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1 Introduction

Three-dimensional gravity with negative cosmological constant, as defined by the sl(2,R)⊕
sl(2,R) Chern-Simons (CS) action of [1, 2], provides a rich framework for testing various

aspects of quantum gravity in a setting that is simpler than in higher dimensions, yet

nontrivial. Although AdS3 gravities are topological, they admit black holes [3] and possess

moduli spaces at conformal infinity governed by infinite-dimensional conformal symmetry

algebras [4, 5]; see [6] for a review.

As for higher spin gravities, these are simpler as well in three dimensions, where the

massless higher spin fields are topological, and hence the spectrum requirements on the

gauge algebras simplify considerably. Topological higher spin gravities based on the prin-

cipal embedding of sl(2,R) into sl(N,R) were shown in [7, 8] to have asymptotic WN

symmetries. In [9] holographic correspondences were conjectured for higher spin gravities

with infinite-dimensional gauge algebras hs(2)⊕hs(2) and their deformation hs(λ)⊕hs(λ)

coupled to (complex) bulk scalars.

In the above works, the (classical) gauge sector is assumed to be described by various

CS generalisations [10–12] of the Achucarro-Townsend supergravity Lagrangian [1]. On

the other hand, one class of matter coupled higher spin gravities is described on-shell by
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the Prokushkin-Vasiliev (PV) equations [13], and off-shell by the Prokushkin-Segal-Vasiliev

(PSV) action principle in twistor space [14]. However, as spacetime is absent in the latter,

its relation to the CS formulations has remained unclear. Moreover, there exists a second

class of matter coupled higher spin gravities based on action principles in three dimensions

with an extra dynamical two-form [12], whose relation to the PV system is unclear.

In this paper, we provide the PV system with an action principle of covariant Hamil-

tonian type on a six-manifold given by the direct product of a closed twistor space Z2 and

an open four-manifold X4 whose boundary X3 contains spacetimeM3. When subjected to

the variational principle combined with natural boundary conditions, the action yields the

PV equations on its five-dimensional boundary X3 × Z2. The action is constructed such

that upon integrating out the matter fields in the presence of an expectation value ν for

the PV zero-form, the effective action for the gauge fields can be consistently truncated to

models of BF type on X4. These model contain B squared terms1 containing the standard

symplectic structure of three-dimensional Fronsdal fields.

For ν = 0, we obtain a model on X4 containing Blencowe’s action, as well as a model on

Z2 containing the Prokushkin-Segal-Vasiliev action. In these models, the dual spaces that

contain the gauge fields and Lagrange multipliers are isomorphic. For generic ν (including

ν = 0), we shall also consider a model on X4 in which the aforementioned two spaces are not

isomorphic. However, its existence depends on the finiteness of the trace of the vacuum-to-

vacuum projector of a deformed oscillator induced from six dimensions. If existing, such

a model would provide an alternative to the BF-like Blencowe model based on Vasiliev’s

supertrace [15], whose six-dimensional origin remains unclear.

The master action to be constructed here is analog of the one for the four-dimensional

Vasiliev system found in [16]. In particular, it does not extend the closed and central

two-form of the PV system into a dynamical field off-shell. The inclusion of a dynamical

two-form in an action that is an analog of that for four-dimensional models given recently

in [17] and which makes contact with both the PV system as well as the action proposed

in [12] will be treated elsewhere.

The paper is structured as follows: in section 2, we cast the PV system as a differential

algebra on the direct product of twistor space and spacetime. After this preparation, we

propose a covariant Hamiltonian action on X4 × Z2, with a term quadratic in Lagrange

multipliers, in section 3. In section 4, we examine the consistent truncations to the BF-like

version of the Blencowe model on X4 and the PSV action on Z2. We summarize our results

and provide an outlook in the Conclusions in section 5. In appendix A, we review the mass

deformation. In appendix B, we present the proposed ν-deformed BF-like model on X4.

2 Prokushkin-Vasiliev models

In this section, we rewrite the PV equations [13] as a differential algebra generated by mas-

ter fields on a noncommutative manifold valued in an associative algebra, or equivalently,

as an associative bundle with fusion rules. In particular, we shall identify the minimal

1The B field of the BF-like models originate from the even Lagrange multiplier in the covariant Hamil-

tonian action, denoted by T in (3.27).
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bosonic model and its massive deformation. For a recent, in-depth treatment of the weak-

field perturbative analysis of PV systems to first nontrivial order in interactions, see [18].

2.1 Differential algebra

The master fields are

A = dxµWµ(x, z|y; Γi) + dzαVα(x, z|y; Γi) , B = B(x, z|y; Γi) , (2.1)

defined locally on the direct product M3 × Z2 of a commutative three-dimensional real

manifoldM3 with coordinates xµ, µ = 1, 2, 3, and a non-commutative two-dimensional real

manifold Z2 with coordinates zα, α = 1, 2. The fields are valued in an associative algebra

generated by a real oscillator yα, α = 1, 2, coordinatizing an internal noncommutative

manifold Y2, and a set of elements Γi, i = 1, . . . , N , obeying

{Γi,Γj} = 2δij , (2.2)

thus coordinatizing the Clifford algebra C`N , that we shall denote by CN for brevity. The

dependence of the master fields on (yα, zα) is treated using symbol calculus, whereby they

belong to classes of functions (or distributions) on Y2×Z2 that can be composed using two

associative products: the standard commutative product rule, denoted by juxtaposition,

and an additional noncommutative product rule, denoted by a ?. In what follows, we shall

use the normal ordered basis in which the star product rule is defined formally by

(f ? g)(y, z) :=

∫
R4

d2ud2v

(2π)2
eiv

αuαf(y + u, z + u) g(y + v, z − v) , (2.3)

whereas a more rigorous definition requires a set of fusion rules (see below). In particular,

the above composition rule rigorously defines the associative Weyl algebra Aq(4). This

algebra consists of arbitrary polynomials in yα and zα, modulo

yα ? yβ = yαyβ + iεαβ , yα ? zβ = yαzβ − iεαβ , (2.4)

zα ? yβ = zαyβ + iεαβ , zα ? zβ = zαzβ − iεαβ , (2.5)

whose symmetric and anti-symmetric parts, respectively, define the normal order and the

(ordering independent) commutation rules, viz.2

[yα, yβ ]? = −[zα, zβ ]? = 2iεαβ , [yα, zβ ]? = 0 . (2.6)

The basis one-forms (dxµ, dzα) obey

[dxµ, f ]? = 0 = [dzα, f ]? , (2.7)

where the graded star commutator3 of differential forms is given by

[f, g]? = f ? g − (−1)deg(f)deg(g)g ? f , (2.8)

2The doublet variables yα and zα form Majorana spinors once the equations are cast into a manifestly

Lorentz covariant form.
3We will explicitly use commutators and anticommutators, in section 3.
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with deg denoting the total form degree onM3×Z2. To describe bosonic models, we impose

π(A) = A , π(B) = B (2.9)

where π is the automorphism of the differential star product algebra defined by

π(xµ, dxµ, zα, dzα, yα,Γi) = (xµ, dxµ,−zα,−dzα,−yα,Γi) . (2.10)

The hermitian conjugation is defined by

(f ? g)† = (−1)deg(f)deg(g)g† ? f † , (zα, dz
α; yα,Γi)

