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1 Introduction

Multiband superconductors have attracted much attention since the discovery of the first

two-band superconductor in MgB2 [1], and more recently the first iron-based supercon-

ductor [2]. Many novel features were discovered in MgB2, such as having a large critical

current, an anisotropy in the Fermi velocity, and an anomalous vortex dynamics [3], while

iron-based superconductors may give rise to a new class of high-temperature supercon-

ductors, given the similarity of their planar structures and their phase diagrams to the

cuprates [4–6].

Multiband superconductivity has been studied using Ginzburg-Landau (GL) theory

now generalized from having just a single superconductor condensate to having multiple

ones [7–10]. Interesting phenomena such as the formation of interband phase difference

soliton [11–13], fractional flux quanta [11–13], and possibly type-1.5 superconductivity [14–

17] in which vortex clusters can coexist with the Meissner domain are seen. Our goal in

this paper is to study multiband superconductivity beyond the regime of validity of the

GL theory, i.e. fields are not assumed to be small. In particular, we shall study vortices in

two-band superconductors that are strongly coupled.

The tool we use to study strongly-coupled/correlated systems is the AdS/CFT cor-

respondence [18, 19] or “holography”, which has proven to be very useful in a variety of

different areas, including QCD [20–24], heavy ion physics [25–30], and superconductiv-

ity [31–36]. In ref. [37], a holographic model of two-band superconductor was constructed.1

The model takes into account fully the back-reaction from the matter sector on the gravity

background, and emphasizes the effects of the interband Josephson coupling, which was

1Other examples of holographic model of multiband superconductor are given in refs. [38, 39].
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realized by a Josephson-like coupling between two bulk complex scalar fields. The trans-

port properties of the holographic model were studied, and were shown to have the same

qualitative features as seen in experiments.

In this paper, we continue the study of two-band superconductor initiated in ref. [37]

by two of the present authors. In particular, we shall look for vortex solutions as a response

to the magnetic field. It is known that the type of AdS-boundary conditions imposed on

the bulk U(1) gauge field determines the kind of vortices found: Dirichlet type give rises

to superfluid vortices, Neumann type to superconductor vortices [41, 42]. Here we shall

study both types. We shall also check whether the purported type-1.5 superconductivity

— which were seen in some studies, but not all — exists in our holographic model. A

quantitative indicator for a type-1.5 two-band superconductor is when the coherence lengths

for the two bands, ξ1 and ξ2, and the magnetic penetration length, λ, satisfy the relation

ξ1 <
√

2λ < ξ2 [14–17]. By extracting the coherence and penetration lengths from our

holographic model, we can test for type-1.5 superconductivity.

The paper is organized as follows. In section 2, we describe the set-up for finding

vortex solutions in the holographic model of two-band superconductor of ref. [37]. We

give the ansatz for the vortex solution and we specify the boundary conditions for both

superfluid and superconductor type vortices. In section 3, we study the vortex solutions

in detail, and we compute the coherence lengths for both types of vortices. In the case of

superconductor vortex, we compute also the magnetic penetration length as the magnetic

field is dynamical, showing that the holographic two-band superconductor is always type II.

We conclude in section 4 with a summary.

2 The holographic model

We consider the minimal holographic model of two-band superconductor in AdS4 given in

ref. [37]:

S =
1

2κ2

∫
d4x
√
−g
[
R+

6

L2
− 1

4
F 2−|∂ψ1−iqAψ1|2−|∂ψ2−iqAψ2|2−V (ψ1, ψ2)

]
,

(2.1)

V (ψ1, ψ2) = m2
1|ψ1|2 +m2

2|ψ2|2 + ε(ψ1ψ
∗
2 + ψ∗

1ψ2) + η|ψ1|2|ψ2|2, (2.2)

where ψ1,2 are complex scalar fields with masses m1,2 respectively, Aµ is the U(1) gauge

field with F = dA the field strength, and q is the U(1) charge of the complex scalar fields.2

In the potential V , ε denotes an interband Josephson coupling, and η a density-density

coupling.

