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1 Introduction and results

Soft theorems have a long history and were studied already in the 1950s and 1960s, espe-

cially for Compton scattering of photons and gravitons on arbitrary targets (for a discussion

of low-energy theorem for photons see chapter 3 of ref. [1]). They were recognized to be

important consequences of local gauge invariance [2–10]. For photons, Low’s theorem [5]

determines the amplitudes with a soft photon from the corresponding amplitudes without

a photon, up to terms of order O(q0), where q is the soft-photon momentum. The univer-

sal leading behavior of a soft-graviton was first discussed by Weinberg [6, 7]. Non-leading

terms were then discussed in refs. [11, 12]. More recent discussions of the generic subleading

behavior of soft gluons and gravitons are given in refs. [13–15].

In the 1970s soft theorems for the string dilaton were discussed by Ademollo et al. [16]

and by Shapiro [17] for tree diagram scattering amplitudes involving only massless par-

ticles.1 Gauge invariance does not in general determine the soft behavior of the string

dilaton, because of the potential presence of gauge invariant terms at order O(q0). It was

nevertheless found in ref. [16] that such terms are not present in the bosonic string, if the

amplitude involves only massless closed string states. They do, however, appear if massless

open string states are also involved.

Interest in the soft behavior of gravitons and gluons has recently been renewed by

a proposal from Strominger and collaborators [20–23] showing that the soft-graviton be-

havior follows from Ward identities of extended Bondi, van der Burg, Metzner and Sachs

(BMS) symmetry [24–28]. This has stimulated the study of the subleading soft behav-

ior in amplitudes with gluons and gravitons. In four spacetime dimensions, Cachazo and

Strominger [23] proposed that tree-level graviton amplitudes have a universal behavior

through second subleading order in the soft-graviton momentum. These considerations

have since been extended to gluons in arbitrary number of dimensions in various ways at

tree level [29–35].

1See also refs. [18, 19] for the study of the soft dilaton behavior in string field theory.
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Poincaré and gauge invariance as well as a condition arising from the distributional

nature of scattering amplitudes have been used in ref. [36] to strongly constrain the soft

behavior for gluons and gravitons, while in ref. [37] gauge invariance is shown to completely

fix the first two leading terms (up to terms O(q0)) in the case of a gluon, and the first three

leading terms (up to terms O(q1)) in the case of a graviton, for any number of space-time

dimensions (q being the soft momentum). More specifically, in ref. [37] it was shown that

by imposing the conditions

qµM
µν
n+1 = qνM

µν
n+1 = 0 , (1.1)

one could determine for small q the behavior of the on-shell amplitude Mµν
n+1 containing a

graviton and n scalar particles:2

Mµν
n+1 = κd

n
∑

i=1

1

kiq

[

kµi k
ν
i −

i

2
kνi qρJ

µρ
i − i

2
kµi qρJ

νρ
i − i

2
qρqσ

(

kνi J
µρ
i

∂

∂kiσ
−kσi J

µρ
i

∂

∂kiν

)]

Tn

= κd

n
∑

i=1

1

kiq

[

kνi k
µ
i − i

2
kνi qρJ

µρ
i − i

2
kµi qρJ

νρ
i − 1

2
qρJ

µρ
i qσJ

νσ
i

+
1

2

(

(kiq)(η
µνqσ − qµηνσ)− kµi q

νqσ
) ∂

∂kσi

]

Tn +O(q2) , (1.2)

where Lorentz contraction of two vectors is here and throughout this work denoted by

pq := ηµνpµqν . where Tn is the amplitude of n scalar particles and Jµρ
i is the angular

momentum operator

Jµρ
i = i

(

kµi
∂

∂kiρ
− kρi

∂

∂kiµ

)

. (1.3)

Actually, as we will see later, the conditions in eq. (1.1) are in general not correct, because

the right hand side can contain a term proportional to the momentum q. However, in the

case of a graviton, this extra term is irrelevant.

Before proceeding further note that next-to-leading soft-graviton theorems in arbitrary

number of dimensions were also studied in refs. [38–42] and that soft gluon and graviton

behaviors are in general modified by loop corrections, as discussed in refs. [37, 43–45].

Finally, soft gluon and graviton behavior were also studied in the framework of superstring

theory in refs. [33, 46, 47]. In particular, in the previous papers it has been shown that

the string amplitudes reproduce the soft graviton behavior discussed above up to the first

subleading term in the soft momentum without any extra α′ corrections.

In this paper we concentrate on the closed bosonic string and we study the soft be-

havior of a scattering amplitude involving one soft massless state with the other states

being either closed string tachyons or other massless closed string states. The aim of this

paper is not only to check that in the case of a soft graviton, one obtains a soft behavior

consistent with what is required by gauge invariance, as discussed in ref. [37], but also and

especially to get the soft behavior for the dilaton and for the Kalb-Ramond field, which is

not obvious how to obtain in field theory.

2κd is connected to Newton’s gravitational constant G
(d)
N by the relation κd ≡

√

8πG
(d)
N , where d is

number of space-time dimensions.
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The low-energy field theory action that in the string frame describes the interaction

between gravity, dilatons and Kalb-Ramond fields in d dimensions reads3

Sstring =
1

2κ̂2d

∫

ddx
√
−G e−2φ

[

R+ 4Gµν∂µφ∂νφ− 1

2 · 3!H
2
µνρ

]

. (1.4)

The corresponding action in the Einstein frame becomes:4

SE =
1

2κ2d

∫

ddx
√−g

[

R− 1

2
gµν∂µφ̂∂ν φ̂− 1

2 · 3!e
−
√

8
d−2

φ̂
(Hµνρ)

2

]

, (1.5)

where φ̂ is the dilaton field (canonically normalized)5 and

Hµνρ = ∂µBνρ − ∂νBµρ + ∂ρBµν , (1.6)

which is antisymmetric under the exchange of the three indices since Bµν , the Kalb-Ramond

field, is also antisymmetric. From these actions it is not obvious at all that there is a gauge

invariance determining the soft behavior of amplitudes with a soft dilaton, similar to the

one for gravitons. It is also not clear how to get a low-energy theorem for the Kalb-Ramond

field by using its gauge invariance; i.e. in the case of the graviton amplitudes, the subleading

behaviour of the amplitudes in the soft momentum expansion, is related to the leading one

by gauge invariance. For the Kalb-Ramond field, however, the leading term is absent and

this procedure apparently seems to fail.

The reason why this is instead possible in string theory, is due to the fact that the scat-

tering amplitudes involving a graviton or a dilaton or a Kalb-Ramond field with momentum

q and other particles with momentum ki, are all obtained from the same two-index tensor

Mµν(q; ki) by saturating it with a polarization tensor satisfying respectively the following

conditions:

Graviton (gµν) =⇒ ǫµνg = ǫνµg ; ηµνǫ
µν
g = 0 (1.7a)

Dilaton (φ) =⇒ ǫµνd = ηµν − qµq̄ν − qν q̄µ (1.7b)

Kalb-Ramond (Bµν) =⇒ ǫµνB = −ǫνµB (1.7c)

where q̄ is, similarly to q, a lightlike vector such that q · q̄ = 1. This is also what one

gets, at least in the field theory limit, by applying at tree level the KLT relations [48] or

in general the BCJ rules [49, 50] according to which one also obtains a common Mµν that

contains the soft behavior for the graviton, dilaton and Kalb-Ramond field. This is another

example, where the scattering amplitude tells us more than the original Lagrangian.

Furthermore, the tensor Mµν(q; ki) satisfies in general the following conditions:

qµ (Mµν(q; ki)− f(q; ki)ηµν) = 0 , qν (Mµν(q; ki)− f(q; ki)ηµν) = 0 . (1.8)

3In this paper we keep the number of space-time dimensions d arbitrary, but for the bosonic string it is

implied that d = 26.
4The relation between the metric in the string and in the Einstein frame is given by gµν = e−

4

d−2
φ
Gµν .

5φ is related to φ̂ by the relation φ̂ =
√

8
d−2

φ, while κ2
d = κ̂2

de
2<φ>.
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In the case of a graviton and of a Kalb-Ramond field, the term with the metric tensor ηµν
is irrelevant and the previous conditions reduce to those in eq. (1.1), which in the case of a

graviton fix the three leading terms in the limit of small q, as given in eq. (1.2) when the

other particles are scalars. The extra term in eq. (1.8) is, however, relevant in the case of

the dilaton. Thus in general the soft limit for the dilaton cannot be obtained as in the case

of the graviton. One can, however, explicitly compute the scattering amplitude involving

one soft dilaton and see if the extra terms proportional to ηµν are appearing or not. From

ref. [16] it is already known that such extra terms are not present, up to terms of O(q0), if

the other states are massless closed ones. On the other hand, they are present if there are

massless open string states.