† = (−zα,−dzα; yα,Γi) , (2.11)

and the reality conditions on the master fields read

A† = −A , B† = B . (2.12)

Defining

F = dA+A ? A , DB = dB +A ? B −B ? A , d = dxµ∂µ + dzα
∂

∂zα
, (2.13)

where the differential obeys

d(f ? g) = (df) ? g + (−1)deg(f)f ? dg , (df)† = d(f †) , (2.14)

the PV field equations can be written as

F +B ? J = 0 , DB = 0 , (2.15)

where

J := − i
4
dzαdzα κ κ := eiy

αzα . (2.16)

The element J is closed and central in the space of π-invariant forms, viz.

dJ = 0 , J ? f = π(f) ? J , (2.17)

as can be seen from the fact that κ, which is referred to as the inner Klein operator, obeys

κ ? f(x, dx, z, dz, y,Γi) ? κ = f(x, dx,−z, dz,−y,Γi) . (2.18)

It follows that (2.15) defines a universally Cartan integrable system (i.e. a set of general-

ized curvature constraints compatible with d2 ≡ 0 in any dimension). The Cartan gauge

transformations take the form

δεA = dε+ [A, ε]? , δεB = [B, ε]? . (2.19)
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2.2 Lorentz covariance

Introducing

Sα := zα − 2i Vα , dX := dxµ∂µ , (2.20)

the equations can be rewritten as

dXW +W ?W = 0 , dXB + [W,B]? = 0 , dXSα + [W,Sα]? = 0 ,

[Sα, B]? = 0 , [Sα, Sβ ]? = −2iεαβ
(
1−B ? κ

)
.

(2.21)

In view of {Sα, κ}? = 0, which follows from the bosonic projection, the above equations

define a deformed oscillator algebra, fibered overM3, for which B plays the role of deforma-

tion parameter. The equations can be cast into manifestly Lorentz covariant form [19, 20]

by introducing a bona fide Lorentz connection ωαβ = dxµωαβµ on M3 and defining

W = W − 1

4i
ωαβMαβ , Mαβ = y(α ? yβ) − z(α ? zβ) + S(α ? Sβ) , (2.22)

in terms of which the master field equations on M3 take the form

∇W +W ?W +
1

4i
rαβMαβ = 0 , ∇B + [W, B]? = 0 , ∇Sα + [W, Sα]? = 0 , (2.23)

where

∇W = dXW + [ω,W]? , ∇B = dXB + [ω,B]? , (2.24)

∇Sα = dXSα − ωαβSβ + [ω, Sα]? , (2.25)

and

ω =
1

4i
dxµωαβµ (yα ? yβ − zα ? zβ) , rαβ = dXω

αβ − ωαγωγβ , (2.26)

which are related by r = 1
4ir

αβ(yα ? yβ − zα ? zβ) = dXω + ω ? ω. The deformed Lorentz

generators obey the algebra

[Mαβ ,Mγδ]? = 4iε(β|(γMδ)|α) − δαβMγδ + δγδMαβ , (2.27)

where the induced transformations

δαβMγδ = 4iε(β|(γMδ)|α) − [y(α ? yβ) − z(α ? zβ),Mγδ]? (2.28)

act on the component fields of Mγδ. The above commutation rules are an example of a more

general construction wherein a Lie algebra L acts on a space M via Lie derivatives and

T : L×M → A , T : (X, p) 7→ TX(p) , (2.29)

is a representation of L in an associative algebra with product ? obeying

[TX , TY ]? = T[X,Y ] − LXTY + LY TX , (2.30)

which can be seen to obey the Jacobi identity using [LX ,LX ] = L[X,Y ] and the Leibniz’

rule LX(TY ? TZ) = (LXTY ) ? TZ + TY ? (LXTZ).

– 5 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
3

2.3 Original PV model and its truncations

By taking N = 4 and identifying

(k)PV = Γ , (ν)PV = −ν , (ρ)PV = Γ1 , (yα)PV = Γ1 yα , (zα)PV = Γ1 zα , (2.31)

(ψ1)PV = iΓ23 , (ψ2)PV = iΓ24 , (2.32)

we recover the original PV system, in which ψ1 is used to define the AdS3 translation

operators. By imposing the following conditions on the master fields, conditions that will

be justified later on from the existence of an action principle,

[Γ, A] = 0 , [Γ, B] = 0 , (2.33)

i.e. by taking them to be valued in the subalgebra

C+
4 =

⊕
σ=±

Πσ
Γ C4 Πσ

Γ , Πσ
Γ =

1

2
(1 + σΓ) , Γ = Γ1234 , (2.34)

of C4, we obtain the PV system in which the master fields (W,B)PV are ρ-independent

and (Sα)PV depend linearly on ρ. The B field consists of eight real zero-form master

fields. Four of these describe real propagating scalar fields in AdS3. The remaining four

provide topological deformation parameters. Similarly, the one-form master field splits

into [13] A = Aphys(k, ψ1) + Atwisted(k, ψ1)ψ2, where Aphys, which belongs to the adjoint

representation of o(2, 2), consists of two Fronsdal fields4 for every spin s ≥ 2 and four

abelian spin-1 Chern-Simons fields.5 The one-form Atwisted, which belongs to the twisted

adjoint representation of o(2, 2), can be removed by a field redefinition at least up to second

order in a weak field expansion [13, 18]. The following truncation

(A,B) = Π+
Γ (A,B) , (2.35)

yields a model containing two real propagating scalars and two topological master fields,

while Aphys consists of a single tower of spin s ≥ 2 Fronsdal fields and two spin-1 Chern-

Simons fields. Truncating one last time by imposing

τ(A,B) = (−A,B) , (2.36)

using the anti-automorphism defined by

τ(f ? g) = (−1)deg(f)deg(g)τ(g) ? τ(f) , (2.37)

τ(zα, dzα; yα,Γi) = (−izα,−idzα; iyα, ε(i)Γi) , ε(i) = (+,+,−,−) , (2.38)

yields a model with one propagating real scalar and one topological master field, while

Aphys now consists of only even spins. This model is identical to the original PV model

based on the algebra ho+
01(1, 0|4).6 In all of the above models, the component along Γ plays

the role of a real mass parameter, denoted by ν; for details, see appendix A.

4We do not consider here critical values of the deformation parameter ν.
5For s ≥ 2, the role of ψ1 is to split the generalised vielbein and spin connection, but for spin one there

is no such a distinction, resulting in an extra degeneracy.
6In the notation of Prokushkin and Vasiliev, the algebra ho+

01(1, 0|4) arises in section 9 of [13] by taking

n = 1, m = 0, α = 0 and β = 1 in eqs. (9.6)–(9.11) followed by a P+-projection (which corresponds to our

Π+
Γ -projection) and the projection following eq. (9.12) using the anti-automorphism σ in eq. (4.21) and the

degree map π defined in eqs. (5.6)–(5.6).
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2.4 Associative bundle

The master fields equations define an associative algebra bundle Â over M3 [21, 22]. The

fiber algebra Â|p at a generic point p ∈ M3 is related by a similarity transformation to

that at a reference point p0 ∈ M3. To describe the latter, it is convenient to separate

the variables in Ω[0](Y2)⊗ Ω(Z2), as (2.3) reduces to separate Weyl order on Ω[0](Y2) and