To look for vortex solutions, it is more convenient to write the complex scalars as

ψ1 = ϕ1e
iθ1 and ψ2 = ϕ2e

iθ2 in terms of their moduli ϕ1,2 and phases θ1,2. The action then

2Given the form of the interactions (the quadratic ones in particular) in our action, gauge invariance

requires the scalars to have the same charge.
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becomes

S =
1

2κ2

∫
d4x
√
−g
[
R+

6

L2
− 1

4
F 2

−(∂ϕ1)2−ϕ2
1(∂µθ1−qAµ)2−(∂ϕ2)2−ϕ2

2(∂µθ2−qAµ)2−V (ϕ1, ϕ2)

]
,

(2.3)

with

V (ϕ1, ϕ2) = m2
1ϕ

2
1 +m2

2ϕ
2
2 + 2εϕ1ϕ2 cos(θ1 − θ2) + ηϕ2

1ϕ
2
2 . (2.4)

We shall work in the probe limit, where the matter sector does not cause backreaction on

the background metric. We take the background to be an AdS-Schwarzchild black hole,

whose metric is given by

ds2 =
1

z2

(
− f(z)dt2 +

dz2

f(z)
+ dρ2 + ρ2dφ2

)
, f(r) = 1−

(
z

zh

)3

, (2.5)

where zh is the location of horizon. For convenience, we have used polar coordinates (ρ, φ)

for the two-dimensional (2D) plane in the spatial field theory directions.

2.1 The vortex solution

A consistent ansatz respecting the global U(1) symmetry and rotational symmetry on the

2D plane is given by

ϕi = ϕi(ρ, z) , θi = niφ , i = 1, 2 , (2.6)

At = At(ρ, z) , Aφ = Aφ(ρ, z) , Az = Aρ = 0 . (2.7)

The winding or “vortex” number ni ∈ Z distinguishes between different topological solu-

tions.

With the above ansatz, the equations of motion obtained from the action given in

eq. (2.3) are

0 = f∂2
zAt +

∂ρAt
ρ

+ ∂2
ρAt −

2q2At
z2

(ϕ1
2 + ϕ2

2) , (2.8)

0 = ∂zf∂zAφ + f∂2
zAφ −

∂ρAφ
ρ

+ ∂2
ρAφ +

2q

z2
ϕ2

1(n1 − qAφ) +
2q

z2
ϕ2

2(n2 − qAφ) , (2.9)

0 = −ϕ1

ρ2
(qAφ − n1)2 +

q2At
2ϕ1

f
− m2

1ϕ1

z2
− εei(n2−n1)φϕ2

z2
− ηϕ1ϕ2

2

z2

+

(
∂zf −

2f

z

)
∂zϕ1 + f∂2

zϕ1 +
∂ρϕ1

ρ
+ ∂2

ρϕ1 , (2.10)

0 = −ϕ2

ρ2
(qAφ − n2)2 +

q2At
2ϕ2

f
− m2

2ϕ2

z2
− εei(n1−n2)φϕ1

z2
− ηϕ2ϕ1

2

z2

+

(
∂zf −

2f

z

)
∂zϕ2 + f∂2

zϕ2 +
∂ρϕ2

ρ
+ ∂2

ρϕ2 . (2.11)

– 3 –



J
H
E
P
0
5
(
2
0
1
6
)
0
1
1

Near the boundary z → 0, the fields have the following asymptotic behaviors:

ϕi(ρ, z)→ ϕ
(1)
i (ρ)z3−∆i + ϕ

(2)
i (ρ)z∆i , i = 1, 2 , (2.12)

Aµ(ρ, z)→ aµ(ρ) + Jµ(ρ)z , aµ = (µ, 0, 0, aφ) , Jµ = (−%, 0, 0, Jφ) . (2.13)

For the scalar fields, the AdS/CFT correspondence tells us to interpret ϕ
(1)
i and ϕ

(2)
i as

the source and condensate respectively of the dual operator Oi with dimension ∆i given

by ∆i(∆i − 3) = m2
i . For the gauge field, aµ is to be interpreted as the potential in the

dual CFT, while Jµ the conjugate current. In particular, µ is the chemical potential, while

% is the charge density.

On the boundary z = 0, we impose the source-free conditions ϕ
(1)
i ≡ 0 for the charged

scalars at a fixed chemical potential, µ, so that the breaking of the U(1) is spontaneous if

it happens. For the gauge field aφ, we impose either a Dirichlet or a Neumann boundary

condition at the boundary depending on whether in the boundary theory, the vortices arise

from a superfluid or a superconductor [40, 41]. For superfluid vortices we impose

Aφ|z=0 = aφ(ρ) =
1

2
ρ2B , (2.14)

where B = ∂ρaφ/ρ is a constant, and represents the external angular velocity of the super-

fluid system that is rotating,3 while for superconductor vortices we impose

∂zAφ|z=0 = Jφ(ρ) = 0 . (2.15)

These are the boundary conditions at z = 0 consistent with the AdS/CFT correspon-

dence. At the horizon z = zh, we require the fields to be regular; in particular, we require

At|z=zh = 0 as usual.