In this work, we first study the soft behavior of a massless closed string state in an

amplitude involving an arbitrary number of closed string tachyons. By explicitly performing

the soft limit, we show that the amplitude for small q behaves as follows:

Mµν(q; ki) = κd

n
∑

i=1

[

kiµkiν
kiq

− i
kiνq

ρJ
(i)
µρ

2kiq
− i

kiµq
ρJ

(i)
νρ

2kiq
− 1

2

qρJ
µρ
i qσJ

νσ
i

kiq

+
1

2

(

(ηµνqσ − qµηνσ)− kµi q
νqσ

kiq

)

∂

∂kσi

]

Tn(ki) +O(q2) , (1.9)

where Tn is the amplitude with n closed string tachyons:

Tn(ki) =
8π

α′

(κd
2π

)n−2
∫

∏n
i=1 d

2zi
dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj , (1.10)

with the factor in front providing the correct normalization for the n-tachyon amplitude.6

Notice that eq. (1.9) has precisely the same form as eq. (1.2) without any additional term

proportional to ηµν and α′ corrections.

In the case of a graviton (ǫµνg symmetric and traceless), we can neglect the last three

terms in the squared bracket of eq. (1.9) and we get

ǫµνg Mµν(q; ki) = κdǫ
µν
g

n
∑

i=1

[

kiµkiν
kiq

− i
kiνq

ρJ
(i)
µρ

2kiq
− i

kiµq
ρJ

(i)
νρ

2kiq
− 1

2

qρJ
µρ
i qσJ

νσ
i

kiq

]

Tn(ki) ,

(1.11)

which, of course, agrees with the soft theorem for the graviton derived in section 3 of

ref. [37].

In the case of the dilaton, using ǫµνd given in eq. (1.7b), one gets instead:

ǫµνd Mµν(q; ki) = κd



−
n
∑

i=1

m2
i

(

1 + qρ ∂
∂kρi

+ 1
2q

ρqσ ∂2

∂kρi ∂k
σ
i

)

kiq
−

n
∑

i=1

kρi
∂

∂kρi
+ 2

−
n
∑

i=1

(

kiµqσ
∂2

∂kiµ∂kiσ
− 1

2
(kiq)

∂2

∂kiµ∂kiµ

)

]

Tn(ki) , (1.12)

6The overall normalization in eq. (1.10) corresponds to choosing d2zi = 2d(Rezi)d(Imzi) and also

d2z = 2d(Rez)d(Imz).
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where m2
i = − 4

α′ is the squared mass of the closed string tachyon. The dilaton contains

terms O(q−1) when the other particles are massive, because the three-point amplitude

involving a dilaton and two equal particles with mass m is proportional to m2.

In the case of the Kalb-Ramond field we get zero simply because it is not coupled to

n tachyons. This is due to the fact that the closed bosonic string is invariant under the

world-sheet parity Ω that leaves invariant the vertex operators of the tachyon, dilaton and

graviton, while changes sign of the vertex operator of Bµν .

The most important result of our analysis is that eq. (1.2), which was derived in

ref. [37] for a graviton from eqs. (1.1), also gives the correct amplitude for a dilaton when

it is saturated with ǫµνd given in eq. (1.7). This means that extra gauge invariant terms

proportional to ηµν do not appear in the matrix Mµν in eq. (1.9).

We have then studied the soft behavior of a massless closed string state in an amplitude

involving an arbitrary number of other massless closed string states. In this case we have

performed the calculation up to the O(q0), and for the symmetric part of Mµν we get:

Mµν
S (q; ki, ǫi) = κd

n
∑

i=1

(

kµi k
ν
i − i

2k
ν
i qρJ

µρ
i − i

2k
µ
i qρJ

νρ
i

qki

)

Mn(ki, ǫi) +O(q) , (1.13)

where Mn(ki, ǫi) is the amplitude with n massless states,

Jµν
i =Lµν

i + Sµν
i + S̄µν

i , (1.14)

Lµν
i = i

(

kµi
∂

∂kiν
−kνi

∂

∂kiµ

)

, Sµν
i = i

(

ǫµi
∂

∂ǫiν
−ǫνi

∂

∂ǫiµ

)

, S̄µν
i = i

(

ǭµi
∂

∂ǭiν
−ǭνi

∂

∂ǭiµ

)

. (1.15)

Note that in the previous expressions we have written the polarizations of the massless

closed string states as a product of the polarizations of two massless open string states,

namely ǫµνi = ǫµi ǭ
ν
i .

By saturating eq. (1.13) with the polarization of the graviton, one gets the soft graviton

behavior, which agrees with what was obtained from gauge invariance in ref. [37]. If we

instead saturate it with the polarization of the dilaton we get:

Mn+1 = κd

[

2−
n
∑

i=1

kiµ
∂

∂kiµ

]

Mn +O(q) , (1.16)

which agrees with the result obtained in ref. [16]. Note that we do not get any terms of

O(q−1), as we got for the amplitude with external tachyons, since the external states are

now massless.

The soft theorem for the dilaton can be written in a more suggestive way [16] by

observing that, in general, Mn has the following form:

Mn =
8π

α′

(κd
2π

)n−2
Fn(

√
α′ki) , κd =

1

2
d−10

4

gs√
2
(2π)

d−3
2 (

√
α′)

d−2
2 , (1.17)

where Fn is dimensionless and obviously satisfies the equation:

n
∑

i=1

kiµ
∂

∂kiµ
Fn =

√
α′

∂

∂
√
α′

Fn . (1.18)

– 5 –
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Using these equations, the soft theorem for the dilaton becomes [16]:

Mn+1 = κd

[

−
√
α′

∂

∂
√
α′

+
d− 2

2
gs

∂

∂gs

]

Mn +O(q) . (1.19)

Therefore, the emission of a dilaton with zero momentum is obtained from the amplitude

without a dilaton by a simultaneous rescaling of the Regge slope α′ and the string coupling

constant gs. This is the same rescaling that leaves Newton’s constant invariant:

[

−
√
α′

∂

∂
√
α′

+
d− 2

2
gs

∂

∂gs

]

κd = 0 , (1.20)

as can be checked from its definition in eq. (1.17).

In order to explore the possibility of formulating a soft theorem for the antisymmetric

tensor, it is convenient to keep distinct the holomorphic and anti-holomorphic sectors

coming from the factorized structure of the vertices in closed string theory. According to

such a separation the amplitude Mn(ki, ǫi; k̄i, ǭi), on which the soft operator acts, becomes

a function of the holomorphic, ki, and anti-holomorphic, k̄i, momenta. This separation is

only an intermediary trick of the calculation; the momenta must at the end be identified

as required by the BRST invariance of the theory. Because of this splitting, however, we

have to also introduce the anti-holomorphic angular momentum operator

L̄µν
i = i

(

k̄µi
∂

∂k̄iν
− k̄νi

∂

∂k̄iµ

)

. (1.21)

In terms of these operators, the soft behavior for the antisymmetric tensor reads:

Mn+1=−iǫBq µνκd

n
∑

i=1

[

kνi qρ(Li + Si)
µρ

qki
− kνi qρ(L̄i + S̄i)

µρ

qki

]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
+O(q)

=−iǫBq µνκd

n
∑

i=1

[

1

2
(Li−L̄i)

µν+
kνi qρ
kiq

(Si−S̄i)
µρ

]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
+O(q) . (1.22)

As expected from Weinberg’s general argument, we do not get any term of O(q−1), cor-

responding to a long range force, but there are several terms of O(q0). By construction,

eq. (1.22) reproduces the soft behavior of the antisymmetric tensor, but it is not a real soft

theorem as in the case of the graviton and dilaton because, due to the separation of k and

k̄, the amplitude Mn is not a physical amplitude.

The paper is organized as follows. In section 2 we discuss the soft behavior for the

graviton and the dilaton coupled to n closed string tachyons. In section 3 we turn to the

case where all external states are massless closed string states. Section 4 is devoted to some

conclusions and outlook. The details of various calculations are given in the appendix.

– 6 –
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2 One massless closed string and n tachyons

The scattering amplitude involving a massless closed string state and n closed string

tachyons is given by:7

Mµν ∼
∫

∏n
i=1 d

2zi
dVabc

∏

i<j

|zi − zj |α
′kikjSµν , (2.1)

where

Sµν =
α′

2

∫

d2z
n
∏

ℓ=1

|z − zℓ|α
′kℓq

n
∑

i=1

kiµ
z − zi

n
∑

j=1

kjν
z̄ − z̄j

. (2.2)

The quantities zi, with i = 1, . . . , n, are complex coordinates parametrizing the insertion on

the world-sheet of the vertex operators associated to the tachyon states. The coordinate z,

without index, is associated to the massless closed string state.

