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1 Introduction

Finding and understanding the infra-red structure of holographic RG flows of N =4 Yang-

Mills theory and of ABJM theory [1] remains an immensely rich but rather challenging

subject that still has the capacity to surprise. In this context, gauged N =8 supergravity

in four and five-dimensions has proven to be a very powerful tool that continues to be

extremely useful and yield interesting new results.

The catalog of physically interesting holographic solutions and flows that have been

explicitly constructed in gauged supergravity is a very long one, whose early examples

included the flows to highly non-trivial N = 1 supersymmetric “Leigh-Strassler” fixed

points [2–6] and its ABJM analog ([7–9] and [10–15]), through examples of N =2 Seiberg-

Witten flows [16–18], to maximally supersymmetric flows [19–21]. There are many more

examples, perhaps the most recent of which is the supersymmetric flow that we studied

in [22], where the large-N theory on a stack of M2 branes flows to a new, “nearly conformal”

supersymmetric theory in (3 + 1) dimensions. One of our purposes here is to discuss these

new families of flows and related Janus solutions in some detail. Another purpose of this

paper is to highlight and explain some of the new techniques that were used in [22].

As has been noted in many places (see, for example, [22–26]), finding a holographic

flow solution in lower dimensions, perhaps in some consistent truncation, does not often

give direct insight into the underlying physics. More specifically, a holographic flow in

the lower-dimensional theory may be singular and fields may flow to infinite values. It is

only when these solutions are uplifted to M theory or IIB supergravity that one can give

a proper interpretation of the singular behavior in terms of a distribution of branes and

fluxes. In this way, singular low-dimensional solutions may actually encode very interesting

physics in higher dimensions.

This, of course, raises the obvious question as to why one does not simply start in

the higher-dimensional theory from the outset. The answer is straightforward: the lower-

dimensional theory encodes fields much more simply and computably; complicated fluxes

and metric deformations on internal manifolds become scalars described in terms of a

potential. The supersymmetries may also involve these internal fluxes and geometry in

non-trivial ways. The practical algorithms for solving supersymmetry variations directly

in higher-dimensions therefore typically require the imposition of a high level of symmetry

and supersymmetry. The power of using the low-dimensional theory and its potential

structure is that one can handle solutions that have much lower levels of symmetry and

supersymmetry. As will become evident, finding the solutions that we construct here

directly in M theory is a truly daunting task, even when one knows exactly where to look.

The price of working in lower-dimensional gauged supergravity is that it describes

a very restricted family of deformations. On the other hand they are some of the most

interesting deformations since they are dual to marginal and relevant operators. What

is surprising is that even after fifteen years since the first holographic flows in gauged

supergravity [3, 27, 28], there are still interesting new physical flows to be found (like

the one in [22]) and new Janus solutions that can be constructed explicitly in gauged

supergravity (like those in [29]).
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Since gauged supergravity continues to give us new very interesting, physical solutions,

while their interpretation usually requires the “uplift” to M theory or IIB supergravity, it

becomes ever more important to understand and develop the precise relationships between

the gauged supergravity in low dimensions and the higher-dimensional supergravities. In

particular, one wants to develop explicit uplift formulae that provide the exact M theory or

IIB solution in terms of the gauged supergravity fields. There is also a vast literature on this

subject and there has also been some remarkable progress on this in the last two or three

years. For simplicity, we will only give a very brief review here and restrict our attention

entirely to M theory and its relation to gauged N =8 supergravity in four dimensions.

Gauged N =8 supergravity in four dimensions was first constructed in [30] and there

was a great deal of subsequent work that argued how this must be related to the S7-

compactification of M theory. (For a review, see [31].) There was extensive discussion

as to whether gauged supergravity was a consistent truncation or merely a low-energy

effective field theory. The former is a much stronger statement in that it means that

solving the equations of motion in gauged supergravity guarantees that one has also solved

the equations of motion of the higher dimensional theory. Over the years it has become

evident that the gauged theory is indeed a consistent truncation and formulae have emerged

showing precisely how gauged supergravity encodes solutions to M theory.

One of the first general formula was given in [32] where it was shown how to compute

the exact deformed metric on the S7 in terms of all the supergravity scalars. This knowledge

alone was immensely useful in finding uplifted solutions explicitly, see for example [8, 13,

14]. Exact formulae for fluxes proved to be a much greater challenge. Indeed, the formulae

for the components of the 4-form field strength obtained as part of the original proof

of consistent truncation of M theory on S7 in [33, 34] were prohibitively difficult to use

and also suffered from an ambiguity that would lead to some components having a wrong

symmetry [35]. It is only recently that a new set of considerably more workable uplift

Ansätze for the internal 3-form potential have been proposed and then extended to the other

components of the flux [38–41]. However, explicit tests of those new formulae [37, 39, 42]

were confined to uplifts of the simplest solutions of four-dimensional N = 8 supergravity,

namely the AdS4 solutions for the stationary points of the potential. Hence, it is important

to perform non-trivial tests for solutions with varying scalar fields, such as holographic

flows.

In looking at the holographic flows described in this paper and in [22], we first tried to

find the uplift based entirely on knowing the internal metric through the formula of [32].

This turned out to be impossible and the flux uplift formula became an essential part

of constructing the flow solution. Moreover, the Janus solutions are intrinsically even

more complicated and we certainly could not have constructed them without knowing

how to uplift the fluxes. We find that the new formula to uplift the fluxes [36–41] do

indeed generate the exact solution. The only down-side is that they involve some heavy

computations to arrive at a relatively simple result.

While our focus in this paper will be mainly on the details of how to construct the

uplifts, one should not lose sight of the interesting physics of the solutions that we construct.

As we described in [22], our flow solutions start from a UV fixed point of M2 branes that,
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under a relevant perturbation, go to solutions sourced largely, or even entirely by M5 branes

in the IR. Unlike many flows to the IR, these flows, when uplifted, have only mild orbifold

singularities. Moreover, there is a special class of flows that go to pure M5 branes and

can be interpreted as describing an “almost conformal” fixed point in (3 + 1) dimensions.

This was the focus of our earlier paper [22]. In this paper we will also look at Janus

solutions that delve into the backgrounds described by the flows and so may be interpreted

as describing interfaces between phases described by the holographic IR flows.

To date, much of the discussion of Janus solutions has been done directly in IIB

supergravity [43–46] (see, however, [47, 48]) or M theory [49–53]. As we remarked above,

such direct constructions usually require a high level of symmetry, or supersymmetry to

make the computations feasible. In particular, until [29], there were very few 1
4 -BPS (and

no 1
8 -BPS) Janus solutions in M theory known. These new Janus solutions were obtained

in gauged supergravity and so we want to take one of the most non-trivial families of such

flows and uplift to M theory so as to reveal the underlying geometric structure.

In section 2 we describe sector of gauged N =8 supergravity upon which we will focus

and describe the BPS flow and Janus solutions from the four-dimensional perspective.

In section 3 we give the details of how this sector of gauged supergravity uplifts to M

theory, while in section 4 we show how this uplifted solution solves the equations of motion

in M theory. The supersymmetry structure of the solutions is studied from the eleven-

dimensional perspective in section 5. In section 6 we return to studying the IR limits of

our holographic flows and how they are related to distributions of M5 and M2 branes. We

discuss general features of our solutions and how one might obtain more general families

of solutions in section 7. Section 8 contains our concluding remarks. Our conventions and

the tabulation of some of the more complicated formulae are given in the appendices.

2 The truncation and BPS equations in four dimensions

2.1 The truncation

In this section we summarize some explicit results for the truncation of four-dimensional,

N = 8 supergravity [30] to the SU(3)×U(1)×U(1)-invariant sector that we will need for

the uplift to M theory in section 3. Our discussion here is based on [29] and [22]. The

Lagrangian for the truncation can also be read-off from a more general U(1)4-invariant

truncation in [54] and/or an SU(3)-invariant truncation in [7] and [55, 56].

The SU(3)×U(1)×U(1)⊂ SO(8) symmetry group of the truncation is defined by its

action on the supersymmetries, εi, of the N = 8 theory. We choose SU(3) and the first

U(1) to act on the indices i = 1, . . . , 6, while the second U(1) on the indices i = 7, 8. This

corresponds to the branching

8v −→ (3, 1, 0) + (3,−1, 0) + (1, 0, 1) + (1, 0,−1) . (2.1)

The resulting truncation is particularly simple since, as observed in [29], the commutant

of the symmetry group in E7(7) consists of a single SL(2,R). The invariant fields are: the

graviton, gµν , the gauge field, Aαµ, for the two U(1)’s, a scalar, x, and a pseudoscalar, y.
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As we will describe below, this may be viewed as the bosonic sector of N =2 supergravity

coupled to a vector multiplet.

The two non-compact generators of SL(2,R) in the fundamental representation of E7(7)

can be chosen as follows:

Ts =

(
0 Φ+

IJKL

Φ+
IJKL 0

)
, Tc =

(
0 iΦ−IJKL

−iΦ−IJKL 0

)
, (2.2)

where

Φ±IJKL = 24 (δ1234IJKL + δ1256IJKL ± δ1278IJKL + δ3456IJKL ± δ3478IJKL ± δ5678IJKL) , (2.3)

are self-dual (+) and antiself-dual (−) SO(8) tensors, respectively. Then the scalar

‘56-bein’ is

V ≡ eV =

(
uij

IJ vijIJ
vijIJ uijIJ

)
, V = xTs + yTc , (2.4)

where the scalar, x ≡ λ cos ζ, and the pseudoscalar, y ≡ λ sin ζ, parametrize the coset

SL(2,R)

SO(2)
, (2.5)

with the canonical complex coordinate, z, given by

z = tanhλ eiζ . (2.6)

Given the explicit generators (2.2), it is easy to check that the exponential (2.4) reduces

to a polynomial,

V = a0 + a1 V + a2 V2 + a3 V3 , (2.7)

where

a0 =
2− 3|z|2

2(1− |z|2)3/2
, a1 =

6− 7|z|2

6(1− |z|2)3/2
, a2 = 3 a3 =

1

2(1− |z|2)3/2
, (2.8)

Note that the order of this polynomial coincides with the index of embedding of SL(2,R)

in E7(7).

Using the 56-bein (2.4), it is now straightforward to obtain the full bosonic action of

the truncated theory [56]. In particular, we find that it is consistent to set the vector fields,

Aαµ, to zero. Then the resulting Lagrangian for the gravity coupled to the scalar fields is:1

e−1L =
1

2
R− 3

∂µz∂
µz̄

(1− |z|2)2
− 6g2

1 + |z|2

1− |z|2

=
1

2
R− 3 ∂µλ∂

µλ− 3

4
sinh2(2λ) ∂µζ∂

µζ + 6g2 cosh(2λ) .

(2.9)

The Lagrangian (2.9) has no explicit dependence on the phase, ζ, and hence there is a

conserved Noether current

Jµ = e sinh2(2λ) ∂µζ , (2.10)

1See appendix B for additional details. This action and the potential (2.13) can be obtained from [54]

by setting φ(1) = φ(2) = φ(3) = 2λ and θ(1) = θ(2) = θ(3) = ζ and/or from [55, 56] by setting ζ1 = ζ2 = 0.
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with the corresponding U(1)ζ symmetry being simply a rotation between the scalar and

the pseudoscalar.

It was shown in [29, 56] (see, also [54]) that by keeping the SU(3)-invariant fermions, the

truncation yields a N =2 supergravity in four dimensions. Its R-symmetry is a combination

of the two U(1)’s and, from the supersymmetry variations,

δψiµ = 2Dµε
i +
√

2 g Aa
ijγµεj , i, j = 7, 8 , (2.11)

the real superpotential, W , is given by an eigenvalue of the A1-tensor, W =
√

2 |A1
77| =√

2 |A1
88|, see appendix B. Substituting the real fields, λ and ζ, in (B.4), we then find

W =
√

2

√
sinh6 λ+ cosh6 λ+ 2 sinh3 λ cosh3 λ cos(3ζ) . (2.12)

In terms of the superpotential, W , the potential

P = − 6 cosh(2λ) , (2.13)

is given by

P =
1

3

[(
∂W

∂λ

)2

+
4

sinh2(2λ)

(
∂W

∂ζ

)2 ]
− 3W 2 . (2.14)

Note that unlike the potential, P, the superpotential, W , is invariant only under a Z3

subgroup of U(1)ζ .

2.2 Domain wall Ansätze and BPS equations

In this paper we are interested in a special class of solutions corresponding to RG-flows

and one-dimensional defects in the dual ABJM theory. Thus we take the metric given by

a domain wall Ansatz

ds21,3 = e2A(r)ds21,2 + dr2 , (2.15)

and where the metric function, A(r), and the scalar fields, λ(r) and ζ(r), are functions of

the radial coordinate, r, only. Furthermore, ds21,2, is either a Minkowski metric (RG-flows)

or a metric on AdS3 of radius ` (Janus solutions),

ds21,2 = e2y/`(−dt2 + dx2) + dy2 . (2.16)

Since, at least formally, the equations for the RG-flows can be obtained by taking the radius

` → ∞, throughout much of the discussion we will write only the more general formulae

for the Janus solutions.

The equations of motion for the metric (2.15) and the scalar fields that follow from

the Lagrangian (2.9) are

λ′′ = − 3A′ λ′ +
1

4
sinh(4λ) (ζ ′)2 − 2g2 sinh(2λ) ,

ζ ′′ = − 3 A′ζ ′ − 4 coth(2λ) ζ ′ λ′ ,

A′′ = − 3

2
(A′)2 − 3

2
(λ′)2 − 3

8
sinh2(2λ) (ζ ′)2 − e−2A

2`2
,

(2.17)
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and

(A′)2 − (λ′)2 − 1

4
sinh(2λ) (ζ ′)2 − 2g2 cosh(2λ) +

e−2A

`2
= 0 , (2.18)

where the last two equations are independent combinations of the Einstein equations.2

Imposing an unbroken supersymmetry along the flow, one obtains a first order system

of the BPS equations. We refer the reader to [29] for further details and here only quote

the final result:3

λ′ = −1

3

(
A′

W

)
∂W

∂λ
+

2κ

3

(
e−A

`

)
1

sinh(2λ)

1

W

∂W

∂ζ
, (2.19)

ζ ′ = −4

3

(
A′

W

)
1

sinh2(2λ)

∂W

∂ζ
− 2κ

3

(
e−A

`

)
1

sinh(2λ)

1

W

∂W

∂λ
, (2.20)

together with

(A′)2 = g2W 2 − e−2A

`2
. (2.21)

The constant κ = ±1 is determined by the chirality of the unbroken supersymmetry,

with N = (2, 0) for κ = 1 and N = (0, 2) for κ = −1. In the following we set κ = 1.

Note that (2.21) is the same as (2.18) after one eliminates the derivatives of the scalar

fields using (2.19) and (2.20). It is also straightforward to verify that the equations of

motion (2.17) follow from the BPS equations.

Finally, the BPS equations for supersymmetric RG-flows

A′ = ± gW , (2.22)

and

λ′ = ∓ g

3

∂W

∂λ
, ζ ′ = ∓ 4 g

3 sinh2(2λ)

∂W

∂ζ
, (2.23)

are obtained from (2.19), (2.20) and (2.21) by taking the ` → ∞ limit. There is no

constraint on the chirality of the unbroken N =2 supersymmetry.

