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1 Introduction

For heavy neutralino dark matter (DM) there is class of radiative corrections to the tree-

level pair annihilation cross section, which can become larger than naively expected by the

electroweak nature of the interaction, and even exceed the lowest-order cross section by

orders of magnitude. This so-called Sommerfeld effect arises when an attractive interaction

between the non-relativistic DM particles significantly distorts their wave function, such

that they have a larger probability to undergo annihilation. In terms of Feynman diagrams

the effect arises from the exchange of the electroweak gauge bosons between the DM par-

ticles, which contributes a factor g2MDM/MW , such that an additional particle exchange

is not suppressed by the electroweak coupling g2 when the DM mass is much larger than

the mediator mass. The Sommerfeld effect is non-perturbative in the sense that a resum-

mation of diagrams to all orders in g2 is needed in order to calculate the annihilation cross

section. The relevance of the Sommerfeld effect was first pointed out for the annihilation

cross section of (wino- or higgsino-like) neutralino DM into two photons [1], although it
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was not until 2008, when an anomalous positron excess was measured by PAMELA, that

Sommerfeld enhanced DM models attracted more attention as a mechanism to boost the

DM annihilation rates [2]. For these models, the larger velocities around DM freeze-out in

the early Universe (v ∼ 0.3c) can yield an annihilation rate in accordance with the observed

relic density, whereas the much smaller neutralino velocities today (v ∼ 10−3c) enhance

the annihilation rate into electrons and positrons observed as cosmic rays. Since then the

Sommerfeld enhancements in cosmic ray signatures and in the thermal relic abundance

have been discussed extensively for relevant MSSM scenarios with neutralino DM [3–10],

but also for generic multi-state dark matter models [11–13].

Here, and in our previous papers [14] (from now on referred to as paper I) and [15] (pa-

per II), we develop a formalism that improves the calculation of the DM annihilation cross

section in the general minimal supersymmetric standard model (MSSM) with neutralino

DM by including the Sommerfeld corrections. By allowing the lightest supersymmetric

particle (LSP) to be an arbitrary admixture of the electroweak gauginos and higgsinos, the

framework can be used to study regions of the MSSM parameter space where the Som-

merfeld correction may no longer be an order one effect, but still constitute the dominant

radiative correction. Our method builds upon the non-relativistic nature of the pair of

annihilating particles and separates the short-distance annihilation process (taking place

at distances O(1/mLSP)) from the long-distance interactions characterized by the Bohr

radius of order 1/(mLSPg
2) or 1/mW , responsible for the Sommerfeld effect, in analogy to

the NRQCD treatment of quarkonium annihilation. However, in the MSSM co-annihilation

effects of the LSP with heavier neutralino and chargino species have to be accounted for in

regions where mass degeneracies are generic. Dealing with many nearly mass-degenerate

scattering states (channels) requires an extension of the conventional NRQCD setup, which

is provided in this work to accommodate any number of neutralino and chargino species.

Previous works on the Sommerfeld enhancement focused on the wino and higgsino limits

of the MSSM with at most three neutralino-chargino two-particle states in the case of the

neutral sector of higgsino-like scenarios. Further aspects where the formalism we present

extends previous approaches are:

• The total annihilation cross section for a given co-annihilating state χiχj is obtained

from the imaginary part of the forward scattering amplitude χiχj → · · · → χe1χe2 →
XAXB → χe4χe3 → . . . χiχj where XAXB denotes a pair of SM or light Higgs parti-

cles. The transitions of χiχj to other two-particle states through electroweak gauge

boson exchange prior to the short-distance annihilation χe1χe2 → XAXB → χe4χe3
are accounted for by off-diagonal terms in the potential interactions, which are pro-

vided in analytic form in this paper. Likewise, off-diagonal entries in the space of

two-particle states are required to describe the short-distance part. The (off)-diagonal

annihilation matrix entries in the general MSSM were obtained in analytic form in pa-

pers I and II. The off-diagonal annihilation terms cannot be be obtained directly from

the numerical codes that compute the MSSM tree-level annihilation rates, and were

consequently not considered previously except in the strict wino and higgsino limits.
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• Our multi-channel approach implies that an incoming state χiχj can scatter to heav-

ier two-particle states that are kinematically closed for the available center-of-mass

(cms) energy. Eventually, when some mass-splittings become larger than M2
W /MDM,

numerical instabilities in the solution of the matrix-Schrödinger equation for the scat-

tering wave functions prevents one from obtaining accurate results for the Sommer-

feld factors. We circumvent this problem by reformulating the Schrödinger problem

directly for the entries of the relevant matrix that provides the Sommerfeld factors,

instead of solving for the wave functions. Leaving aside limitations related to the CPU

time needed to solve a system of many coupled differential equations, this method

allows to compute the Sommerfeld factors reliably also when many non-degenerate

two-particle channels are present.

• The short-distance annihilation rates are obtained in the non-relativistic limit includ-

ing corrections of O(v2
rel), where vrel = |~v1 − ~v2| denotes the relative velocity of the

annihilating particles in their center-of-mass frame, i.e.

Γχe1χe2→XAXB→χe4χe3 ∼ a+ b v2
rel . (1.1)

While the leading order describes only S-wave annihilations, the subleading term b

contains both S- and P -wave contributions, that get multiplied by different Sommer-

feld factors when building the full annihilation cross section from the rates above. A

separation of the two partial-wave components of b is thus needed, which is automat-

ically achieved in our EFT framework, since the Sommerfeld factors in question arise

from different non-relativistic operator matrix elements.

In the EFT approach the short-distance contributions to the neutralino and chargino

pair-annihilation processes are encoded into the Wilson coefficients of local four-fermion

operators, whereas the absorptive part of the matrix element of these four-fermion oper-

ators gives the full annihilation rates, including the Sommerfeld corrections. In papers

I and II we have written down the dimension-6 and dimension-8 four-fermion operators

that mediate the short-distance annihilation rates at leading and next-to-next-to leading

order in vrel, respectively, and presented the complete results for the corresponding Wilson

coefficients in the general MSSM. In the present paper we turn to the long-distance part of

the annihilation process and provide all the technical details required for the computation

of the matrix elements of the four-fermion operators. Apart from the annihilation rates,

the other model-specific ingredient, the non-relativistic potentials generated by electroweak

gauge boson and Higgs boson exchange in the MSSM, are also provided in compact an-

alytic form in this work. The contents of papers I-III therefore allow us to compute the

full Sommerfeld-enhanced neutralino and chargino co-annihilation rates for an arbitrary

MSSM parameter-space point and the corresponding relic abundance. A detailed investi-

gation and discussion of Sommerfeld enhancements in the relic abundance calculation in

some popular MSSM scenarios is the subject of an accompanying paper [16]. The general

phenomenological study of Sommerfeld enhancements in the MSSM parameter space is

postponed for a future publication.
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A number of limitations needs to be mentioned. The formalism in its present form

cannot be applied to DM annihilation through a narrow-width s-channel resonance, since

in this case the annihilation process is no longer short-distance. Furthermore, we computed

the pair annihilation and potentials of neutralinos and charginos, but not of neutralinos

and sfermions, which excludes MSSM scenarios where neutralino-sfermion co-annihilation

is important. Both, resonant annihilation and neutralino-sfermion co-annihilation scenar-

ios require the accidental coincidence of some MSSM parameters and are in this sense

less generic than neutralino-chargino co-annihilations, especially when the LSP is heavy

(mLSP � mW ), and therefore a member of an approximate electroweak multiplet. On

the technical side, we presently neglect the scale dependence of the electroweak couplings

as well as electroweak double logarithms of the Sudakov type. The latter, of course, are

only important when the formalism is applied to exclusive final states, as is relevant to

indirect detection signals of DM. EFT methods have been proposed recently for summing

up the Sudakov logarithms in multi-TeV DM annihilation [17–19]. More important to

relic-density computations is the fact that for heavy dark matter the freeze-out occurs at

temperatures where the temperature-dependence of the electroweak gauge-bosons masses

can be relevant, as can be the temperature-dependence of the gaugino masses. While in

general the thermal corrections to DM freeze-out are tiny [20], the case of Sommerfeld

enhancements is special, since they depend sensitively on the range of the potential and

the small mass splittings between the co-annihilating particles. In the wino and Higgsino

limits some of the above effects have already been studied in the context of Sommerfeld

enhancement [4, 11]. For the general case, this is left for future work.

The contents of the paper are the following. The theoretical framework is summarized

at some length in section 2. We discuss the structure of the EFT Lagrangian and derive the

master formula for the Sommerfeld-corrected cross section in subsection 2.1. The standard

formalism to obtain the thermal relic abundance is reviewed in 2.2. The computation of the

potentials for neutralino and chargino scattering in the MSSM is one of the main results

of this paper, and we have devoted section 3 to outline the details. The computation of

the Sommerfeld factors is the subject of section 4. In the first part of this section we relate

the four-fermion matrix elements with the scattering wave functions that are determined

by solving a multi-channel Schrödinger equation with MSSM potentials. Subsection 4.2

describes the standard method to solve the Schrödinger equation and points out to the

numerical instabilities that are caused by kinematically closed channels. The improved

method that solves this problem is then explained in subsection 4.3. As in NRQCD, the

matrix element of second-derivative operators can be related to the leading order ones,

though here it becomes more involved due to the presence of Yukawa-like interactions

generated by massive gauge bosons; the exact relation is derived in subsection 4.4. In the

final part of section 4 we give an approximation to the treatment of heavier channels which

can be used to reduce the number of channels to be treated exactly in the multi-channel

Schrödinger equation, and thus the time required for its numerical solution. A summary

of our main results is given in section 5. Finally, we collect the analytic expressions for

the potentials in the MSSM in appendix A, and we show the equivalence between the two

different basis of two-particle states that can be used to evaluate the Sommerfeld factors in
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appendix B. As mentioned above, the present papers concentrates on technical aspects of

the framework, which is rather general and applicable to any model of heavy dark matter

with electroweak interactions. A non-technical discussion of results is presented in an

accompanying paper [16].