In order to find a soft operator Ŝ such that Mn+1 = ŜMn, we first need to compute

Sµν for small q. This calculation is performed in the appendix. For the ‘diagonal’ terms,

i.e. terms in the sum where i = j, the result is given in eq. (A.32) and one gets:

Sdiag
µν = 2π

n
∑

i=1

kiµkiν



α′ log Λ +
(α′)2

2

∑

j 6=i

(kjq) log
2 |zi − zj |+

1

kiq

×



1+α′
∑

j 6=i

(kjq) log |zi−zj |+
(α′)2

2

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi−zj | log |zi−zk|







 . (2.3)

The integral of the ‘non-diagonal’ terms, i.e. where i 6= j in eq. (2.2), is given by eqs. (A.34)

and (A.43) and is equal to

Snon−diag
µν = 2π

∑

i 6=j

kiµkjν + kiνkjµ
2

{

α′ [log Λ− log |zi − zj |]

+
(α′)2

2





∑

k 6=i,j

(kkq) (log |zk − zi| log |zk − zj |) (2.4)

−
∑

k 6=i

(kkq) log |zi − zj | log |zk − zi| −
∑

k 6=j

(kkq) log |zi − zj | log |zk − zj |











.

This is only the symmetric part of the non-diagonal contribution. The antisymmetric part

is zero after integrating over the n complex coordinates zi, as shown in the appendix. As

explained in the introduction, this is a consequence of the Ω parity invariance, which does

not allow the coupling of one Kalb-Ramond field to n tachyons.

Each of the two previous contributions is divergent when |z| goes to infinity, which

is why we have introduced a cutoff Λ. After summing the two contributions, however,

7In this and in the next section we omit to write the overall normalization factors discussed in the

introduction.
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the divergent terms cancel due to momentum conservation and we are left with a finite

expression. In conclusion, eq. (2.1) is equal to

Mµν ∼ 2π

∫
∏n

i=1 d
2zi

dVabc

∏

i<j

|zi − zj |α
′kikj (2.5)

×







n
∑

i=1

kiµkiν





(α′)2

2

∑

j 6=i

(kjq) log
2 |zi − zj |+

1

kiq

×



1 + α′
∑

j 6=i

(kjq) log |zi − zj |+
(α′)2

2

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi − zj | log |zi − zk|









+
∑

i 6=j

kiµkjν + kiνkjµ
2



−α′ log |zi − zj |+
(α′)2

2





∑

k 6=i,j

(kkq) (log |zk − zi| log |zk − zj |)

−
∑

k 6=i

(kkq) log |zi − zj | log |zk − zi| −
∑

k 6=j

(kkq) log |zi − zj | log |zk − zj |















+O(q2) .

It is easy to see that the three terms of order (α′)0 and (α′)1 (equivalently q−1 and q0) can

be written in the following compact form:

2π
n
∑

i=1

[

kiµkiν
kiq

− i
kiνq

ρJ
(i)
µρ

2kiq
− i

kiµq
ρJ

(i)
νρ

2kiq

]

∫
∏n

i=1 d
2zi

dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj , (2.6)

where the last integral is the amplitude Mn of n closed string tachyons, given with the

correct normalization in eq. (1.10), and

J (i)
µρ = i

(

kiµ
∂

∂kρi
− kiρ

∂

∂kµi

)

. (2.7)

We are left with the terms of order (α′)2 (i.e. O(q)) in eq. (2.5) which read

2π
(α′)2

2

∫
∏n

i=1 d
2zi

dVabc

∏

i<j

|zi − zj |α
′kikj

×





n
∑

i=1

kiµkiν
kiq

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi − zj | log |zi − zk|

+
n
∑

i=1

kiµ

n
∑

j=1

kjν
∑

k 6=i,j

(kkq) (log |zk − zi| log |zk − zj |)

−
n
∑

i=1

kiµ
∑

j 6=i

kjν log |zi − zj |





∑

k 6=i

(kkq) log |zk − zi|+
∑

k 6=j

(kkq) log |zk − zj |







 , (2.8)
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and which can be written as

1

2

n
∑

i=1

qρqσ

kiq

[

kiµkiν
∂2

∂kρi ∂k
σ
i

− kiρkiν
∂2

∂kµi ∂k
σ
i

− kiµkiσ
∂2

∂kρi ∂k
ν
i

+ kiρkiσ
∂2

∂kµi ∂k
ν
i

]

×2π

∫
∏n

i=1 d
2zi

dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj . (2.9)

It is easy to check that the first term of the previous expression is equal to the first term of

eq. (2.8), the last term in eq. (2.9) is equal to the second term of eq. (2.8), and finally the

third and fourth terms in eq. (2.9) are equal to the other two terms of eq. (2.8). Eq. (2.9)

can also be written as:

1

2

n
∑

i=1

1

kiq

[

(

(kiq)(ηµνqσ − qµηνσ)− kiµqνqσ

) ∂

∂kiσ
− qρJi µρq

σJi νσ

]

×2π

∫
∏n

i=1 d
2zi

dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj . (2.10)

Thus, in total, we get the following soft behavior:

Mµν ∼
n
∑

i=1

[

kiµkiν
kiq

− i
kiνq

ρJ
(i)
µρ

2kiq
− i

kiµq
ρJ

(i)
νρ

2kiq
− 1

2

qρJi µρq
σJi νσ

kiq
+

(

1

2
(ηµνqσ − qµηνσ)

−kiµqνqσ
2kiq

)

∂

∂kiσ

]

2π

∫
∏n

i=1 d
2zi

dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj +O(q2) . (2.11)

For the graviton we can forget the last three terms in the squared bracket and we get:

ǫµνg Mµν ∼ ǫµνg

n
∑

i=1

[

kiµkiν
kiq

− i
kiνq

ρJ
(i)
µρ

kiq
− 1

2

qρJi µρq
σJi νσ

kiq

]

×2π

∫
∏n

i=1 d
2zi

dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj +O(q2) . (2.12)

In the case of the dilaton it is more convenient to rewrite the squared bracket in eq. (2.11)

as in the first line of eq. (1.2). The amplitude for the emission of a soft dilaton is then

equal to:

ǫµνd Mµν ∼



−
n
∑

i=1

m2
i

(

1 + qρ ∂
∂kρi

+ 1
2q

ρqσ ∂2

∂kρi ∂k
σ
i

)

kiq
−

n
∑

i=1

kρi
∂

∂kρi
+ 2

−
n
∑

i=1

(

kiµqσ
∂2

∂kiµ∂kiσ
+

1

2
(kiq)

∂2

∂kµi ∂kiµ

)

]

×2π

∫
∏n

i=1 d
2zi

dVabc

∏

i 6=j

|zi − zj |
α′

2
kikj +O(q2) , (2.13)

where m2
i = − 4

α′ and we used conservation of the angular momentum
∑n

i=1 J
(i)
µν = 0.
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In conclusion, with an explicit calculation of the soft dilaton and graviton behavior in

an amplitude with closed string tachyons in the bosonic string, we have shown that both

behaviors come from the same amplitude in eq. (2.11), which is equal to the one derived in

ref. [37] from gauge invariance and the conditions in eq. (1.1). This is the first time that

the universal soft-behavior up to the second subleading order has been obtained from a

string amplitude involving an arbitrary number of closed string states.

3 One soft and n massless closed strings

In this section we consider the amplitude with n + 1 massless closed string states and we

study its behavior in the limit in which one of the massless states is soft.