We will consider a finite system with radius R, which we take to be much larger than

the vortex radius. The boundary conditions at ρ = R for superfluid vortices are given by

∂ρϕ|ρ=R = 0 , ∂ρAt|ρ=R = 0 , Aφ|ρ=R =
1

2
BR2 . (2.16)

For superconductor vortices, the same boundary conditions apply except now Aφ|ρ=R = n.

Boundary conditions at ρ = 0 are the same for both superfluid and superconductor

vortices. For n 6= 0, they are

ϕ|ρ=0 = 0 , ∂ρAt|ρ=0 = 0 , Aφ|ρ=0 = 0 . (2.17)

For n = 0, the boundary condition on the scalar changes to ∂ρϕ|ρ=0 = 0.

In order to avoid the divergence in energy from multiple fractional magnetic flux [43],

we shall set n1 ≡ n2 = n ∈ Z henceforth.

3Note that with the Dirichlet boundary condition, eq. (2.14), we may alternatively interpret the boundary

theory as a superconductor in the limit where the gauge coupling is sent to zero while keeping constant

the B field, which is to be thought of as an external magnetic field frozen to some constant value. We

retain the superconductor notation here for this connection and also easy comparison with refs. [40, 41].

We emphasize and reiterate here that when viewing the boundary theory as a superfluid as we do in the

main text, B is not an applied magnetic field but an external angular velocity of the rotating superfluid

system.
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Figure 1. Order parameters 〈O1〉 (left panel) and 〈O2〉 (right panel) for the n = 1 vortex configu-

ration at B = 0.03125 and µ̄ = 6.2 at various Josephson couplings ε.

3 Superfluid/superconductor vortices

To find the vortex solutions, we numerically solve the equations of motion (EoMs) given

by eqs. (2.8), (2.9), (2.10), and (2.11), employing the pseudo-spectral Chebyshev method.

For the discretization, we use a Gauss-Lobatto grid, and we set 20 grid points for the bulk

z-direction, and 40 for the radial ρ-direction. After translating the EoMs as well as the

boundary conditions into a system of non-linear algebraic equations, which we set up as

a matrix equation using the Chebyshev differential matrices, we then solve by using the

Newton-Raphson method; the error tolerance is set at 10−6. Our numerics is implemented

using matlab.

In our numerical calculations, we work in units where L=1. We set q = 1, n1 = n2 = n,

m2
1 = −2, m2

2 = −5/4, and R = 8. We have checked that the solution obtained with R

extended up to 24 differ little with that obtained with R = 8, the fractional difference being

less than 10−4. We shall also set η = 0 since we will not consider the effects of the density

coupling here. Below we compute various properties of the superfluid vortices, varying the

parameters that include the Josephson coupling, ε, the constant external angular velocity of

the rotating superfluid, B, and the dimensionless ratio of chemical potential to temperature,

µ̄ ≡ µ/T .4

3.1 Superfluid vortex solutions at various Josephson couplings

We show in figure 1 order parameters of a superfluid, n = 1 single vortex solution for various

values of the Josephson coupling ε, with the external angular velocity set at B = 0.03125,

and µ̄ = 6.2. Note that when ε = 0, only the scalar ψ2 condenses but not ψ1, i.e. 〈O1〉 ≡ 0

while 〈O2〉 forms at a critical temperature given by µ̄c = 5.81. It is only when ε is nonzero

that ψ1 also condenses, and both condensates form at the same critical temperature [37].

So we see in figure 1, at ε = 0 only 〈O2〉 is non-vanishing. But once ε is turned on, both

condensates, 〈O1,2〉, became nontrivial at the same critical temperature, µ̄c = 5.81.

Here and below we work at µ̄ = 6.2, which translates to T = 0.937Tc. We have

obtained superfluid vortex solutions at other values of the temperature from just below Tc

4When varying µ̄, we may think of having µ fixed while varying T .
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Figure 2. Value of the order parameters at the system boundary, 〈O1〉ρ=R (left panel) and 〈O2〉ρ=R
(right panel), as functions of the Josephson coupling, ε, for the n = 1 vortex configuration at

B = 0.03125 and 0.1, and µ̄ = 6.2.

to T = 0.5Tc. We have checked that the features we show here and below persist at other

values of the temperature.