2.3 Integrating the BPS equations

The Janus solutions to the BPS equations (2.19)–(2.21) have been studied in [29] where it

was shown by a numerical analysis that there are three classes of solutions shown in figures 1

and 2: regular Janus solutions (shown in green) interpolating between two AdS4 regions

corresponding to the same SO(8) stationary point of the potential (2.13) and singular

solutions that diverge on either one side (shown in red) or both sides (shown in blue) of

the flow. The Janus solutions are characterized by the presence of a special central point

along a flow where the solution passes from one branch of (2.21) to another. This point

is marked by a red dot and the corresponding values of the scalar fields are denoted by

λc and ζc, respectively. The position of this point for a given flow determines the type

of a solution, see figure 3 in [29]. In particular, for cos ζc 6= −1, all solutions are singular

2As a consequence of the Bianchi identities, the derivative of (2.18) follows from (2.17).
3Similar BPS equations for holographic domain walls with curved slices were written down in [47, 57, 58].
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Figure 1. Typical flow trajectories for the Janus solutions to the BPS equations (2.19)–(2.21) in

the (λ cos ζ, λ sin ζ)-plane. The background contours are of the superpotential W (λ, ζ). A red dot

denotes the “central point” of a flow at (λc cos ζc, λc sin ζc) where A′ = 0.
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Figure 2. Typical profiles of the metric function, A(r), and the scalar fields, λ(r) and ζ(r), for the

different types of flows in figure 1.
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Figure 3. RG-flow trajectories in the (λ cos ζ, λ sin ζ)-plane. The background contours are of the

real superpotential W (λ, ζ). The ridge trajectories have constant ζ with cos 3ζ = 1 (green) and

cos 3ζ = −1 (red), respectively.

0 1 2 3 4 5
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Figure 4. Ridge flows for cos 3ζ = −1 (red) and cos 3ζ = 1 (green) with A0 = 0.

provided λc is large enough. It is only when cos ζc = −1 that all solutions are regular Janus

solutions irrespective of the value of λc.

In addition, there are solutions akin to RG-flows, which asymptote to AdS4 on one

side and become singular on the other, while remaining on a single branch of (2.21). They

can be thought of as a singular limit of Janus solutions where the central point is moved

off to infinity. Simplest examples of such flows are obtained by taking constant ζ = ζ0
with cos(3ζ0) 6= ±1. Solving (2.19)–(2.21) for A′, λ′ and A, and then imposing consistency

between them, one is left with

λ′ = ∓ g√
2

sinh(2λ)
√

cosh(2λ) + cos(3ζ0) sinh(2λ) ,

e−2A

`2
=
g2

2

sin2(3ζ0) sinh(2λ)

cos(3ζ0) + coth(2λ)
.

(2.24)
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Choosing the top sign in (2.24), we can impose the AdS4 boundary condition in the UV,

that is λ→ 0 as r →∞, to integrate the first equation for λ(r), and then solve the second

equation for A(r). The resulting solutions are similar to the ones in figure 4, which we will

discuss shortly.

The situation simplifies considerably in the RG-flow limit where the scalar equa-

tions (2.23) do not involve the metric function, A, and can be solved first. Choosing

the top sign in (2.22)–(2.23), which corresponds to the UV region at r → ∞, one then

finds flows shown in figures 3 and 4 [22].

In fact, as we have discussed in [22], generic solutions for the RG-flows can be deter-

mined analytically using two constants of motion: the general one

I1 = e3A sinh2(2λ) ζ ′ , (2.25)

valid for any ` and corresponding to the conserved current (2.10), and the second constant4

I2 =
W 2

(cosh 2λ+ cos ζ sinh 2λ)3
sin 3 ζ

sin3 ζ

=
(4 cos2 ζ − 1)

2 sin2 ζ

(3 + (cosh 2λ− 2 cos ζ sinh 2λ)2)

(cosh 2λ+ cos ζ sinh 2λ)2
,

(2.26)

for the first order system (2.22)–(2.23). Using I1 and I2, one can then determine A and ζ as

a function of λ, which is sufficient given the reparametrization invariance for the coordinate

along the flow.

However, this method of integration fails for the special flows with constant ζ = ζ0. For

an RG-flow, one must then have cos 3ζ0 = ±1 (see, green and red ridge flows in figure 3).

The resulting equations can be obatained from (2.24) by taking the limit,

cos(3ζ0) −→ ± 1 , ` −→ ∞ , ` g sin(3ζ0) −→ 2
√

2 e−A0 , (2.27)

where A0 is a constant. One can then integrate those equations directly to obtain

arccoth(eλ)± arctan(eλ)∓ π

2
=

g√
2

(r − r0) , (2.28)

and

A(r) = A0 − log(e4λ − 1) +

{
3λ for cos 3ζ = +1

λ for cos 3ζ = −1
(2.29)

where r0 and A0 are integration constants. The solutions to those ridge flows are shown

in figure 4. Comparing with the trajectories in figure 3, we expect that the solutions with

cos(3ζ0) = 1 are representative of the generic RG-flows, while those with cos(3ζ0) = −1

are special. This expectation is confirmed by the asymptotic expansions that we will

now discuss.

4Given different types of solutions in figure 1, one would not expect to find such an additional constant

of motion for the BPS equations (2.19)–(2.21) at finite `.
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2.4 Behavior at large λ

The holographic RG flows, governed by (2.22) and (2.23), have λ→∞ at some finite value

of r. Generically, such solutions are dual to a massive flow toward some new infra-red

limit. As was observed in [22], the RG flow solutions considered here can encode rich

and interesting infra-red physics once one examines them in M theory. The Janus flows,

governed by (2.19)–(2.21), can either form a loop starting and finishing at λ = 0 or start

at λ = 0 and ultimately flow with λ →∞. There are also Janus solutions that begin and

end with λ → ∞. The Janus flows that involve large λ may be viewed as interfaces that

explore the infra-red structure of the holographic flow solutions. We will therefore examine

the limiting behaviors of these flows as λ→∞. In section 6 we will uplift these results to

M theory to see more precisely how they may be interpreted in terms of M branes.

From the explicit solutions in figures 2 and 4, we see that the limit is characterized by

λ −→ ∞ , ζ −→ ζ∞ , A −→ −∞ as r −→ r0 , (2.30)

where ζ∞ is a constant asymptotic angle for a given flow. This observation is confirmed

by a more careful expansion of the BPS equations (2.19)–(2.23).

Expanding the superpotential (2.12) as λ→∞ for a generic ζ, we have

W ∼ 1

4

√
1 + cos(3ζ) e3λ +O(e−λ) , cos(3ζ) 6= − 1 , (2.31)

while for the special ridge flows,

W ∼ 3

2
√

2
eλ +O(e−3λ) , cos(3ζ) = − 1 . (2.32)

The flow equations (2.23) and (2.22) simplify

dA

dλ
= −3W

(
∂W

∂λ

)−1
∼

{
−3 for cos 3ζ = −1

−1 otherwise
. (2.33)

dζ

dλ
=

4

sinh2(2λ)

∂W

∂ζ

(
∂W

∂λ

)−1
→ 0 . (2.34)

The latter confirms the constancy of ζ at infinity while the former shows the rate of

divergence of A depends upon that angle. This will translate into different physics once

we uplift those flows to M theory.

3 The uplift

We have obtained the Lagrangian (2.9) and the BPS equations (2.19)–(2.23) by a con-

sistent truncation of the bosonic Lagrangian and the supersymmetry variations of four-

dimensional, N =8 gauged supergravity. Since the latter theory is a consistent truncation

of M theory on S7 [33–35], any solution of the equations of motion for the Lagrangian (2.9)

can be uplifted to a solution of the eleven-dimensional supergravity. Indeed, for a constant
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axion, ζ, such an uplift has been already constructed in [54]. In the next two sections we

verify the truncation for a nontrival axion using explicit uplift formula for the metric [32]

and the recently obtained uplift formulae for the flux [36–41].

Similar calculation verifying the new uplift Ansätze for the flux has been carried out

recently for a special class of solutions of the four-dimensional, N = 8 theory given by

some of the stationary points of the potential: SO(8), SO(7)±, G2, SU(4)− [37, 39], and

SO(3)×SO(3) [42], for which the four-dimensional space-time is AdS4 and the scalar fields

are constant. Our construction of the uplift is similar as in those references, which the

reader should consult for any omitted background material.

3.1 SU(3)×U(1)×U(1) invariants on S7

The construction of an uplift inevitably leads to rather complicated formulae. Both to

organize the calculation and to write down the result in a succinct form, it is convenient

to express the internal components of the fields in terms of canonical SO(7) tensors on S7

that are associated with the E7(7) generators of the scalar fields in the truncation. To this

end let us define:5

ξmn = − 1

16
Φ+
IJKLK

IJ
m KKL

n , ξm =
1

16
Φ+
IJKLK

IJ
mnK

nKL , ξ =
◦
gmnξmn ,

(3.1)

and

Smnp =
1

16
Φ−IJKLK

IJ
mnK

KL
p , (3.2)

where Φ±IJKL are the SO(8) tensors defined in (2.3) and

KmIJ = iη̄I
◦
ΓmηJ , KIJ

mn = η̄I
◦
Γmnη

J ,
◦
DmK

IJ
n = m7K

IJ
mn , (3.3)

are the SO(8) Killing vectors (one-forms) and two-forms on the round S7 given in terms

of an orthonormal basis of Killing spinors, ηI ,

i
◦
Dmη

I =
m7

2

◦
Γmη

I , η̄IηJ = δIJ , I, J = 1, . . . , 8 . (3.4)

The inverse radius of S7 is denoted bym7 ≡ L−1 and Γm =
◦
ea
mΓa. The circle indicates that

◦
ea is a siebenbein for the round metric on S7, ds2S7 =

◦
gmndy

mdyn where
◦
gmn =

◦
em

a ◦
en

bδab,

and
◦
Dm is the covariant derivative with respect to that metric. Unless indicated otherwise,

all indices on the S7 tensors are raised and lowered with the round metric, for example

KIJ
m =

◦
gmnK

nIJ . The coordinates, ym, on S7 are for the moment arbitrary. However, one

should note that ξ defined in (3.1) is a scalar harmonic on S7 and may be thought of as

providing a natural internal coordinate on the compactification manifold.

By construction, the tensors (3.1) and (3.2) are invariant, i.e. have vanishing Lie deriva-

tive, under the SU(3)×U(1)×U(1)⊂ SO(8) symmetry group of the truncation. In partic-

ular, the Killing vectors for the two U(1)’s,

υm = Ωα
IJK

IJ
m , wm = Ωβ

IJK
IJ
m , (3.5)

Ωα
12 = Ωα

34 = Ωα
56 = 1 , Ωβ

78 = 1 , (3.6)

5For a more extensive discussion of these tensors, see [42] and the original references therein.
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provide additional invariant one-forms on S7. In the following we will show that the metric

and the flux for the uplift can be simply written in terms of the round metric,
◦
gmn, the

one-forms

ξ(1) ≡ ξmdy
m , υ(1) ≡ υmdy

m , ω(1) = ωmdy
m , (3.7)

the three-form,

S(3) ≡
1

6
Smnpdy

m ∧ dyn ∧ dyp , (3.8)

and the scalar, ξ.

3.2 The metric

The eleven-dimensional space-time for the uplifted solutions is a warped product, M1,3 ×
M7, with the metric

ds211 = ∆−1ds21,3 + ds27 , (3.9)

where6 ds21,3 =
◦
gµνdx

µdxν is the metric in four dimensions for a particular solution at

hand. The internal metric, ds27 = gmndy
mdyn, is determined by the celebrated formula for

its densitized inverse [32]:

∆−1gmn =
1

8
KmIJKnKL

[ (
uMN

IJ + vMNIJ
) (
uMN

KL + vMNKL

) ]
, (3.10)

from which the warp factor, ∆, can be calculated using

∆−9 = det(∆−1gmn
◦
gnp) . (3.11)

While it is possible to express the densitized metric entirely using tensors (3.1) and (3.2)

and their (contracted) products,7 the simplest expression is obtained by noting that the

symmetric tensors resulting from such contractions can be rewritten using the round metric,
◦
gmn, and bilinears in the one forms ξm, υm and ωm, as in the following examples:

ξmn =
1

6
(3 + ξ)

◦
gmn +

1

6(ξ − 3)
ξmξn +

3

8(ξ − 3)
(υm + ωm)(υn + ωn) ,

SmpqSn
pq =

1

4
(υm − ωm)(υn − ωn) ,

SmprSnq
rξpξq =

9

4
υmυn +

3

4
(9− 2ξ)ωmωn +

3ξ

2
υ(mωn) .

(3.12)

After some algebra, we then find

∆−1gmn = c1
◦
g mn + c2 ξ

mξn + c3 υ
mυn + c4 ω

mωn + c5 υ
(mωn) , (3.13)

6To distinguish the components of the four-dimensional metric (2.15) from the components of its eleven-

dimensional counterpart along the four dimensions, we will denote the former by
◦
gµν . Thus gµν = ∆−1 ◦

gµν .
7See, for example a general discussion in [42].
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where all the ci can be expressed in terms of four-dimensional quantities and the scalar, ξ:

c1 = cosh(2λ)− 1

6
(ξ + 3) sinh(2λ) cos(ζ) ,

c2 =
1

6(3− ξ)
sinh(2λ) cos(ζ) ,

c3 =
sinh(2λ)

32(ξ − 3)

[
(ξ − 3) cosh(4λ) cos(ζ) + (ξ − 3) sinh(4λ)− (ξ + 9) cos ζ

]
,

c4 =
sinh(2λ)

16(ξ − 3)

[
(ξ − 3) sinh2(2λ) cos(3ζ) +

1

2
(ξ − 3) sinh(4λ)− 6 cos ζ

]
,

c5 =
sinh(2λ)

16(ξ − 3)

[
(ξ − 3) sinh(4λ) cos(2ζ) + (ξ − 3) cosh(4λ) cos ζ − (ξ + 9) cos ζ

]
.

(3.14)

Note that the indices on the right hand side in (3.12) are raised using the round metric,
◦
gmn, which is the convention followed throughout this section.

All that is needed now to invert the densitized metric (3.13) are contraction identities

between the one-forms, which can be derived using the explicit form of the SO(8) tensors

and properties of the Killing vectors summarized in [37, 42] and the references therein.

We have

ξmξm = 27− 6 ξ − ξ2 , υmυm = 12− 8

3
ξ , ωmωm = 4 ,

ξmυm = ξmωm = 0 , υmωm = −4

3
ξ .

(3.15)

It is then straightforward to check that

∆gmn = g1
◦
gmn + g2 ξmξn + g3 (υmυn + ωmωn) + g4 υ(mωn) , (3.16)

where

g1 =
6

6 cosh(2λ)− (ξ + 3) sinh(2λ) cos ζ
,

g2 =
D

36(ξ − 3)
cos ζ

[
3 sinh(4λ)− (ξ + 3) sinh2(2λ) cos ζ

]
,

g3 =
D

16(ξ − 3)

[
3 sinh(4λ) cos(ζ)− sinh2(2λ)(ξ + 3 cos(2ζ))

]
,

g4 =
D

8(ξ − 3)

[
3 sinh(4λ) cos(ζ)− sinh2(2λ)(ξ cos(2ζ) + 3)

]
,

(3.17)

and

D =
36[

sinh(2λ) cos ζ + cosh(2λ)
][

6 cosh(2λ)− (ξ + 3) sinh(2λ) cos ζ
]2 . (3.18)

Using the contractions (3.15), one can also calculate the derivatives of the warp factor

given by (3.11) with respect to λ and ζ. Then a simple integration yields

∆ = D1/3 , (3.19)

with the overall normalization set by ∆ = 1 for the round sphere metric when λ = 0.