In order to extract the soft behavior, it is convenient to write the vertex operator of

the massless closed string state in the following form:

V (z, z̄) =

(

iǫ · ∂zX(z)√
2α′

ei
√

α′

2
k·X(z)

)(

iǭ · ∂z̄X(z̄)√
2α′

ei
√

α′

2
k·X(z̄)

)

=

∫

dθ ei(θǫµ∂z+
√

α′

2
kµ)Xµ(z)

∫

dθ̄ ei(θ̄ǭν∂z̄+
√

α′

2
kν)Xν(z̄) , (3.1)

where we assume that θ, θ̄, ǫ, ǭ are Grassmann variables. Then, the amplitude involving

n+ 1 massless closed string states is given by

Mn+1∼
∫

∏n
i=1 d

2zi d
2z

dVabc

∫

dθ

n
∏

i=1

dθi 〈0|ei(θǫ
µ
q ∂z+

√

α′

2
qµ)Xµ(z)

n
∏

i=1

ei(θiǫ
µi
i ∂zi+

√

α′

2
k
µi
i )Xµi

(zi)|0〉

×
∫

dθ̄
n
∏

i=1

dθ̄i〈0|ei(θ̄ǭ
µ
q ∂z̄+

√

α′

2
qµ)Xµ(z̄)

n
∏

i=1

ei(θ̄iǭ
νi
i ∂z̄i+

√

α′

2
k
νi
i )Xνi

(z̄i)|0〉 . (3.2)

Here ǫq µν ≡ ǫq µǭq ν is the polarization of the soft-particle. Using the contraction:

〈Xµ(z)Xν(w)〉 = −ηµν log(z − w) , (3.3)

we get

Mn+1 ∼
∫

∏n
i=1 d

2zi d
2z

dVabc

{

∫

dθ
n
∏

i=1

dθi〈0|
n
∏

i=1

ei(θiǫ
µi
i ∂zi+

√

α′

2
k
µi
i )Xµi

(zi)|0〉

× exp

[(

θǫµq ∂z +

√

α′

2
qµ

)

n
∑

i=1

(

θiǫ
µ
i ∂zi +

√

α′

2
kµi

)

log(z − zi)

]}

×
{

∫

dθ̄

n
∏

i=1

dθ̄i〈0|
n
∏

i=1

ei(θ̄iǭ
νi
i ∂z̄i+

√

α′

2
k
νi
i )Xνi

(z̄i)|0〉

× exp

[(

θ̄ǭνq∂z̄ +

√

α′

2
qν

)

n
∑

i=1

(

θ̄iǭ
ν
i ∂z̄i +

√

α′

2
kνi

)

log(z̄ − z̄i)

]}

. (3.4)
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The Grassmann integrals over θ and θ̄ can be performed yielding:

Mn+1 ∼
∫

∏n
i=1 d

2zi
dVabc

[

∫ n
∏

i=1

dθi 〈0|
n
∏

i=1

ei(θiǫ
µi
i ∂zi+

√

α′

2
k
µi
i )Xµi

(zi)|0〉
]

×
[

∫ n
∏

i=1

dθ̄i〈0|
n
∏

i=1

ei(θ̄iǭ
νi
i ∂z̄i+

√

α′

2
k
νi
i )Xνi

(z̄i)|0〉
]

∫

d2z
n
∏

i=1

|z − zi|α
′qki

×ǫµq ∂z

n
∑

i=1

(

θiǫ
µ
i ∂zi +

√

α′

2
kµi

)

log(z − zi) exp

[
√

α′

2

n
∑

i=1

θi(ǫiq)∂zi log(z − zi)

]

×ǭµq ∂z̄

n
∑

i=1

(

θ̄iǭ
ν
i ∂z̄i+

√

α′

2
kνi

)

log(z̄−z̄i) exp

[
√

α′

2

n
∑

i=1

θ̄i(ǭiq)∂z̄i log(z̄−z̄i)

]

. (3.5)

We can formally write this in two parts:

Mn+1 = Mn ∗ S , (3.6)

where by ∗ a convolution of integrals is understood, and where

S ≡
∫

d2z
n
∑

i=1

(

θi
(ǫqǫi)

(z − zi)2
+

√

α′

2

(ǫqki)

z − zi

)

n
∑

j=1

(

θ̄j
(ǭq ǭj)

(z̄ − z̄j)2
+

√

α′

2

(ǭqki)

z̄ − z̄i

)

× exp

[

−
√

α′

2

n
∑

i=1

θi
(ǫiq)

z − zi

]

exp

[

−
√

α′

2

n
∑

i=1

θ̄i
(ǭiq)

z̄ − z̄i

]

n
∏

i=1

|z − zi|α
′qki (3.7)

is the part describing the soft particle, with momentum q and polarizations ǫq and ǭq, while

Mn ∼
∫

∏n
i=1 d

2zi
dVabc

∫ n
∏

i=1

dθi〈0|
n
∏

i=1

ei(θiǫ
µi
i ∂zi+

√

α′

2
k
µi
i )Xµi

(zi)|0〉

×
∫ n

∏

i=1

dθ̄i〈0|
n
∏

i=1

ei(θ̄iǭ
νi
i ∂z̄i+

√

α′

2
k
νi
i )Xνi

(z̄i)|0〉

=

∫
∏n

i=1 d
2zi

dVabc

∫

[

n
∏

i=1

dθi

n
∏

i=1

dθ̄i

]

∏

i<j

|zi − zj |α
′kikj

× exp



−
∑

i<j

θiθj
(zi − zj)2

(ǫiǫj) +

√

α′

2

∑

i 6=j

θi(ǫikj)

zi − zj





× exp



−
∑

i<j

θ̄iθ̄j
(z̄i − z̄j)2

(ǭiǭj) +

√

α′

2

∑

i 6=j

θ̄i(ǭikj)

z̄i − z̄j



 (3.8)

is the amplitude, without the soft particle, of n massless states with momentum ki and

polarizations ǫi and ǭi.

We eventually want to find a soft operator Ŝ up to order q0 such that ŜMn = Mn ∗ S,
and thus need to compute S up to the same order. We do this by expanding S for small
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q and keep terms in the integrand up to the order q, since higher orders of the integrand

cannot yield terms of order q0 after integration. It is useful then to divide S in four parts:

S =
4

∑

i=1

Si +O(q) , (3.9)

where the first term defined by

S1 =
α′

2

∫

d2z
n
∑

i=1

(ǫqki)

z − zi

n
∑

j=1

(ǭqkj)

z̄ − z̄j

n
∏

l=1

|z − zl|α
′qkl = ǫµq ǭ

ν
qSµν , (3.10)

is simply given by Sµν in eq. (2.2) already computed for the case of the tachyons in the

previous section.

The second term is defined to be the higher-order one of S1, i.e.:

S2 = S1 ∗
(

−
√

α′

2

)

n
∑

k=1

(

θk
(ǫkq)

z − zk
+ θ̄k

(ǭkq)

z̄ − z̄k

)

=
α′

2

∫

d2z
n
∑

i=1

(ǫqki)

z − zi

n
∑

j=1

(ǭqkj)

z̄ − z̄j

n
∏

l=1

|z − zl|α
′qkl

×
(

−
√

α′

2

)

n
∑

k=1

(

θk
(ǫkq)

z − zk
+ θ̄k

(ǭkq)

z̄ − z̄k

)

, (3.11)

Furthermore, the third and the fourth terms are defined to be

S3 =

√

α′

2

∫

d2z
n
∑

i=1

n
∑

j=1

[(

θi(ǫqǫi)

(z − zi)2

)(

(ǭqkj)

z̄ − z̄j

)

+

(

(ǫqkj)

z − zj

)(

θ̄i(ǭq ǭi)

(z̄ − z̄i)2

)]

×
n
∏

ℓ=1

|z − zℓ|α
′qkℓ

[

1−
√

α′

2

n
∑

k=1

(

θk
(ǫkq)

z − zk
+ θ̄k

(ǭkq)

z̄ − z̄k

)

]

. (3.12)

S4 =

∫

d2z
n
∑

i=1

(

θi
(ǫqǫi)

(z − zi)2

) n
∑

j=1

(

θ̄j
(ǭq ǭj)

(z̄ − z̄j)2

) n
∏

ℓ=1

|z − zℓ|α
′qkℓ

×
[

1−
√

α′

2

n
∑

k=1

(

θk
(ǫkq)

z − zk
+ θ̄k

(ǭkq)

z̄ − z̄k

)

]

, (3.13)

These terms provide all contributions to the O(q0). The computations to this order are

provided in the appendix. For S1 we get from eqs. (2.3) and (2.4):

S1 = 2πǫµq ǭ
ν
q





n
∑

i=1

kiµkiν
kiq

+ α′
∑

j 6=i

kiνq
ρ

kiq
log |zi − zj | (kiµkiρ − kiρkjµ)



+O(q) . (3.14)

For S2 we get from the appendix eq. (A.48):

S2 = −2πǫµq ǭ
ν
q

√

α′

2

∑

i 6=j

θi(ǫiq)

zi − zj

(

kjµkiν
kiq

− kjµkjν
kjq

)

+ c.c. +O(q) . (3.15)
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For S3 we get from the appendix eq. (A.49):

S3 = 2πǫqµǭqν
∑

i 6=j

[
√

α′

2

(kjq)θiǫ
µ
i

zi − zj
+

(θjǫjq)(θiǫ
µ
i )

(zi − zj)2

]

(

kνi
kiq

−
kνj
kjq

)

+ c.c. +O(q) . (3.16)

Finally, it turns out that S4 to O(q0) is zero (cf. eqs. (A.13) and (A.15)), i.e.