Ω(Z2). One can then use the factorization formula

κ = κz ? κy , κy := 2π δ2(yα) , κz := 2πδ2(zα) , (2.39)

to solve the deformed oscillator algebra at p0 formally in terms of auxiliary integrals facil-

itated by analytical continuation methods in Ω(Z2) [23]. Thus,

Â|p ∼= Â|p0 = Ω(Z2)⊗A⊗ CN , A =
⊕

Σ

Aq(2)[Σ] , (2.40)

where Aq(2)[Σ] are vector spaces of symbols corresponding to a set of boundary conditions

on M3 × Z2 [23, 24]; for examples, see section 4. Harmonic expansions, spectrum anal-

ysis and exact solutions show that the associative bundle contains nonpolynomial sectors

obtainable from reference elements [17, 23, 24]

TΣ ∈ Aq(2)[Σ] , (2.41)

by the left and right action of the Weyl algebra Aq(2). We write

Aq(2)[Σ] = Aq(2)[TΣ;λ, ρ] , (2.42)

indicating the properties of Aq(2)[Σ] as a left (λ) and right (ρ) module of Aq(2). The

associative structure of A requires a fusion rule

Aq(2)[Σ] ?Aq(2)[Σ′] =
⊕
Σ′′

NΣΣ′
Σ′′Aq(2)[Σ′′] , NΣΣ′

Σ′′ ∈ {0, 1} , (2.43)

such that if NΣΣ′
Σ′′ = 1 then the left-hand side is to be computed using (2.3) with zα =

0 and expanded into the basis of Aq(2)[Σ′′] such that all nontrivial products are finite

and the resulting multiplication table is associative. For example, massless particles and

various types of algebraically special exact solution spaces arise within Gaussian sectors.

The Weyl algebra Aq(2) ≡ Aq(2)[1], with reference state being the identity operator, is

also included (as the sector corresponding to twistor space plane waves), typically with7

N1Σ
Σ = NΣ1

Σ = 1.

3 Covariant Hamiltonian action

In this section we begin by discussing some generalities on covariant Hamiltonian actions

on X4 × Z2. We then determine the constraints on the Hamiltonian such that it leads

to a master action in which the master field content, including the Lagrange multipliers,

are extended to consist of sum of even and odd forms of appropriate degree, and central

elements. This action yields a generalized version of the PV field equations.

7An exception is fractional spin gravity [25] whose fractional spin sector Ψ and Lorentz singlet sector U

have NΨ1
Ψ = 1 and N1U

U = NU1
U = 0.
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3.1 Generalities

In order to formulate the theory within the AKSZ framework [26] using its adaptation to

noncommutative higher spin geometries proposed in [27], we assume a formulation of the

PV system that treats Z2 as being closed and introduce an open six-manifold M6 with

boundary

∂M6 = X3 ×Z2 , (3.1)

where X3 is a closed manifold containingM3 as an open submanifold. OnM6, we introduce

a two-fold duality extended [16, 28, 29]8 set of differential forms given by

A = A[1] +A[3] +A[5] , B = B[0] +B[2] +B[4] , (3.2)

T = T[4] + T[2] + T[0] , S = S[5] + S[3] + S[1] , (3.3)

valued in A⊗C4 and where the subscript denotes the form degree. We let {JI} denote the

generators of the ring of off-shell closed and central terms, i.e. elements in the de Rham

cohomology of M6 valued in the center of A⊗ C4, which hence obey

dJI = 0 ,
[
JI , f

]
?

= 0 , (3.4)

(off-shell) for any differential form f on M6 valued in A ⊗ C4. Following the approach

of [16], we consider actions of the form

SH =

∫
M6

TrA⊗C4
[
S ? DB + T ? F + V(S, T ;B; JI)

]
(3.5)

=

∫
M6

TrA⊗C4
[
S ? dB + T ? dA−H(S, T ;A,B; JI)

]
(3.6)

where TrA⊗C4 denotes a cyclic trace operation on A ⊗ C4. We assume a structure group

gauged by A and that S, T and B belong to sections, and (3.6) makes explicit the covariant

Hamiltonian form, with

H(S, T ;A,B; JI) = −S ? [A,B]? − T ? A ? A− V(S, T ;B; JI) . (3.7)

Thus, the coordinate and momentum master fields, defined by

(Xα;Pα) := (A,B;T, S) , (3.8)

lie in subspaces of A that are dually paired using TrA, which leads to distinct models

depending on whether these subspaces are isomorphic or not. In the reductions that fol-

low, we shall consider the first type of models, while a model with coordinates and mo-

menta in non-isomorphic spaces is treated in appendix B. Moreover, for definiteness, we

shall assume that

M6 = X4 ×Z2 , (3.9)

8Starting from a universally Cartan integrable system and replacing each p-form by a sum of forms of

degrees p, p+2, . . . , p+2N , and each structure constant by a function of off-shell closed and central terms,

i.e. elements in the de Rham cohomology valued in the center of the fiber algebra, with a decomposition

into degrees 0, 2, . . . , 2N , yields a new universally Cartan integrable system, referred to as the N -fold

duality extension of the original system. More generally, one may consider on-shell duality extensions by

including on-shell closed complex-valued functionals into the extension of the structure constants [29, 30].

– 8 –
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and the associative bundle Â defined in (2.40) is chosen such that

Ľ =

∮
Z2

TrA⊗C4
[
S ? DB + T ? F + V(S, T ;B; JI)

]
, (3.10)

is finite (and globally defined on X4). The action can then be written as

SH =

∫
X4

Ľ . (3.11)

We shall furthermore assume that∫
M6

TrA⊗C4df =

∮
∂M6

TrA⊗C4f , (3.12)

and ∫
M6

TrA⊗C4f ? g = (−1)deg(f)deg(g)

∫
M6

TrA⊗C4g ? f , (3.13)∮
∂M6

TrA⊗C4f ? g =

∮
∂M6

TrA⊗C4g ? f , (3.14)

from which it follows that H is a graded cyclic ?-function.

3.2 Constraints on H

The Hamiltonian is constrained by gauge invariance, or equivalently, by universal on-shell

Cartan integrability.9 In addition, it is constrained by the requirement that the equations

of motion on M6 reduce to a desired set of equations of motion on ∂M6 upon assuming

natural boundary conditions. To examine the above, we let

Zi ≡ (Xα;Pα) , (3.15)

and consider the total variation

δSH ≡
∫
M6

TrA⊗C4δZ
i ?Rj Ωij + (−)deg(Pα)

∮
∂M6

TrA⊗C4Pα ? δX
α , (3.16)

where Ωij is a graded anti-symmetric constant matrix10 and the Cartan curvatures are

given by

Ri := dZi +Qi(Z) ≈ 0 , Qi := Ωij∂jH , (3.17)

where ∂i denotes the graded cyclic derivative defined by

δ

∫
M6

TrA⊗C+
4
U =

∫
M6

TrA⊗C+
4
δZi ? ∂iU , (3.18)

for any graded cyclic ?-function U . We find

RA = F + ∂TV , RB = DB + ∂SV , (3.19)

RS = DS + ∂BV , RT = DT − [B,S]? . (3.20)

9Covariant Hamiltonian actions are gauge invariant iff their equations of motion form universally Cartan

integrable systems.
10Adopting the conventions of [27], we take ΩikΩkj = −δij .
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Requiring A and B to be free to fluctuate on ∂M6, the variational principle implies

Pα|∂M6
= 0 . (3.21)

The Cartan integrability requires −→
Q ?Qi ≡ 0 , (3.22)

using a notation in which ?-vector fields
−→
V ≡ V i−→∂ i act on ?-functions as follows:11

−→
V ? (U1 ? U2) = (

−→
V ? U1) ? U2 + (−1)deg(

−→
V )deg(U1) U1 ? (

−→
V ? U2) ,

−→
V Zi = V i . (3.23)

Moreover, imposing

∂iV|Pα=0 = (0, 0;F , 0) , (3.24)

the set of boundary equations is a two-fold duality extension of the PV system, viz.