2 Theoretical framework

Together with previous results given in [14, 15], the formalism that we present in this work

allows to describe Sommerfeld-enhanced neutralino and chargino pair-annihilation rates

within generic R-parity conserving MSSM scenarios, including the most general form of

flavor mixing in the squark and slepton sector. After electroweak symmetry breaking the

four neutralino states χ0
i , i = 1, . . . , 4 result as combinations of the four SU(2)L × U(1)Y

eigenstates bino, the electrically neutral wino and the two electrically neutral higgsinos.

The chargino states χ±j , j = 1, 2 are a mixture of the charged wino and higgsino electroweak

eigenstates. While the bino and the winos are related to the soft SUSY breaking mass-

parameters M1 and M2, respectively, the higgsino states are associated with the mass-

parameter µ in the underlying SUSY Lagrangian.

A MSSM scenario can be obtained with publicly available MSSM spectrum generators,

for example [21–23], where the parameters M1, M2 and µ among other required SUSY

parameter inputs have to be specified. In constrained MSSM scenarios, as for instance

models with grand unification of gauge couplings, certain relations among the input SUSY

parameters are assumed. Our setup is not restricted to such cases, but allows to analyze

Sommerfeld enhancements in χ0, χ± co-annihilations in the most general MSSM models.

Generically we require for our calculations a (SLHA formatted) MSSM spectrum including

mass parameters, mixing matrices and angles, typically provided as output of a MSSM

spectrum calculator. From this spectrum we determine the corresponding Sommerfeld-

enhanced χ0, χ± co-annihilation rates as well as the χ0
1 relic abundance. Our formalism

requires positive mass parameters of the neutralino and chargino states, which we auto-

matically account for by an appropriate rotation of the neutralino and chargino mixing

matrices, as explained in appendix A of paper I [14].

A rigorous analysis of Sommerfeld-enhanced χ0, χ± co-annihilation processes in a given

model should refer to the on-shell mass spectrum of the neutralino and chargino states,

instead of to the DR-parameters that are provided by most spectrum calculators. Fur-

thermore, the mass splittings between the co-annihilating states play an essential role in

the precise calculation of Sommerfeld enhancements, requiring one-loop on-shell renormal-

ized masses in some cases. Results on the one-loop on-shell renormalized χ0, χ± sector of

the MSSM are available [24–27], but have not yet been implemented in public spectrum

generators.

We perform our calculation in the framework of an effective field theory (EFT) of

non-relativistic neutralinos and charginos, which generically covers the case of models with

n0 ≤ 4 neutralino-states χ0
i , i = 1, . . . , n0 and n+ ≤ 2 chargino-states χ±j , j = 1, . . . , n+,

that are nearly mass-degenerate with the χ0
1. The description of our EFT framework is

the purpose of section 2.1, starting with the discussion of the Lagrangian in the effec-
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tive theory in section 2.1.1. In section 2.1.2 we recall the notation for the four-fermion

operators that reproduce the short-distance annihilation reactions and that were already

introduced in [14, 15]. The relevant formulae for the Sommerfeld-enhanced annihilation

matrix elements, which determine the co-annihilation cross sections entering the χ0
1 relic

abundance calculation, are given in section 2.1.3. Finally the χ0
1 relic abundance calcu-

lation is summarized in section 2.2. Our EFT framework does not cover scenarios where

co-annihilations with nearly mass-degenerate sfermion such as the t̃1 or τ̃1 are important

in the relic abundance calculation. These cases require a straightforward extension of our

EFT setup but are beyond the scope of this work. For the time being we exclude MSSM

scenarios from our analysis, where other than χ0/χ± co-annihilations are important in the

χ0
1 relic abundance calculation.

2.1 Effective theory approach

2.1.1 Lagrangian

In [14] we have introduced an effective field theory (EFT), the non-relativistic MSSM

(NRMSSM), designed to describe the dynamics of charginos and neutralinos which are

off-shell by an amount of the order of (mLSPv)2, where mLSP is the mass of the lightest

neutralino and v its small velocity. The framework allows us to compute the inclusive

annihilation rates of pairs of charginos and neutralinos moving at small velocities in a sys-

tematic expansion in the coupling constant and the velocity. The NRMSSM shares many

similarities with the non-relativistic EFT of QCD [29], that has been employed for comput-

ing heavy quarkonium properties and radiative corrections to heavy quark production with

remarkable accuracy, and can be considered as an extension of the latter in two aspects.

First, the NRMSSM can account for several non-relativistic particle species, namely those

neutralinos and charginos whose masses are nearly degenerate with mLSP, and second, it

includes potential interactions generated by massive gauge bosons (i.e. Yukawa potentials)

and not just Coulomb potentials.

The structure of the EFT Lagrangian has already been discussed in [14]. It consists

of three parts:

LNRMSSM = Lkin + Lpot + δLann + . . . , (2.1)

where the dots stand for terms of higher order in the non-relativistic expansion, that are

not required for the present calculation of the Sommerfeld-enhanced annihilation rates.

Lkin contains the bilinear terms in the two-component spinor fields ξi and ψj = ηj , ζj that

represent the non-relativistic neutralinos (χ0
i ) and charginos (χ−j and χ+

j ), respectively.

For n0 ≤ 4 non-relativistic neutralino species and n+ ≤ 2 non-relativistic chargino species,

Lkin is given by

Lkin =

n0∑

i=1

ξ†i

(
i∂t − (mi −mLSP) +

~∂ 2

2mLSP

)
ξi

+
∑

ψ=η,ζ

n+∑

j=1

ψ†j

(
i∂t − (mj −mLSP) +

~∂ 2

2mLSP

)
ψj . (2.2)
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neutral reactions single-charged reactions double-charged reactions

χ0χ0 → χ0χ0 χ0χ+ → χ0χ+ χ+χ+ → χ+χ+

χ0χ0 → χ−χ+ χ−χ0 → χ−χ0 χ−χ− → χ−χ−

χ−χ+ → χ0χ0

χ−χ+ → χ−χ+

Table 1. Possible χe1χe2 → χe4χe3 scattering reactions classified according to the total charge.

The labels ei on the fields χei are suppressed in the above table. If χei represents a field χ0
ei , the

label ei can range over ei = 1, . . . , n0, whereas ei = 1, . . . , n+ for the case of a χ±ei field. Redundant

reactions where the type of particle in position 1 and 2 and/or 3 and 4 are interchanged (e.g. the

reaction χ+χ− → χ0χ0) are not explicitly written.

In order to have a consistent power-counting in the amplitudes describing transitions be-

tween two-particle states formed from the neutralino and chargino species included in the

EFT we need that the mass differences (mi − mLSP) are formally considered of order

mLSPv
2 [14],1 of the same order as the time-derivative and kinetic-energy term in the La-

grangian. This implies that heavier neutralinos and charginos (as well as further heavy

SUSY particles and higher mass Higgs) are not among the degrees of freedom of the ef-

fective theory, and their virtual effects can only appear as short-distance corrections to

the operators in LNRMSSM. In the same way, the hard modes associated to the SM and

light Higgs-particle produced in neutralino and chargino pair-annihilations are encoded in

the Wilson coefficients of four-fermion operators in δLann, which are local in space-time

because the annihilation takes place at short-distances of O(1/mLSP), as compared to the

characteristic range O(1/mLSPv) or O(1/mW ) (whichever is smaller) of the non-relativistic

interactions between the charginos and neutralinos. The explicit form of the operators in

δLann, which are relevant for this work, and the details on the associated Wilson coefficients

are given below in section 2.1.2.

The term Lpot accounts for the exchange of SM gauge bosons and Higgs particles

between the two-particle states χe1χe2 and χe4χe3 with non-relativistic relative velocity. In

the non-relativistic limit, such interactions become instantaneous but spatially non-local,

and are described in the EFT by four-fermion operators whose matching coefficients are

Yukawa- and Coulomb potentials depending on the relative distance ~r = ~x ′ − ~x (r ≡ |~r |)
in the two-body system:

Lpot = −
∑

χχ→χχ

∫
d3~r V χχ→χχ

{e1e2}{e4e3}(r)χ
†
e4(t, ~x)χ†e3(t, ~x+ ~r )χe1(t, ~x)χe2(t, ~x+ ~r ) . (2.3)

The sum in (2.3) is taken over all χe1χe2 → χe4χe3 neutral, single-charged and double-

charged reactions with χei = χ0
ei , χ

±
ei , which have been summarized in table 1. The par-

ticular particle species (χ0 or χ±) participating in the reaction is indicated by the label

1As discussed in [14], a straightforward extension of the EFT covers the case where the non-relativistic

particle species are nearly mass-degenerate with respect to two well-separated mass scales m and m; within

this modified set-up pair annihilations of a set of hydrogen-like two-particle states can be also considered.
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χχ → χχ in the potentials. The explicit form of the terms in (2.3) are generated by re-

placing the generic fields χei by the field symbols ξei , ηei or ζei , corresponding to particle

species χ0
ei , χ

−
ei and χ+

ei in all possible ways compatible with charge-conservation in the

reaction. At leading order in the non-relativistic expansion, the potentials depend only on

the total spin of the two-particle states, which is thus conserved. An individual potential

contribution from the exchange of a gauge boson or Higgs particle with mass mφ has, at

leading order, the generic form

V χχ→χχ
{e1e2}{e4e3}(r) =

(
Ae1e2e4e3δα4α1δα3α2 +Be1e2e4e3

(
~S2
)
α4α1,α3α2

) e−mφr
r

, (2.4)

where we have written explicitly the spin indices αi omitted in (2.3), which are contracted

with the corresponding indices in the field operators χei . The total spin operator ~S is

built from the spin operators acting on the particles interacting at points ~x1 and ~x2 as
~Sα4α1,α3α2 = ~σα4α1/2 δα3α2 + δα4α1~σα3α1/2 ≡ 1/2 (~σ⊗1+1⊗~σ). Since we shall decompose

the two-particle states χe1χe2 and χe4χe3 undergoing potential interactions into 2S+1LJ
partial-wave states with defined spin S = 0, 1, we can drop the spin indices in the potentials

in what follows and replace the ~S2 operator acting on χe1χe2 ,χe4χe3 by its eigenvalue

S(S + 1) = 2S for S = 0, 1.