S4 = 0 +O(q) . (3.17)

Collecting all terms, up to the order O(q0), we get:

Mn ∗ S = Mn ∗ 2πǫqµǭqν





n
∑

i=1

kµi k
ν
i

kiq
+ α′

∑

j 6=i

kνi q
ρ

kiq
log |zi − zj |

(

kµi kjρ − kiρk
µ
j

)

−
√

α′

2

∑

j 6=i

(

θi(ǫiq)

zi − zj

(

kµj k
ν
i

kiq
−

kµj k
ν
j

kjq

)

+
θ̄i(ǭiq)

z̄i − z̄j

(

kµi k
ν
j

kiq
−

kµj k
ν
j

kjq

))

+

√

α′

2

∑

j 6=i

θiǫ
µ
i k

ν
i

kjq

kiq

1

zi − zj
−
√

α′

2

∑

i 6=j

θiǫ
µ
i k

ν
j

1

zi − zj
(3.18)

+

√

α′

2

∑

j 6=i

θ̄iǭ
ν
i k

µ
i

kjq

kiq

1

z̄i − z̄j
−
√

α′

2

∑

i 6=j

θ̄iǭ
ν
i k

µ
j

1

z̄i − z̄j

−
∑

i 6=j

(θjǫjq)(θiǫ
µ
i )

(zi − zj)2

(

kνj
kjq

− kνi
kiq

)

−
∑

i 6=j

(θ̄j ǭjq)(θ̄iǭ
ν
i )

(z̄i − z̄j)2

(

kµj
kjq

− kµi
kiq

)

+O(q)



 .

Notice that, if we act with qµ or qν on the two-index tensor in the squared bracket of this

equation, we get zero. In other words, this tensor satisfies eqs. (1.1).

In order to obtain also the soft theorem for the antisymmetric tensor, we have to

make a step back and slightly modify the amplitude Mn by introducing, together with the

momentum k for the holomorphic part, also a momentum k̄ for the anti-holomorphic part:8

Mn(ki, ǫi; k̄i, ǭi) ∼
∫

∏n
i=1 d

2zi
dVabc

∫

[

n
∏

i=1

dθi

n
∏

i=1

dθ̄i

]

∏

i 6=j

[

(zi − zj)
α′

4
kikj (z̄i − z̄j)

α′

4
k̄ik̄j

]

× exp



−1

2

∑

i 6=j

θiθj
(zi − zj)2

(ǫiǫj) +

√

α′

2

∑

i 6=j

θi(ǫikj)

zi − zj





× exp



−1

2

∑

i 6=j

θ̄iθ̄j
(z̄i − z̄j)2

(ǭiǭj) +

√

α′

2

∑

i 6=j

θ̄i(ǭik̄j)

z̄i − z̄j



 . (3.19)

This separation is quite natural in string theory because the string vertex operators are

usually written as the factorized product of an holomorphic and anti-holomorphic vertex.

Here, we are keeping this separation and the identification of the holomorphic and anti-

holomorphic momenta is imposed only at the end of the calculation.

8Actually this is not strictly needed for the part of the amplitude not containing θi and θ̄i.
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Let us then also introduce L and L̄ given by:

Lµν
i = i

(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)

, L̄µν
i = i

(

k̄µi
∂

∂k̄iν
− k̄νi

∂

∂k̄iµ

)

, (3.20)

in analogy with S and S̄ given by:

Sµν
i = i

(

ǫµi
∂

∂ǫiν
− ǫνi

∂

∂ǫiµ

)

, S̄µν
i = i

(

ǭµi
∂

∂ǭiν
− ǭνi

∂

∂ǭiµ

)

. (3.21)

The soft operator that reproduces the soft behavior in eq. (3.18) is equal to

Mn+1 =
(

Ŝ(0) + Ŝ(1)
)

Mn +O(q) , (3.22)

where

Ŝ(0) = ǫq µν

n
∑

i=1

kµi k
ν
i

qki
, (3.23)

and

S(1)Mn ∼ −iǫq µν

n
∑

i=1

[

kνi qρ(Li + Si)
µρ

qki
+

kµi qρ(L̄i + S̄i)
νρ

qki

]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
. (3.24)

The previous notation means that ki and k̄i are kept distinct from each other before act-

ing with Li and L̄i, but are identified at the end of the process. By symmetrizing and

antisymmetrizing one gets:

S(1)Mn ∼ −iǫSq µν

n
∑

i=1

kνi qρ
qki

[

(Li + Si)
µρ + (L̄i + S̄i)

µρ
]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄

− iǫBq µν

n
∑

i=1

kνi qρ
qki

[

(Li + Si)
µρ − (L̄i + S̄i)

µρ
]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
, (3.25)

where

ǫSqµν =
ǫqµǭqν + ǫqν ǭqµ

2
, ǫBqµν =

ǫqµǭqν − ǫqν ǭqµ
2

. (3.26)

For the symmetric part one can identify ki with k̄i: qρ(L
µρ
i + L̄µρ

i )Mn(ki, ǫi; k̄i, ǭi)|k=k̄ =

qρL
µρ
i Mn(ki, ǫi; ki, ǭi)|k=k̄) which implies:

S(1)Mn = −iǫSq µν

n
∑

i=1

kνi qρJ
µρ

qki
Mn(ki, ǫi; ki, ǭi)

−iǫBq µν

n
∑

i=1

kνi qρ
qki

[

(Li + Si)
µρ − (L̄i + S̄i)

µρ
]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
, (3.27)

where

Jµν
i = Lµν

i + Sµν
i + S̄µν

i . (3.28)

Therefore, if we deal with the graviton or dilaton, we do not need to introduce k̄, while

this is necessary for the antisymmetric tensor.
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If we use the polarization of a graviton, given in eq. (1.7a), we get the soft behavior for

a graviton in agreement with the result of ref. [37]. In the case of the dilaton we get instead:

(

Ŝ(0) + Ŝ(1)
)

Mn =

[

2−
n
∑

i=1

(

kiµ
∂

∂kiµ
− qǫi

kiq
kiµ

∂

∂ǫiµ
− qǭi

kiq
kiµ

∂

∂ǭiµ

)

]

Mn , (3.29)

where we have used conservation of the total angular momentum:

n
∑

i=1

J (i)
µνMn = 0 . (3.30)

The last two terms in eq. (3.29) can be neglected because the amplitude is gauge invariant;

i.e. these terms essentially substitute the polarization of a particle with its corresponding

momentum, while all other indices are saturated with their corresponding polarization vec-

tors. Gauge invariance implies that one gets zero. In conclusion, the soft behavior of a

dilaton in an amplitude with massless closed string states is given by:

Mn+1 =
(

Ŝ(0) + Ŝ(1)
)

Mn +O(q) ∼
[

2−
n
∑

i=1

kiµ
∂

∂kiµ

]

Mn +O(q) , (3.31)

in agreement with the result of ref. [16].

Finally, in the case of the Kalb-Ramond field, the term S(0) does not contribute because

it is symmetric in the index µ and ν. One gets only the next term:

Mn+1 = Ŝ(1)Mn +O(q)

∼ −iǫBq µν

n
∑

i=1

kνi qρ
qki

[

(Li + Si)
µρ − (L̄i + S̄i)

µρ
]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
+O(q) . (3.32)

Although it is at the present stage not clear how to get the soft operator of the antisym-

metric field by directly using its own gauge symmetry, as it has been done for the graviton,

it is nevertheless easy to show that it is gauge invariant. Under a gauge transformation for

the Kalb-Ramond field, ǫBq µν → ǫBq µν + qµχν − qνχµ, the amplitude changes as follows

Ŝ(1)Mn → Ŝ(1)Mn + iqρχµ

n
∑

i=1

[

(Li + Si)
µρ − (L̄i + S̄i)

µρ
]

Mn(ki, ǫi; k̄i, ǭi)
∣

∣

∣

k=k̄
. (3.33)

The extra term vanishes as a consequence of the identity

n
∑

i=1

(Li + Si)
µρMn(ki, ǫi; k̄i, ǭi)

∣

∣

∣

k=k̄
=

n
∑

i=1

(L̄i + S̄i)
µρMn(ki, ǫi; k̄i, ǭi)

∣

∣

∣

k=k̄
, (3.34)

which can be proved by a direct calculation, ensuring gauge invariance of the amplitude.

4 Conclusions

In this paper we have computed the behavior of the scattering amplitudes of the bosonic

string involving massless states; i.e. gravitons, dilatons and Kalb-Ramond antisymmetric
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tensors, and tachyons when the momentum of one massless particle is very small. In the

case of a soft graviton our results agree, as expected, with the behavior found in ref. [37]

up to terms of O(q) when the other particles are tachyons, and up to terms of O(q0) when

the other particles are massless.