F + F(B; JI) = 0 , DB = 0 , (3.25)

where

F(B; JI) :=
∑
n>0

Fn(JI) ? B?n , Fn(JI) =
∑
k>0

Fn,I1...IkJ
I1 ? · · · ? JIk , (3.26)

for a set of complex constants Fn,I1...Ik .

3.3 The master action

In order to obtain a model that admits consistent truncations to three-dimensional CS

higher spin gravities, we need to assume that V contains a term that is quadratic in T .

The simplest possible such action is given by

SH =

∫
M6

TrA⊗C4

[
S ? DB + T ?

[
F + g + h ?

(
B − 1

2
µ ? T

)]
+ µ ? B ? S ? S

]
(3.27)

where

g = g(JI) , h = h(JI) , µ = µ(JI) (3.28)

are even closed and central elements on M6 in degrees

deg(g, h, µ) = (2 mod 2, 2 mod 2, 0 mod 2) . (3.29)

The reality conditions are given by

(A,B;T, S; g, h, µ)† = (−A,B;−T, S;−g,−h,−µ) . (3.30)

The total variation

δSH =

∫
M6

TrA⊗C4

(
δT ?RA + δS ?RB + δA ?RT + δB ?RS

)
+

∮
∂M6

TrA⊗C4(T ? δA− S ? δB) , (3.31)

11If Usymm is a totally symmetric ?-function, then ∂iUsymm =
−→
∂ iUsymm.

– 10 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
3

where the Cartan curvatures read

RA = F + g + h ? (B − µ ? T ) ≈ 0

RB = DB + µ ? [S,B]? ≈ 0

RT = DT + [S,B]? ≈ 0

RS = DS + h ? T + µ ? S ? S ≈ 0

(3.32)

The generalized Bianchi identities are

DRA ≡ h ? (RB − µ ?RT ) , (3.33)

DRB ≡ [(RA + µ ?RS), B]? − µ ? {RB, S}? , (3.34)

DRT ≡ [RA, T ]? + [RS , B]? − {RB, S}? , (3.35)

DRS ≡ [RA, S]? + µ ? [RS , S]? + h ?RT . (3.36)

The gauge transformations

δε,ηA = DεA − h ? (εB − µ ? ηT ) , (3.37)

δε,ηB = DεB − [εA, B]? − µ ? [ηS , B]? + µ ? {S, εB}? , (3.38)

δε,ηT = DηT − [εA, T ]? − [ηS , B]? + {S, εB}? , (3.39)

δε,ηS = DηS − [εA, S]? − µ ? [ηS , S]? − h ? ηT , (3.40)

which transform the Cartan curvatures into each other, induce

δε,ηSH =

∮
∂M6

TrA⊗C4

(
ηT ? [F + g + h ? B] + ηS ? DB

)
. (3.41)

We take (εB; ηT , ηS) to belong to sections of the structure group and impose12

(ηT , ηS)|∂M6 = 0 . (3.42)

We have also assumed that (A,B) fluctuate on ∂M6, which implies13

T |∂M6 ≈ 0 ≈ S|∂M6 . (3.43)

The resulting boundary equations of motion

F + g + h ? B ≈ 0 , DB ≈ 0 (3.44)

thus provide a duality extended version of the Prokushkin-Vasiliev equations, following a

variational principle.

In the action (3.27), the relative coefficient of the BSS and TT terms is fixed uniquely

by Cartan integrability. The action is invariant under (B,S;µ, h) → (λ ? B, λ−1 ? S;λ ?

12Following the AKSZ approach, the Batalin-Vilkovisky classical master equation requires that the ghosts

corresponding to (ηT , ηS) vanish at ∂M6 off-shell.
13Following the AKSZ approach, the Batalin-Vilkovisky classical master equation requires that (3.43)

holds off-shell.
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µ, λ−1 ? h) for closed and central elements λ = λ(J i) of degree 0 mod 2 that are real

and invertible. The canonical transformation (A,B) → (A − 1
2µ ? S,B + 1

2µ ? T ) leads to

replacement of
∫
M6

TrA⊗C4
[
−1

2µ ? T ? T + µ ? B ? S ? S
]

in (3.27) by 1
4

∫
M6

TrA⊗C4µ ? T ?

S ? S − 1
2

∮
∂M6

TrA⊗C4µ ? T ? S. However, as we shall see, the form of the Hamiltonian

action for the PV system that lends itself most straightforwardly to consistent truncations

of the B field is given by (3.27).

4 Consistent truncations

In this section we perform consistent truncations of the covariant Hamiltonian master ac-

tion in six dimensions down to various models on X4 and Z2. The truncations consist of

integrating out the fluctuations in B around its vacuum expectation value νΓ followed by re-

ductions on Z2 and X4. On X4, we reach BF -like models with Lagrangian forms containing

Blencowe’s action for ν = 0 and a ν-deformed version thereof that we present in appendix B.

For ν = 0, the reduction to Z2 yields the Prokushkin-Segal-Vasiliev (PSV) action.

A consistent truncation of a system with action S[ϕ] and equations of motion E(ϕ) = 0

amounts to an Ansatz ϕ = ϕ(ϕ′) off-shell such that E(ϕ(ϕ′)) = 0 are equivalent to a set

of equations E′(ϕ′) = 0 that i) are integrable without any algebraic constraints on ϕ′; and

ii) follow by applying the variational principle to the reduced action Sred[ϕ′] := S[ϕ(ϕ′)].

4.1 Reduction to BF-like extension of Blencowe’s action

Starting from the equations of motion (3.32) and setting B = 0 yields

F + g − h ? µ ? T = 0 , DT = 0 , (4.1)

and

DS + h ? T + µ ? S ? S = 0 , (4.2)

which together form a Cartan integrable system containing (4.1) as a subsystem, i.e. the

free differential algebra generated by (A, T, S) contains a subalgebra generated by (A, T ).

Assuming ∂M6 to consist of a single component, it follows from S|∂M6 = 0 that S can be

reconstructed from (A, T ) on-shell14 from (4.2). Therefore, the system (4.1) is a consistent

truncation of the original system (3.32) on-shell.

Rewriting the full action (3.27) by integrating by parts in its SDB-term yields

SH =

∫
M6

TrA⊗C4

[
T ?

(
F + g − 1

2
h ? µ ? T

)
+B ? (DS + h ? T + µ ? S ? S)

]
. (4.3)

It follows that B = 0 is a saddle point of the path integral at which B and S can be

integrated out in a perturbative expansion. Schematically, modulo gauge fixing, one has∫
〈B〉=0

[DB][DS]e
i
~SH ∼ e

i
~Seff [A,T ] , (4.4)

14Since T |∂M6 = 0 on-shell as well it follows that both S and T can be taken to vanish on M6 on-shell.
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where the effective action

Seff [A, T ] = Sred[A, T ] +O(~) , (4.5)

consists of loop corrections (comprising attendant functional determinants on noncommu-

tative manifolds) and

Sred =

∫
M6

TrA⊗C4T ?