In this work we account for O(v2) effects in the (co-)annihilation of neutralino and

chargino pairs coming from the short-distance part of the annihilation but ignore O(v2)

contributions from the long-range part. Consequently, only the leading-order Coulomb- and

Yukawa potential interactions need to be considered in Lpot. Details on the calculation

of the potentials at O(g2
2) in the MSSM, where gi are the generic SU(2)L ⊗ U(1)Y gauge

couplings, will be given in section 3.

2.1.2 Annihilation matrices

The short-distance annihilation of the chargino and neutralino pairs into SM and light Higgs

final states is reproduced in the EFT by local four-fermion operators contained in δLann.

The Wilson coefficients of these operators can be determined by matching the MSSM am-

plitudes for the process χe1χe2 → X → χe4χe3 with SM and light Higgs intermediate states

to the tree-level matrix element of the four-fermion operators for the same incoming and

outgoing states. For the computation of the neutralino and chargino inclusive annihilation

rates, only the absorptive part of these Wilson coefficients are required, see (2.12), and con-

sequently the matching can be done for the absorptive part of the amplitude only. At lowest

order in the electroweak gauge couplings gi, the contributions to the Wilson coefficients arise

from the absorptive part of χe1χe2 → χe4χe3 one-loop scattering diagrams with two SM or

light Higgs particles in the intermediate state, XAXB, and are of O(α2
i ), where αi = g2

i /4π.

Note that the annihilation rates include the absorptive parts of off-diagonal amplitudes in

the space of two particle states χeχe′ , since the exchange of gauge and Higgs bosons before

the short-distance annihilation may transform one two-particle state into another.

The leading-order contributions to δLann are given by dimension-6 four-fermion op-

erators, that describe leading-order S-wave neutralino and chargino scattering processes

– 8 –
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χe1χe2 → χe4χe3 . They read [14]

δLd=6
ann =

∑

χχ→χχ

∑

S=0,1

1

4
fχχ→χχ{e1e2}{e4e3}

(
2S+1SS

)
Oχχ→χχ{e4e3}{e2e1}

(
2S+1SS

)
, (2.5)

where fχχ→χχ{e1e2}{e4e3}
(

2S+1SJ
)

are the corresponding Wilson coefficients, which will be often

abbreviated as f
(

2S+1SJ
)
. The explicit form of the dimension-6 S-wave operators with

S = 0, 1 is

Oχχ→χχ{e4e3}{e2e1}
(

1S0

)
= χ†e4χ

c
e3 χ

c†
e2χe1 , (2.6)

Oχχ→χχ{e4e3}{e2e1}
(

3S1

)
= χ†e4σ

iχce3 χ
c†
e2σ

iχe1 . (2.7)

The first sum in (2.5) is taken over all neutralino and chargino scattering reactions χe1χe2 →
χe4χe3 specified in table 1, including redundant ones where the particle species at the first

and second and/or third and fourth position are interchanged. This redundancy implies

that several operators describe one specific process with a χe1 and χe2 (χe3 and χe4) particle

in the initial (final) state, and as a consequence their respective Wilson coefficients obey

certain symmetry relations under the exchange of the labels e1 ↔ e2 and/or e3 ↔ e4 [14],

see (2.11) below. The absorptive parts of the Wilson coefficients, f̂
(

2S+1SJ
)
, have been

calculated in [14] in the MSSM at O(α2
i ). A master formula and necessary ingredients to

obtain the contributions to f̂
(

2S+1SJ
)

from individual states XAXB in analytic form can

be found therein.

At O(v2) in the non-relativistic expansion in momenta and mass differences, dimen-

sion-8 four-fermion operators contribute to δLann:2

δLd=8
ann =

∑

χχ→χχ

1

4M2
fχχ→χχ{e1e2}{e4e3}

(
1P1

)
Oχχ→χχ{e4e3}{e2e1}

(
1P1

)

+
∑

χχ→χχ

∑

J=0,1,2

1

4M2
fχχ→χχ{e1e2}{e4e3}

(
3PJ

)
Oχχ→χχ{e4e3}{e2e1}

(
3PJ

)

+
∑

χχ→χχ

∑

s=0,1

1

4M2
gχχ→χχ{e1e2}{e4e3}

(
2S+1SS

)
Pχχ→χχ{e4e3}{e2e1}

(
2S+1SS

)

+
∑

χχ→χχ

∑

s=0,1

∑

i=1,2

1

4M2
hχχ→χχi {e1e2}{e4e3}

(
2S+1SS

)
Qχχ→χχi {e4e3}{e2e1}

(
2S+1SS

)
. (2.8)

The operators O
(

1P1

)
and O

(
3PJ

)
, J = 0, 1, 2, contain one derivative acting on each

of the initial and final bilinear operators (χc†e2χe1 and χ†e4χ
c
e3 , respectively), while in the

P
(

2S+1SS
)

operators the two derivatives act either on the initial or in the final state. The

explicit form of these operators can be read off from table 1 in [15]. The remaining next-

to-next-to leading S-wave operators Qi
(

2S+1SS
)
, i = 1, 2, are the same as the dimension-6

2In a parity-violating theory such as the MSSM, there exist also O(v) contributions to δLann, correspond-

ing to dimension-7 four-fermion operators which describe 1S0 − 3P0, 3S1 − 1P1 and 3S1 − 3P1 transitions

where the spin and/or the orbital-angular momentum of the χχ pair is changed. They are not considered

here because they contribute to the annihilation rates only in conjunction with O(v)-suppressed potential

interactions in Lpot, which we neglect. For the same reason, dimension-8 four-fermion operators in δLann

causing 3P1 → 1P1 and 3S1 → 3D1 transitions are ignored.
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operators O
(

2S+1SS
)

written in (2.7) up to a factor (δmM) in the case i = 1 and (δmM)

for i = 2, where

M =
1

2

4∑

k=1

mek , (2.9)

with mek the masses of the χek particles involved in the reaction χe1χe2 → χe4χe3 , and

δm =
me4 −me1

2
, δm =

me3 −me2

2
. (2.10)

The mass scale M and mass differences δm, δm are process-specific quantities, their value

being determined by the curly bracket labels of the short-distance coefficients f , g, hi mul-

tiplying them. Since δm = δm = 0 for diagonal annihilation reactions χe1χe2 → χe1χe2
(where the absorptive part of the amplitudes is related to the corresponding annihilation

cross section), the Qi
(

2S+1SS
)

are only relevant for the computation of the off-diagonal

rates. The convergence of the non-relativistic expansion for these off-diagonal terms re-

quires that the mass differences are considered as O(v2) effects [14]. Therefore, in scenarios

where the off-diagonal annihilation terms can be relevant, the non-degeneracies among the

particle species whose long-distance interactions are described within the EFT formalism

are limited to δm � mLSP. Particles with masses such that δm ∼ mLSP or larger should

be decoupled explicitly and integrated out — they cause small modifications of short-

distance coefficients in the effective Lagrangian, which are not relevant to the relic density

computation.

Analytic results for the absorptive parts of the Wilson coefficients appearing in δLd=8
ann

in the general MSSM can be extracted from the expressions given in [15]. For the P -

and O(v2) S-wave Wilson coefficients in (2.8) there are symmetry relations under the

exchange of the particle labels analogous to those for the leading-order S-wave Wilson

coefficients [15]. We reproduce them here for later reference:

kχχ→χχ{e2e1}{e4e3}
(

2S+1LJ
)

= (−1)S+L kχχ→χχ{e1e2}{e4e3}
(

2S+1LJ
)
,

kχχ→χχ{e1e2}{e3e4}
(

2S+1LJ
)

= (−1)S+L kχχ→χχ{e1e2}{e4e3}
(

2S+1LJ
)
, (2.11)

where k refers to any of the Wilson coefficients, f, g and hi in (2.5) and (2.8).

2.1.3 Sommerfeld-corrected cross section

The spin-averaged center-of-mass frame χiχj annihilation cross section summed over all

accessible light final states is given by the corresponding cuts of the forward-scattering

amplitude χiχj → χiχj by virtue of unitarity, see figure 1 below.3 In the non-relativistic

3We note that the forward amplitude shown in the second line of this figure has further cuts whenever the

mass of the two-particle state e1e2 or e3e4 or of any other two-particle state in the shaded blob representing

ladder diagrams is less than the centre-of-mass energy of the initial state ij. These cuts are automatically

excluded in (2.12), where the state |χiχj〉 (〈χiχj |) refers to a scattering energy eigenstate of the non-

relativistic Hamiltonian rather than to an in-state (out-state). This also explains the appearance of the

complex conjugate wave-function in (2.17) below, which in turn guarantees that the operator matrix element

is hermitian such that (2.14) follows.
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effective theory, including up to O(~p 2) corrections, this observable is obtained as

σχiχj→ light vrel =

(
1

4

∑

si,sj

)
2 Im 〈χiχj | δLann |χiχj〉

=
1

8

∑

si,sj

{(
f̂(1S0) +

δm

M
ĥ1(1S0) +

δm

M
ĥ2(1S0)

)
〈χiχj | O(1S0) |χiχj〉

+

(
f̂(3S1) +

δm

M
ĥ1(3S1) +

δm

M
ĥ2(3S1)

)
〈χiχj | O(3S1) |χiχj〉

+
ĝ(1S0)

M2
〈χiχj | P(1S0) |χiχj〉 +

ĝ(3S1)

M2
〈χiχj | P(3S1) |χiχj〉

+
f̂(1P1)

M2
〈χiχj | O(1P1) |χiχj〉

+
1

M2

(
f̂(3P0) + 3 f̂(3P1) + 5 f̂(3P2)

