for maps Σ → M and not

require an extension of the map to Y ⊃ Σ. A proper treatment should use a global version

of AKSZ models, possibly as in [12].)

6.4 The σ-model with the target G/H revisited

We can now give a conceptual reason why the Chern-Simons theory on a hollow cylinder,

as studied in section 3.3, is equivalent to the σ-model with the target G/H, described

in section 4.1. The idea is to use an exact Courant algebroid VG/H → G/H and the

corresponding Courant σ-model, which, as we just saw, is equivalent to a 2-dimensional

σ-model with the target G/H.

We start with the exact CA VG → G which is (g,−〈, 〉g)-equivariant w.r.t. the action

of g on G by the left-invariant vector fields. As follows from section 5.3, the CA VG is

uniquely defined by the equivariance property and explicitly we have VG = (T ⊕T ∗)G with

the closed 3-form

η(u, v, w) =
1

2
〈[u, v], w〉g

and the action ρ(u) =
(
uL,−〈u, ·〉Lg

)
∈ Γ
(
(T ⊕ T ∗)G

)
(∀u ∈ g).

The reduced Courant algebroid VG/H := (VG)/H → G/H is again exact; its splitting

to (T ⊕ T ∗)(G/H) is equivalent to a choice of a Lagrangian connection A on the principal

H-bundle G→ G/H, as in section 4.1, and the corresponding closed 3-form on G/H is ηA
given by (4.1).

We can also describe VG/H as the trivial bundle VG/H = g × (G/H); the Courant

bracket on constant sections is the Lie bracket on g, the pairing is 〈, 〉g, and the anchor

map is the action of g on G/H. If we have a generalized metric E : g → g, it gives us a

generalized metric on VG/H = g× (G/H) (constant in G/H). By the result of section 6.3

the CA σ-model given by VG/H with the boundary condition given by E is equivalent to

the σ-model (4.2) with the target G/H.

Let us start with Chern-Simons for the full cylinder as in section 3.1. (In the end,

Chern-Simons on the hollow cylinder can be seen as an auxiliary construction: what it

really important is to understand the link between the VG/H -Courant σ-model and the

g-Chern-Simons theory on a solid cylinder, i.e. why the latter is obtained from the former

by the non-Abelian momentum constraint.)

The reduced Courant algebroid (VG)/G is (g, 〈, 〉g) and the corresponding dg symplectic

manifold is g[1]. This implies that g[1] can be obtained by symplectic reduction (i.e. by

taking a coisotropic dg submanifold and modding out by the null leaves of the restriction

of the symplectic form) from the dg symplectic manifold VG/H corresponding to the exact

CA VG/H → G/H (it can also be seen from the description of VG/H as g × G/H). As a

result, the phase space of the Chern-Simons theoryMg(D, ∂D) is obtained from the phase
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space of the Courant σ-model MVG/H
(D, ∂D) by symplectic reduction (by imposing the

non-Abelian momentum constraint and modding out the null leaves) and the Hamiltonian

descends from MVG/H
(D, ∂D) to Mg(D, ∂D).

When we consider the hollow cylinder Y ∗, we get an isomorphism in place of symplectic

reduction, provided we choose appropriate boundary conditions. The boundary condition

on the inner tube is, in the Chern-Simons case, given in section 3.3. For the VG/H -Courant

σ-model we need to choose a suitable Lagrangian dg submanifold L ⊂ VG/H and impose

the condition that the restriction of F : T [1]Y ∗ → VG/H to the inner tube Σinn ⊂ ∂Y ∗ is a

map T [1]Σinn → L. The Lagrangian submanifold L ⊂ VG/H is the one given by the Dirac

structure h× [1] ⊂ g× (G/H) = VG/H .

6.5 Poisson-Lie T-duality with spectator coordinates

Let P → P/G be a principal G-bundle and let VP → P be a (G,−〈, 〉g)-equivariant

exact CA. Recall from section 5.3 that VP exists iff the characteristic class [〈FA, FA〉g]
of P vanishes.

Let VP/G → P/G be the reduced CA VP/G := (VP )/G and for a closed Lagrangian

subgroup H ⊂ G let VP/H → P/H be the reduced CA (VP )/H ; notice that VP/H is exact

(VP/G is only transitive, i.e. its anchor is surjective).

We choose a generalized metric E on VP/G. By construction we have a natural iso-

morphism of vector bundles VP/H ∼= p∗VP/G where p : P/H → P/G is the projection; as

a result, E gives us a generalized metric on VP/H . Since VP/H is exact, we get a σ-model

with the target P/H which is equivalent to the VP/H -Courant σ-model on a solid cylinder

with the boundary condition given by E.

Let us choose another Lagrangian subgroup H ′ ⊂ G. Poisson-Lie T-duality is an

equivalence of the σ-models with the targets P/H and P/H ′, i.e. of the Courant σ-models

with the CAs VG/H and VG/H′ , and with the boundary condition given by E.

The equivalence is given simply by the VP/G-Courant σ-model with the boundary

condition given by E. Indeed, the phase space MVP/G
(D, ∂D) of the VP/G-Courant σ-

model is a reduction of bothMVP/H
(D, ∂D) and ofMVP/H′ (D, ∂D), and the Hamiltonians

match. Notice that we cannot say that we have an isomorphism of Hamiltonian systems;

we get an isomorphism only when after the reduction, i.e. only after we impose the non-

Abelian momentum constraint. (Let us remark that one can also introduce an inner tube

and impose a boundary condition given by a Dirac structure, as in section 3.3, to get

a closer link between the VP/G-Courant and the VP/H -Courant σ-models, but it’s not

necessarily useful).
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