We also derived the soft behavior for the dilaton and for the two-index antisymmetric

tensor, which is not obvious how to obtain using the methods developed in ref. [37]. The

basic reason why this is instead possible in string theory, is due to the fact that the

amplitudes for the emission of a massless particle are all obtained from the same tensor

Mµν by saturating it with the corresponding polarization vector. It turns out that the soft

behavior of Mµν is exactly the one obtained in ref. [37], using just gauge invariance before

saturating it with the polarization vector of the graviton.

What one learns from these calculations is that, in the cases examined, there is a

common quantity Mµν , whose soft behavior is determined by imposing the conditions in

eq. (1.1), that provides the soft theorem for all massless states by saturating it with their

corresponding polarization vector. This is also what one gets when applying the rules of

BCJ duality [49, 50], according to which one can obtain the scattering amplitudes for an ex-

tended version of gravity, including the dilaton and the Kalb-Ramond field, from the gluon

scattering amplitudes. One also knows, however, from ref. [16] that this is not the full story

for the dilaton, because with open massless states one gets extra terms proportional to ηµν .

Many things remain to be done. One is to include terms of O(q1) in our analysis for

the scattering amplitudes involving only massless states, and to extend it to the case in

which massless open strings are involved. Another thing is to extend our analysis to the

case where the other particles are arbitrary string states. Finally, one should extend all

this to the case of superstring theory and to the loop level. For the superstring we do not

expect drastic changes from the results that we got for the bosonic string and we hope to

report on this in a future publication [51].9
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A Computational details

In this appendix we lay out the procedure for computing the integrals in eqs. (2.2) and (3.7),

discuss the caveats, and provide a detailed computation of the quantity in eq. (2.2) up to

9Work will include the sub-sub leading soft behavior of massless states in closed string theory.
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O(q). The integrals in eq. (3.7) to the O(q0) can be computed in a similar way (with one

exception, which will be discussed), and we thus leave out the details here. We plan to

present the computations of S in eq. (3.7) up to the O(q) in a future work [51].

From eqs. (2.2) and (3.7) it is evident that we must compute integrals of the type:

Ij1j2...i1i2...
=

∫

d2z

∏n
l=1 |z − zl|α

′klq

(z − zi1)(z − zi2) · · · (z̄ − z̄j1)(z̄ − z̄j2) · · ·
. (A.1)

These integrals can generically be evaluated after an expansion in q by a substitution of

the form z → zi + ρeiθ. Note that since we use the convention d2z = 2dRe(z)dIm(z),

we have that d2z = 2ρdρdθ. It can be useful to substitute further eiθ → ω, such that
∫ 2π
0 dθ · · · →

∮

dω · · · , enabling use of Cauchy’s integral formula over the unit circle. Note

that the expansion in q of the integrand does not correspond to the same order of the

integral: in fact a term of order qn of the integrand generically yields a result of the

integral of the form Aqn−1 + Bqn + · · · where A,B, . . . are the coefficients of integration.

Special care must, however, be taken, when dealing with special pole structures such as:

1

|z − zi|2|z − zj |2
, (A.2)

as we shall discuss in a moment.

We note that infrared divergences should not appear, since they will be regulated by

q > 0; i.e. the exponent α′klq should not be expanded for those l’s for which z − zl is a

simple pole of the integrand. Ultraviolet divergences instead can appear due to partitioning

of integrals, but must cancel in the final result.

In terms of eq. (A.1) we can write the relevant integrals of this work as follows:

S1 =
α′

2
ǫµq ǭ

ν
q

n
∑

i,j=1

kiµkjνI
j
i , (A.3)

S2 = −
(

α′

2

)3/2

ǫµq ǭ
ν
q

n
∑

i,j,m=1

kiµkjν

(

(θmǫmq)Ijim + (θ̄mǭmq)Ijmi

)

, (A.4)

S3 =

√

α′

2
ǫq µǭq ν

n
∑

i,j=1

[

(θiǫ
µ
i )k

ν
j I

j
ii + (θ̄iǫ

ν
i )k

µ
j I

ii
j

−
(

α′

2

)3/2 n
∑

m=1

(

(θiǫ
µ
i )k

ν
j

(

(θmǫmq)Ijiim + (θ̄mǭmq)Ijmii

)

+ (θ̄iǭ
ν
i )k

µ
j

(

(θmǫmq)Iiijm + (θ̄mǭmq)Iiimj

)

)]

. (A.5)

S4 = ǫq µǭq ν

n
∑

i,j=1

(θiǫ
µ
i )(θ̄j ǭ

ν
j )

(

Ijjii −
√

α′

2

n
∑

m=1

(

(θmǫmq)Ijjiim + (θ̄mǭmq)Ijjmii

)

)

, (A.6)

Note that we only need to consider half of the terms, since by complex conjugation:

Ij1j2...i1i2...
= Ii1i2...j1j2...

(A.7)
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Note also that the upper respectively lower indices of Ij1j2...i1i2...
are totally symmetric. This

shows explicitly that S2, . . . , S4 are real valued. For S1 it is useful to separate its real part

from its imaginary part. Defining symmetric and antisymmetric polarization tensors as

follows:

ǫSµνq =
ǫµq ǭνq + ǫνq ǭ

µ
q

2
, ǫBµν

q =
ǫµq ǭνq − ǫνq ǭ

µ
q

2
, (A.8)

we can rewrite S1 in the form:

S1 =
α′

2
ǫSµνq

n
∑

i,j=1

kiµkjν
Iji + Iji

2
+

α′

2
ǫBµν
q

n
∑

i 6=j

kiµkjν
Iji − Iji

2
. (A.9)

In the case of eq. (2.2), where S1 is integrated over the punctures zi of the n tachyons,

the integration involves the factor in eq. (2.1) that is symmetric in the exchange zi ↔ z̄i.

In the above formula of S1, the (anti)symmetric part in µ ↔ ν is also (anti)symmetric in

zi ↔ z̄i. Being the antisymmetric part integrated with a symmetric (real) quantity, one

gets a vanishing result. Therefore in the case of a massless state scattering on n tachyons,

only the symmetric part will contribute, i.e.:

Stachyons
1 =

α′

2
ǫSµνq

n
∑

i,j=1

kiµkjν
Iji + Iji

2
. (A.10)

This is, as explained in the introduction, an explicit consequence of the world-sheet parity

Ω invariance that does not allow couplings between an uneven number of Kalb-Ramond

fields and tachyons.

The double pole structure of eq. (A.2) that appears in S4 requires more care. In this

case it is convenient to send one pole to infinity by the projective transformation

z → z′ =
z − zi
z − zj

=⇒ dz =
zi − zj
(z′ − 1)2

dz′ . (A.11)

Then one gets

Ijjii =
1

|zi − zj |2−α′qki

∫

d2z′
|z′|α′qki

z′2

∏

l 6=i

|(zi − zl)− z′(zj − zl)|α
′qkl , (A.12)

where momentum conservation was used to reduce the factor: |1−z′|−
∑n

l=1 α
′qkl = 1. Now,

expand in q and consider the first term:

1

|zi − zj |2
∫

d2z′
|z′|α′qki

z′2
=

1

|zi − zj |2
∫ Λ

0

dρ

ρ1−α′qki

∫ 2π

0
dθe−2iθ = 0 , (A.13)

This shows that for i 6= j Ijjii in S4 does not contribute to the order q0.

For the diagonal part, one must make use of the following formula

∫

d2z|z|α|1− z|β = π
Γ(1 + α

2 )Γ(1 +
β
2 )Γ(−1− α+β

2 )

Γ(−α
2 )Γ(−

β
2 )Γ(2 +

α+β
2 )

. (A.14)
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Thus

Iiiii =

∫

d2z|z − zi|α
′kiq−4

n
∏

j 6=i

|z − zj |α
′kjq =

∫

d2w|w|α′kiq−4 +O(q)

= π
Γ(−1 + α′

2 kiq)Γ(1)Γ(1− α′

2 kiq)

Γ(α
′

2 kiq)Γ(2− α′

2 kiq)Γ(0)
+O(q) = 0 +O(q) , (A.15)

demonstrating that also I iiii in S4 does not contribute to the order q0.

Computations for S1 with results for S2 and S3. In the last part of this appendix

we compute the integral in eq. (2.2) up to the order O(q), also appearing in S1 (eqs. (3.10)

and (A.3)). The details of the computation also provides the procedure to compute the

integrals appearing in S2 and S4, the results of which to the O(q0) are quoted in the end.