)
〈χiχj | O(3P0) |χiχj〉

}
, (2.12)

with vrel = |~vi − ~vj | the relative velocity of the annihilating particles in the center-of-mass

frame,4 and assuming the non-relativistic normalization 〈~p|~p ′〉 = (2π)3δ(3)(~p − ~p ′) for the

incoming chargino and neutralino one-particle states. In order to make the notation simpler

we have omitted in (2.12) the sum symbol over the intermediate states χe1χe2 and χe4χe3
that undergo annihilation and the labels in the Wilson coefficients and operators (as well

as in the quantities M, δm and δm). This means that, for instance, the first term in (2.12)

in full form reads

1

8

∑

si,sj

∑

χχ→χχ
f̂χχ→χχ{e1e2}{e4e3}

(
1S0

)
〈χiχj | Oχχ→χχ{e4e3}{e2e1}(

1S0) |χiχj〉 , (2.13)

and the sum extends over all χe1χe2 → χe4χe3 annihilation reactions where the states

χe1χe2 , χe4χe3 have the same charge as the incoming χiχj pair. In what follows we will

always omit the symbol
∑

χχ→χχ, and when repeated indices ei appear in an expression a

summation over the particle species will be implied. To obtain the last equality in (2.12)

we have used that

Im
{
f(2S+1LJ) 〈χiχj | O(2S+1LJ) |χiχj〉

}
= f̂(2S+1LJ) 〈χiχj | O(2S+1LJ) |χiχj〉 , (2.14)

following from the definition of the absorptive part of the Wilson coefficients f̂ [14], which

implies5

− i
(
fχχ→χχ{e1e2}{e4e3}(

2S+1LJ)−
[
fχχ→χχ{e4e3}{e1e2}(

2S+1LJ)
]∗ )

= 2 f̂χχ→χχ{e1e2}{e4e3}(
2S+1LJ) , (2.15)

4To make contact with commonly used notation in quarkonium annihilation, we abuse notation when

writing in (2.12) the matrix elements of operators δLann, O(2S+1LJ) and P(2S+1LJ) instead of the cor-

responding forward scattering amplitudes; the former contain an additional factor (2π)4δ4(pf − pi) which

should not be included in the relation (2.12).
5It follows directly from the definition of f̂ that f̂χχ→χχ{e1e2}{e4e3}(

2S+1LJ) =
[
f̂χχ→χχ{e4e3}{e1e2}(

2S+1LJ)
]∗

. In

papers I and II this relation was incorrectly written for the Wilson coefficients themselves and not for their

absorptive parts; we take the opportunity to correct it here.
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σij |~vi − ~vj | =

∫
dPSAB

( ∑

e1,e2

i

j

e1

e2

XA

XB

) ( ∑

e3,e4

i

j

e4

e3

XA

XB

)∗

= 2ℑ
( ∑

e1,...e4

i

j

e1

e2

i

j

e4

e3

XA

XB

)

Figure 1. Diagrammatic picture for the relation among the annihilation amplitude and the ab-

sorptive part of the corresponding forward scattering amplitude in presence of long-range potential

interactions.

and the fact that the adjoint of the four-fermion operators in δLann satisfy

O{e4e3}{e2e1}(2S+1LJ) = O †{e1e2}{e3e4}(
2S+1LJ) . (2.16)

Note also that we have related the spin-average of the matrix element of the operators

O(3PJ), J = 1, 2, with that of O(3P0) in the last line in (2.12).

The matrix-elements of four-fermion operators in (2.12) account for the long-distance

interactions between the annihilating pair, while the short-distance annihilation into light

particles is described by the Wilson coefficients. The matching calculation of the absorptive

part of the Wilson coefficients can be performed for exclusive two-particle final states XAXB

at the tree-level [14] (i.e. at O(α2
i )), since infrared divergences are absent at that order.

Therefore (2.12) also applies separately for every final state XAXB to yield the exclusive

annihilation rates σχiχj→XAXB vrel with O(α2
i ) short-distance corrections.

It is well-known from quarkonium physics that matrix-elements of four-fermion opera-

tors analogous to those in (2.12) can be expressed in terms of non-relativistic wave functions

and their derivatives evaluated at the origin. This relation becomes clear, if we explicitly

insert the operator |0〉 〈0| that projects onto the Fock space with no neutralino and chargino

states into the four-fermion operators, which is exact at the level of terms included here in

Lkin + Lpot. For instance, the matrix element of the operator Oχe1χe2→χe4χe3 (1S0) can be

written as

〈χiχj | Oχχ→χχ{e4e3}{e2e1}(
1S0) |χiχj〉 = 〈χiχj |χ†e4χce3 |0〉 〈0|χc†e2χe1 |χiχj〉

=
[
〈ξc†j ξi〉

(
ψ

(0,0)
e4e3, ij

+ψ
(0,0)
e3e4, ij

)]∗
〈ξc†j ξi〉

(
ψ

(0,0)
e1e2, ij

+ ψ
(0,0)
e2e1, ij

)
, (2.17)

where ψ
(L,S)
e1e2, ij

is the χe1χe2-component of the scattering wave function for an incoming χiχj
state with center-of-mass energy

√
s, orbital quantum number L and total spin S, evaluated

for zero relative distance and normalized to the free scattering solution. The symbols ξi, ξj
in the second line of (2.17) denote the Pauli spinor of the incoming particles χi and χj , and

〈. . . 〉 stands for the trace in spin space. The multi-component wave function ~ψ
(L,S)
ij accounts

for the potential interactions of the incoming χiχj state with all possible intermediate

two-body chargino and neutralino states with the same charge and identical spin and
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partial-wave configuration. Recall from section 2.1.1 that we consider only leading-order

potential interactions in Lpot, which cannot change the spin and orbital angular momentum

of the two-particle states. Both wave-function components e1e2 and e2e1 are generated by

the matrix-element of operator χc†e2χe1 ; for an operator with quantum numbers L and

S, there is a relative sign (−1)L+S between the two components, see (4.1). The precise

definition of ~ψ
(L,S)
ij is postponed to section 4. Let us just mention here that the lowest-

order perturbative result for the matrix-elements of four-fermion operators is obtained by

replacing ψ
(L,S)
eaeb, ij

→ δeai δebj , as can be easily checked by explicit computation.

In terms of the non-relativistic wave functions the spin-averaged annihilation cross

section (2.12) takes the form

σχiχj→ light vrel

=
[
ψ

(0,0)
e4e3, ij

]∗(
f̂(1S0) +

δm

M
ĥ1(1S0) +

δm

M
ĥ2(1S0) + ĝκ(1S0)

)
ψ

(0,0)
e1e2, ij

+ 3
[
ψ

(0,1)
e4e3, ij

]∗(
f̂(3S1) +

δm

M
ĥ1(3S1) +

δm

M
ĥ2(3S1) + ĝκ(3S1)

)
ψ

(0,1)
e1e2, ij

+ ~p 2
ij

[
ψ

(1,0)
e4e3, ij

]∗ f̂(1P1)

M2
ψ

(1,0)
e1e2, ij

+ ~p 2
ij

[
ψ

(1,1)
e4e3, ij

]∗ 1

M2

(
1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2)

)
ψ

(1,1)
e1e2, ij

, (2.18)

where we have used the symmetry relations (2.11) for the Wilson coefficients, and the spin

sums
1

2

∑

si,sj

〈ξc†j ξi〉 〈ξ
c†
j ξi〉∗ = 1 ,

1

2

∑

si,sj

〈ξc†j σkξi〉 〈ξ
c†
j σ

`ξi〉∗ = δk` . (2.19)

For a given two-particle state, the relative momentum of particles χi, χj in their center-of-

mass frame is related to the center-of-mass energy of the collision by ~p 2
ij = 2µij(

√
s−Mij)+

O(~p 4
ij), where Mij and µij are the total and reduced mass, respectively, of the two-particle

system. In addition we have used the relation

ĝ(2S+1SS)

M2
〈χiχj | P(2S+1SS) |χiχj〉 = ĝκ(2S+1SS) 〈χiχj | O(2S+1SS) |χiχj〉 (2.20)

between the matrix-elements of operators O(2S+1SS) and P(2S+1SS), where

ĝκ {e′1e′2}{e′4e′3}(
2S+1SS) =

ĝ{e1e2}{e4e3}(
2S+1SS)

2M2

(
κ∗e1e2,e′1e′2 δe4e3,e

′
4e
′
3

+ δe1e2,e′1e′2 κe4e3,e′4e′3

)
,

(2.21)

and

κ e1e2,e′1e′2 = ~p 2
e1e2 δe1e2,e′1e′2 + 2µe1e2α2

∑

a

mφa c
(a)
e1e2,e′1e

′
2
. (2.22)

In (2.21), (2.22) the value of M2 is determined by the particle labels of the short-distance

coefficient in the numerator of the fraction. The sum in the second term in (2.22) ex-

tends over all potential interactions χe1χe1 → χe′1χe′2 arising from φa-boson exchange. The

coefficients of the potentials, c
(a)
e1e2,e′1e

′
2
, are given in table 2 of appendix A. The deriva-

tion of (2.20) is postponed to section 4. It is interesting to note that when we reduce
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the spectrum of two-particle states to just one state and the exchanged bosons are mass-

less, the relation (2.20) between the leading and the v2-suppressed S-wave operators ac-

quires the simpler form familiar from the NRQCD applications to heavy quarkonium,

〈χχ| P(2S+1SS) |χχ〉 = ~p 2 〈χχ| O(2S+1SS) |χχ〉.
We define for an incoming state χiχj with center-of-mass energy

√
s the Sommerfeld

enhancement factor associated to a generic Wilson coefficient or combination of Wilson

coefficients, f̂ , describing the short-distance annihilation of χχ states with spin S and

orbital-momentum L as the ratio

Sij [f̂(2S+1LJ)] =

[
ψ

(L,S)
e4e3, ij

]∗
f̂χχ→χχ{e1e2}{e4e3}(

2S+1LJ)ψ
(L,S)
e1e2, ij

f̂χχ→χχ{ij}{ij}(
2S+1LJ)|LO

. (2.23)