Figure 1 show the usual radial behavior of the order parameter: it is zero at ρ = 0, the

vortex core, and tends to a constant far away from the core. Note that while 〈O2〉 seem to

decrease monotonically as ε increases, 〈O1〉 does not behave monotonically at all. To better

demonstrate the dependence of the scalar condensates on ε, we plot in figure 2 the values

of the condensates at the system boundary 〈O1,2〉ρ=R as functions of ε. We have plotted

this ε dependence for two values of B, and we see that B has little effect qualitatively.

From figure 2, we see clearly that 〈O2〉ρ=R decreases monotonically as ε increases; the

rate of decrease is quite slow for ε . 0.1. In contrast, 〈O2〉ρ=R first increases as ε increases

from zero, turns at ε ≈ 0.26, and then decreases with increasing ε. Note that there is a

critical value, εc ≈ 0.5,5 above which both scalar condensates vanish and not only at ρ = R,

i.e. we can no longer find a superfluid solution for a Josephson coupling above εc, only the

normal state solution with both 〈O1,2〉 ≡ 0.

3.2 Free energy and the critical angular velocity Bc1

The free energy can be calculated holographically from the properly renormalized on-shell

action. For the holographical two-band model, the (bare) on-shell action is given by

Sos = − 1

4κ2

∫
d4x∂a

[√
−g(AbF

ab + ψ∗
1∂

aψ1 + ψ1∂
aψ∗

1 + ψ∗
2∂

aψ2 + ψ2∂
aψ∗

2)
]

+
iq

4κ2

∫
d4x
√
gAb

[
ψ∗

1(∂b − iqAb)ψ1 − ψ1(∂b + iqAb)ψ∗
1 + (ψ1 ↔ ψ2)

]
+

η

2κ2

∫
d4x
√
−g|ψ1|2|ψ2|2. (3.1)

Note that terms involving ε have been removed by the equations of motion.

5The precise value of εc does depend on B, albeit quite weakly, which is reduced as B increases. For

B = 0.03125, ε = 0.49, while for B = 0.1, ε = 0.48.
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Figure 3. (Left) Free energy of the normal state solution, and the superfluid, n = 0 and n = 1

vortex solutions as a function of temperature. The green line is the free energy for the normal

state solution, the red (blue dashed) line the n = 0 (n = 1) vortex solution. (Right) Free energy

difference of the n = 0 and n = 1 vortex solution to the normal state solution. In all cases, the

solutions are obtained at ε = 0.05 and B = 0.03125.

The first term in eq. (3.1) produces a surface integral. To remove the divergence coming

from it, we need to add the counterterm

Sct =
−1

2κ2

∫
d3x
√
−γ (ψ1ψ

∗
1) +

−1/2

2κ2

∫
d3x
√
−γ (ψ2ψ

∗
2) , (3.2)

where γ is a reduced metric on the boundary with
√
−γ = ρ/z3. Adding all the contribu-

tions together, we obtain the free energy from the finite, regularized on-shell action

F = −TSreg.

= −T (Sos + Sct)

=
−T
2κ2

∫
dtdφ

{∫
dρρ

(
%µ

2
+
BJφ

4

)∣∣∣∣
z=0

−
∫
dz
Aφ∂ρAφ

2ρ

∣∣∣∣
ρ=R

+

∫
dzdρ

ρ

z2

[
− q2A2

t (ϕ
2
1+ϕ2

2)

f
−
qAφ
ρ2

[
ϕ2

1(n1−qAφ) + ϕ2
2(n2−qAφ)

]
+
ηϕ2

1ϕ
2
2

z2

]}
.

(3.3)

Note that we have kept the density coupling, η, for completeness above. Since we do not

consider its effect here, it is set to zero below in our numerical calculations.

We show in figure 3 the temperature dependence of the free energy for the normal

state (non-superfluid) solution, and the superfluid, n = 0 and n = 1 vortex solutions at

ε = 0.05 and B = 0.03125. As already mentioned above, the critical temperature at which

the scalar condensate forms is given by µ̄c = 5.81.