(
F + g − 1

2
h ? µ ? T

)
. (4.6)

The latter is a consistently reduced classical action in the sense that it reproduces the

subsystem (4.1). The reduced system, which thus consists of the gauge sector of the

original system, is a topological theory with local symmetries

δA = Dε+ µ ? h ? η , δT = Dη − [ε, T ]? , (4.7)

and equations of motion and boundary conditions given by

F + g − µ ? h ? T = 0 , DT = 0 , (4.8)

T |∂M6 = 0 . (4.9)

The boundary equations are thus given by

(F + g)|∂M6 = 0 . (4.10)

To address Blencowe’s theory, we truncate once more by reducing (4.1) under the

assumptions that

g = ǧ[2] − µ0J ? ǧ
′
[2] , µ = µ[0] ≡ µ0 , h = J , (4.11)

where µ0 is an imaginary constant, and that

A = W̌[1] − Ǩ[1] − µ0J ? Ǩ[1] , (4.12)

T = Ť[2] + Ǩ[1] ? Ǩ[1] − µ0J ? Ť[2] , (4.13)

where by definition

f̌ ∈ Ω(X4)⊗ 1Ω(Z2) ⊗ Ǎ ⊗ Č4 , (4.14)

in terms of an associative algebra Ǎ of π-projected symbols of yα (to be specified below).

Thus

df̌ = dX f̌ , π(f̌) = f̌ , (4.15)

as required for π(A, T ) = (A, T ). Defining

F̌ = dXW̌ + W̌ ? W̌ , ĎǨ = dXǨ + [W̌ , Ǩ]? , ĎŤ = dX Ť + [W̌ , Ť ]? , (4.16)

suppressing the subscripts indicating form degrees, the reduction of (4.1) yields

F̌ + Ť + ǧ + ǧ′ = 0 , ĎŤ = 0 , (4.17)

DǨ − Ǩ ? Ǩ + Ť + ǧ′ = 0 , (4.18)
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which is a Cartan integrable system containing (4.17) as a subsystem. From (4.9)

and (4.13), we deduce the boundary conditions

Ť |∂X4 = 0 = (Ǩ ? Ǩ)|∂X4 , (4.19)

which are compatible with (4.18) since [ǧ′, Ǩ]? = 0. Substituting (4.12) and (4.13) into (4.6)

and using (4.19) we obtain

Šred[W̌ , Ť ] = −µ0

∫
X4

∫
Z2

TrA⊗C4J ? Ť

(
F̌ + ǧ + ǧ′ +

1

2
Ť

)
, (4.20)

which reproduces (4.17) on-shell, implying that truncation (4.12)–(4.14) is indeed consis-

tent.

There are two independent embeddings of Blencowe’s model into the above master

action. They can be obtained by choosing the fiber algebras

m = 0 : Ǎ ⊗ Č4 =
(
Aq+(2)⊕ (Aq+(2) ? κy)

)
⊗ C4 , (4.21)

m = 1 : Ǎ ⊗ Č4 =
(
Aq+(2)⊕ (Aq+(2) ? κy)

)
⊗ C+

4 , (4.22)

and equipping A⊗ C4 with trace operations as follows:15

TrmA⊗C4(f0 + f1 ? κy) :=

∫
Y2

d2y

2π
TrC4(Γ)mκy ? fm ≡ STrAq(2)TrC4(Γ)mfm , m = 0, 1 ,

(4.23)

where fm ∈ Aq+(2)⊗ C4 and

∫
Y2

d2y

2π
=

∫
R2

d2y

2π
, TrC4

4∑
k=0

fi1...ik Γ[i1 . . .Γik] := f0 . (4.24)

The factorization formula (2.39) then yields16∫
Z2

TrmA⊗C4J ? (f̌0 + f̌1 ? κy) = iπ STrAq(2)TrC4(Γ)mf̌1−m . (4.25)

We truncate the models further as follows:

m = 0 : W̌ = Π+
κy ? W+ + Π−κy ? W− , Ť = Π+

κy ? T+ + Π−κy ? T− , (4.26)

m = 1 : W̌ = Π+
ΓW+ + Π−ΓW− , Ť = Π+

ΓT+ + Π−ΓT− , (4.27)

where W± and T± are independent of Γi and κy, and

Π±κy =
1± κy

2
. (4.28)

15The (graded cyclic) supertrace obeys STrAq(2)f ? g = STrAq(2)g ? π(f) and STrAq(2)f = f(0) provided

that f(y) is the symbol of f defined in Weyl order.
16We use the normalizations dzαdzα = −2dz1dz2 = −2d2z and

∫
d2yd2zκ ? f(y) = 4π2f(0).
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Inserting (4.26) and (4.27) into (4.20) and using

m = 0 :

∫
Z2

Tr0
A⊗C4J ?Π±κyf = ± iπ

2
STrAq(2)f , (4.29)

m = 1 :

∫
Z2

Tr1
A⊗C4J ?Π±Γ f = ± iπ

2
STrAq(2) f , (4.30)

for f independent of Γi and κy, yields the following four-dimensional Hamiltonian extension

of Blencowe’s action:

SBl = − iπ
2
µ0

∫
X4

STrAq(2)

[
T+

(
F++ǧ+ǧ′+

1

2
T+

)
− T−

(
F−+ǧ+ǧ′+

1

2
T−

)]
, (4.31)

which is thus reached for both m = 0 and m = 1.

Assuming that X4 = X3 × [0,∞[ and that all fields fall off at X3 ×∞, and assuming

furthermore that X3 has a simple topology such that

ǧ + ǧ′ = 0 , (4.32)

the elimination of the Lagrange multipliers yields

SBl =
iπ

2
µ0 (SCS[W+]− SCS[W−]) , (4.33)

with

SCS[W ] =

∮
X3

STrAq(2)

[
1

2
W ? dW +

1

3
W ?W ?W

]
, (4.34)

where now d denotes the exterior derivative on X3. Equivalently,

SBl = iµ0π

∮
X3

STrAq(2)

[
E ? (dΩ + Ω ? Ω) +

1

3
E ? E ? E

]
, W± = Ω± E , (4.35)

from which we identify

µ0 = − 4i

π2

`AdS

GN
(4.36)

using the conventions of [31]. Relaxing the assumption on ǧ + ǧ′ by taking it to be a

nontrivial element in the de Rham cohomology of X3, Blencowe’s action is accompanied by

the extra term

Sg = 2iπµ0

∫
X4

STrAq(2)(ǧ + ǧ′) ? F̌ = 2iπµ0

∮
X3

STrAq(2)(ǧ + ǧ′) ? W̌

= iπµ0

∮
X3

STrAq(2)(ǧ + ǧ′) ? E , (4.37)

which is the flux of the central gauge fields in W̌ through the two-cycle dual to ǧ + ǧ′.