The subscript “LO” in the denominator of (2.23) means that only the leading order in α2

of the Wilson coefficient f̂(2S+1LJ) should be kept in the denominator. For our purposes,6

this is only relevant for the case of Sij [ĝκ(2S+1SS)], where we have to set the α2 term in κ

to zero, so that ĝχχ→χχκ{ij}{ij}(
2S+1SS)|LO = ~p 2

ij/M
2
ij ĝ

χχ→χχ
{ij}{ij}(

2S+1SS). The Sommerfeld factors

are functions of
√
s or, equivalently, of the relative velocity vrel of the incoming state. They

allow us to parametrize the long-distance corrections to the annihilation rate of the state

χiχj in a convenient way. Indeed, in terms of the Sommerfeld factors, the spin-averaged

annihilation cross section (2.12) acquires the simple form

σχiχj→ light vrel = Sij [f̂h(1S0)] f̂χχ→χχ{ij}{ij}(
1S0) + Sij [f̂h(3S1)] 3 f̂χχ→χχ{ij}{ij}(

3S1)

+
~p 2
ij

M2
ij

(
Sij [ĝκ(1S0)] ĝχχ→χχ{ij}{ij}(

1S0) + Sij [ĝκ(3S1)] 3 ĝχχ→χχ{ij}{ij}(
3S1)

+Sij

[
f̂(1P1)

M2

]
f̂χχ→χχ{ij}{ij}(

1P1) + Sij

[
f̂(3PJ )

M2

]
f̂χχ→χχ{ij}{ij}(

3PJ )

)
, (2.24)

where we have introduced the combinations of Wilson coefficients

f̂h(1S0) = f̂(1S0) +
δm

M
ĥ1(1S0) +

δm

M
ĥ2(1S0) ,

f̂h(3S1) = f̂(3S1) +
δm

M
ĥ1(3S1) +

δm

M
ĥ2(3S1) ,

f̂(3PJ ) =
1

3
f̂(3P0) + f̂(3P1) +

5

3
f̂(3P2) . (2.25)

The last relation in (2.25) reminds us that the knowledge of the spin-weighted sum over

the three different 3P0, 3P1 and 3P2 partial-wave Wilson coefficients is sufficient, since

the leading-order potential interactions while being spin-dependent, do not discriminate

among the three spin-1 P -wave states 3PJ with different total angular momentum J =

0, 1, 2. The pure tree-level annihilation rate with no long-distance corrections is readily

recovered by setting all the Sommerfeld factors in (2.24) to one. The tree-level annihilation

cross section thus obtained depends only on the diagonal entry of the Wilson coefficients

6In general, the definition (2.23) also allows to incorporate the higher-order (hard) radiative corrections

to the short-distance part of the annihilation into the Sommerfeld factor.
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corresponding to channel χiχj . Note that we have written in (2.24) f
χiχj→χiχj
{ij}{ij} (2S+1SS)

and not f
χiχj→χiχj
h {ij}{ij} (2S+1SS) because for the diagonal entries δm = δm = 0.

We close this subsection with a comment on the parametric accuracy of our treat-

ment. As mentioned above, we compute the operator matrix elements with the leading-

order NRMSSM Lagrangian, neglecting O(v, g2
i ) corrections to the potentials, hence the

Sommerfeld factors Sij [. . .] have O(v0) accuracy. Thus, (2.24) reproduces the tree-level

annihilation cross section to O(v2) accuracy, and dresses each term by an O(v0) accurate

Sommerfeld factor. This is not the same as an O(v2) resummed cross section, which would

require the evaluation of Sij [f̂h(1S0)] and Sij [f̂h(3S1)], which multiply the O(v0) tree cross

section, with O(v2) accuracy. When the Sommerfeld effect is very large, the Sommerfeld-

corrected cross section given by (2.24) therefore receives relative corrections formally of

O(v2, g2
i ). This is of the same order as generic, non-enhanced electroweak radiative correc-

tions. We also note that contrary to bound-state calculations, where v ∼ g2
i are in a definite

relation, the two quantities are independent parameters here, since we consider scattering

states with variable energy. The non-relativistic matrix elements sum all terms of order

g2
i /v, where v is effectively replaced by max (v,MEW/mχ) for the Yukawa potential. This

resummation can be done for any value of g2
i /v. Of course, when g2

i /v � 1 the matrix

element will be close to its tree-level value.

2.2 Relic abundance

The thermal relic abundance of neutralino dark matter can be obtained by solving the

Boltzmann equation
dn

dt
+ 3Hn = −〈σeffv〉(n2 − n2

eq) , (2.26)

that describes the time evolution of n =
∑N

i=1 ni, the sum of the particle number densities of

all supersymmetric particles χi taking part in the relevant annihilation reactions χiχj → X,

which change the lightest neutralino number density n1, either directly or indirectly through

the later decay into χ1 of the species involved in those reactions. Note that one can

solve (2.26) for n to obtain n1 in the present Universe because R-parity conservation implies

that all other χi must decay into the lightest one by today. In this work the supersymmetric

particles χi considered in the relic density calculation are the neutralinos and charginos.

For SUSY models where other particle species (staus for example) may have important

co-annihilation effects with the neutralino, an extension of the EFT framework presented

here to a larger set of two-particle states would be needed. The co-annihilation rates

enter the Boltzmann equation through the thermal average of the effective cross section,

〈σeffv〉, whose specific form is given below. The other quantities entering (2.26) are the

Hubble parameter H and neq, the sum of the equilibrium number densities of each particle

ni, eq. Eq. (2.26) is derived using Maxwell-Boltzmann statistics for all species in thermal

equilibrium instead of Fermi-Dirac for fermions and Bose-Einstein for bosons, which is a

very good approximation for the temperatures relevant for the relic density calculation of

heavy dark matter (T . Tf with Tf ∼ mχ0/20 the typical temperature where the departure

from equilibrium takes place). Furthermore, the evolution equation (2.26) is valid under

the assumption that the particle’s phase-space distributions are proportional to those in
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equilibrium, fi, with a factor of proportionality that depends on T but not on the energy.

As argued in [30], this is true if the χi particles are maintained in kinetic equilibrium

through elastic scattering with the much more abundant standard model particles in the

thermal plasma during all of their evolution, even after they leave chemical equilibrium.

In this work we assume that dark matter is kept in kinetic equilibrium after chemical

decoupling sufficiently long until freeze-out is completed. The possibility that the elastic

scattering processes stop to be effective and the consequences of early kinetic decoupling

in the context of Sommerfeld-enhancement have been investigated in [31–34].

The quantity 〈σeffv〉 that feeds into the equation for the dark matter relic density reads

〈σeffv〉 =

N∑

i,j=1

〈σijvij〉
ni, eq nj, eq

n2
eq

, (2.27)

where 〈σijvij〉 is the thermal average of the co-annihilation cross section of χiχj into stan-

dard model particles and vij is the so-called Møller velocity of particles χi and χj .
7 In the

cosmic comoving frame, i.e. the frame where the plasma is at rest as a whole, the thermal

average 〈σijvij〉 can be calculated using fi = e−Ei/T for the Maxwell-Boltzmann equilib-

rium distributions. A general expression for 〈σeffv〉 written in terms of Lorentz invariants

was first derived in [35] and further generalized to include co-annihilations in [36]. It reads

〈σeffv〉 =
1

n2
eq

N∑

i,j=1

gigj
4π4

T

∫ ∞

(mi+mj)2
ds

(pi · pj)2 −m2
im

2
j

2
√
s

σij K1

(√
s/T

)
, (2.28)

neq =
T

2π2

N∑

i=1

gim
2
iK2

(
mi/T

)
, (2.29)

with gi the internal degrees of freedom of particle species χi, which for neutralinos and

charginos is gi = 2, and Kn the modified Bessel function of the second kind of order

n. The integrand in (2.28) evaluated in the center-of-mass frame allow us to use the

expressions obtained in section 2.1.3 for (σij vij) (there denoted as σχiχj→ light vrel) in the

non-relativistic limit including up to O(v2
rel) corrections. Note that the thermal average of

a heavy co-annihilation channel is typically suppressed by a factor e−(mi+mj−2m1)/T with

respect to 〈σ11v11〉, which arises from the asymptotic expansion of the Bessel function

K1(
√
s/T ) for large

√
s/T > 2m1/T � 1.

The efficiency of dark matter production and annihilation processes to maintain chem-

ical equilibrium with the plasma in an expanding Universe can be better understood when

the Boltzmann equation is written in terms of yield Y ≡ n/s, defined as the ratio of the

particle density to the entropy density in the comoving cosmic frame. This is because, as-

suming that the entropy per comoving volume is conserved, the change of n and s due to the

expansion of the Universe is the same, namely ds/dt = −3Hs, and gets scaled out from the

Boltzmann equation. Since 〈σeffv〉 is computed as a function of the temperature rather than

7vij is defined by vij =
√

(pi · pj)2 −m2
i m

2
j/(EiEj) with pi and Ei the four-momentum and energy of

particle i, and is equal to the relative velocity of particles i and j in any frame where the two particles

move collinearly.
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time, it is also convenient to trade the independent variable t in the evolution equation by T .

In terms of the yield, and defining x = m1/T , the Boltzmann equation (2.26) takes the form

dY

dx
=

1

3H

ds

dx
〈σeffv〉(Y 2 − Y 2

eq) , (2.30)

where Yeq = neq/s. The final step requires the Friedmann equation that relates the ex-

pansion of the Universe (Hubble rate H) to its energy density. In a radiation-dominated

universe at early times, the equation for the evolution of Y can be finally written as [35]

dY

dx
= −

√
π

45G

g
1/2
∗ m1

x2
〈σeffv〉(Y 2 − Y 2

eq) , (2.31)

with G the gravitational constant. The parameter g
1/2
∗ is defined as

g
1/2
∗ =

heff

g
1/2
eff

(
1 +

T

3heff

dheff

dT

)
(2.32)

in terms of the effective degrees of freedom geff and heff of the energy and entropy densities:

ρ = geff(T )
π2

30
T 4 , s = heff(T )

2π2

45
T 3 . (2.33)

The effective degrees of freedom are slowly-varying functions of the temperature except

at the QCD quark-hadron phase transition (T ∼ 150 − 400 MeV), where there is a sharp

increase [35, 37]. The equilibrium yield Yeq can be obtained using the formula for neq given

in (2.29) and the parametrization of the entropy density in (2.33) above.