Dividing out ∆ in (3.16), yields the internal metric, gmn, in terms of the SO(7) tensors

associated with the truncation.
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3.3 Internal coordinates and local expressions

In addition to the metric tensor, we will also need the corresponding orthonormal frames

and those turn out to be rather cumbersome to write down using the invariant ten-

sors (3.16). Also, the formulae like (3.16) tend to obscure the underlying geometry of

the solution and its symmetry. To address both of these points, we will now choose a

suitable set of coordinates, ym, on the internal manifold. As usual, see for example [42]

section 7.1, this can be done systematically as follows.

First, we embed S7 into the ambient R8 as the surface

Y AY A = m−17 , (3.20)

such that the Killing vectors KIJ = KIJ
m dym defined in (3.3) are related by triality to the

familiar ones, that is

KIJ = −m7

2
ΓIJABKAB , KAB = − 1

8m7
ΓIJABK

IJ , (3.21)

where

KAB = Y AdY B − Y BdY A , (3.22)

Similarly, we have

KIJ
(2) ≡

1

2
KIJ
mndy

m ∧ dyn =
1

2
ΓIJABdKAB . (3.23)

The action of the symmetry group SU(3)×U(1)×U(1) in the ambient space is given

by the branching8

8s →
(

3,−1

2
,

1

2

)
+

(
3̄,

1

2
,−1

2

)
+

(
1,

3

2
,

1

2

)
+

(
1,−3

2
,−1

2

)
. (3.24)

One can choose a representation of Γ-matrices such that the SU(3) generators act in the

subspace, Y 1, . . . , Y 6, while the two U(1) generators have 2 × 2 diagonal blocks. Then a

convenient choice for the coordinates, (ym) = (χ, θ, α1, α2, α3, ψ, φ), on S7, that makes the

symmetry manifest is as follows:

Y 1 + i Y 2 = m−17 cosχ sin θ sin
α1

2
e
i
2
(α2−α3)e−i(φ+ψ) ,

Y 3 + i Y 4 = m−17 cosχ sin θ cos
α1

2
e−

i
2
(α2+α3)e−i(φ+ψ) ,

Y 5 + i Y 6 = m−17 cosχ cos θ e−i(φ+ψ) ,

Y 7 + i Y 8 = m−17 sinχ e−iφ ,

(3.25)

8We follow here the usual convention that the supersymmetries, εi, transform in 8v, while the ambient

coordinates, Y A, in 8s of SO(8).
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where α1, α2, α3 are the SU(2) Euler angles, while the angles ψ and φ parametrize the

U(1)×U(1) isometry.9 In this parametrization, the round metric on S7 with unit radius is10

ds2S7 ≡ m2
7 dY

AdY A

= dχ2 + cos2 χ

[
ds2CP2 + sin2 χ

(
dψ +

1

2
sin2 θ σ3

)2]
+

[
dφ+ cos2 χ

(
dψ +

1

2
sin2 θ σ3

)]2
,

(3.26)

where

ds2CP2 = dθ2 +
1

4
sin2 θ

(
σ21 + σ22 + cos2 θσ23) , (3.27)

is the metric on CP2 and σi are the SU(2)-invariant forms. The first line in (3.26) is the

metric on CP3 and the second line is the Hopf fiber. The SU(3) × U(1)ψ symmetry acts

transitivly on CP2 and the ψ-fiber. Both the metric on CP2 and the one form dψ+ 1
2 sin2 θ

are invariant.

Using (3.21) and (3.25), we can now express the invariants introduced in section 3.1 in

terms of ambient and local coordinates. We find that the invariant function, ξ, is simply

ξ = 3− 12m2
7

[
(Y 7)2 + (Y 8)2

]
= −9 + 12m2

7

[
(Y 1)2 + . . .+ (Y 6)2

]
= 3(1− 4 sin2 χ) ,

(3.28)

while the invariant one-forms are

ξ(1) = −12m7(Y
7dY 7 + Y 8dY 8) = −6m−17 sin(2χ) dχ ,

υ(1) + ω(1) = 8m7(Y
7dY 8 − Y 8dY 7) = −8m−17 sin2 χdφ ,

υ(1) − 3ω(1) = 8m7(Y
1dY 2 − Y 2dY 1 + . . .+ Y 5dY 6 − Y 6dY 5)

= −8m−17 cos2 χ

(
dφ+ dψ +

1

2
sin2 θσ3

)
.

(3.29)

We also have

S(3) ≡
1

6
Smnp dy

m ∧ dyn ∧ dyp = −1

6
m7 Φ+

MNPQ Y
M dY N ∧ dY P ∧ dY Q

= −m−37 JCP3 ∧ ϑS7 ,

(3.30)

where

JCP3 =
1

2
dϑS7 , ϑS7 = dφ+ cos2 χ

(
dψ +

1

2
sin2 θ σ3

)
, (3.31)

are, respectively, the complex structure on CP3 and the corresponding Sasaki-Einstein

one-form on S7.

9More precisely, the two U(1) angles are φ+ ψ/2 and −φ− 3ψ/2, respectively.
10All functions and forms in the ambient R8 are implicitly pulled-back onto S7 using (3.20).

– 16 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
5

Finally, we substitute the invariants (3.28) and (3.29) into the warp factor (3.19) and

the metric (3.16). To simplify expressions we define:

X±(x) ≡ cosh 2λ± cos ζ sinh 2λ , Σ(x, χ) ≡ X+ sin2 χ+X− cos2 χ , (3.32)

which are functions of the space-time coordinates, xµ, and the internal coordinate, χ. Then

the internal metric can be written as

ds27 = m−27

(
Σ

X

) 2
3
[
dχ2 + cos2 χ

X

Σ

(
ds2CP2 + sin2 χ

X

Σ
(dψ +

1

2
sin2 θ σ3 +

Ξ

X
dφ)2

)
+

1

Σ2

(
dφ+ cos2 χ

(
dψ +

1

2
sin2 θ σ3

))2 ]
, (3.33)

where to simplify the notation we set X ≡ X+ and Ξ ≡ X+−X−. The warp factor (3.19) is

∆ =
1

X1/3Σ2/3
. (3.34)

For λ = 0, we have X± = Σ = 1 and the metric (3.33) reduces to the metric (3.26)

on the sphere with radius m−17 . The deformation clearly preserves the SU(3)×U(1)×U(1)

symmetry as well as the metric along the Hopf fiber, which is now rescaled by Σ−2 with

respect to the six-dimensional base. This suggests that there might be some deformed

Kähler geometry still present in the background. We will return to this point below in

section 6.

3.4 The transverse flux

It is rather remarkable that it took more than 25 years to obtain workable formulae for the

four-form flux, F(4) = dA(3). Indeed, while the general proof of the consistent truncation of

eleven-dimensional supergravity on S7 [33–35] yielded explicit formulae for F(4), those for-

mulae were rather difficult if not impossible to use for all but the simplest stationary point

solutions [35]. It is only recently that new Ansätze for various components of the four-form

flux were found in [36–41] whose complexity is comparable to that of the metric Ansatz.

Starting with a domain wall solution in four-dimensions with a metric as in (2.15) and

scalar fields depending only on the transverse coordinate, the corresponding four-form flux

in eleven-dimensional supergravity can be decomposed into a sum of two terms

F(4) = F st
(4) + F tr

(4) , (3.35)

where F st
(4) = F(4,0) + F(3,1) is the “space-time” flux and F tr

(4) = F(0,4) + F(1,3) is the “trans-

verse” flux. A label (4 − p, p) indicates a (4 − p)th order form along M1,3 and a pth

order form along the internal manifold, M7. Since by the Poincaré or conformal sym-

metry along the three-dimensional slices in M1,3 there can be no (2, 2)-form in (3.35),11

the Bianchi identity, dF(4) = 0, implies that both F st
(4) and F tr

(4) must be closed. Hence

F tr
(4) = dAtr

(3), where Atr
(3) can have at most one “leg” along dr and thus can be always

11Such terms must also vanish whenever the vector fields in four dimensions are set to zero [41].
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gauge transformed into a 3-form with all three legs along the internal manifold M7, that

is Atr
(3) = 1

6Amnpdy
m ∧ dyn ∧ dyp.

The components Amnp are given by the new uplift Ansatz [36, 37], which, in our

conventions, reads

∆−1gpqAmnp =
i

16
KIJ
mnK

q KL
[ (
uMN

IJ − vMNIJ
) (
uMN

KL + vMNKL

) ]
. (3.36)

It is convenient to define a two-form Sm ≡ 1
2Smnpdy

n ∧ dyp. Evaluating (3.36) in terms of

invariants, we then find

1

2
∆−1gpqAmnp dy

m ∧ dyn = (a11υ
q + a12 ω

q) dυ + (a21υ
q + a22 ω

q) dω + a3 S
q , (3.37)

where the vector index on the right hand side is raised using the round metric and the

coefficients are given by

a11 =
1

64
m−17 sinh3(2λ) sin ζ ,

a12 =
1

64
m−17 sinh2(2λ) sin ζ

[
2 cosh(2λ) cos ζ − sinh(2λ)

]
,

a21 = − 1

64
m−17 sinh2(2λ) sin ζ

[
2 cosh(2λ) cos ζ + sinh(2λ)

]
,

a22 = − 1

64
m−17 sin(3ζ) sinh3(2λ) ,

a3 = −1

2
sin ζ sinh(2λ) .

(3.38)

Contracting with the densitized metric (3.16) and then using the contraction identi-

ties (3.15) together with

ξmSm = −3

4
υ(1) ∧ ω(1) ,

υmSm =
1

12
m−17 (ξ − 6) dυ(1) +

1

4
m−17 dω(1) −

1

6
ξ(1) ∧ υ(1) ,

ωmSm =
1

12
m−17 ξ dυ(1) −

1

4
m−17 dω(1) −

1

6
ξ(1) ∧ υ(1) ,

(3.39)

we find that the internal potential is simply given by

Atr
(3) = α1 S(3) + α2 ξ(1) ∧ υ(1) ∧ ω(1) , (3.40)

where

α1 = − 1

2 Σ
sin ζ sinh(2λ) , α2 = − 1

384 X Σ

sin(2ζ) sinh2(2λ)

sin2 χ
. (3.41)

Rewriting (3.40) in local coordinates using (3.29) and (3.30) yields

Atr
(3) =

1

2
m−37

sin ζ sinh(2λ)

Σ

[
JCP3 −

1

2
sin(2χ)

Ξ

X
dχ ∧ dφ

]
∧ ϑS7 . (3.42)

Note that the Atr
(3) has only components along the internal manifold, M7, so that its

field strength, F tr
(4), can have at most one leg along the four-dimensional space-time.
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3.5 The space-time flux

We now turn to the second part of the flux, F st
(4), which, as shown recently in [38, 39], can

be determined from the uplift for the transverse dual potential, Atr
(6).

The starting point is the Maxwell equation (4.22) in eleven dimensions, which by

setting F(4) = dA(3) can be written locally as12

d(?F(4) +A(3) ∧ F(4)) = 0 , (3.43)

from which the dual potential, A(6), is defined by

dA(6) = ?F(4) +A(3) ∧ F(4) . (3.44)

The space time flux, F st
(4), is determined by the transverse part of A(6), that is

F st
(4) = − ?

(
dAtr

(6) −A
tr
(3) ∧ F

tr
(4)

)
, (3.45)

where

Atr
(6) =

1

16
T(6) − 3m7

◦
ζ(6) . (3.46)

The six-form, T(6) = 1
6!Tm1...m6dy

m1 ∧ . . . ∧ dym6 , is given by the uplift Ansatz

Tm1...m6 = ∆gp[m1
Km2...m6]

IJKpKL(uMN
IJ + vMNIJ)(uMN

KL + vMNKL) , (3.47)

where KIJ
m1...m5

≡ i η̄IΓm1...m5η
J , while

◦
ζ(6) is the potential for the volume of the round S7,

d
◦
ζ(6) ≡ v

◦
olS7 =

1

8
m−77 sinχ cos5 χ sin3 θ cos θ dχ ∧ dθ ∧ σ1 ∧ σ2 ∧ σ3 ∧ dψ ∧ dφ . (3.48)

Evaluating (3.47), we find

T(6) =
8

3 + ξ − 6 coth(2λ) sec ζ

◦∗7 ξ(1) , (3.49)

where
◦∗7 is the dual on S7 with respect to the round metric. In terms of the local

coordinates,

T(6) = 2m−67

sin2 χ cos6 χ sin3 θ cos θ

cos(2χ)− coth(2λ) sec ζ
dθ ∧ σ1 ∧ σ2 ∧ σ3 ∧ dψ ∧ dφ . (3.50)

Then

dT(6) = − 4m−17 csch2(2λ) sec2 ζ sin(2χ)

(coth(2λ) sec ζ − cos(2χ))2
[
4 cos ζ dλ− sin ζ sinh(4λ) dζ

]
∧ ı∂χv

◦
olS7

+ 8m7
4 coth(2λ) sec ζ(1− 2 cos(2χ))− 4 cos(2χ) + 3 cos(4χ) + 5

(coth(2λ) sec ζ − cos(2χ))2
v

◦
olS7 .

(3.51)

From (3.42), we have

Atr
(3) ∧ F

tr
(4) = −m7

sin2 ζ
[
(1− 2 cos(2χ)) cos ζ + 3 coth(2λ)

]
(cos ζ + coth(2λ))(coth(2λ)− cos ζ cos(2χ))2

v
◦
olS7 . (3.52)

12See appendix A for definitions and properties of the various duals used in this section.
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Substituting (3.51), (3.48) and (3.52) in (3.45), we get

F st
(4) = ?

[
m−17 sin(2χ)

(cos ζ sinh(2λ) cos(2χ)− cosh(2λ))2

(
cos ζ dλ− 1

4
sin ζ sinh(4λ) dζ

)
∧ ı∂χv

◦
olS7

− m7

XΣ2

(
cos ζ sinh(2λ)(2 cos(2χ)− 1)− 3 cosh(2λ)

)
v

◦
olS7

]
, (3.53)

where the dual is with respect to the full metric (3.9). Using identities (A.7) and (A.8) in

appendix A and

? v
◦
olS7 = ∆−1 ? volM7 = −∆−3 v

◦
ol1,3 , (3.54)

we find that the space time flux (3.53) is

F st
(4) = −m−17 sin(2χ)

(
cos ζ

◦∗1,3 dλ−
1

4
sin ζ sinh(4λ)

◦∗1,3 dζ
)
∧ dχ

+
m7∆

−3

XΣ2

(
cos ζ sinh(2λ)(2 cos(2χ)− 1)− 3 cosh(2λ)

)
v

◦
ol1,3 .

(3.55)

For the flow solutions where the scalar fields depend only on the radial coordinate, r,

we have dλ = λ′ dr, dζ = ζ ′ dr and (3.55) evaluates to a very simple expression,

F st
(4) =

m7

3
e3A v

◦
ol1,2 ∧ (U dr + V dχ) , (3.56)

where

U(r, χ) = −3(1− 2 cos 2χ) sinh 2λ cos ζ − 9 cosh 2λ ,

V (r, χ) =
3

4m2
7

sin 2χ (4 cos ζ λ′ − sinh(4λ) sin ζ ζ ′) ,
(3.57)

and v
◦
ol1,2 is the volume along the Min1,2 or AdS3 slices.

It is straightforward to verify that F st
(4) given in (3.56) satisfies the Bianchi identity,

dF st
(4) = 0, when the four-dimensional fields, A(r), λ(r) and ζ(r), are on-shell, that is they

satisfy the equations of motion (2.17) in four dimensions.