From the left panel of figure 3, we see that below Tc when superfluid forms, the

superfluid solutions have lower free energy than the normal state solution, as expected of

the superfluid being thermodynamically favored below Tc. Next, to distinguish which is

thermodynamically favored, the n = 0 or the n = 1 vortex solution, we plot in the right

panel of figure 3 for each winding configuration the free energy difference between the

– 7 –
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Figure 4. (Left) Free energy of the normal state and superfluid vortex solutions as a function of

B. The green diamond, red square, and blue circle denote respectively the normal state, the n = 0

and n = 1 vortex solutions. (Right) Free energy difference of the n = 0 and n = 1 vortex solution

to the normal state solution. In all cases, the solutions are obtained at ε = 0.05 and T = 0.937Tc.

superfluid vortex solution and the normal statem solution

∆F = F (ϕi 6= 0)− F (ϕi = 0) , (3.4)

where F (ϕi = 0) (F (ϕi 6= 0)) denotes the free energy of the normal state (superfluid

vortex) solution with both scalars vanishing (condensing). We see that for B = 0.03125

and ε = 0.05, the n = 0 is preferred over the n = 1 vortex solution. Note that we

have displayed only the region close to Tc so that the two solution curves can be clearly

distinguished.

We show in figure 4 the B dependence of the free energy of the normal state and

the superfluid vortex solutions at ε = 0.05 and T = 0.937Tc. We see that there is a

critical value, Bc1 = 0.09, where the free energy for both the n = 1 and the n = 0

configurations coincide, and so marks the beginning for which the n = 1 vortex solution

becomes thermodynamically favored over the n = 0 one.

We show in figure 5 the dependence of the free energy of the normal state and the

superfluid vortex solutions on the Josephson coupling for both B < Bc1 and B > Bc1 at

T = 0.937Tc. We see that for the range of ε shown, when B < Bc1, the n = 0 solution is

favored over the n = 1 one, and so has the lower free energy and thus larger |∆F |, while

when B < Bc1, the reverse is true. Next, we see that when ε approaches εc(B) ≈ 0.5 for

the values of B used here, the free energy of both the n = 0 and n = 1 vortex solutions

approach that of the normal state solution. This reflects the fact that above εc(B) no

superfluid solution can be found in our numerics, only the normal state solution. This

feature was already seen in figure 2.

3.3 Superfluid density and coherence lengths

By the AdS/CFT correspondence, the superfluid density, ns, can be obtained from the

conjugate current, Jφ, as [40]

ns =
Jφ

n− aφ
, (3.5)
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the solutions are obtained at T = 0.937Tc.
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Figure 6. Superfluid density ns and current Jφ for the n = 1 vortex configuration with B = 0

(solid lines) and B = 0.03125 (dashed lines) at T = 0.937Tc and ε = 0.05.

where aφ = 1
2ρ

2B with B the external angular velocity. Note that the denominator n− aφ
is the gauge-invariant superfluid velocity along the angular direction, vφ = (∇ arg[ψi])φ −
aφ [44].

We show in figure 6 the profile of ns and Jφ in the radial ρ-direction for the n = 1

configuration at B = 0 and 0.03125. For ns, we see that external rotation has a little

effect on the superfluid density. But for Jφ, when there is external rotation (B 6= 0), after
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Figure 7. Dependence of the coherence lengths on ε at T = 0.937Tc (left panel) and temperature

at ε = 0.05 (right panel) for the n = 1 vortex configuration with B = 0.03125. On the right panel,

the dashed green line is a fit to the temperature dependence.

rising from zero at the vortex core, instead of approaching a nonzero, finite constant far

away from the core, Jφ drops back to zero at some distance from the core. This reflects

the fact that ns stays finite and nonzero whether there is external rotation or not, but the

superfluid angular velocity vφ = n− aφ = n− 1
2ρ

2B will become zero at some ρ > 0 when

there is external rotation.

For a two-band superfluid, we expect there to be two condensates circulating around

the vortex core, and thus two coherence lengths, ξi, corresponding to each condensate. The

coherence length can be extracted from the condensate itself [45]:

〈Oi(ρ)〉 = Oi(∞) tanh

(
ρ√
2ξi

)
, (3.6)

where Oi(∞) denotes the asymptotic value of the condensate. In figure 7, we show the

dependence of the coherence lengths on ε and the temperature for the n = 1 vortex con-

figuration. We see that coherence lengths increases as both ε and temperature increases,

and as T approaches Tc, the coherence length diverges as it should. We see also that the

two coherence lengths are very close to each other throughout the range of ε we looked at,

whether for small ε� 0.1 or for ε close to εc. We have checked that these features persist

for other values of B, both above and below Bc1.