We consider first the diagonal part of Iji , appearing in eq. (A.3):

I ii =

∫

d2z
∏

j 6=i

|z − zj |α
′kjq |z − zi|α

′kiq−2 . (A.16)

By writing z = zi+ρ eiθ, one gets (note that we use the convention d2z = 2dRe(z)dIm(z)):

I ii = 2

∫ Λ

0
dρ ρα

′kiq−1

∫ 2π

0
dθ

∏

j 6=i

|ρeiθ + zi − zj |α
′kjq . (A.17)

We have introduced a cutoff Λ because the integral is divergent for large ρ. Expanding the

previous expression around q = 0 we get

I ii = 2

∫ Λ

0
dρ ρα

′kiq−1

∫ 2π

0
dθ



1 +
∑

j 6=i

α′(kjq) log |zi − zj + ρeiθ|

+
(α′)2

2

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi − zj + ρeiθ| log |zi − zk + ρeiθ|+ . . .



 . (A.18)

It consists of three terms. The first gives:

I1 = 2

∫ Λ

0
dρ ρα

′kiq−1

∫ 2π

0
dθ =

2π

α′kiq
Λα′kiq

=
4π

α′

(

1

kiq
+ α′ log Λ +

(α′)2

2
(kiq) log

2 Λ

)

+O(q2) . (A.19)

The second term can be written as

I2=
∑

j 6=i

α′kjq

∫ Λ

0
dρ ρα

′kiq−1

∫ 2π

0
dθ

(

log(zi − zj + ρeiθ) + log(z̄i − z̄j + ρe−iθ)
)

. (A.20)

Dividing the integration regions over ρ allows us to Taylor expand the logarithms yielding:

I2 =
∑

j 6=i

α′kjq

{

∫ |zk−zi|

0
dρ ρα

′kiq−1

∫ 2π

0
dθ

×
[

log(zi − zj) + log

(

1 +
ρeiθ

zi − zj

)

+ log(z̄i − z̄j) + log

(

1 +
ρe−iθ

z̄i − z̄j

)]
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+

∫ Λ

|zk−zi|
dρρα

′kiq−1

∫ 2π

0
dθ

[

log(ρ eiθ) + log

(

1 +
zi − zj
ρeiθ

)

+ log(ρ e−iθ) + log

(

1 +
z̄i − z̄j
ρe−iθ

)]

}

=
∑

j 6=i

α′kjq

{

∫ |zk−zi|

0
dρρα

′kiq−1

∫ 2π

0
dθ

×
[

2 log |zi − zj | −
∞
∑

n=1

(−1)n

n

ρneinθ

(zi − zj)n
−

∞
∑

n=1

(−1)n

n

ρne−inθ

(z̄i − z̄j)n

]

+
1

2

∫ Λ

|zi−zj |
dρρα

′kiq−1

∫ 2π

0
dθ

×
[

2 log ρ−
∞
∑

n=1

(−1)n

n

(zi − zj)
n

ρneinθ
−

∞
∑

n=1

(−1)n

n

(z̄i − z̄j)
n

ρne−inθ

]}

. (A.21)

Since
∫ 2π
0 dθ einθ = δn0 the previous expression becomes:

I2 = 4π
∑

j 6=i

α′kjq

{

log |zi − zj |
∫ |zi−zj |

0
dρ ρα

′kiq−1 +

∫ Λ

|zi−zj |
dρ ρα

′kiq−1 log ρ

}

= 4π
∑

j 6=i

kjq

kiq

[

Λα′kiq

(

log Λ− 1

α′kiq

)

+
|zi − zj |α

′kiq

α′kiq

]

(A.22)

= 4π
∑

j 6=i

kjq

kiq

[

log |zi − zj |+
α′

2
(kiq) log

2 |zi − zj |+
α′

2
(kiq) log

2 Λ

]

+O(q2) .

Notice that by summing I1 and I2 the log2 Λ divergences cancel due to momentum conser-

vation and to the fact that the soft state is massless

I1 + I2

∣

∣

∣

log2 Λ
∼ kiq log

2 Λ +
∑

j 6=i

kjq log
2 Λ =

n
∑

j=1

kjq log
2 Λ = −q2 log2 Λ = 0 . (A.23)

It remains to compute the last term in eq. (A.18) given by:

I3 = (α′)2
∑

j 6=i

∑

k 6=i

(kjq)(kkq)

∫ Λ

0
dρ ρα

′kiq−1

∫ 2π

0
dθ log |zi − zj + ρeiθ| log |zi − zk + ρeiθ| .

(A.24)

In order to evaluate this integral we assume that |zi − zj | > |zi − zk|, and divide the

integration range in three regions:

(Λ, |zi − zj |) ; (|zi − zj |, |zi − zk|) ; (|zi − zk|, 0) (A.25)

In the first region we can write the integral part of I3 as follows:

1

4

∫ Λ

|zi−zj |
dρ ρα

′kiq−1

∫ 2π

0
dθ

[

2 log ρ+ log

(

1 +
zi − zj
ρeiθ

)

+ log

(

1 +
z̄i − z̄j
ρe−iθ

)]

×
[

2 log ρ+ log

(

1 +
zi − zk
ρeiθ

)

+ log

(

1 +
z̄i − z̄k
ρe−iθ

)]

. (A.26)
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After expanding the logarithms the following three terms survive the integration over θ:

π

2

∫ Λ

|zi−zj |
dρ ρα

′kiq−1

[

4 log2 ρ+
∞
∑

n=1

(zi − zj)
n(z̄i − z̄k)

n

n2ρ2n
+

∞
∑

n=1

(zi − zk)
n(z̄i − z̄j)

n

n2ρ2n

]

.

(A.27)

Notice that, since I3 already explicitly contains two factors of q and we are only interested

in the expression up to order q, we should only keep integrands with the power ρα
′kiq−1,

because this is the only way to get a 1/q contribution. Thus we can readily neglect the last

two terms. Also the first term can be neglected, since the 1/q contribution from the lower

integration region will cancel the 1/q contribution from the upper region after expanding

in powers of q. From this we learn the following useful lesson:

∫ b

a
dρρα

′qkj−n logm ρ =







O(q0) b > a > 0 and any n,m

1
α′qkj

+O(q0) a = 0 , b > 0 , m = 0 , and n = 1
(A.28)

This means that I3 over the second integration region will also vanish up to order O(q),

which we have checked explicitly.

In the third region we can write the integral part of I3 as follows:

1

4

∫ |zi−zk|

0
dρ ρα

′kiq−1

∫ 2π

0
dθ

[

2 log |zi − zj |+ log

(

1 +
ρeiθ

zi − zj

)

+ log

(

1 +
ρe−iθ

z̄i − z̄j

)]

×
[

2 log |zi − zk|+ log

(

1 +
ρeiθ

zi − zk

)

+ log

(

1 +
ρe−iθ

z̄i − z̄k

)]

. (A.29)

Also in this case one gets three terms after integration over θ, but from the above lesson,

we see that only the first one contributes to the order q:

(2π) log |zi − zj | log |zi − zk|
∫ |zi−zk|

0
dρ ρα

′kiq−1 = (2π)
log |zi − zj | log |zi − zk|

α′kiq
. (A.30)

In conclusion I3 reads:

I3 =
2πα′

kiq

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi − zj | log |zi − zk|+O(q2) . (A.31)

In total, the “diagonal part” of S1 is given by

α′

2
Iii = 2π

[

α′ log Λ +
(α′)2

2

∑

j 6=i

(kjq) log
2 |zi − zj |+

1

kiq



1 + α′
∑

j 6=i

(kjq) log |zi − zj |

+
(α′)2

2

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi − zj | log |zi − zk|





]

+O(q2) . (A.32)

The logarithmic divergence must be cancelled by the remaining non-diagonal terms, which

we explicitly demonstrate below.
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The non-diagonal terms of S1 are given by the integrals:

Ij 6=i
i =

∫

d2z

∏n
m=1 |z − zm|α′kmq

(z − zi)(z̄ − z̄j)
. (A.33)

At the lowest order in q of the integrand we get after introducing the variables z = zi+ρ eiθ

and w̄ = e−iθ:
∫

d2z
|z − zi|α

′kiq

(z − zi)(z̄ − z̄j)
= 2

∫ Λ

0

dρ

ρ1−α′kiq

∮

idw̄

w̄ +
z̄i−z̄j

ρ

= 4π

∫ Λ

|zi−zj |

dρ

ρ1−α′kiq
= 4π

(

Λα′kiq − |zi − zj |α
′kiq

α′kiq

)

(A.34)