The calculation above illustrates the point we have raised before, namely, that a rather

long and complicated derivation using uplift formulae yields a relatively simple final result.

In fact, after we have completed this calculation a paper [41] appeared where a more direct

Ansatz for the Freund-Rubin flux, namely the term in F st
(4) proportional to the volume of

the four-dimensional space-time, is proposed. In the present context, the key observation

is that the second term in U in (3.57) is the scalar potential (2.13) of the four-dimensional

theory, while the first term is proportional to a derivative of the potential. This can be

generalized to a more efficient uplift formula, which is summarized in appendix C.

3.6 A summary of the uplift

We conclude this section with a brief summary of the eleven-dimensional fields constructed

in sections 3.2–3.5. While the formulae for the uplifted fields are valid for any field config-

uration in four dimensions, here we will specialize them to the four-dimensional flows we
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are interested in. It turns out that the simplest form of the flux is obtained when we use

suitable frames for the metric (3.9). We will also need those frames later in the proof of

supersymmetry of the RG flows and Janus solutions in section 5.

Given (3.9) and (3.33), a natural choice for the frames, eM , M = 1, . . . , 11, is to set

e1,2,3 = X
1
6 Σ

1
3 eA f1,2,3 , e4 = X

1
6 Σ

1
3 dr ,

e5 = m7X
− 1

3 Σ
1
3 dχ ,

e6 = m7X
1
6 Σ−

1
6 cosχdθ ,

e7,8 =
m7

2
X

1
6 Σ−

1
6 cosχ sin θ σ1,2 ,

e9 =
m7

2
X

1
6 Σ−

1
6 cosχ sin θ cos θ σ3 ,

e10 = m7X
2
3 Σ−

2
3 sinχ cosχ

((
dψ +

1

2
sin2 θ σ3

)
+

Ξ

X
dφ

)
,

e11 = m7X
− 1

3 Σ−
2
3

(
dφ+ cos2 χ

(
dψ +

1

2
sin2 θ σ3

))
,

(3.58)

where f i, i = 1, 2, 3, are the frames for the Min1,2 or AdS3 slices,

X(r) = cosh(2λ) + cos ζ sinh(2λ) , Ξ(r) = 2 cos ζ sinh(2λ) ,

Σ(r, χ) = cosh(2λ)− cos ζ sinh(2λ) cos(2χ) .
(3.59)

Then the transverse potential, Atr
(3), given in (3.42) becomes surprisingly simple,

Atr
(3) =

1

2
p(r) (e6 ∧ e9 + e7 ∧ e8 − e5 ∧ e10) ∧ e11 , (3.60)

where

p(r) = sinh(2λ) sin ζ . (3.61)

Note that the coefficient function, p(r), depends only on the four-dimensional space time

radial coordinate. All dependence in (3.60) on the internal geometry and coordinates enters

only through the frames.

Finally, the space time flux is given in (3.56) and (3.57). This completes the constriction

of the uplift.

4 The equations of motion

In this section we verify explicitly that the metric and the four-form flux in the uplift sat-

isfy the equations of motion of eleven-dimensional supergravity when the four-dimensional

metric and the scalar fields satisfy the four-dimensional equations of motion (2.17)–(2.18).

4.1 Preliminaries

We start with some technical preliminaries that will help us simplify the algebra in the

calculations that follow. The main idea is to work directly with the functions that appear
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in the metric (3.33) and the flux (3.60), in particular, with X(r) and p(r) given in (3.59)

and (3.61), respectively, rather than with the scalar fields, λ(r) and ζ(r). To this end

we use

sin ζ = −p csch(2λ) , cos ζ = − csch(2λ)(cosh(2λ)−X) , (4.1)

and

cosh(2λ) =
1 + p2 +X2

2X
, (4.2)

to eliminate ζ and λ in terms of p and X. This converts complicated trigonometric expres-

sions into rational functions of the new fields p and X that are typically easier to evaluate

and simplify. In particular, the four-dimensional equations of motion (2.17)–(2.18) in the

rationalized form are given by

∆′′ = −3A′∆′ +
1

X

[ (
p2 + 1

) (
X ′
)2

+X2
(
p′
)2 − 2pXp′X ′

]
− 2 g2

(
p2 +X2 − 1

)
p′′ = −3 p′A′ +

p

X2

[ (
p2 + 1

) (
X ′
)2

+X2
(
p′
)2 − 2pXp′X ′

]
− 2 g2

p

X

(
p2 +X2 + 1

)
,

A′′ = −3

2
(A′)2 − 3

8X2

[ (
p2 + 1

) (
X ′
)2

+X2
(
p′
)2 − 2pXp′X ′

]
+

3 g2

2X

(
1 + (p′)2 + (X ′)2

)
− e−2A

2`2
,

(4.3)

and

(A′)2− 1

4X2

[ (
p2 + 1

) (
X ′
)2

+X2
(
p′
)2−2pXp′X ′

]
− g

2

X

(
p2 +X2 + 1

)
+
e−2A

`2
= 0 . (4.4)

Similarly, we find that the superpotential (2.12) is given by

W 2 =
1

8X

[
9 p4 − 6 p2

(
X2 − 3

)
+
(
X2 + 3

)2 ]
(4.5)

and the BPS equations (2.19) and (2.20) for the scalars become

X ′ = − 1

4W 2

[
9p4 − 6p2

(
X2 − 1

)
+X4 + 2X2 − 3

]
A′ +

e−A

`

p
(
3p2 −X2 + 3

)
W 2

,

p′ = − p

4XW 2

[
9p4 − 6p2

(
X2 − 3

)
+X4 − 2X2 + 9

]
A′

+
e−A

`

3p4 + 2p2
(
X2 + 3

)
−X4 − 2X2 + 3

4XW 2
.

(4.6)

As a consistency check one can verify once more that the first order equations (4.6)

and (2.21) with W given in (4.5) imply the second order equations (4.3) and that (4.4) is

equivalent to (2.21).

Finally, the other metric and the flux functions are:

Σ =
1

X

[
cos2 χ(1 + p2) + sin2 χX

]
, Ξ = − 1

X

(
p2 −X2 + 1

)
, (4.7)
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and

U = − 6

X
cos2 χ (1 + p2) + 3X(cos(2χ)− 2) ,

V =
3

4m2
7

sin 2χ
[

2(1 + p2)
X ′

X
− 2p p′

]
.

(4.8)

This shows that indeed both the metric and the flux can almost entirely be written down

using, up to overall factors, only rational functions of X and p, and their derivatives!

Finally, we will be often able to eliminate trigonometric functions of χ using

cos(2χ) = −p
2 +X2 − 2 ΣX + 1

p2 −X2 + 1
, (4.9)

which follows from (4.7).

4.2 The flux

The first place where using the rationalized parametrization becomes clearly advantageous

is the calculation of the components, FMNPQ, of the four-form flux, F(4). Indeed, for the

space-time part of the flux given in (3.56) we simply have

F1234 =
m−17

Σ4/3X2/3
(2 Σ +X) ,

F1235 =
tanχ

X7/6Σ4/3Ξ
(Σ−X)

[ (
p2 + 1

)
X ′ − pXp′

]
.

(4.10)

Turning to the transverse flux, F tr
(4) = dAtr

(3), we note that the part of the three-form

potential along CP2 in (3.42) has the complex structure, JCP2 , as a factor. Thus the

corresponding components of the field stength must satisfy

FMN69 = FMN78 . (4.11)

Modulo this identity, the non-vanishing components of the transverse part of the flux are:

F4510 11 =
pX ′ −Xp′

2X7/6Σ1/3
, F469 11 =

Σp′ − pΣ′

2X1/6Σ4/3
,

F569 10 = −m7p(Σ +X)

X2/3Σ4/3
, F6789 =

2m7p

X2/3Σ1/3
,

(4.12)

where

Σ′ ≡ ∂Σ

∂r
=

1

X3 − (p2 + 1)X

[
2X
(
pXp′ − (p2 + 1)X ′

)
+ Σ

(
p2X ′ − 2pXp′ +

(
X2 + 1

)
X ′
) ]
.

(4.13)

Later we will also need
∂Σ

∂χ
= sin(2χ) Ξ . (4.14)

It appears that the flux produced through the uplift formulae is rather special, in particular,

we find that the following components

F4569 = F469 10 = F569 11 = 0 , (4.15)

accidentally vanish, that is not due to the underlying SU(3)×U(1)×U(1) symmetry of the

construction.
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4.3 The Einstein equations

The Einstein equations of eleven-dimensional supergravity in our conventions13 are:

RMN + gMNR =
1

3
FMPQRFN

PQR . (4.16)

We start by evaluating the components of the Ricci tensor, RMN , in the basis of

frames (3.58). The symmetries of the metric and the dependence of the scalar fields and

the metric function in four dimensions on the radial coordinate only, imply that the non-

vanisnhing components of the Ricci tensor can be at most the following ones:

R11 = −R22 = −R33 , R44 , R45 = R54 , R55 ,

R66 = R77 = R88 = R99 ,

R10 10 , R10 11 = R11 10 , R11 11 .

(4.17)

This agrees with the explicit result. Indeed, we find that after imposing the four-

dimensional equations of motion (4.3)–(4.4) in the rational parametrization introduced

above, the diagonal components of the Ricci tensor can be written in the form

RMM = AM (X ′)2 + BM (p′)2 + CM p′X ′ +DM , (4.18)

where A, B, C and D are functions of p, X and χ (or, equivalently, Σ). In particular, we

find that the cross-terms A′X ′ and A′p′ are absent. Similarly, the off-diagonal components

are of the form

RMN = AMNX
′ + BMN p

′ +DMN , M 6= N . (4.19)

Explicit formulae for all non-vanishing coefficient functions are given in appendix D.

Evaluating the energy-momentum tensor on the right hand side in (4.16) is straight-

forward. We will forego the details and just look at one specific equation, the off-diagonal

Einstein equation (4.16) with M = 10 and N = 11. On the one side, we have

R10 11 = −2
(
g2 − 2m2

7

)
tanχ

(Σ−X)

X1/3Σ5/3
. (4.20)

However, as one can see by inspection of the non-vanishing flux components, the other side

must be zero. This verifies the relation between the four-dimensional coupling constant, g,

and the inverse radius of the internal manifold, m7, [34]

g =
√

2m7 . (4.21)

Given this relation, it is easy to check that all the remaining Einstein equations are satisfied

as expected.

4.4 The Maxwell equations

The Maxwell equations are

d ? F(4) + F(4) ∧ F(4) = 0 . (4.22)

13See appendix A.
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For the flux (4.10)–(4.12), they yield seven independent equations: four first order and

three second order.

The first order equations are along the components [1234569 11], [1234578 11],

[12356789], and [456789 10 11], and all have the same structure as this last one

4m7p tanχ

g2X17/6Σ5/3Ξ2

(
2m2

7 − g2
) (
p2 −X2 + 1

)
(Σ−X)

(
p2X ′ − pXp′ +X ′

)
= 0 , (4.23)

namely, they come with an overall factor of (g2 − 2m2
7).

The second order equations come from the components [1234569 10], [1234578 10] and

[12346789] in (4.22). The first two equations are somewhat involved, but the last one is

quite simple. There we find

0 =
1

2X4/3Σ2/3

[
pX ′′ −Xp′′ + 3A′

(
pX ′ −Xp′

)
− 24m2

7

]
=

2p
(
g2 − 2m2

7

)
X4/3Σ2/3

,

(4.24)

where in going from the first to the second line we have used the four-dimensional equations

of motion (4.3). Similarly, upon using (4.3), the other two equations reduce to the same

expression modulo an overall factor of XΣ. Thus the Maxwell equations are satisfied

if (4.21) holds.

To summarize, we have shown explicitly that the metric, gMN , and the four-form

flux, F(4), constructed using the uplift formulae in section 3 indeed satisfy the equations

of motion of the eleven-dimensional supergravity when the scalar fields, λ(r) and ζ(r),

and the metric function, A(r), are on-shell in four dimensions. It is important to note

that to verify that we have used only the equations of motion in four dimensions (2.17)–

(2.18) or, equivalently, (4.3)–(4.4), but not the BPS equations! This means that also

non-supersymmetric solutions of the same type will uplift to solutions of M theory.

5 Supersymmetry

We now turn to the Janus and RG-flow solutions of the BPS equations (2.19)–(2.21)

and (2.22)–(2.23), respectively, to demonstrate explicitly the N = (2, 0) and N = 2 su-

persymmetry of the corresponding uplifts in M theory. This has been discussed already in

some detail in [22], where we have argued that the N =2 supersymmetry of the RG flows

is achieved by brane polarization and is naturally defined through projectors that reflect

the underlying almost-complex structure and a dielectric projector much like those encoun-

tered in [19, 59–61]. The defect in the Janus solutions leads to additional chiral projector

that is also present in four dimensions. The result for the RG-flows is then recovered by

keeping both chiralities and taking the `→∞ limit.

5.1 Projector Ansätze

The BPS equations in eleven dimensions are obtained by setting the supersymmetry vari-

ations of the gravitinos to zero,

δψM ≡ ∂M ε+MM ε = 0 , (5.1)
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where the algebraic operators, MM , are given by

MM ≡ 1

4
ωMPQΓPQ +

1

144

(
ΓM

NPQR − 8δM
NΓPQR

)
FMNPQ . (5.2)

The Killing spinors of unbroken supersymmetries are invariant under the Poincaré trans-

formations in the tx-plane and are singlets of SU(3) acting along CP2. Hence ε does not

depend on the cordinates t, x and θ, as well as the Euler angles, α1, . . . , α3. This means

that the corresponding equations (5.1) are purely algebraic:14

Mt ε =Mx ε = 0 , Mθ ε =Mσ1 = . . . =Mσ3 = 0 . (5.3)

Similarly, the dependence of ε on the U(1)×U(1) angles, φ and ψ,

∂ε

∂φ
= −Mφ ε ,

∂ε

∂ψ
= −Mψ ε , (5.4)

is determined by the charges, qφ = 1 and qψ = 3/2, respectively.

Let us now consider the first equation in (5.3), written in the form

M ε = 0 , M ≡ Γ1M1 . (5.5)

The matrix M, expanded into the basis of Γ-matrices, is given by

M =
e−A

2`

1

X1/6Σ1/3
Γ3 +

1

12X7/6Σ4/3

[
2X

∂Σ

∂r
+ Σ

(
X ′ + 6XA′

) ]
Γ4 +

m7X
1/3

6Σ4/3

∂Σ

∂χ
Γ5

+
1

3

(
F1234Γ

4 + F1235Γ
5
)

Γ123 +
1

6
F45 10 11 Γ45 10 11 +

1

6
F6789 Γ6789

+
1

6

(
F469 11Γ

4 11 + F569 10Γ
5 10
) (

Γ69 + Γ78
)
. (5.6)

Together with the explicit formulae (3.56)–(4.12) for the flux, this gives us a homogenous

system of linear equation for the thirty two components of ε.

It is clear that after substituting the expressions for the flux components (3.56)–(4.12)

and expanding the derivatives of Σ, see (4.13) and (4.14), the operator M, as well as

the other operators, MM , become quite complicated. Hence, before we proceed with

the analytic calculation, we first explore numerically the space of solutions to (5.5). To

do that, we first eliminate the derivatives X ′, p′ and A′ using the BPS equations (4.6)

and (2.21), and set g =
√

2m7. Next we assign random values to the fields X, p, A, the

angle χ, and the constants m7 and ` upon which (5.5) becomes a purely numerical system

that can be solved for the components of the Killing spinor, ε. Note that our numerical

assignment amounts simply to choosing random initial conditions for the four-dimensional

BPS equations and thus is not constrained in any way. Those numerical solutions yield us

some information about the subspace of allowed Killing spinors, which confirms what one

could also infer from an analysis in four dimensions and the SU(3)×U(1)×U(1) symmetry.