Thus, the modified Blencowe equations of motion take the form

dΩ + Ω ? Ω + E ? E = −(ǧ + ǧ′) , dE + Ω ? E + E ? Ω = 0 . (4.38)
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4.2 Reduction to PSV action

Instead of reducing (3.27) on Z2 one may consider a reduction on X4 under the assump-

tion that

∂X4 = ∅ , (4.39)

as well as ∂Z2 = ∅. The absence of any boundary condition on T implies that its integration

constant in form degree zero contains local degrees of freedom. To exhibit the model on

Z2, we first perform a consistent truncation by setting

B = νΓ , (4.40)

leading to the reduced action

Sred[A, T ] =

∫
M6

TrA⊗C4

[
T ?

(
F + g + νΓh− 1

2
h ? µ ? T

)]
. (4.41)

We then proceed by introducing a volume form J̌[4] on X4 and background potentials W̌
(0)
[3]

and V
(0)

[1] on X4 and Z2, respectively, defined by

dXW̌
(0)
[3] = J̌[4] , F

(0)
[2] + νΓJ = 0 , F

(0)
[2] := dZV

(0)
[1] + V

(0)
[1] ? V

(0)
[1] . (4.42)

In particular, we take W̌
(0)
[3] to be independent of the internal coordinates yα. We next

perform a further truncation by taking

h = J + iJ̌[4] , µ = µ0 , g = g′[2] , (4.43)

and considering the Ansatz

A = V
(0)

[1] + V ′[1] − µ0 W̌
(0)
[3] ? (1 + i[α− β]J) ? C ′ − iνΓ W̌

(0)
[3] , (4.44)

T = i (1 + iαJ + βJ̌[4]) ? C
′ , (4.45)

with α, β ∈ R and fluctuating fields

f ′ ∈ 1|X4 ⊗ Ω(Z2)⊗A′ ⊗ C+
4 , π(f ′) = f ′ , df ′ = dZf

′ , (4.46)

where Ω(Z2)⊗A′ consists of an algebra of π-invariant master fields. Defining

F ′ = dZV
′ + {V (0), V ′}? + V ′ ? V ′ , D′C ′ = dZC

′ + [V (0) + V ′, C ′]? (4.47)

and suppressing the subscripts denoting form degrees, one has

F = F (0) + F ′ − iνΓ J̌ − µ0 J̌ ? [1 + i(α− β)J ] ? C ′ + µ0W̌
(0) ? D′C ′ , (4.48)

where we used that J ? D′C ′ ≡ 0 being a 3-form on Z2 and {V (0) + V ′, W̌ (0)}? ≡ 0 since

W̌ (0) is independent of yα.

The equations of motion of (4.41) on the above Ansatz read

F ′ + g′ − iµ0J ? C
′ = 0 , D′C ′ = 0 , µ0 (β − 2α) J ? J̌[4] ? C

′ = 0 , (4.49)
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while plugging the Ansatz back into the action (4.41) yields

S′red = i

∫
X4

J̌[4]

∫
Z2

TrA⊗C4

(
C ′ ?

[
β(F ′[2] + g′[2])− i µ0 α J ? C

′
] )

, (4.50)

from which it follows that the Ansatz leads to a nontrivial and consistent truncation

provided

β = 2α . (4.51)

In order to define the combined integration over Z2 and trace operation A, we may take

ν = 0 , g′ = 0 . (4.52)

The background connection V (0) thereby is flat. The simplest choice amounts to take

V (0) = 0. We then choose

TrA⊗C4 =

∫
Y2

d2y

2π
TrC4 (4.53)

and make the redefinition17

C ′ = κ ? b′ , s′α = zα − 2i V ′α , (4.54)

so that

F ′ = −1

4
dzα ∧ dzβ

(
s′α ? s

′
β + iεαβ

)
, (4.55)

and the reduced action now reads

S′red =
α

2
Vol(X4)

∫
Z2

d2z TrA⊗C4 κ ?
(
is′α ? s′α ? b

′ + 2b′ + iµ0 b
′ ? b′

)
, (4.56)

where Vol(X4) =
∫
X4
J̌[4]. The above action is identified with the original action given

in [14] upon taking µ0 = −i and Vol(X4) = 2
α .

5 Conclusions

We have presented an action principle for the bosonic sector of Prokushkin and Vasiliev’s

three-dimensional matter coupled higher spin gravity. By integrating out the matter fields,

in a fashion that amounts to a consistent truncation in the classical limit, followed by

consistent dimensional reductions, we have found that the action contains various higher

spin CS models as well as the action [14] of Prokushkin, Segal and Vasiliev on twistor

space. On the other hand, it is not clear if the effective action for the scalar sector alone

can reproduce the standard Klein-Gordon one. If it worked, it should produce, on X3, the

action given in [32] specialised to 3D.

The construction rests on three ingredients: i) Cartan and Vasiliev’s unfolded formu-

lation of classical field theory in terms of vanishing curvatures whereby the local degrees

of freedom arise via the Weyl zero-form (as captured by harmonic expansions taking place

in associative bundles independently of the dimension of the base manifold); ii) the usage

17One could as well take the flat connection V (0) = −izα dzα together with s′α = −zα − 2iV ′α.
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of noncommutative twistor spaces for describing massless Weyl zero-forms in constantly

curved backgrounds; and iii) the AKSZ formulation of quantum field theories based on co-

variant Hamiltonian actions on open bulk manifolds (whose boundaries contain the classical

Cartan integrable systems).

When applied to massless degrees of freedom in three dimensions with spin greater

than one, the above approach naturally leads to actions in six dimensions containing two-

dimensional noncommutative twistor spaces. Their reductions on twistor space yields BF-

like actions on four-manifolds, given by spacetimes times the extra auxiliary AKSZ ra-

dius, in their turn containing the standard symplectic structures of the three-dimensional

massless gauge fields of spin greater than one (which are CS theories). Thus, modulo

technicalities having to do with consistency of the reduction schemes and the structure of

the modules making up the associative bundles underlying higher spin gravities, there is a

clear overlap in four dimensions between the standard CS formulation of three-dimensional

higher spin gauge fields and the covariant Hamiltonian formulation in six dimensions.

Turning to applications, it would be interesting to see to what extent the action, possi-

bly supplemented by boundary terms, can be used to compute the free energy and entropy

of exact solutions of the PV system, such as the recent nontrivial examples found in [33];

for related proposals for on-shell actions, see [12] and [34]. The action could also have a

bearing on the one-loop corrections from matter fields to the higher spin CS gauge sector.

The above implementations may be useful in solidifying the Gaberdiel-Gopakumar (GG)

conjecture [9]. In particular, radiative corrections may be of importance in matching sym-

metry algebras [35] beyond the realm of CS actions; for reviews of the CS approximation,

see [36], and for existing works beyond the CS approximation, see [18, 37, 38].

As for alternatives to the PV system, an interesting action for matter coupled higher

spin gravity has been presented in [12]. Its four-dimensional covariant Hamiltonian refor-

mulation is given by the BF-like action

S =

∫
X4

STr

(
T ?