In the form (2.31), we see that the change in the yield tries to compensate for deviations

from the equilibrium, such that if Y was initially close to Yeq at high temperatures (low

x) it will continue to track Yeq as the temperature decreases. At a given temperature the

prefactor 〈σeffv〉/x2 (take g
1/2
∗ constant) is not large enough to provide the change in Y

needed to keep up with the rapid exponential drop of Yeq, and chemical decoupling of

the massive particle from the plasma takes place. The yield then remains constant as the

universe cools down (phenomenon known as “sudden freeze-out”) or, if the annihilation

cross section is further increased for lower temperatures the yield continues to be reduced;

that is the case when the annihilation rates get enhanced by Sommerfeld corrections.

In order to obtain the relic density we solve (2.31) numerically from x = 1, where one

can safely assume that the yield still tracks the equilibrium value and take Y = Yeq as

initial condition, up to x0 = m1/T0, where T0 is the current photon temperature in the

Universe. Once the present value of the yield, Y0 ≡ Y (x0), is known, the neutralino relic

density today in units of the critical density is determined by the relation

Ω = ρDM
0 /ρcrit = m1s0Y0/ρcrit , (2.34)

with ρcrit = 3H2/8πG the critical density and s0 the entropy density of the present universe,

that can be calculated from (2.33). It is customary to provide the relic density as Ωh2, where

h is the value of the Hubble parameter determined at present in units of 100 km s−1 Mpc−1.
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χe1

p ′ − p

χe4

χe2 χe3χj

χi

P

Figure 2. Box subgraph of a characteristic diagram with multiple ladder-like exchanges of

vector and Higgs bosons among intermediate χχ states, which contributes to the set of radiative

corrections to the annihilation of the incoming pair χiχj . Arrows in this picture indicate the

direction of the labelled momenta.

In the presence of Sommerfeld corrections the effective annihilation cross section σeffv

acquires a complicated velocity dependence that can no longer be parameterized in the

simple form a + bv2. For the results that we present in [16], Y0 has been obtained by

solving (2.26) using numerical routines for differential equations built in Mathematica.

Due to the stiffness of the evolution equation, the numerical integration of the equation

is done by splitting the region from x = 1 to x = 108 into several pieces and adapting

the starting and maximum step sizes in each of them. For g
1/2
∗ (T ) and heff(T ) we have

used the values derived in [35], which can be found conveniently tabulated as a function

of temperature among the package files of the automated programs DarkSUSY [38] and

micrOMEGAs [39, 40]. Other numerical values needed for the computation of the relic

density are T0 = 2.7255 K and ρcrit = 1.05368× 10−5h2 GeV cm−3, both taken from [41].

3 MSSM potentials

Sommerfeld enhancement occurs when the interaction between the incoming DM particles

significantly distorts their two-body wave function away from the initial plane wave. In

terms of Feynman diagrams the effect arises from the exchange of electroweak gauge (and to

a lesser extent, Higgs) bosons between the neutralinos and charginos. In the non-relativistic

limit the dominant contribution arises from the potential loop momentum region in ladder

box graphs, which have to be summed to all orders in αEW, as is shown in section 4 below.

A necessary input to perform such resummation are the potential interactions generated

by electroweak- and Higgs-boson exchange, which are given in this section.

In the center-of-mass system of the incoming χiχj pair, pi + pj = P = (
√
s,~0 ), the

potential loop momentum p′ running inside a box graph with internal fermions χe4χe3
can be chosen to be the relative momentum of the χe4χe3 pair, i.e. p′ = (p4 − p3)/2;

the momentum carried by the exchanged boson is then equal to the difference between the

relative momenta in the χχ pair before and after the interaction (see figure 2). The potential

loop-momentum routed in this way is characterized by the scaling p′ 0 ∼ ~p ′ 2/mLSP � mLSP

(idem for p), and fermion and boson propagators can be expanded accordingly. To leading

order in the potential-region expansion, the denominator of the boson propagator, D =
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[(p ′ − p)2 −M2]−1 becomes energy independent, Dpot = −[(~p ′ − ~p )2 + M2]−1 and thus

represents an instantaneous interaction between the χe1χe2 and χe3χe4 pairs, that in the

non-relativistic EFT is taken into account by the potentials in Lpot. We note that the

(p′ 0 − p0)2 term dropped in the boson propagator has a term proportional to the mass

difference squared (m4 − m1)2, which we neglect consistently given that we are dealing

with a set of nearly mass-degenerate with the neutralino LSP and mass differences are

assumed to be at most of order of p2
ij/mLSP ∼ O(mLSPv

2), where pij = (pi − pj)/2 is the

incoming relative momentum.

The leading-order potential interactions in the EFT can be obtained by expanding

the full-theory tree-level scattering amplitude χe1χe2 → χe4χe3 for on-shell charginos or

neutralinos exchanging a gauge or Higgs boson. Three tree diagrams which differ in the

direction of the fermion flow have to be considered depending on the particle nature of the

scattering particles, see figure 3. By means of an example, Z-boson exchange, we illustrate

in the following the essential steps to perform this tree-level matching.

Let us denote the vector (v), axial-vector (a) interaction vertices of charginos and

neutralinos with gauge bosons in the MSSM generically as

g2 χei [ vijγ
µ + aijγ

µγ5 ]χejA
V
µ , (3.1)

where the spin-1 field AVµ stands for either the Z-boson (then χeiχej = χ0
eiχ

0
ej , χ

+
eiχ

+
ej ), the

photon field (χeiχej = χ+
eiχ

+
ej ), or the W+-field (which sets χeiχej = χ+

eiχ
0
ej ).

8 In the latter

case, the hermitian conjugate of (3.1) has to be added to describe the charge-conjugated

interaction, i.e.

g2 χ
0
ei [ (vW †)ijγµ + (aW †)ijγµγ5 ]χ+

ej [W+
µ ]† . (3.2)

Likewise, the interaction vertices of charginos/neutralinos with Higgs particles has the

generic form

g2 χei [ sij + pijγ5 ]χej φ , (3.3)

where the scalar field φ can be any of the CP -even (H0
m, m = 1, 2) or CP -odd (A0

m, m =

1, 2) Higgs bosons, in which case χeiχej = χ0
eiχ

0
ej , χ

+
eiχ

+
ej , or a charged Higgs boson

(H±m, m = 1, 2), then χeiχej = χ+
eiχ

0
ej . Note, however, that our results apply as well to the

CP -violating MSSM where the neutral Higgs particles are no longer CP eigenstates. For

charged Higgs-boson exchange the hermitian conjugate of (3.3) has to be considered as well,

which introduces the hermitian conjugates of the coupling matrices, (sH
+
m†)ij and (pH

+
m†)ij .

Explicit expressions for all the vij , aij , sij , pij couplings are given in the appendix A.

The amplitude of figure 3a with Z-boson exchange is obtained at leading order in the

non-relativistic expansion by taking the limit of small relative momenta, ~p, ~p ′ ∼ mLSPvrel ∼
MZ and p0, p′ 0 ∼ mLSPv

2
rel, in the particle spinors and Z-boson propagator,

−i
q2 −M2

Z

(
gµν −

qµqν
M2
Z

)
+
qµqν
M2
Z

−i
q2 − ξM2

Z

, (3.4)

8We adopt the convention that the χ+-field annihilates positive charginos. Therefore, the arrow on the

fermion line for a chargino refers to the direction of χ+ flow. For consistency, the W+-field in the interaction

vertex (3.1) must annihilate positively charged W bosons.
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χe1

q = p ′ − p

χe4

χe2 χe3

χ0χ0 → χ0χ0

χ+χ+ → χ+χ+

χ0χ+ → χ0χ+

χ+χ− → χ+χ−

χ0χ− → χ0χ−

(a) (b) (c) χ−χ− → χ−χ−

χ0χ0 → χ+χ−

Figure 3. Tree-level diagrams with t-channel boson exchange that generate the leading-order

potential among non-relativistic neutralinos and charginos. The arrows in the neutralino/chargino

lines indicate the fermion flow, such that each diagram contributes only to the scattering processes

written below.

here defined in the Rξ-gauge. At leading-order, the non-relativistic expansion of the prod-

uct of Dirac bilinears in the amplitude of diagram 3a, ū(p4)Γµu(p1) ū(p3)Γ̃µu(p2), is equiv-

alent to the replacements (q = p4 − p1 = p2 − p3)

γµ ⊗ γµ → 1⊗ 1 , γµγ5 ⊗ γµγ5 → −σi ⊗ σi ,
γµγ5 ⊗ γµ , γµ ⊗ γµγ5 → 0 ,

/q ⊗ /q → −(me4 −me1)(me3 −me2) 1⊗ 1 ,

/q ⊗ /qγ5 , /qγ5 ⊗ /q , /qγ5 ⊗ /qγ5 → 0 , (3.5)

in the full-theory amplitude, where the right-hand-side of these relations should be under-

stood as the matrices acting on the two-component Pauli spinors of the non-relativistic

neutralinos and charginos at the upper and lower interaction vertices of figure 3a. Written

in components, the spin operators above read σi⊗σi ≡ σiα4α1
σiα3α2

and 1⊗1 ≡ δα4α1δα3α2 .

The use of the non-relativistic normalization for the relativistic spinors, u†(p)u(p) = 1, is

implied in the replacements (3.5). The relation in the third line of (3.5) can be obtained

using the equation of motion for the relativistic spinors; we comment on the non-relativistic

scaling of this term below. Using (3.5) we thus obtain

(figure 3a)Z =
−ig2

2

~q 2 +M2
Z

[(
1 +

δme4e1 δme3e2

M2
Z

)
vZe4e1v

Z
e3e2 1⊗ 1− aZe4e1aZe3e2 σi ⊗ σi

]

+
ig2

2

~q 2 + ξM2
Z

δme4e1 δme3e2

M2
Z

vZe4e1v
Z
e3e2 1⊗ 1 (3.6)

for the leading-order term in the expansion in ~p, ~p ′ ∼ mLSPvrel ∼MZ and p0, p′ 0 ∼ mLSPv
2
rel

of the amplitude in figure 3a when the exchanged particle is a Z-boson. For simplicity we

have considered the case where the couplings in both vertices are equal, which applies to

χ0χ0 → χ0χ0 and χ+χ+ → χ+χ+ processes.