14We will use the convention that the indices M = 1, . . . , 11 label components with respect to the

frames (3.58), while M = t, x, . . . , ψ, or M = σ1, . . . , σ3, with respect to the local coordinates and/or forms.
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More importantly, it allows us to short cut quite a bit of tedious analysis by fixing some

of the signs in the projectors below that we would have to keep track of otherwise.

For finite `, the space of numerical solutions is generically two-dimensional in agreement

withN =(2, 0) supersymmetry in four dimensions. The unbroken supersymmetries, ε, must

thus satisfy four conditions

Π0 ε = Π1 ε = Π2 ε = Π3 ε = 0 , (5.7)

where Π0, . . . ,Π3 are mutually commuting projectors. From the numerical analysis we also

find that two of these projectors are constant. To conform with the conventions in [22], we

will denote them by Π1 and Π3. The first projector,

Π1 ≡
1

2
(1 + Γ6789) , (5.8)

arises from the fact that the Killing spinor, ε, must be a singlet under the holonomy group,

SU(3), of CP2. It depends on the choice of orientation of CP2 defined by the frames

e6, . . . , e9. The second projector,

Π3 ≡
1

2
(1− Γ12) , (5.9)

is just an uplift of the corresponding chirality projector in four dimensions. In particular,

choosing κ = −1 in (2.19) and (2.20) changes the sign in (5.9). Finally, we find that on

the subspace of the Killing spinors satisfying (5.7),

∂ε

∂φ
= −Γ69 ε ,

∂ε

∂ψ
= −3

2
Γ69 ε . (5.10)

Together with (5.4), this gives us two additional algebraic equations, which as we will see

simplifies the calculations significantly. We should also note that both projectors do not

depend on the choice of the square root branch in (2.21) used to eliminate A′.

For the RG flows, taking the limit `→∞ eliminates the first term in (5.6). The space

of solutions includes then both Γ12-chiralities; the projector Π3 is thus absent and we have

a four-dimensional space of solutions corresponding to N = 2 supersymmetry. We have

shown in [22] that the remaining two commuting projectors in this limit are

Π∞2 =
1

2

[
1 + (cosαΓ5 − sinαΓ4) Γ69(cosω Γ10 + sinω Γ11)

]
, (5.11)

and

Π∞0 =
1

2

[
1 + cosβ Γ123 + sin β (cosαΓ4 + sinαΓ5)

]
, (5.12)

where the angles α, β and ω are some functions of r and χ.15 In analogy with (5.8), the

projector (5.11) can be associated with an extension of the complex structure of CP2 to an

almost complex structure with extra pair of complex frames. Finally, (5.12) is the dielectric

deformation of the standard M2-brane projector at β = 0.

15See, (4.8) and (4.5) in [22].
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For the Janus solutions, the projectors (5.11) and (5.12) must be deformed to account

for the defect, which gives rise to additional terms in the supersymmetry variations, such

as the first term in (5.6). Including such terms in (5.11) and (5.12) leads to the following

Ansatz for the projectors at finite `:

Π0 =
1

2

[
1 + a1Γ

3 + a2Γ
4 + a3Γ

5
]
, (5.13)

and

Π2 =
1

2

[
1 + (b1Γ

3 + b2Γ
4 + b3Γ

5) Γ69(cosω Γ10 + sinω Γ11)
]
. (5.14)

Those two operators form a pair of commuting projectors provided the vectors a ≡
(a1, a2, a3) and b ≡ (b1, b2, b3) are orthonormal. Such a pair of vectors can be parametrized

by three angles, α, β and γ:

a1 = cosβ cos γ − sinα sinβ sin γ , a2 = cosα sinβ ,

a3 = sinα sinβ cos γ + cosβ sin γ ,
(5.15)

and

b1 = − cosα sin γ , b2 = − sinα , b3 = cosα cos γ . (5.16)

Together with ω those angles are some functions of r and χ and will be determined by

solving the supersymmetry variations. For γ = 0, the projectors Π0 and Π2 reduce to Π∞0
and Π∞2 , respectively. We can thus view the angle γ as the Janus deformation parameter

which goes to zero in the RG-flow limit.

There is still certain redundancy in our description of the projectors (5.13) and (5.14).

To see this, introduce a third vector, c, so that (a,b, c) are orthonormal and define x ·Γ ≡
(x1Γ

3 + x2Γ
4 + x3Γ

5). Observe that the product (b · Γ)(c · Γ)Γ10Γ11 commutes with all

the projectors, Π0, . . . ,Π3 and so preserves the space of supersymmetries. One is therefore

free to rotate (5.13) and (5.14) using the action of (b · Γ)(c · Γ)Γ10Γ11 and this induces a

simultaneous rotation ω → ω+ ϑ accompanied by a rotation of b and c by the angle ϑ. In

the following we will use this freedom to simplify our calculations.

5.2 Supersymmetries for the Janus solutions

We will now calculate all the projectors and the Killing spinor, ε, by solving explicitly the

BPS equations (5.1).

In principle, one should be able to determine all the projectors in (5.7), or equivalently

solve for the angles α, β , γ and ω, directly from (5.5). The problem is that this effectively

amounts to obtaining the individual projectors Π0, . . . ,Π3 from a particular linear combi-

nation of products of these projectors. This, unsurprisingly, is not the best way to proceed.

Instead, we will first solve algebraic equations that arise from judicious linear combinations

of the variations (5.1) in which the flux terms either cancel completely or are simple.

The first such equation arises from the “magical combination” of variations

2 Γ1δψ1 + Γ6δψ6 + Γ7δψ7 + Γ10δψ10 + Γ11δψ11 = 0 , (5.17)
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in which all flux terms cancel. After eliminating the derivatives with respect to the U(1)

angles using (5.10) and modulo terms annihilated by Π1 and Π3, it reads[
A1 Γ3 + A2 Γ4 + A3 Γ5 + Γ69 (A4 Γ10 + A5 Γ11)

]
ε = 0 , (5.18)

where

A1 =
1

Σ1/3X1/6

e−A

`
, A2 =

A′

Σ1/3X1/6
, A3 =

m7X
1/3(2 cos(2χ)− 1)

sin(2χ) Σ1/3
,

A4 = −m7X
1/3(cos(2χ)− 2))

sin(2χ) Σ1/3
, A5 =

m7X
1/3 (X(cos(2χ)− 2) + 3 Σ)

2 cos2 χΣ1/3
.

(5.19)

Iterating (5.18) one finds a single consistency condition

A2
1 + A2

2 + A2
3 − A2

4 − A2
5 = 0 , (5.20)

which is satisfied by virtue of (2.21) and (4.21). This condition also means that, up to an

invertible factor, (5.18) is in fact the projector (5.14) with

b1 =
A1

A
, b2 =

A2

A
, b3 =

A3

A
, cosω =

A4

A
, sinω =

A5

A
, (5.21)

where

A ≡ (A2
1 + A2

2 + A2
3)

1/2 = (A2
4 + A2

5)
1/2 . (5.22)

Using (5.16) and (5.21), we then read off

cosα cos γ = −(2 cos(2χ)− 1)X1/2

Ω1/2
, cosα sin γ = −a sin(2χ)

Ω1/2

e−A

`
,

sinα = −a sin(2χ)A′

Ω1/2
,

(5.23)

and

cosω =
(cos(2χ)− 2)X1/2

Ω1/2
, sinω =

sin(2χ)(3 p2 −X2 + 3)

2X1/2Ω1/2
, (5.24)

where

Ω = (1− 2 cos(2χ))2X + 2 sin2(2χ)W 2 . (5.25)

Before proceeding we note that the rotation of the gamma matrices that define the

projectors is equivalent to a rotation of the frames. In particular, the rotation by ω is

equivalent to starting with the frames:

ê10 ≡ cosω e10 + sinω e11 , ê11 ≡ − sinω e10 + cosω e11 . (5.26)

Using (5.24) we find a rather simple result for one of these frames:

ê10 = m7X
1
6 Σ

1
3 Ω−

1
2

(
dφ +

3

2

(
dψ +

1

2
sin2 θ σ3

))
. (5.27)
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Note that the mixing of φ and ψ does not involve functions of r and furthermore (5.10)

implies that the supersymmetries only depend upon angles in precisely the combination

(φ+ 3
2ψ). We will return to this observation later.

Continuing with the supersymmetry analysis, since the projectors (5.13) and (5.14)

commute, we cannot obtain any information from (5.18) about the dielectric polarization

angle, β. For that we turn to another magical combination,

Γ1 δψ1 + Γ7 δψ7 + Γ8 δψ8 = 0 , (5.28)

which has no derivatives of ε and no terms with components of the internal flux. After

imposing the constant projections, it reads[
B1 + B2 Γ3 + B3 Γ4 + B4 Γ5 + Γ69 (B5Γ

10 + B6Γ
11)
]
ε = 0 , (5.29)

where

B1 =
m7 p

Σ3/2X2/3
, B2 =

1

2 Σ1/3X1/6

[
e−A

`
− pX ′ − p′X

2X

]
,

B3 =
2XA′ +X ′

4 Σ3/2X7/6
, B4 = −B5 = −m7X

1/3 tanχ

Σ1/3
, B6 =

m7

Σ1/3X2/3
.

(5.30)

Note that the presence of the B1-term in (5.29), with an analogous term absent in (5.18),

prevents (5.29) from being a projector. Still, by iteration one finds a consistency condition

B2
1 −B2

2 −B2
3 −B2

4 + B2
5 + B2

6 = 0 , (5.31)

which is indeed satisfied by virtue of (4.6) and (2.21).

Using the projectors (5.13) and (5.14) in (5.29), one is left with three independent

products of Γ-matrices which yield the following equations:

B1(sinα sinβ cos γ + cosβ sin γ) + (B5 cosω + B6 sinω) cosα cos γ

+ (B5 sinω −B6 cosω) (sinα cosβ cos γ − sinβ sin γ)−B4 = 0 , (5.32)

B2(sinα sinβ cos γ + cosβ sin γ) + B4(sinα sinβ sin γ − cosβ cos γ)

+ (B5 cosω + B6 sinω) cosα cosβ + (B5 sinω −B6 cosω) sinα = 0 , (5.33)

B3(sinα sinβ cos γ + cosβ sin γ)−B4 cosα sinβ − (B5 sinω −B6 cosω) cosα sin γ

+ (B5 cosω + B6 sinω) (sinα cosβ sin γ + sinβ cos γ) = 0 . (5.34)

However, only one of those equations is independent, which can be seen by solving one of

them for tan(β/2) and then verifying that the other two are satisfied. Equivalently, one

can solve the first two for cos β and sin β and then check that their squares indeed add up

to one. Substituting the result into the third equations yields a consistency condition

B2(cosβ cos γ − sinα sinβ sin γ) + B3 cosα sinβ

+ B4(sinα sinβ cos γ + cosβ sin γ)−B1 = 0 .
(5.35)
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This equation has a simple geometrical interpretation, namely that the (non-unit) vector

d ≡
(
B2

B1
,
B3

B1
,
B4

B1

)
, (5.36)

satisfies

a · d = −1 , (5.37)

which is the consistency condition between the operator in (5.29) and the projector (5.13).

Similarly as for the equations of motion in section 4, the solution for cos β and sinβ

above can be simplified using rationalized BPS equations. After some algebra, we find the

following result:

cosβ = cos γ C0 + sin γ C1 , sinβ = cos γ S0 + sin γ S1 , (5.38)

where

C0 = − m−17

4X3/2 Σ

[ (
X2 + 3

) (
X2 sin2 χ+ cos2 χ

)
+ p2

(
X2(cos(2χ)− 2) + 6 cos2 χ

)
+ 3 p4 cos2 χ

] A′
W 2

,

S0 =
pΩ1/2

√
2 Σ

A′

W 2
,

(5.39)

and

C1 =
p sin(2χ)

8 ΣXW 2

[
−X4 + (16 cos(2χ)− 5(cos(4χ) + 3)) csc2(2χ)X2

+ 6p2
(
X2 − 3

)
− 9p4 − 9

]
,

S1 = −
√

Ω csc(2χ)

4 ΣX3/2W 2

[
X4 sin2(χ) +X2

(
p2 − 1

)
(cos(2χ)− 2) + 3

(
p2 + 1

)
2 cos2(χ)

]
.

(5.40)

This completes the calculation of all the angles in the projectors Π0 and Π2.

To determine explicitly the Killing spinors for unbroken supersymmetries, let us intro-

duce rotations

Rij(x) = cosx− sinxΓij , i, j > 1 , (5.41)

and define

R(α, β, γ, ω) = R35(γ/2)R45(α/2)R34(β/2)R10 11(ω/2) , (5.42)

which commute with the projectors Π1 and Π3. It is straightforward to check that the

projectors (5.13) and (5.14) are then simply

Π0 = R(α, β, γ, ω) Π
(0)
0 R(α, β, γ, ω)−1 , Π2 = R(α, β, γ, ω) Π

(0)
2 R(α, β, γ, ω)−1 ,

(5.43)

where

Π
(0)
3 =

1

2
(1 + Γ3) , Π

(0)
4 =

1

2
(1 + Γ569 10) . (5.44)
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Thus any solution ε to (5.7) can be written as

ε = R(α, β, γ, ω) ε̃ , (5.45)

where ε̃ is in the kernel of the constant projectors (5.8), (5.9) and (5.44).

From the supersymmetry variations along the radial direction, y, we find

∂ε̃

∂y
=

1

2`
ε̃ , (5.46)

which is the correct radial dependence for the Killing spinor along AdS3.

This leaves two variations along r and χ, which are solved as usual by setting

ε̃ = H
1/2
0 ε , (5.47)

where

H0 = X1/6Σ1/3 eA(r) , (5.48)

is the warp factor of the “time” frame, e1 = H0 dt, and ε is a constant spinor along the

internal manifold and with the standard dependence along AdS3, which satisfies the same

constant projections as ε̃.

5.3 The RG-flow limit

The supersymmetry analysis simplifies significantly for the holographic flow solution. For

this one simply imposes the projectors (5.8), (5.11) and (5.12) but does not impose a

helicity projector like (5.13). We then find, taking the upper signs in (2.22) and (2.23):

cosα =
(2 cos(2χ)− 1)X1/2

Ω1/2
, sinα =− a sin(2χ)A′

Ω1/2
, (5.49)

cosω =
(cos(2χ)− 2)X1/2

Ω1/2
, sinω =

sin(2χ)(3 p2 −X2 + 3)

2X1/2Ω1/2
, (5.50)

and

cosβ = − 1

2
√

2W X3/2 Σ

[ (
X2 + 3

) (
X2 sin2 χ+ cos2 χ

)
+ p2

(
X2(cos(2χ)− 2) + 6 cos2 χ

)
+ 3 p4 cos2 χ

]
,

sinβ =
pΩ1/2

√
2W Σ

.

(5.51)

The space-time components of the Maxwell fields also simplify and we obtain a seemingly

standard relation for holographic flows:

h0 = −1

2
cosβ . (5.52)
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6 IR asymptotics in eleven dimensions

Having constructed the uplift in detail, we now examine the infra-red limits of the holo-

graphic RG flows described by (2.22) and (2.23) from the perspective of M theory. In an

earlier paper [22] we focussed upon the special flow with ζ = π/3 since this led to a very

interesting new result. Here we will complete the asymptotic analysis for all flows.