In figure 7, close to Tc the coherence lengths have the form ξi(T ) = 0.2604(1 −
T/Tc)

−1/2, which is the expected temperature dependence from the GL theory. Another

feature we see immediately is that the two coherence lengths differ very little from each

other (barring numerical errors). Close to Tc, this is expected from the GL theory. But it is

surprising to find that this behavior persists down to low temperatures. A possible reason

for this may be that the Josephson coupling is locking the growth and the saturation of

the condensates together. We will investigate the mechanism behind this in future works.

3.4 Superconductor vortex

We consider now superconductor vortices. In this case, the external magnetic field B is

dynamical, and we can thus see the screening of B.
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Coherence lengths, ξi, of the superconductor vortex as a function of the Josephson coupling, ε.
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Figure 9. Profile of the magnetic field B at T = 0.937Tc and ε = 0.05. The dashed line marks the

penetration depth λ.

We show in the left panel of figure 8 the profile of the superconducting order parameters

(scaled to have unit mass dimension) inside the superconductor for the n = 1 configuration

at T = 0.937Tc and ε = 0.05. The coherence lengths, ξi, can be extracted as in the

superfluid case using the form given in eq. (3.6), and we show in the right panel of figure 8

their dependence on ε. We see that the two superconductor coherence lengths stay very

close to each other throughout the range of ε we looked at.

We show in figure 9 the profile of the magnetic field B inside the superconductor

for the n = 1 configuration at T = 0.937Tc and ε = 0.05. The magnetic penetration

length can be extracted from B = be−ρ/λ. At T = 0.937Tc and ε = 0.05, we obtain

ξ1 = 1.02106, ξ2 = 1.01662, and λ = 2.06235. Calculating the GL parameters, κi = λ/ξi,

we get κ1 = 2.01981 and κ2 = 2.02862, which are within 0.4% to each other. Note that

κ1,2 > 1/
√

2, which indicates that we have a type II superconductor.

We show in figure 10 the temperature dependence of ξi and λ. Near Tc, we have

good fits from ξ(T ) = 0.2495/
√

1− T/Tc and λ(T ) = 0.4820/
√

1− T/Tc. We see that

there are very little difference between ξ1 and ξ2 down to T ∼ 0.5Tc. Computing the GL
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parameter κi for temperature range considered here, we find κ1,2 > 1/
√

2 over the entire

range, indicating a type II superconductor down to T ∼ 0.5Tc.

4 Summary and outlook

In this paper, we have studied the magnetic response of a holographic two-band supercon-

ductor that has an interband Josephson coupling between the two bulk complex scalars.

We have constructed the single vortex solution and study the effects of the Josephson cou-

pling. By imposing appropriate boundary conditions, we can consider both superfluid and

superconductor vortices. For superfluid vortices, we find one condensate, 〈O2〉, is insensi-

tive to the Josephson coupling when it is below 0.1. By comparing the free energy of n = 0

and n = 1 vortex configurations, we have estimated the first critical magnetic field. We

have also extracted coherence lengths from the condensates for both the superfluid and su-

perconductor cases, as well as the magnetic penetration length in the superconductor case

where the magnetic field is dynamical, and we can see explicit screening. Near the critical

temperature, we have checked that the temperature dependence of the coherence lengths

are consistent with GL theory. Surprisingly, for both the superfluid and superconductor

vortices we find there is effective only one coherence length in the range of parameters we

consider, leading to the virtually the same GL parameter for both bands. Furthermore,

the GL parameters are all greater than 1/
√

2 for the whole temperature range that our

numerics is reliable, indicating that our holographic two-band superconductor is type II,

and the absence of type-1.5 superconductivity.

The paper is a first step in the study of vortex dynamics in strongly-coupled/correlated

multiband superconductors employing holography. There are many interesting future di-

rections to take. An immediate one is to scan over a larger parameter space with different

bulk scalar masses. Another would be to go beyond the static case studied here and

construct dynamical vortex solutions. This would allow us to study interactions between

vortices at different distances, and would allow a direct check on the dynamical mechanism

of the purported type-1.5 superconductivity. It would also be very useful to generalize to a
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three-band model. There one can study the existence of chiral and time-reversal symmetry

breaking state, interband phase difference induced domain walls, fractional quantum flux

vortices [46–48] and frustrated superconductors [49]. Lastly, it would be interesting to

clarify issues surrounding hidden criticality [50] using a holographic model of multiband

superconductivity.
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