(
F +B ? B̃ +

1

2
T

)
− T̃ ? (F̃ + B̃ ? B) + S̃ ? DB + S ? D̃B̃

)
, (5.1)

where (A, Ã,B, B̃;T, T̃ , S̃, S) are forms of degrees (1, 1, 0, 2; 2, 2, 3, 1) valued in Aq+(2) ∼=
hs(1

2) and

F = dA+A ? A , DB = dB +A ? B −B ? Ã , (5.2)

F̃ = dÃ+ Ã ? Ã , D̃B̃ = dB̃ + Ã ? B̃ − B̃ ? A . (5.3)

The action, with its dynamical two-form B̃, cannot be obtained from the six-dimensional

master action (3.27), as there is an obstruction due to the presence of the central term

h. Instead, it is natural to seek a connection between (5.1) and the PV system via a six-

dimensional model on X4×Z2 built along the same lines as the nine-dimensional Frobenius-

Chern-Simons model in [17]. The construction of such a model will be presented elsewhere.

Comparing higher spin gravities in three and four dimensions, the latter admit covari-

ant Hamiltonian actions in nine dimensions [16, 17], though it remains unclear whether
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they contain the standard symplectic structure for Fronsdal fields [39].18 Essentially, this

is due to the presence of extra auxiliary fields in the unfolded description of Fronsdal

fields on-shell, whose inclusion into a strictly four-dimensional off-shell formulation remains

problematic. However, the on-shell actions receive contributions as well from boundary

terms [21, 27] given by topological invariants that reduce on-shell to higher spin invari-

ants [21]. These invariance, which are inserted on the eight-dimensional boundaries, are

given by integrals over closed p-cycles in spacetime of on-shell (de Rham) closed p-forms

in their turn given by integrals over twistor space of constructs built from spacetime cur-

vatures. In terms of these observables, spacetime emerges in limits where physical states

labelled by spacetime points become separated from each other [40]; see also the Conclu-

sions of [23]. In particular, for p = 0, the resulting zero-form charges [41] of the (minimal

bosonic) Type A and Type B models [20, 42] were shown in [43, 44] to provide free theory

correlation functions at the leading classical order, in accordance with the proposal made

in [45–48]. For boundary conditions corresponding to free fields, this proposal requires

that correlation functions with separated points do not receive any radiative corrections,

in agreement with the covariant Hamiltonian approach [16];19 for a similar usage of zero-

form charges in 3D, see [12].

To conclude, we view higher spin gravity as a useful laboratory for exploring the

treatment of quantum field theory with local degrees of freedom by combining the AKSZ

approach [26] to topological field theories on manifolds with boundaries and Cartan and

Vasiliev’s formulation of nonlinear partial differential equations as free differential algebras

with infinite zero-form towers. To question its universality, it would be desirable to treat

models in which nontrivial radiative corrections arise in an as simple context as possible.

To this end, three-dimensional models might prove to be fruitful and we hope that our

action will be helpful in this endeavour.
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A Massive vacuum of PV system

In this appendix, we rewrite the massive vacuum of the PV system [13] using the Clifford

algebra variables. The vacuum solution reads20

B(0) = ν Γ , A(0) = W (0) + V (0) , ν ∈ R , Γ = Γ† ∈ C+
4 , (A.1)

obeying

dXW
(0) +W (0) ? W (0) = 0 , dXS

(0)
α + [W (0), S(0)

α ]? = 0 , (A.2)

[Γ,W (0)] = 0 , [Γ, S(0)
α ]? = 0 , [S(0)

α , S
(0)
β ]? = −2i εαβ

(
1− ν Γκ

)
, (A.3)

where S
(0)
α = zα − 2iV

(0)
α . The constraints along M3 can be solved using a gauge function

that commutes to Γ, viz.

W (0) = L−1 ? dL , S(0)
α = L−1 ? z̃α ? L , [Γ, L]? = 0 , (A.4)

where z̃α obeys

dX z̃α = 0 , [Γ, z̃α]? = 0 [z̃α, z̃β ]? = −2i εαβ
(
1− ν Γκ

)
. (A.5)

The integrability on Z2 implies the existence of a doublet ỹα obeying

[ỹα, z̃β ]? = 0 , {Γ, ỹα} = 0 , ỹα|ν=0 = Ayα , {A,Γ} = 0 , (A.6)

for some matrix A ∈ C4. Thus one can take

L = L(ỹα,Γij) , S(0)
α = z̃α . (A.7)

Remarkably, as found in [13], the solution obeys

[ỹα, ỹβ ]? = 2iεαβ
(
1− ν Γ

)
. (A.8)

At the level of the complexified algebra, a solution is given by

z̃Cα = X zα + Y σα , ỹCα = Ayα +B τα , (A.9)

where X, Y , A and B are built out of gamma matrices Γi and the building blocks

σα := ν

∫ 1

0
dt t eityz(yα + zα) , τα := ν

∫ 1

0
dt (t− 1) eityz(yα + zα) , (A.10)

with yz := yαzα, obey

[z[α, σβ]]? = −iν εαβ κ , [σα, σβ ]? = 0 , {σα, τβ}? = 0 ,

[zα, τβ ]? = {σα, yβ}? , {y[α, τβ]}? = iν εαβ , [τα, τβ ]? = 0 .
(A.11)

20In the minimal bosonic model, the vacuum solution is given by B(0) = νΠ+
Γ , W (0) = Π+

ΓL
−1 ? dL and

S
(0)
α = Π̃+

ΓL
−1 ? z̃α ? L where L is an even function of ỹα. We note that z̃+

α := Π+
Γ z̃α obeys [z̃+

α , z̃
+
β ]? =

−2i εαβΠ+
Γ

(
1− νκ

)
and commutes with even but not odd functions of ỹα.

– 20 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
3

For the above Ansatz, eqs. (A.5), (A.6) and (A.8), respectively, are equivalent to

X2 = 1 , XY = Y X = −Γ , [Γ, X] = 0 = [Γ, Y ] , (A.12)

[A,X] = {A, Y } = [B,X] = {B, Y } = 0 , {Γ, X} = 0 = {Γ, Y } , (A.13)

A2 = 1 , AB = −BA = −Γ . (A.14)

A solution for z̃α that commutes to C+
4 is obtained by taking [13]21

Γ = Γ1234 , X = 1 , Y = −Γ , A = Γ1 , B = −Γ234 = −Γ1Γ , (A.15)

where Γi1...ik := Γ[i1 . . .Γik], and the relation between the PV generators and ours is given

in (2.31), which yields

z̃α = zα−ν(yα+zα)

∫ 1

0
dt t eit yz Γ , ỹα = Γ1

[
yα−ν(yα+zα)

∫ 1

0
dt (t−1) eit yz Γ

]
. (A.16)

This solution, however, does not satisfy the required reality conditions, i.e. ((ỹCα)†, (z̃Cα )†)

form a set of deformed oscillators that is linearly independent from (ỹCα , z̃
C
α ) This is remedied

by a highly nontrivial modification found in [13] given by

z̃sym
α = zα +

ν

8

∫ 1

−1
ds(1− s)

[
e
i
2

(s+1)yz(yα + zα) ? Φ

(
1

2
, 2;−Γκ ln|s|−ν

)
+ e

i
2

(s+1)yz (yα − zα) ? Φ

(
1

2
, 2; Γκ ln|s|−ν

)]
? κΓ

ỹsym
α = Γ1

[
yα + Γ

ν

8

∫ 1

−1
ds(1− s) e

i
2

(s+1)yz

(
(yα + zα) Φ

(
1

2
, 2;−Γ ln|s|−ν

)
− (yα − zα) Φ

(
1

2
, 2; Γ ln|s|−ν

))]
,

(A.17)

where Φ(a, b; z) is the confluent hypergeometric function.