First recall that ζ limits to a constant value as λ → +∞ and so the various warp

factors behave as follows:

X ∼ 1

2
(1+cos ζ) e2λ , Ξ ∼ cos ζ e2λ , Σ ∼ 1

2
e2λ Σ̂ , Σ̂ ≡ (1−cos ζ cos 2χ) . (6.1)

6.1 cos 3ζ 6= −1

For such a generic ζ one has

dλ ∼ ∓ g

4

√
(1 + cos 3ζ) e3λ dr , eA ∼ R2 e−λ , (6.2)

for some constant, R. Thus the warp factor for the branes and the corresponding frames

are finite and smooth for ζ 6= 0, π:

ei ∼ 1√
2
R2 (1 + cos ζ)

1
6 Σ̂

1
3 dxi , i = 1, 2, 3 ; (6.3)

Thus the metric parallel to the branes is simply:

ds23 =

3∑
i=1

(ei)2 ∼ (1 + cos ζ)
1
3 R4 Σ̂

2
3 (−dx21 + dx23 + dx23) . (6.4)

From (3.58) and (6.1) one has

e4 ∼ ∓ 2
√

2

g

(1 + cos ζ)
1
6 Σ̂

1
3

(1 + cos 3ζ)
1
2

e−2λ dλ ,

e11 ∼ 2m7

(1 + cos ζ)
1
3 Σ̂

2
3

e−2λ
(
dφ+ cos2 χ

(
dψ +

1

2
sin2 θ σ3

))
,

(6.5)

These are the only two frames to depend on λ in this limit.

The remaining frames limit to:

e5 ∼ m7

(
Σ̂

1 + cos ζ

) 1
3

dχ ; e6 ∼ m7

(
Σ̂

1 + cos ζ

)− 1
6

cosχdθ ; (6.6)

e7 ∼ m7

2

(
Σ̂

1 + cos ζ

)− 1
6

cosχ sin θ σ1 ; (6.7)

e8 ∼ m7

2

(
Σ̂

1 + cos ζ

)− 1
6

cosχ sin θ σ2 ; (6.8)

e9 ∼ m7

2

(
Σ̂

1 + cos ζ

)− 1
6

cosχ sin θ cos θ σ3 ; (6.9)

e10 ∼m7

(
Σ̂

1 + cos ζ

)− 2
3

sinχ cosχ

((
dψ +

1

2
sin2 θ σ3

)
+

2 cos ζ

(1 + cos ζ)
dφ

)
. (6.10)
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It is instructive to rewrite e11 in terms of the one-form appearing in e10:

e11 ∼ 2m7 Σ̂
1
3

(1 + cos ζ)
4
3

e−2λ
[
dφ+

(1 + cos ζ) cos2 χ

Σ̂

(
dψ +

1

2
sin2 θ σ3 +

2 cos ζ

(1 + cos ζ)
dφ

)]
,

(6.11)

Then one has

ds22 = (e4)2 + (e11)2

∼ m2
7 (1 + cos ζ)

1
3 Σ̂

2
3

(1 + cos 3ζ)

[
dρ2 + ρ2

4 (1 + cos 3ζ)

(1 + cos ζ)3
×

×
(
dφ+

(1 + cos ζ) cos2 χ

Σ̂

(
dψ +

1

2
sin2 θ σ3 +

2 cos ζ

(1 + cos ζ)
dφ

))2]
,

(6.12)

where ρ ≡ e−2λ.

The remaining part of the metric is

ds26 =

10∑
j=5

(ej)2

∼ m2
7

(
Σ̂

1 + cos ζ

) 2
3
[
dχ2 +

(1 + cos ζ) cos2 χ

Σ̂
ds2CP2

+
(1 + cos ζ)2

Σ̂2
sin2 χ cos2 χ

(
dψ +

1

2
sin2 θ σ3 +

2 cos ζ

(1 + cos ζ)
dφ

)]
,

(6.13)

The full eleven-dimensional metric limits to the sum of (6.4), (6.12) and (6.13).

Observe that (6.13) is conformally Kähler. That is, the metric

d̂s6
2

=
Σ̂

(1 + cos ζ)
dχ2 + cos2 χds2CP2

+
(1 + cos ζ)

Σ̂
sin2 χ cos2 χ

(
dψ +

1

2
sin2 θ σ3 +

2 cos ζ

(1 + cos ζ)
dφ

)
,

(6.14)

has a Kähler form:

Ĵ ≡ − sinχ cosχdχ ∧
(
dψ +

1

2
sin2 θ σ3 +

2 cos ζ

(1 + cos ζ)
dφ

)
+ cos2 χJCP2

= d

[
1

2
cos2 χ

(
dψ +

1

2
sin2 θ σ3 +

2 cos ζ

(1 + cos ζ)
dφ

)]
,

(6.15)

where JCP2 is the Kähler form on CP2. Here we are, of course, taking ζ to be constant at

its asymptotic value. One can also easily verify that as χ→ π/2 this manifold is smooth,

and is locally like the origin of R6.

The only singular parts of the metric occur at ρ = 0 and at χ = 0, where there are

orbifold singularities in two different R2 planes in (6.12) and (6.13) respectively. As we will
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discuss below, these loci represent the intersections of the various branes that are present

in the infra-red limit.

The non-zero components of the Maxwell field are given by:

A(3) ∼ h0(r, χ) e1 ∧ e2 ∧ e3 +
1

4
sin ζ (e6 ∧ e9 + e7 ∧ e8 − e5 ∧ e10) ∧ ê11 , (6.16)

with

h0 ∼ sign(1− 2 cos ζ)
(cos ζ − cos 2χ)

Σ̂
, (6.17)

ê11 ≡ 2m7

(1 + cos ζ)
1
3 Σ̂

2
3

(
dφ+ cos2 χ

(
dψ +

1

2
sin2 θ σ3

))
. (6.18)

Thus A(3) has regular coordinate components. One might be concerned that the Maxwell

tensor has a singular source at ρ = 0 because the e11 is vanishing. However, the frame

components of the Maxwell tensor are, in fact, regular. The non-zero frame components

in the compactified directions (including e11) are:

F46911 , F47811 ∼ −
2m7 sign(1−2 cos ζ)

Σ̂
4
3

(1 + cos ζ)
1
3 (cos 2χ cos ζ−sin2 χ) tan

1

2
ζ , (6.19)

F451011 ∼ −
2m7 sign(1− 2 cos ζ) sin ζ

(1 + cos ζ)
2
3 Σ̂

1
3

, (6.20)

F56910 , F57810 ∼ −
2m7 (1 + cos ζ sin2 χ) sin ζ

(1 + cos ζ)
2
3 Σ̂

4
3

, F6789 ∼
2m7 sin ζ

(1 + cos ζ)
2
3 Σ̂

1
3

. (6.21)

It is also useful to note that the electric part of the Maxwell field is extremely simple

F electric
(4) = dAe

(3) , Ae
(3) = − 1

2
R6 sign(1−2 cos ζ) cos

1

2
ζ cos 2χdx1∧dx2∧dx3 . (6.22)

6.2 ζ = ±π/3

Here we simply take ζ = +π/3 because the flow for ζ = −π/3 simply involves reversing

the sign of the internal components of the flux, A(3).

One now has rather different asymptotics:

dλ ∼ ∓ g

2
√

2
eλ dr , eA ∼ R2 e−3λ , (6.23)

ds211 ∼ 2−
4
3 3

1
3 Σ̂

2
3

[
dρ2

ρ2
+ ρ2R2 (−dx21 + dx23 + dx23)

+
64

27
ρ2
(
dφ+

3 cos2 χ

2 Σ̂

(
dψ +

1

2
sin2 θ σ3 +

2

3
dφ

))2

+
4

3
m−27

(
dχ2 +

3

2 Σ̂
cos2 χds2CP2

+
9

4 Σ̂2
sin2 χ cos2 χ

(
dψ +

1

2
sin2 θ σ3 +

2

3
dφ

))2 ]
, (6.24)
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where, as before,

ρ ≡ e−2λ , Σ̂ ≡
(

1− 1

2
cos 2χ

)
. (6.25)

Note that the compact six-dimensional metric in (6.24) is simply the metric (6.13) special-

ized to ζ = π/3 and is therefore also conformally Kähler.

Remarkably, for ζ = π/3 many of the components of F(4) vanish in the infra-red and

we find that this limiting Maxwell field is simply given by

F(4) = dA0
(3) , A0

(3) =

√
3m−37

4 Σ̂
cos4 χ JCP2 ∧

(
dψ +

1

2
sin2 θ σ3 +

2

3
dφ

)
. (6.26)

Note that the space-time components parametrized by h0 vanish in this limit and that

F is purely magnetic and lives entirely on the conformally Kähler six-manifold. Thus, for

ζ = π/3 there are only M5 branes in the infra-red: the M2 branes have dissolved completely.

6.3 The IR limit of the flows

The first and rather remarkable surprise is that the warp factor, X
1
6 Σ

1
3 eA, in front of

frames parallel to the M2-branes (3.58) is not singular in the infra-red for ζ 6= 0, π. For

ζ = 0, π, this warp factor is expected to be singular because such a flow has no internal

fluxes and the warp factor is then simply a power of the harmonic function describing M2

brane sources that have spread on the Coulomb branch. However (6.3) shows that there is

no singularity for generic ζ and for ζ = ±π/3 equation (6.24) shows that this warp factor

actually vanishes. Thus there are no strongly singular sources of M2 branes in the infra-red.

The second surprise is that the internal six-dimensional manifold goes to a finite-sized

conformally Kähler, six-dimensional manifold and this manifold is smooth at χ = π/2.

Indeed, the only singularities are conical and occur at ρ = 0 where the U(1) fiber defined

by e11 pinches off (see (6.12)) and at χ = 0 where the U(1) fiber defined by e10 pinches off

(see (6.13)). It is also evident from (6.17) and (6.19)–(6.21) that the core of this holographic

flow is populated by finite, smooth electric (M2-brane) and magnetic (M5-brane) fluxes.

Thus there is evidently brane polarization and a geometric transition in which the M2

branes partially dissolve into smooth M5-brane fluxes leaving a finite sized “bubble” in

the form of a six-dimensional Kähler manifold. This is rather reminiscent of the kind of

transition one finds in microstate geometries [62–64].

To understand the brane content in the infra-red in more detail it is perhaps easiest to

examine the projectors that define the supersymmetries. These are given by (5.8), (5.11)

and (5.12). Define the rotated frames

Γ4̂ ≡ cosαΓ4 + sinαΓ5 , Γ5̂ ≡ cosαΓ5 − sinαΓ4 , (6.27)

Γ1̂0 ≡ cosω Γ10 + sinω Γ11 , Γ1̂1 ≡ cosω Γ11 − sinω Γ10 , (6.28)

where α = α(r, χ) and ω = ω(r, χ) are functions that depend upon the flow. The details

of these angles and how they flow are given in section 5.2 and may also be found in [22].

Given the other projectors and the fact that Γ1...11 = 1, one can write (5.12) as

Π0 ≡
1

2
(1 + cos β Γ123 + sinβ ΓInt) , (6.29)
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where ΓInt is any one of the following

Γ12369 1̂1 , Γ12378 1̂1 , Γ1235̂1̂0 1̂1 , (6.30)

This means that the flow represents M2 branes polarizing into three sets of M5 branes that

have (3 + 1) common directions, those of the M2 branes and one compactified direction,

defined by ê11. This means that the directions transverse to the M5 branes are defined by

ê4, ê10 and four of the compact internal directions. Thus the brane wrapping is crucially

determined by ê11 and hence by ω.

For cos 3ζ 6= −1 and λ→∞, one has:

cosβ =
cos ζ − cosχ

(1− cos ζ cosχ)
, α = ω =

π

2
. (6.31)

Thus ê4 = e5, ê11 = −e10 and so χ lies transverse to all the branes. Indeed, (6.31) shows

that χ = 0 involves only anti-M2 brane sources and so the conical singularity at this point

is not altogether surprising. The locus ρ ≡ e−2λ = 0 also defines the location of the

residual M2 branes and of some of the M5 branes and thus another conical singularity is

not surprising. All the M5 branes have a common direction along e10, which is the Hopf

fiber in the Kähler metric (6.14).

One rather interesting flow involves having ζ → π/2 at infinity. This does not mean

that ζ = π/2 all along the flow; indeed (2.26) takes the value −1
2 on such a flow and this

implies that as λ→ 0 one must have ζ → arccos(± 1√
5
). What makes this flow interesting is

that SU(4) symmetry is restored in the infra-red. In particular, the metric (6.14) becomes

precisely that of CP3

As described in [22], the situation is very different for cos 3ζ 6= −1. For ζ = π/3 and

λ→∞, one has:16

cosβ = 0 , ω = 0 , (6.32)

and

cosα =
2 cos 2χ− 1

2− cos 2χ
, sinα = −

√
3 sin 2χ

2− cos 2χ
. (6.33)

We now have ê11 = e11 and so the M5 branes wrap e11 while e10 remains transverse to the

branes. More significantly, the M2-brane flux now vanishes entirely and all that remains

is a very simple non-singular magnetic (M5-brane) flux (6.26). The limiting metric (6.24)

is almost like that of AdS5 × B6 where B6 is the conformally Kähler metric. The five-

dimensional manifold that we label as ÂdS5 is AdS5 in Poincaré form with one spatial

direction compactified and fibered over B6. Holographically it suggests that the IR phase

is almost a CFT except that one spatial direction has been “put in a periodic” box of some

fixed scale and that some interactions have been turned on so that this direction becomes

non-trivially fibered. Thus the IR phase is almost a CFT fixed point.

Finally, we would like to note that all the fluxes and most, if not all, of the metric

in the IR limit are purely functions of χ. This however, does not mean that these limits

represent solutions to the equations of motion because the r (or λ) dependence is critical

to giving finite terms that survive in the IR limit of the equations of motion.

16The solution for ζ = −π/3 simply flips the signs of the internal fluxes and is completely equivalent.
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7 Generalizations

There are several natural generalizations of the results presented here. The first and most

obvious is to use a somewhat more general gauged supergravity Ansatz. Our Ansatz

may be thought of as reducing to N = 2 supergravity coupled to one vector and with a

holomorphic superpotential, V =
√

2(1 + z3) [22, 29]. This can easily be generalized

to N = 2 supergravity coupled to three vector multiplets while still remaining within

gauged N = 8 supergravity. This truncation was considered in [65] and the holomorphic

superpotential becomes

V =
√

2 (1 + z1z2z3) , (7.1)

where the zi are the complex scalars of the three vector multiplets. Our results here may be

thought of as the special case with the three vector multiplets set equal and, in particular,

z1 = z2 = z3 = z. As noted in [22], the uplift formulae will be far more complicated, but one

expects that the infra-red limit will involve a more general Kähler manifold with a U(1)3

symmetry. It may also have some non-trivial moduli in that the ζ = π/3 condition may

simply become a constraint on the overall phase of z1z2z3. These moduli would probably

be related to the three distinct sets of M5-brane fluxes on the Kähler manifold. We intend

to investigate this further.