= 4π

(

log Λ− log |zi − zj |+
αkiq

2
log2 Λ− αkiq

2
log2 |zi − zj |

)

+O(q2) ,

In order to evaluate the next term in the expansion we assume that |zi−zm| ≤ |zi−zj |
and denote

∑

m 6=i

α′qkm

∫

d2z
|z − zi|α

′qki log |z − zm|
(z − zi)(z̄ − z̄j)

≡
∑

m 6=i

α′qkmI1
ij . (A.35)

Then using the same substitution as before, we get

I1
ij = i

∫ |zi−zm|

0
dρρα

′qki−1

∮

dw̄
log |zi − zm|2 + log

(

1 + ρ
w̄(zi−zm)

)

+ log
(

1 + ρw̄
z̄i−z̄m

)

w̄ +
z̄i−z̄j

ρ

+i

∫ Λ

|zi−zm|
dρρα

′qki−1

∮

dw̄
2 log ρ+ log

(

1 + w̄(zi−zm)
ρ

)

+ log
(

1 + z̄i−z̄m
ρw̄

)

w̄ +
z̄i−z̄j

ρ

. (A.36)

By expanding the logarithms we see that only the second term in the first integral has poles

on the contour and is therefore nonvanishing. In the second integral we have to separate

the region [|zi − zm|, |zi − zj |] from [|zi − zj |, Λ]. In the first region only the last term has

a nonvanishing residue. Thus:

I1
ij = −i

∫ |zi−zm|

0
dρρα

′qki−1

∮

dw̄
∞
∑

n=1

(−1)n

n

ρn

(zi − zm)n





1

w̄n
(

w̄ +
z̄i−z̄j

ρ

)





−i

∫ |zi−zj |

|zi−zm|
dρρα

′qki−1

∮

dw̄
∞
∑

n=1

(−1)n

n

(z̄i − z̄m)n

ρn





1

w̄n
(

w̄ +
z̄i−z̄j

ρ

)



 (A.37)

+i

∫ Λ

|zi−zj |
dρρα

′qki−1

∮

dw̄
2 log ρ−

∑∞
n=1

(−1)n

n
w̄n(zi−zm)n

ρn −
∑∞

n=1
(−1)n

n
(z̄i−z̄m)n

ρnw̄n

w̄ +
z̄i−z̄j

ρ

.

The residue formulas of the nonsimple poles read:

Resw̄=0





1

w̄n
(

w̄ +
z̄i−z̄j

ρ

)



 = −
(

− ρ

z̄i − z̄j

)n

, (A.38)
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Res
w̄=−

z̄i−z̄j
ρ





1

w̄n
(

w̄ +
z̄i−z̄j

ρ

)



 =

(

− ρ

z̄i − z̄j

)n

, (A.39)

showing that the contour integral over the last term of the last integral vanishes. It follows

by integration and then expansion in q that:

I1
ij = π

∞
∑

n=1

1

n2

(z̄i − z̄m)n

(z̄i − z̄j)n
+ 2π

∞
∑

n=1

1

n

(z̄i − z̄m)n

(z̄i − z̄j)n
log

|zi − zj |
|zi − zm|

+2π
[

log2 Λ− log2 |zi − zj |
]

− π
∞
∑

n=1

1

n2

(zi − zm)n

(zi − zj)n
+O(q)

= 2π log2 Λ− 2π log2 |zi − zj | − 2π log
z̄m − z̄j
z̄i − z̄j

log
|zi − zj |
|zi − zm|

+πLi2

(

z̄i − z̄m
z̄i − z̄j

)

− πLi2

(

zi − zm
zi − zj

)

+O(q) , (A.40)

where the Dilogarithmic function was introduced:

Li2(z) =
∞
∑

k=1

zk

k2
. (A.41)

From momentum conservation and q2 = 0 it follows that the first two terms yield

2π
∑

m 6=i

α′qkm
(

log2 Λ− log2 |zi − zj |
)

= −2πα′qki
(

log2 Λ− log2 |zi − zj |
)

, (A.42)

which cancel the last two terms in eq. (A.34). Thus, summing up, we have found:

Ij 6=i
i = 4π log Λ− 4π log |zi − zj | − 2π

∑

m 6=i,j

α′qkm log
z̄m − z̄j
z̄i − z̄j

log
|zi − zj |
|zi − zm|

+π
∑

m 6=i,j

α′qkm

[

Li2

(

z̄i − z̄m
z̄i − z̄j

)

− Li2

(

zi − zm
zi − zj

)]

+O(q2) . (A.43)

Notice that the last line involving the Dilogarithms is purely imaginary and will thus only

contribute to the antisymmetric part of S1 according to eq. (A.9). The third term can be

rewritten as a sum of real and imaginary parts, such that the real part of our result is:

R(Ij 6=i
i ) = 4π log Λ− 4π log |zi − zj |+ 2π

∑

m 6=i,j

α′qkm log |zm − zj | log |zi − zm| (A.44)

− 2π
∑

m 6=j

α′qkm log |zm − zj | log |zi − zj | − 2π
∑

m 6=i

α′qkm log |zi − zj | log |zi − zm| ,

where momentum conservation is used to rewrite
∑

m 6=i,j q · km = −q · ki − q · kj . The

imaginary part, instead, is equal to:

I(Ij 6=i
i ) = π

∑

m 6=i,j

α′qkm

[

Li2

(

z̄i − z̄m
z̄i − z̄j

)

− Li2

(

zi − zm
zi − zj

)

+ log
|zi − zj |
|zi − zm| log

(

zm − zj
z̄m − z̄j

z̄i − z̄j
zi − zj

)

]

. (A.45)
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In conclusion, we have found that S1 in eq. (A.9), up to the O(q1), is equal to

S1 = 2πǫSµνq

n
∑

i=1

kiµkiν

[

α′ log Λ +
(α′)2

2

∑

j 6=i

(kjq) log
2 |zi − zj |

+
1

kiq



1+α′
∑

j 6=i

(kjq) log |zi−zj |+
(α′)2

2

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi−zj | log |zi−zk|





]

+ 2πǫSµνq

n
∑

i 6=j

kiµkjνα
′

[

log Λ− log |zi − zj |+
α′

2

∑

m 6=i,j

(qkm) log |zm − zj | log |zi − zm|

− α′

2

∑

m 6=j

(qkm) log |zm − zj | log |zi − zj | −
α′

2

∑

m 6=i

(qkm) log |zi − zj | log |zi − zm|
]

+ 2πǫBµν
q

n
∑

i 6=j 6=m

kiµkjν

(

α′

2

)2

(qkm)

[

Li2

(

z̄i − z̄m
z̄i − z̄j

)

− Li2

(

zi − zm
zi − zj

)

+ log
|zi − zj |
|zi − zm| log

(

zm − zj
z̄m − z̄j

z̄i − z̄j
zi − zj

)

]

+O(q2) . (A.46)

It is evident that the logarithmic divergences cancel after using momentum conservation

twice on the non-diagonal terms:

n
∑

i 6=j

kiµkjν = −
n
∑

i=1

kiµkiν + qµqν . (A.47)

The term qµqν can be neglected because it vanishes in any case when contracted with ǫµν .

Thus, we have derived eq. (2.5) for the scattering with tachyons, where the antisymmet-

ric part vanishes after the integration over the punctures zi of the tachyons, and eq. (3.14),

evaluated only to order q0.

Finally, S2 and S3 are obtained to the order q0 by repeating exactly the same procedure

followed to compute S1. In so doing we find the following results:

S2 = −2πǫqµǭqν

√

α′

2

∑

i 6=j

[

θi(ǫiq)k
µ
j

zi − zj

(

kνi
kiq

−
kνj
kjq

)

+
θ̄i(ǭiq)k

ν
j

z̄i − z̄j

(

kµi
kiq

−
kµj
kjq

)]

+O(q) ,

(A.48)

S3 = 2πǫq µǭq ν
∑

i 6=j

[
√

α′

2

(kjq)θiǫ
µ
i

zi − zj

(

kνi
kiq

−
kνj
kjq

)

+

√

α′

2

(kjq)θ̄iǭ
ν
i

zi − zj

(

kµi
kiq

−
kµj
kjq

)

+
(θjǫjq)(θiǫ

µ
i )

(zi − zj)2

(

kνi
kiq

−
kνj
kjq

)

+
(θ̄j ǭjq)(θ̄iǭ

ν
i )

(z̄i − z̄j)2

(

kµi
kiq

−
kµj
kjq

)]

+O(q) . (A.49)

We have already shown at the beginning of the appendix that S4 vanishes to the order q0.

This ends the computations of this paper. We plan to compute and discuss S to the order

q in a future work [51].
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