The term in the second line of (3.6) arises from the ξ-dependent term of the Z-boson

propagator (3.4). Gauge invariance requires that this term is cancelled against the contribu-
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tion from the exchange of the Goldstone boson A0
2 ≡ G0, which has a mass ξM2

Z . The can-

cellation holds because certain conditions among the vector and scalar couplings of the neu-

tralinos and charginos are fulfilled in the MSSM. To see this, write the leading-order contri-

bution corresponding to diagram 3a with scalar-boson φ exchange by expanding the scalar

propagator, i/(q2−m2
φ), and the Dirac bilinear in the non-relativistic limit; the result reads

(figure 3a)φ =
ig2

2

~q 2 +m2
φ

sφe4e1s
φ
e3e2 1⊗ 1 . (3.7)

The pseudoscalar interactions do not survive in (3.7) because 1⊗γ5 , γ5⊗1 , γ5⊗γ5 → 0 at

the leading order. Adding (3.7) for φ = G0 (mG0 = ξMZ) to (3.6) one obtains the condition

δme4e1 δme3e2

M2
Z

vZe4e1v
Z
e3e2 + sG

0

e4e1s
G0

e3e2 = 0 (3.8)

for the cancellation of the ξ-dependent terms. Eq. (3.8) holds provided that vZij (mi −
mj)/MZ = ±isG0

ij , a relation which can be proven using the explicit definition of the cou-

plings in terms of the mixing matrices given in appendix A and their diagonalization prop-

erties. We can therefore drop the second line in (3.6) together with the pseudo-Goldstone

contribution to the potential.

The term proportional to the mass differences in the first line of the potential (3.6) typi-

cally yields a very small contribution, since in the EFT we treat only those species for which

δm ∼ O(mLSPv
2). For a very heavy LSP, where we could nevertheless have mLSPv

2 �MZ ,

the size of this term would still be at most of O(1) due to suppressed vector couplings.

To see this, consider the decoupling limit mLSP → ∞. If the mass difference δmij refers

to particles within the same electroweak multiplet then δmij ∼ M2
EW/mLSP at most9 and

the mass-difference terms in (3.6) are suppressed at least as δmij/MZ ∼ MEW/mLSP. If

particles i and j belong to different multiplets, δmij/MZ can be large, but is multiplied by

vZij ∼MEW/δmij , as follows from (3.8). Since the axial couplings go to zero in the decou-

pling limit, it follows that the gauge-independent off-diagonal terms in square brackets in

the first line of (3.6) are given in this limit by the pseudo-Goldstone couplings −sG0

e4e1s
G0

e3e2 .

The corresponding results for diagrams b and c in figure 3 can then be easily obtained

from (3.6): for every line where the fermion flow has been reversed we need to interchange

the labels in the vertex couplings (for instance, Xe3e2 → Xe2e3to go from a to b), change

the sign of the scalar, pseudo-scalar and axial-vector couplings (which arises when writing

the antiparticle spinors as the charge-conjugate of particle ones), and add a global sign

due to Wick ordering. For the sake of clarity, let us write the results for Z- and neutral

Higgs-boson exchange for diagram b:

(figure 3b)Z =
ig2

2

~q 2 +M2
Z

[(
1 +

δme4e1 δme3e2

M2
Z

)
vZe4e1v

Z
e2e3 1⊗ 1 + aZe4e1a

Z
e2e3 σ

i ⊗ σi
]

− ig2
2

~q 2 + ξM2
Z

δme4e1 δme3e2

M2
Z

vZe4e1v
Z
e2e3 1⊗ 1 ,

9The mass splitting δmij is of O(M2
EW/mLSP) in the electroweak doublet, but much smaller,

O(M4
EW/m

3
LSP), in the triplet. In the latter case, the radiative correction to δmij is O(g22MEW) and

dominates over the tree-level mass splitting in the LSP mass region of interest. However, it still yields a

suppressed contribution for the δme4e1 δme3e2/M
2
Z term in (3.6).
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(figure 3b)φ =
ig2

2

~q 2 +m2
φ

sφe4e1s
φ
e2e3 1⊗ 1 . (3.9)

The potentials generated by photon exchange can be obtained from the result for the

Z-boson case by plugging the corresponding vector coupling and keeping only the gµν part

of (3.4) with MZ → 0 for the photon propagator. W and charged Higgs-boson exchange

are relevant for the processes χ0χ0 → χ±χ∓ and χ0χ± → χ±χ0. For these amplitudes,

we have to hermitian conjugate the coupling matrices at vertices involving either an initial

χ+ or a final χ−. The potential from charged boson exchange can be obtained from the

neutral boson amplitudes with trivial replacements in the couplings and the boson mass.

The amplitudes above provide the potentials in momentum space. However, the

Schrödinger equation which sums the all-order exchange of bosons among the chargino

and neutralino pairs acquires a simpler form in coordinate space. The coordinate-space

potentials are obtained by taking the Fourier transform

V χχ→χχ
{e1e2}{e4e3}(r) =

∫
d3~q

(2π)3
ei~q·~x i Tχχ→χχe1e2e4e3(~q 2) , (3.10)

where r ≡ |~x |, and Tχχ→χχe1e2e4e3 stands for the momentum-space amplitude as given above

in (3.6), (3.7), (3.9). From the identity

∫
d3~q

(2π)3
ei~q·~x

1

~q 2 +m2
=
e−mr

4πr
, (3.11)

we immediately obtain the well-known Yukawa-like potential for amplitudes with exchange

of a force carrier of mass m. Applied to the massless case, (3.11) gives the Coulomb

potential.10 Before we write the result for the potentials in coordinate space, let us write

the spin operator σi ⊗ σi in terms of the total spin operator as

σi ⊗ σi = 2(~S 2 − ~s 2
1 − ~s 2

2 ) = 2~S2 − 3 (1⊗ 1) , (3.12)

where ~S = ~s1 + ~s2 ≡ 1/2 (~σ ⊗ 1 + 1 ⊗ ~σ), with ~s1,2 the spin operators acting on the

particles at the upper and lower vertices in the scattering diagram, and we have replaced

~s 2
1,2 by s(s + 1) (1 ⊗ 1) = 3/4 (1 ⊗ 1) for charginos and neutralinos. Working in the basis

of eigenstates of total spin for the neutralino and chargino pairs, we can as well replace ~S2

by S(S + 1) (1 ⊗ 1) = 2S (1 ⊗ 1) for S = 0, 1 in the potentials. Since the operator 1 ⊗ 1

is the identity operator, we find that a leading-order potential contribution in the basis of

total spin and in coordinate space thus has the form

V χχ→χχ
{e1e2}{e4e3}(r) = (ae1e2e4e3 − (3− 4S) be1e2e4e3)

e−mXr

r
, (3.13)

for the case of the exchange of a vector boson with mass mX , among the incoming and

outgoing χχ pairs. For leading-order scalar boson and photon exchange, the coefficient

10The +iε prescription in the full-theory gauge boson propagators provides the necessary regularization

for the m = 0 case.
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be1e2e4e3 vanishes. For Z- and W -boson exchange the spin-dependent part of the potential

arises from the axial-vector coupling, see (3.6), (3.9).

We show in section 4 by analysing the perturbative expansion of the annihilation

amplitude χiχj → XAXB with ladder-like exchanges in the non-relativistic limit, that

the amplitude can be described as a product of potential interactions like (3.13) times

the two-particle propagator of the internal pairs χmχn in the diagrams, integrated over

corresponding loop momenta, and finally multiplied by the short-distance coefficient f̂

with the appropriate quantum numbers. No additional combinatoric factors arise as long

as for the internal states we consider as different the states χe1χe2 and χe2χe1 and sum

over all of them. Diagrammatically this means for instance that we have to consider a

graph like figure 2 and the one where particles χe4 , χe3 are interchanged. At this point,

it is convenient to switch from the two indices {e1, e2} that denote a two-particle state

χe1χe2 to a single label m = 1, . . . N|Q|, where N|Q| is the total number of channels for

each total charge sector, |Q| = 0, 1, 2. For the case of n0 neutralinos and n+ charginos,

we have n2
0 χ

0χ0 and 2n2
+ χ±χ∓ neutral states, 2n0n+ different states with Q = ±1 (i.e.

of the type χ0χ± or χ±χ0), and n2
+ χ±χ± states of charge Q = ±2. Therefore, the total

number of neutral states is N0 = n2
0 + 2n2

+, whereas N1 = 2n0n+ and N2 = n2
+. If all four

neutralinos and the two charginos are relevant for the long-distance part of the annihilation

(n0 = 4 and n+ = 2), then we have to consider the interactions among N0 = 24 states in

the neutral sector, as well as those among N1 = 16 and N2 = 4 states in the singly-charged

and doubly-charged sectors, respectively. For instance, in the charge-0 sector with all four

neutralinos and two charginos, the single label runs over states

χ0
1χ

0
1, χ

0
1χ

0
2, χ

0
2χ

0
1, . . . , χ

0
4χ

0
3, χ

0
4χ

0
4, χ

±
1 χ
∓
1 , χ

±
1 χ
∓
2 , χ

±
2 χ
∓
1 , χ

±
2 χ
∓
2 , (3.14)

with 24 different states in total, whereas in the charge-1 sector we have 16 channels,

χ0
1χ
±
1 , χ

±
1 χ

0
1, χ

0
1χ
±
2 , . . . , χ

0
4χ
±
2 , χ

±
2 χ

0
4 , (3.15)

and just 4 in the charge-2 sector,

χ±1 χ
±
1 , χ

±
1 χ
±
2 , χ

±
2 χ
±
1 , χ

±
2 χ
±
2 . (3.16)

The ordering of the states in each sector is of course a matter of convention.