We have also attempted a much greater generalization in the spirit of [26, 60, 61]. One

starts with the uplifted flow solution and introduces rotated frames that subsume the need

for the rotation by α:

ê4 ≡ cosα e4 + sinα e5 , ê5 ≡ − sinα e4 + cosα e5 . (7.2)

Rather remarkably one can integrate these frames in our flow solution to find new variables,

(u, v), so that

ê4 ∼ du , ê5 ∼ dv . (7.3)

One can also find explicit expressions for these new coordinates:

u ≡ e2A p(r) (2 cos 2χ− 1) , v ≡ e2A cos3 χ sinχ . (7.4)

Combined with the observation implicit in the simple and very canonical form of

ê10 given in (5.27), one finds that our flow solution has a some extra structure and, in

particular, the pairing of v and the frame in ê10 in the supersymmetry projectors, along

with the phase dependence of the supersymmetries is very suggestive of an underlying

six-dimensional complex structure.

We therefore start with the (u, v) coordinates and their associated frames. We then

take the metric and fluxes to have a completely general SU(3)×U(1)×U(1)-invariant Ansatz

involving arbitrary functions of (u, v) everywhere possible. We also assume that the frame
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ê10 is universal and, in particular, take the metric Ansatz to be of the form:

ei = H0(u, v)
1
3 f i , i = 1, . . . , 3 , e4 = H0(u, v)−

1
6 H1(u, v) du ,

e5 = H0(u, v)−
1
6 H2(u, v) dv , e6 = H0(u, v)−

1
6 H3(u, v) v dθ ,

e7 =
1

2
H0(u, v)−

1
6 H3(u, v) v sin θ σ1 ; e8 =

1

2
H0(u, v)−

1
6 H3(u, v) v sin θ σ2 ,

e9=
1

2
H0(u, v)−

1
6 H3(u, v) v sin θ cos θ σ3 ;

e10= H0(u, v)−
1
6 H4(u, v)

(
dφ +

3

2

(
dψ +

1

2
sin2 θ σ3

))
;

e11= H0(u, v)−
1
6 H5(u, v)

(
dφ+G(u, v)

(
dφ +

3

2

(
dψ +

1

2
sin2 θ σ3

)))
,

(7.5)

where the Ha and G are, ab initio, undetermined functions. For the supersymmetry pro-

jectors we take α = ω = 0 at the outset but retain β = β(u, v). We also assume that the

supersymmetries have the same ψ- and φ-dependence as in (5.10). Note that this implies

that the supersymmetry only depends on the combination φ+ 3
2ψ, which appears in e10.

For the Maxwell field, we take the most general SU(3)×U(1)×U(1)-invariant potential

and choose a gauge in which all the components along e4 vanish:

A(3) = h0 e
1 ∧ e2 ∧ e3 + p0 e

5 ∧ e10 ∧ e11 + p1 e
5 ∧ (e6 ∧ e9 + e7 ∧ e8)

+ p2 (e6 ∧ e9 + e7 ∧ e8) ∧ e10 + p3 (e6 ∧ e9 + e7 ∧ e8) ∧ e11 ,
(7.6)

where the h0 and the p’s are also functions of (u, v). The whole point is that this

Ansatz at least contains our uplifted flow solution and we want to use this more gen-

eral structure to understand the underlying geometry and perhaps find more general

supersymmetric solutions.

To that end, one solves the supersymmetry variations to fix as many functions as pos-

sible. In [26, 60, 61] the whole problem reduced to determining a single “master function”

from which every other flux and metric function was derived. This master function itself

satisfied a non-trivial, non-linear differential equation. In spite of the nice structure that

we have discovered, the same kind of procedure applied here does not lead to such a sim-

ple reduction. We did, however, discover some rather general results that we will briefly

summarize so as to give a flavor of what emerges.

First, we find that, along the flow, the metric functions H1, H2 and H4 are all fixed

algebraically in terms of H3 and H5. Moreover, the v derivative of H3 is simply related to

H3 and H5. These conditions combine to reveal that the non-compact, eight-dimensional

metric transverse to the M2-branes, ds28, has six-dimensional foliations, defined by the CP2,

the coordinate v and the frame e10, are necessarily a u-dependent family of Kähler metrics.

By this we mean that there is indeed a Kähler form, J , on each leaf of the foliation but

dJ is proportional to du: if u were held constant, dJ would indeed vanish. Thus the six-

dimensional Kähler structure apparent in the IR actually descends from a family of such

structures along the flow.
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Secondly, we find that the flux parametrized by p0 is necessarily pure gauge and so we

can set p0 ≡ 0 without loss of generality. The rest of the p’s satisfy a complicated system

of equations that link them with β and the remaining metric functions. Ultimately one can

reduce the system to show that all the unknown functions are determined in terms of two

unknown functions of (u, v), H3 and a function that we will call F . The former satisfies an

extremely complicated non-linear differential equation while F is a pre-potential in that its

derivatives determine some of the functions in the Ansatz: the the v-derivative of F gives

the function G in (7.5) while the u-derivative of F gives H−25 cosβ. The remarkable fact

is that F is harmonic (annihilated by the Laplacian) in a metric that is conformal to ds28.

The Laplacian on ds28 explicitly involves H3 and so the hamonicity of F is far from simple

to use in practice.

We have, of course, verified that the uplifted flows do indeed satisfy these conditions

but so far have not been able to simplify and elucidate the general discussion to the degree

that it is worthy of presentation in this paper. The important bottom-line though is that

every generalization we have considered shows the same structure for the eight-manifold

transverse to the M2 branes: it consists of six-dimensional Kähler manifolds foliated over

an R2 base where one of the U(1)’s acts as an isometry and the Kähler potentials depend

upon the radial coordinate in this R2.

8 Conclusions

On a technical level, our results represent a highly non-trivial test of the recent results

on uplifting gauged N = 8 supergravity to M theory. Indeed, our discussion in section 7

illustrates just how difficult it would be to construct the very symmetric class of flows we

consider directly within eleven dimensions.

More broadly, we have, once again, seen how apparently very singular “Flows to Hades”

in gauged supergravity can encode some very interesting physical flows and Janus solutions

when lifted to M theory. Results like this illustrate why it is very important to understand

how gauged supergravities are encoded in higher dimensional theories.

The uplift formulae to eleven-dimensional supergravity have been well-studied and

tested compared to the uplift of gauged N = 8 supergravity in five dimensions to IIB

supergravity in ten dimensions. One reason might be that for quite some time only up-

lift formulae for the internal metric and dilaton were known [16] and those were inferred

by analogy to the M-theory result rather than proven directly. However, this has changed

recently with various reformulations of type IIB supergravity and the resulting uplift formu-

lae for all fields [66–68]. While there are quite a number of interesting physical examples

of IIB flows, it is possible that there are others yet to be discovered because they look

singular from the five-dimensional perspective. Given that the dual theory in N =4 Yang-

Mills theory, it would be interesting to examine such flows using the new Ansätze that are

now available.

The limitation in using gauged supergravity is that one is restricted to a relatively small

family of fields from the higher-dimensional perspective. Fortunately the fields one has are

quite a number of the simplest relevant and marginal perturbations and so one can still
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probe interesting physics. The limitation is most sorely felt when one tries to probe details

and subtleties of the families of IR fixed points and for this gauged supergravity is too

blunt an instrument. On the other hand, the uplifts of gauged supergravity solutions can

give invaluable insights into the geometric structures that underlie the more general classes

of flow and thus enable broader, and perhaps more physically interesting solutions to be

found. This was evident for 1
2 -BPS flows [19–21] and so even though gauged supergravity

sometimes does not describe the exact physics one wants, it can motivate and inform the

search for physically interesting families of solutions.

In this spirit, we suspect that the families of flows and Janus solutions considered

here should admit interesting generalizations. There are the generalizations within gauged

supergravity as outlined at the beginning of section 7. However, there should be families

that involve a six-dimensional Kähler manifold fibered over a two-dimensional base with

a U(1) isometry. It will probably be very challenging to use merely this information to

find general flow solutions. However, we saw here that the fluxes also took on a relatively

simple form and if one could understand the geometry underlying this one should be able

to move towards the general class of solutions.

From the physical perspective, the flows and Janus solutions we have constructed are

very interesting in that they involve M2 branes polarizing and dissolving into non-singular

(except for orbifolds) distributions of M5 branes and for one choice of parameter, flowing

to a higher-dimensional, almost-conformal fixed point [22]. Indeed, it was shown in [22]

that such flows exist for any choice of parameter if one does not insist on supersymmetry.

Apart from the interesting holographic interpretation of these flows, this kind of mech-

anism also underpins the microstate geometry program in which black holes are replaced

with smooth, horizonless solitonic geometries. (For reviews, see [64, 69, 70].) The ba-

sic mechanism means that the black hole undergoes a phase transition (driven by the

Chern-Simons interactions) in which the singular electric charge sources are replaced my

smooth magnetic fluxes. In M theory, this is realized by M2 charges being replaced by M5

fluxes. There are vast families of supersymmetric examples of this in asymptotically flat

backgrounds but so far there are no examples of this process (supersymmetric, or not) in

asymptotically AdS4 or AdS5 space-times. It is thus extremely helpful to have an example

of such a transition and perhaps use it to understand how such a phase transition might

occur more generally in asymptotically AdS4 or AdS5 space-times.

Finally, there is the question of whether there are IIB analogs of the flows and Janus

solutions studied here. These would probably be flows in which D3 branes polarized into

families of intersecting D5 branes while preserving N =1 supersymmetry in the field theory

along the flow. Such solutions might even “flow up dimensions” to give a compactified

higher-dimensional field theories in the infra-red.
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A Conventions

We use the same conventions as in [59] with the “mostly plus metric” and the eleven-

dimensional equations of motion given by

RMN + gMNR =
1

3
FMPQRFN

PQR , (A.1)

∇MFMNPQ = − 1

576

1√
−g

εNPQR1...R8FR1...R4FR5...R8 . (A.2)

The Maxwell equation can be rewritten in terms of forms as17

d ? F(4) + F(4) ∧ F(4) = 0 , (A.3)

where ? ≡ ∗1,10 is the Hodge dual in eleven dimensions.

In general, we define the Hodge dual of a k-form, ω, in d-dimensions by

(∗ω)i1...id−k =
1

k!
ηi1...id−k

j1...jk ωj1...jk , (A.4)

where

ηi1...id ≡ 1√
|g|

εi1...id , εi1...id = 1 . (A.5)

Then

(∗ω) ∧ ω = ±|ω|2 vol , |ω|2 ≡ 1

k!
ωi1...ikω

i1...ik . (A.6)

with the + sign is for a positive definite metric and the − sign for a Minkowski signature

mostly plus metric.

For a (p, q)-form Ω(p,q) on M1,3 ×M7 with the warped product metric (3.9), we have

a convenient decomposition of the Hodge dual:

? Ω(p,q) = (−1)p(7−q) ∗1,3 ∗7 Ω(p,q) , (A.7)

where ∗1,3 and ∗7 are, respectively, the dual on M1,3 with respect to the four-dimensional

part of the metric, gµν , and the dual on M7 with the internal metric, gmn. Factoring out

the warp factor, we have

∗1,3 ω(p) = ∆p−2 ◦∗1,3 ω(p) , (A.8)

where ω(p) is a p-form on M1,3 and
◦∗1,3 is the dual with respect to

◦
gµν .

B Reduced E7(7) tensors and the scalar action

Using the 56-bein (2.4) and with the SO(8) gauge field set to zero, the SU(8) composite

gauge field of the N =8 theory,

Aµijkl ≡ Aµ[ijkl] = −2
√

2
(
uijIJ∂µv

klIJ − vijIJ∂µuklIJ
)
, (B.1)

17Note that our normalization of the four-form flux is according to the “old supergravity convention.”
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has the following non-vanishing components:

Aµ
1234 = Aµ

1256 = Aµ
1278 = Aµ

3456 = Aµ
3478 = Aµ

5678 = −
√

2 ∂µz̄

1− |z|2
. (B.2)

Hence the kinetic action of the scalar fields is

e−1Lkin ≡ −
1

96
Aµ ijklAµijkl = −3

∂µz∂
µz̄

(1− |z|2)2

= −3 ∂µλ∂
µλ− 3

4
sinh2(2λ) ∂µζ∂

µζ .

(B.3)

Similarly, for the A-tensors, Aij1 ≡ A
ji
1 and A2i

jkl ≡ A2i
[jkl], we have:

A11
1 = . . . = A66

1 =
1 + zz̄2

(1− |z|2)3/2
, A77

1 = A88
1 =

1 + z3

(1− |z|2)3/2
, (B.4)

and

A2 1
234 = A2 1

256 = A2 3
124 = A2 3

456 = A2 5
126 = A2 5

346 = − (1 + z)z̄

(1− |z|2)3/2
,

A2 2
134 = A2 2

156 = A2 4
123 = A2 4

356 = A2 6
125 = A2 6

345 =
(1 + z)z̄

(1− |z|2)3/2
,

A2 1
278 = A2 3

478 = A2 5
678 = − (1 + z)z

(1− |z|2)3/2
,

A2 2
178 = A2 4

378 = A2 6
578 =

(1 + z)z

(1− |z|2)3/2
,

A2 7
128 = A2 7

348 = A2 7
568 = − z + z̄2

(1− |z|2)3/2
,

A2 8
127 = A2 8

347 = A2 8
567 =

z + z̄2

(1− |z|2)3/2
.

(B.5)

Then the scalar potential is

P ≡ −
(

3

4

∣∣A1
ij
∣∣2 − 1

24

∣∣∣A2i
jkl
∣∣∣2) = −6(1 + |z|2)

1− |z|2
= −6 cosh(2λ) . (B.6)

C The Freund-Rubin flux

The calculation of the space-time part of the flux, F st
(4), using the method employed in

section 3.5 is quite involved even for much simpler solutions such as uplifts of stationary

points. For the latter solutions only the Freund-Rubin part of the space-time flux is present,

so that

F st
(4) = fFR v

◦
ol1,3 , (C.1)

is proportional to the volume of the four-dimensional space-time, M1,3, where the propor-

tionality constant is determined universally by the scalar potential of the four-dimensional
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theory [35]. This has been generalized recently in [41] to uplifts of arbitrary solutions by in-

cluding corrections proportional to derivatives of the scalar potential. The new conjectured

formula for the Freund-Rubin flux, fFR, reads

fFR =
m7

2

[
P − 1

24

(
QijklΣ̂ijkl + h.c.

)]
. (C.2)

The Qijkl tensor is proportional to the first variation of the potential, P, along the non-

compact generators of E7(7) acting on the scalar coset, E7(7)/SU(8). It is given by [71]

Qijkl =
3

4
A2m

n[ijA
kl]m
2n −A1

m[iA2m
jkl] . (C.3)

The second tensor in (C.2) is a self-dual contraction

Σ̂ijkl = (uij
IJukl

KL − vijIJvklKL)KIJKL , (C.4)

where

KIJKL =
◦
gmnK [IJ

m KKL]
n . (C.5)

Note that at a stationary point of the scalar potential, the Q-tensor becomes anti-self-

dual [71] and hence the contraction terms in (C.2) vanish.

Specializing the contraction in (C.2) to the present solution we find

QijklΣ̂ijkl + h.c. = −16 ξ sinh(2λ) cos ζ . (C.6)

Then, using (2.13), (3.28) and (3.57), we obtain

fFR =
m7

2

[
− 6 cosh(2λ) + 2(1− 4 sin2 χ) sinh(2λ) cos ζ

]
=
m7

3
U , (C.7)

which agrees with the calculation of the space-time flux in section 3.5.