B BF-like formulation of modified Blencowe action

In this appendix, modulo a technical assumption on a normalization coefficient (given in

eq. (B.22)), we present a consistent truncation of the master action (3.27) for nontrivial

vacuum expectation value of B leading to a model on X4 in which the gauge fields and the

Lagrange multipliers belong to non-isomorphic dual spaces.

To this end, we observe that the equations of motion (3.32) admit a consistent trun-

cation given by

B = νΓ ∈ R , (B.1)

as can be seen from the fact that the resulting field equations,

F + νΓh+ g − h ? µ ? T = 0 , DT = 0 , DS + h ? T + µ ? S ? S = 0 , (B.2)

21Using the gauge function, the first order fluctuation B(1) can be written as B(1) = L−1 ?B′(1) ?L where

dXB
′(1) = 0 and [z̃α, B′(1)]? = 0. Thus, if z̃α commutes to C+

4 then B′(1) = B′(1)(ỹα,Γij). Otherwise, as

z̃α = zα−2iV
′(0)
α where V ′(0) = L?(dZ+V (0))?L−1, one may equivalently solve dZB

′(1) +[V ′(0), B′(1)]? = 0

iteratively using a homotopy contractor in Z2-space.
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form a Cartan integrable system. Inserting (B.1) into the master action (3.27), the resulting

consistently truncated action is given by

Sred[A;T ] =

∫
M6

TrA⊗C4T ?

(
F + νΓh+ g − 1

2
h ? µ ? T

)
. (B.3)

Its gauge symmetries take the form

δA = Dε+ µ ? h ? η , δT = Dη − [ε, T ]? , (B.4)

and the equations of motion and boundary conditions are given by

F + νΓh+ g − µ ? h ? T = 0 , DT = 0 , T |∂M6 = 0 . (B.5)

To reach a Blencowe type action, we assume eq. (4.11) and make the reduction

A = V
(0)

[1] + W̃[1] − K̃[1] − µ0J ? K̃[1] , (B.6)

T = T̃[2] + K̃[1] ? K̃[1] − µ0J ? T̃[2] , (B.7)

where the subscripts indicating the form degree will be suppressed henceforth, and V (0) is

a twistor space background connection obeying

dV (0) + V (0) ? V + νΓJ = 0 , V (0)|ν=0 = 0 , (B.8)

and the reduced fields

f̃ ∈ Ω(X4)⊗ Ã ⊗ C̃4 , (B.9)

where Ã is an associative algebra generated by the deformed oscillator ỹα obeying

dỹα + [V (0), ỹα]? = 0 , [ỹα, ỹβ ]? = 2iεαβ(1− νΓ) , ỹα|ν=0 = Γ1yα ; (B.10)

see the appendix A for further details. Thus,

π(f̃) = f̃ , df̃ + [V (0), f̃ ]? = dX f̃ , (B.11)

and the reduced equations of motion and boundary conditions are given by the counterparts

of eqs. (4.17)–(4.19) with all quantities now valued in (B.9), which form a Cartan integrable

system. The consistently reduced action reads

S̃red[W̃ , T̃ ] = −µ0

∫
X4

∫
Z2

TrA⊗C4J ? T̃

(
F̃ + ǧ + ǧ′ +

1

2
T̃

)
. (B.12)

To obtain the alternative model, we make the choice

TrA⊗C4 =

∫
Y2

d2y

2π
TrC4Γ , (B.13)

corresponding to m = 1 in section 4.1. We also take

W̃ ∈ Ω[1](X4)⊗Aq+(2; ν)⊗ C+
4 , (B.14)

T̃ ∈ Ω[2](X4)⊗ ρ(End+(Fσν ))⊗ C+
4 , (B.15)
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where Fσν is the Fock representation space of Aq(2; ν) with ground state having eigenvalue

σ of the Klein operator −Γ, and

ρ : End(Fσν )→ Aq(2; ν) (B.16)

is a monomorphism given by the deformed oscillator realization of End(Fσν ). The space

End+(Fσν ) consists of the endomorphisms that commute to Γ. Its oscillator realization

ρ(End+(Fσν )) =
⊕
σ′=±

Aqσ
′
(2; ν) ? P σν ?Aqσ

′
(2; ν) , (B.17)

where

Aqσ(2; ν) =
⊕
σ′=±

Πσ′
Γ ?Aq(2; ν) ?Πσσ′

Γ , (B.18)

and

P σν =
2

1 + νσ
Π−σΓ ?

[
1F1

(
3

2
;

3 + νσ

2
;−2w

)]W

, (B.19)

where

w = {a+, a−}? , a± = u±α y
α , u−αu+

α =
i

2
, (B.20)

is the symbol of the oscillator realization of the ground state projector in End(Fσν ) given

in Weyl order; for details, see [25, 31]. The reduced action reads

ŠIIν = −µ0

∫
X4

∫
Z2×Y2

d2y

2π
TrC4ΓJ ? T̃ ?

(
F̃ + g + g′ +

1

2
T̃

)
, (B.21)

where T̃ ? (F̃ +g+g′) and T̃ ? T̃ lie in ρ(End+(Fν)). The Lagrangian is finite provided that

N σ
ν =

∫
Z2×Y2

d2y

2π
TrC4ΓJ ? P σν , (B.22)

is finite. If so, the dual pairing displayed in (B.14) and (B.15) is non-degenerate, and the

equations of motion and boundary conditions read

F̃ + g + g′ + T̃ ≈ 0 , D̃T̃ ≈ 0 , T̃ |∂X4 = 0 , (B.23)

where the first equation is valued in Aq+(2; ν) and the second equation in ρ(End+(Fν)).

Eliminating T̃ via the first equation (by inverting the monomorphism), yields

ŠIIν ≈
1

2
µ0

∫
X4

∫
Z2×Y2

d2y

2π
TrC4ΓJ ? (F̃ + g + g′) ? (F̃ + g + g′) , (B.24)

which is formally divergent for gauge fields given by finite polynomials, unless

F̃ + g + g′ ≈ 0 . (B.25)

It is possible to construct a deformation of Blencowe’s action by making use of Vasiliev’s

(graded cyclic) supertrace operation STrν on the Weyl algebra Aq(2; ν) of the deformed

oscillator algebra (B.10) [15], which is uniquely characterized by STrν1 = 1 and STrνΓ = ν
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(and hence differs from the trace operation proposed above). Using this operation, it is

straightforward to deform Blencowe’s action in X3 and uplift it to BF-type model in X4

with action

ŠIν = −µ0

∫
X4

STrν TrC+
4

Γ T̃ ?

(
F̃ + g + g′ +

1

2
T̃

)
, (B.26)

where T̃ and W̃ are valued in Aq+(2; ν)⊗ C+
4 .

Whether there exists a modification of (B.13) that yields the STrν operation starting

from the master action in six dimensions, possibly by using the trace operation (4.23) for

m = 0, remains to be seen.22

Thus, provided that N σ
ν is finite, we have found a covariant Hamiltonian action in

which the gauge fields and the Lagrange multipliers belong to non-isomorphic dual spaces

that is an alternative to ν-deformed Blencowe’s action. Whether this action admits a

coupling to matter is unknown, while the action presented above appears to be amenable

to such couplings on M.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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