D The Ricci tensor

The non-vanishing coefficients of the diagonal components of the Ricci tensor, RMM , as

defined in (4.18):

A1 =
1

6X13/3Σ8/3Ξ2

[ (
p2 + 1

)
ΣX

(
p2 +X2 + 1

)
− 8

(
p2 + 1

)2
X2

+ Σ2
(

3
(
p3 + p

)2
+ 3p2X4 − 2

(
3p4 + 7p2 + 4

)
X2
) ]

B1 =
X2

6X13/3Σ8/3Ξ2

[
− 8p2X2 + 16p2ΣX

+ Σ2
(

3p4 − 2p2
(
3X2 + 1

)
+ 3

(
X2 − 1

)2) ]
,

C1 =
pX

3X13/3Σ8/3Ξ2

[
− 4ΣX

(
3p2 +X2 + 3

)
+ 8

(
p2 + 1

)
X2

+ Σ2
(
−3p4 + p2

(
6X2 − 2

)
− 3X4 + 10X2 + 1

) ]
,
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D1 =
2m−27

3X4/3Σ8/3

[
Σ2
(
6X2 − g2m2

7

(
3p2 + 3X2 + 4

))
− 2ΣX

(
g2m2

7 + 2p2 + 2
)
− 2

(
p2 + 1

)
X2
]

; (D.1)

A4 =
1

3X13/3Σ8/3Ξ2

[
2
(
p2 + 1

)2 (
3p2 − 1

)
X2 − 2

(
3p4 + 2p2 − 1

)
ΣX

(
p2 +X2 + 1

)
+ Σ2

(
3
(
p3 + p

)2
+ 3p2X4 − 2

(
p2 + 1

)
X2
) ]

,

B4 =
1

3X7/3Σ8/3Ξ2

[
− 2p2ΣX

(
3p2 + 3X2 − 5

)
+ 2

(
3p2 − 1

)
p2X2

+ Σ2
(

3p4 − 2p2 + 3
(
X2 − 1

)2) ]
C4 =

1

3X10/3Σ8/3Ξ2

[
2ΣX

(
3p2

(
p2 +X2

)
+X2 − 3

)
− 2

(
3p4 + 2p2 − 1

)
X2

+ Σ2
(
−3p4 − 2p2 − 3X4 + 4X2 + 1

) ]
,

D4 =
m−27

3X4/3Σ8/3

[
2Σ2

(
−3m2

7g
2
(
p2 +X2

)
− 4m2

7g
2 + 6X2

)
− 4ΣX

(
m2

7g
2 + 2p2 + 2

)
− 4

(
p2 + 1

)
X2
]

; (D.2)

A5 = − 4

3X10/3Σ8/3Ξ2

(
p2 + 1

)
(Σ−X)

(
p2 − ΣX + 1

)
,

B5 =
4p2X(Σ−X)2

3X10/3Σ8/3Ξ2
,

C5 = − 4p

3X10/3Σ8/3Ξ2
(Σ−X)

[
Σ
(
p2 +X2 + 1

)
− 2

(
p2 + 1

)
X
]
,

D5 =
2

3Σ8/3X4/3

[
− 2ΣX

(
g2 − 4m2

7

(
p2 + 1

))
+ 2g2Σ2 +m2

7

(
4p2 + 1

)
X2
]

; (D.3)

A6 =
2

3X10/3Σ8/3Ξ2

(
p2 + 1

)
(Σ−X)

(
p2 − ΣX + 1

)
,

B6 = − 2p2(Σ−X)2

3Σ8/3X7/3Ξ2
,

C6 =
2p

3X10/3Σ8/3Ξ2
(Σ−X)

[
Σ
(
p2 +X2 + 1

)
− 2

(
p2 + 1

)
X
]
,

D6 =
2

3X4/3Σ8/3

[
Σ2
(
m2

7

(
9p2 + 6

)
− g2

)
+ ΣX

(
g2 + 2m2

7

(
p2 + 1

))
+m2

7

(
p2 + 1

)
X2
]

; (D.4)

A10 =
2

3X10/3Σ8/3Ξ2

(
3p4 + 4p2 + 1

)
(Σ−X)

(
p2 − ΣX + 1

)
,

B10 =
2 p2X

3X10/3Σ8/3Ξ2
(Σ−X)

[(
3p2 + 1

)
X + Σ

(
2− 3X2

)]
,

C10 = − 4p

3X10/3Σ8/3Ξ2
(Σ−X)

(
Σ
(
−
(
3p2 + 2

)
X2 + p2 + 1

)
+
(
3p4 + 4p2 + 1

)
X
)
,

D10 = − 2

3X4/3Σ8/3

[
2ΣX

(
g2 − 4m2

7

(
p2 + 1

))
− 2g2Σ2 −m2

7

(
4p2 + 1

)
X2
]

; (D.5)
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A11 =
2

3X13/3Σ8/3Ξ2

[ (
p2 + 1

)2 (
3p2 − 1

)
X2 −

(
3p4 + 2p2 − 1

)
ΣX

(
p2 +X2 + 1

)
+

Σ2

2

(
3
(
p3 + p

)2
+ 3p2X4 − 2

(
p2 + 1

)
X2
)]

,

B11 =
1

3X7/3Σ8/3Ξ2

[
2
(
3p2 − 1

)
p2X2 − 2p2ΣX

(
3p2 + 3X2 − 5

)
+ Σ2

(
3p4 − 2p2 + 3

(
X2 − 1

)2) ]
,

C11 =
2p

3X10/3Σ8/3Ξ2

[
2ΣX

(
3p2

(
p2 +X2

)
+X2 − 3

)
− 2

(
3p4 + 2p2 − 1

)
X2

+ Σ2
(
−3p4 − 2p2 − 3X4 + 4X2 + 1

) ]
,

D11 =
2

3X4/3Σ8/3

[
− Σ2

(
3g2p2 − g2

(
3X2 + 1

)
+ 6m2

7

(
X2 + 1

))
− 4ΣX

(
m2

7

(
p2 + 1

)
− g2

)
−m2

7

(
2p2 − 1

)
X2
]
. (D.6)

The non-vanishing coefficients of the off-diagonal components of the Ricci tensor, RMN ,

M 6= N , as defined in (4.19):

A45 = − 2m7 tanχ

X11/6Σ8/3Ξ

(
p2 + 1

)
(Σ−X)(2Σ +X) ,

B45 = −2m7 tanχp

X5/6Σ8/3Ξ
(X − Σ)(2Σ +X) ; (D.7)

D10 11 = −
2
(
g2 − 2m2

7

)
tan(χ)(Σ−X)

Σ5/3X1/3
. (D.8)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[2] A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in

five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].

[3] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from

holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363

[hep-th/9904017] [INSPIRE].

[4] K. Pilch and N.P. Warner, A new supersymmetric compactification of chiral IIB supergravity,

Phys. Lett. B 487 (2000) 22 [hep-th/0002192] [INSPIRE].

[5] K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB

supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].

[6] N. Halmagyi, K. Pilch, C. Romelsberger and N.P. Warner, Holographic duals of a family of

N = 1 fixed points, JHEP 08 (2006) 083 [hep-th/0506206] [INSPIRE].

– 46 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
http://dx.doi.org/10.1016/S0370-2693(00)00795-4
http://arxiv.org/abs/hep-th/9812035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812035
http://arxiv.org/abs/hep-th/9904017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904017
http://dx.doi.org/10.1016/S0370-2693(00)00796-6
http://arxiv.org/abs/hep-th/0002192
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002192
http://arxiv.org/abs/hep-th/0006066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0006066
http://dx.doi.org/10.1088/1126-6708/2006/08/083
http://arxiv.org/abs/hep-th/0506206
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506206


J
H
E
P
0
5
(
2
0
1
6
)
0
0
5

[7] N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys.

Lett. B 128 (1983) 169 [INSPIRE].

[8] R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl.

Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].

[9] M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories

and AdS4/CFT3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

[10] C.-h. Ahn and J. Paeng, Three-dimensional SCFTs, supersymmetric domain wall and

renormalization group flow, Nucl. Phys. B 595 (2001) 119 [hep-th/0008065] [INSPIRE].

[11] C.-h. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional

gauged N = 8 supergravity, Nucl. Phys. B 599 (2001) 83 [hep-th/0011121] [INSPIRE].

[12] C.-h. Ahn and K.-S. Woo, Domain wall and membrane flow from other gauged D = 4, N = 8

supergravity. Part 1, Nucl. Phys. B 634 (2002) 141 [hep-th/0109010] [INSPIRE].

[13] C.-h. Ahn and T. Itoh, An N = 1 supersymmetric G-2 invariant flow in M-theory, Nucl.

Phys. B 627 (2002) 45 [hep-th/0112010] [INSPIRE].

[14] C.-h. Ahn and T. Itoh, The eleven-dimensional metric for AdS/CFT RG flows with common

SU(3) invariance, Nucl. Phys. B 646 (2002) 257 [hep-th/0208137] [INSPIRE].

[15] C.-h. Ahn and K.-s. Woo, Domain wall from gauged D = 4, N = 8 supergravity. Part 2,

JHEP 11 (2003) 014 [hep-th/0209128] [INSPIRE].

[16] K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys.

B 594 (2001) 209 [hep-th/0004063] [INSPIRE].

[17] A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an

N = 2 supergravity solution, Phys. Rev. D 63 (2001) 044009 [hep-th/0008076] [INSPIRE].

[18] N.J. Evans, C.V. Johnson and M. Petrini, The enhancon and N = 2 gauge theory: gravity

RG flows, JHEP 10 (2000) 022 [hep-th/0008081] [INSPIRE].

[19] C.N. Pope and N.P. Warner, A dielectric flow solution with maximal supersymmetry, JHEP

04 (2004) 011 [hep-th/0304132] [INSPIRE].

[20] I. Bena and N.P. Warner, A harmonic family of dielectric flow solutions with maximal

supersymmetry, JHEP 12 (2004) 021 [hep-th/0406145] [INSPIRE].

[21] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP

10 (2004) 025 [hep-th/0409174] [INSPIRE].

[22] K. Pilch, A. Tyukov and N.P. Warner, Flowing to higher dimensions: a new strongly-coupled

phase on M2 branes, JHEP 11 (2015) 170 [arXiv:1506.01045] [INSPIRE].

[23] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of

D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [INSPIRE].

[24] N.P. Warner, Holographic renormalization group flows: the view from ten-dimensions, Class.

Quant. Grav. 18 (2001) 3159 [hep-th/0011207] [INSPIRE].

[25] S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math.

Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

[26] C.N. Gowdigere and N.P. Warner, Holographic Coulomb branch flows with N = 1

supersymmetry, JHEP 03 (2006) 049 [hep-th/0505019] [INSPIRE].

– 47 –

http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B128,169"
http://dx.doi.org/10.1016/S0550-3213(02)00134-7
http://dx.doi.org/10.1016/S0550-3213(02)00134-7
http://arxiv.org/abs/hep-th/0107220
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107220
http://dx.doi.org/10.1088/1126-6708/2008/09/072
http://arxiv.org/abs/0806.1519
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1519
http://dx.doi.org/10.1016/S0550-3213(00)00687-8
http://arxiv.org/abs/hep-th/0008065
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008065
http://dx.doi.org/10.1016/S0550-3213(01)00008-6
http://arxiv.org/abs/hep-th/0011121
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011121
http://dx.doi.org/10.1016/S0550-3213(02)00313-9
http://arxiv.org/abs/hep-th/0109010
http://inspirehep.net/search?p=find+EPRINT+hep-th/0109010
http://dx.doi.org/10.1016/S0550-3213(02)00058-5
http://dx.doi.org/10.1016/S0550-3213(02)00058-5
http://arxiv.org/abs/hep-th/0112010
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112010
http://dx.doi.org/10.1016/S0550-3213(02)00871-4
http://arxiv.org/abs/hep-th/0208137
http://inspirehep.net/search?p=find+EPRINT+hep-th/0208137
http://dx.doi.org/10.1088/1126-6708/2003/11/014
http://arxiv.org/abs/hep-th/0209128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209128
http://dx.doi.org/10.1016/S0550-3213(00)00656-8
http://dx.doi.org/10.1016/S0550-3213(00)00656-8
http://arxiv.org/abs/hep-th/0004063
http://inspirehep.net/search?p=find+EPRINT+hep-th/0004063
http://dx.doi.org/10.1103/PhysRevD.63.044009
http://arxiv.org/abs/hep-th/0008076
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008076
http://dx.doi.org/10.1088/1126-6708/2000/10/022
http://arxiv.org/abs/hep-th/0008081
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008081
http://dx.doi.org/10.1088/1126-6708/2004/04/011
http://dx.doi.org/10.1088/1126-6708/2004/04/011
http://arxiv.org/abs/hep-th/0304132
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304132
http://dx.doi.org/10.1088/1126-6708/2004/12/021
http://arxiv.org/abs/hep-th/0406145
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406145
http://dx.doi.org/10.1088/1126-6708/2004/10/025
http://dx.doi.org/10.1088/1126-6708/2004/10/025
http://arxiv.org/abs/hep-th/0409174
http://inspirehep.net/search?p=find+EPRINT+hep-th/0409174
http://dx.doi.org/10.1007/JHEP11(2015)170
http://arxiv.org/abs/1506.01045
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01045
http://dx.doi.org/10.1088/1126-6708/2000/07/038
http://arxiv.org/abs/hep-th/9906194
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906194
http://dx.doi.org/10.1088/0264-9381/18/16/306
http://dx.doi.org/10.1088/0264-9381/18/16/306
http://arxiv.org/abs/hep-th/0011207
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011207
http://arxiv.org/abs/hep-th/0002160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002160
http://dx.doi.org/10.1088/1126-6708/2006/03/049
http://arxiv.org/abs/hep-th/0505019
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505019


J
H
E
P
0
5
(
2
0
1
6
)
0
0
5

[27] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on

perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022

[hep-th/9810126] [INSPIRE].

[28] J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable

Anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].

[29] N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus solutions in four dimensions,

JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].

[30] B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

[31] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein supergravity, Phys. Rept. 130

(1986) 1 [INSPIRE].

[32] B. de Wit, H. Nicolai and N.P. Warner, The embedding of gauged N = 8 supergravity into

D = 11 supergravity, Nucl. Phys. B 255 (1985) 29 [INSPIRE].

[33] B. de Wit and H. Nicolai, d = 11 supergravity with local SU(8) invariance, Nucl. Phys. B

274 (1986) 363 [INSPIRE].

[34] B. de Wit and H. Nicolai, The consistency of the S7 truncation in D = 11 supergravity, Nucl.

Phys. B 281 (1987) 211 [INSPIRE].

[35] H. Nicolai and K. Pilch, Consistent truncation of D = 11 supergravity on AdS4 × S7, JHEP

03 (2012) 099 [arXiv:1112.6131] [INSPIRE].

[36] B. de Wit and H. Nicolai, Deformations of gauged SO(8) supergravity and supergravity in

eleven dimensions, JHEP 05 (2013) 077 [arXiv:1302.6219] [INSPIRE].

[37] H. Godazgar, M. Godazgar and H. Nicolai, Testing the non-linear flux ansatz for maximal

supergravity, Phys. Rev. D 87 (2013) 085038 [arXiv:1303.1013] [INSPIRE].

[38] H. Godazgar, M. Godazgar and H. Nicolai, Generalised geometry from the ground up, JHEP

02 (2014) 075 [arXiv:1307.8295] [INSPIRE].

[39] H. Godazgar, M. Godazgar and H. Nicolai, Nonlinear Kaluza-Klein theory for dual fields,

Phys. Rev. D 88 (2013) 125002 [arXiv:1309.0266] [INSPIRE].

[40] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E7(7)

exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].
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