An alternative basis of two-particle states with a smaller number of states can be used,

which takes into account the fact that states χe1χe2 and χe2χe1 have identical particle

content. The new basis, that we shall refer to as “method-2 basis” in order to distinguish it

from the basis just described above, is built only by states χe1χe2 with e1 ≤ e2, provided we

identify χi = χ0
i for i = 1, . . . 4 and χ5 = χ+

1 , χ6 = χ+
2 χ7 = χ−1 , χ8 = χ−2 . The two potential

contributions of method-1 corresponding to χe1χe2 → χe4χe3 and χe1χe2 → χe3χe4 (the

so-called “crossed” contribution, different from the former if χe3 6= χe4) are accounted for

in method-2 by a single potential entry describing the scattering of state (χχ)e1e2 into

(χχ)e4e3 , where we have introduced the notation (χχ)... to denote a state in the new basis,

and assumed that e1 ≤ e2 and e4 ≤ e3. The potential entries for method-2, V
(χχ)→(χχ)
{e1e2}{e4e3},

are obtained from those of method-1 as

e1 6= e2 and e4 6= e3 : V
(χχ)→(χχ)
{e1e2}{e4e3} = V χχ→χχ

{e1e2}{e4e3} + (−1)L+S V χχ→χχ
{e1e2}{e3e4} ,
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e1 6= e2 and e4 = e3 : V
(χχ)→(χχ)
{e1e2}{e4e4} =

√
2V χχ→χχ
{e1e2}{e4e4} ,

e1 = e2 and e4 6= e3 : V
(χχ)→(χχ)
{e1e1}{e4e3} =

√
2V χχ→χχ
{e1e1}{e4e3} ,

e1 = e2 and e4 = e3 : V
(χχ)→(χχ)
{e1e1}{e4e4} = V χχ→χχ

{e1e1}{e4e4} . (3.17)

The (−1)L+S in front of the crossed diagram amplitude in the first line of (3.17) arises from

the product (−1)× (−1)L × (−1)S+1, where the (−1) comes from Wick ordering, and the

exchange e3 ↔ e4 produces a factor (−1)S+1 in the spin wave function and a change of sign

in the relative momentum which translates into the factor (−1)L. An additional rule has to

be accounted for when building the potential matrix for method-2: since identical spin-1/2

particles cannot form a 2-particle state with odd L+S (i.e. with quantum numbers 3S1 and
1P1 in the case at hand), the entries involving such states for the potential when L+S is odd

have to be set to zero. This prevents that method-2 yields a non-zero annihilation amplitude

for a forbidden state of two identical neutralinos or charginos through an intermediate

transition to an allowed state, such as (χ0χ0)11 → (χ+χ−)11 → light particles. In method-1

this transition is automatically zero because there are two annihilation terms, χ+
1 χ
−
1 → light

and χ−1 χ
+
1 → light, which cancel each other by virtue of the symmetry properties of the

Wilson coefficients f̂ under exchange of the particle labels, see (8) and (6) in [14] and [15],

respectively. We note that the the relations (3.17) and the selection rule just mentioned

imply that the potential in method-2 depends on the orbital angular momentum L even

at the leading-order in the non-relativistic expansion.

Likewise, the annihilation matrices built from the Wilson coefficients of the four-

fermion operators must be supplemented with additional factors in the method-2 basis.

Namely, the absorptive part of the one-loop annihilation amplitude (χχ)e1e2 → (χχ)e4e3
involving method-2 states in a 2S+1LJ partial-wave configuration is given by the Wilson co-

efficient f̂χχ→χχ{e1e2}{e4e3}(
2S+1LJ) multiplied by (1/

√
2)nid , where nid = 1, 2 if the two-particle

states (χχ)e1e2 or/and (χχ)e4e3 are formed of identical particles, and nid = 0 otherwise.

The basis of states in method-2 for the case of n0 neutralinos and n+ charginos, contains

Ñ0 = n0(n0 + 1)/2 + n2
+ neutral states, Ñ1 = n0n+ states with Q = ±1, and Ñ2 =

n+(n++1)/2 states with charge Q = ±2. The reduction in the number of states in method-

2 as compared to method-1 is more significant as more particle species are considered in

the non-relativistic EFT framework. For instance, if all neutralino and chargino species are

considered then (Ñ0, Ñ1, Ñ2) = (14, 8, 3), whereas for method-1 (N0, N1, N2) = (24, 16, 4).

The list of method-2 states can be read off from (3.14), (3.15), (3.16) by dropping states

that differ only in χiχj where i > j. In what follows, quantities with indices referring

to two-particle states, such as the Wilson coefficients that built the annihilation matrices

and the potentials, will be written using the single-label notation with lower-case letters,

i.e. f̂mn(2S+1LJ) and Vmn(r), with m,n = 1, . . . N|Q| in the case of method-1, and m,n =

1, . . . Ñ|Q| for method-2. We shall also adopt the convention that the potential matrix

element Vmn describes the scattering m → n, whereas for the annihilation matrices, the

entry f̂mn(2S+1LJ) is the absorptive part of the one-loop amplitude for m → n. The
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formula for the Sommerfeld enhancement factor (2.23) using this notation reads

Sa[f̂(2S+1LJ)] =

[
ψ

(L,S)
ba

]∗
f̂cb(

2S+1LJ)ψ
(L,S)
ca

f̂aa(2S+1LJ)|LO

, (3.18)

for an incoming two-particle state a, and the same equation holds in both methods. In

appendix B we demonstrate explicitly for a simplified example that method-1 and method-2

yield the same Sommerfeld factors.

To provide an example, let us give both the potential and the annihilation matrices in

the well-known wino limit of the MSSM. The relevant particles in this limit are the pure-

wino lightest neutralino χ0
1, with mass mχ, and its mass-degenerate chargino partners χ±1 .

In the neutral sector, the potential matrix of method-1 for both S = 0, 1 derives from the

formulae given in appendix A after plugging in the values of the neutralino and chargino

mixing matrix entries relevant to the calculation in the pure-wino, i.e. ZN i1 = δi2 and

Z± i1 = δi1:

V
(1)
Q=0(r) =




0 −α2
e−MWr

r −α2
e−MWr

r

−α2
e−MWr

r −α
r − α2 c

2
W

e−MZr

r 0

−α2
e−MWr

r 0 −α
r − α2 c

2
W

e−MZ r
r


 , (3.19)

where the matrix indices (m,n = 1, 2, 3) correspond to channels χ0
1χ

0
1, χ

+
1 χ
−
1 , χ

−
1 χ

+
1 . The

potential for method-2 then follows from the rules given in (3.17) together with the rule

that sets to zero entries involving a forbidden 3S1 or 1P1 χ
0
1χ

0
1 state:

V
(2)
Q=0,evenL+S(r) =


 0 −

√
2α2

e−MWr

r

−
√

2α2
e−MWr

r −α
r − α2 c

2
W

e−MZr

r


 , (3.20)

V
(2)
Q=0,oddL+S(r) =


 0 0

0 −α
r − α2 c

2
W

e−MZr

r


 , (3.21)

where the matrix indices m,n = 1, 2 refer now to channels χ0
1χ

0
1, χ

+
1 χ
−
1 . The annihilation

matrices for any MSSM model to O(v2
rel) can be obtained from the analytic formulae given

in [14, 15]. In the pure-wino limit, the explicit expressions for the absorptive parts of

the Wilson coefficients have been worked out in detail in appendix C of [15], and can be

read off from (147) and tables 5-7 therein. In the neutral sector, the leading order S-wave

annihilation matrices read

[f̂(1S0)](1) =
πα2

2

m2
χ




2 1 1

1 3
2

3
2

1 3
2

3
2


 , [f̂(3S1)](1) =

25

24

πα2
2

m2
χ




0 0 0

0 1 −1

0 −1 1


 , (3.22)

in method-1, and

[f̂(1S0)](2) =
πα2

2

m2
χ


 1 1√

2
1√
2

3
2


 , [f̂(3S1)](2) =

25

24

πα2
2

m2
χ


 0 0

0 1


 , (3.23)
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in method-2. The results (3.23) have been given before in [3]. Let us also write the P -wave

annihilation matrices in both methods:

[
f̂(1P1)

M2

](1)

=
1

6

πα2
2

m4
χ




0 0 0

0 1 −1

0 −1 1


 ,

[
f̂(3PJ )

M2

](1)

=
7

3

πα2
2

m4
χ




2 1 1

1 3
2

3
2

1 3
2

3
2


 , (3.24)

[
f̂(1P1)

M2

](2)

=
1

6

πα2
2

m2
χ


 0 0

0 1


 ,

[
f̂(3PJ )

M2

](2)

=
7

3

πα2
2

2m2
χ


 1 1√

2
1√
2

3
2


 . (3.25)

Recall that the entries in the annihilation matrices of method-1 which differ only in the

replacement χ+
1 χ
−
1 ↔ χ−1 χ

+
1 as in or out state are equal up to a factor (−1)L+S , which

arises as a consequence of the exchange of labels in the Wilson coefficients (see eqs. (2.7)

and (2.4) of [14, 15], respectively). The potential and annihilation matrices for the other

charge sectors can be obtained similarly.

4 Sommerfeld enhancement

In this section we discuss the computation of the Sommerfeld factors Sij [f̂(2S+1LJ)] defined

in (2.23). Within the non-relativistic MSSM the Sommerfeld enhancement arises from the

matrix elements of annihilation operators such as Oχχ→χχ{e4e3}{e2e1}
(

2S+1LJ
)
. They receive

large quantum corrections, which have to be summed to all orders. Generalizing (2.17), we

determine ψ
(L,S)
e1e2, ij

by computing the left-hand side of

〈0|χc†e2ΓK

[
− i

2

←→
∂

]
χe1 |χiχj〉 = 〈ξc†j Γξi〉K[~p ]

(
ψ

(L,S)
e1e2, ij

+ (−1)L+S ψ
(L,S)
e2e1, ij

)
. (4.1)

Here Γ = 12×2, ~σ for S = 0, 1, respectively, and K is a polynomial in relative momentum

(derivatives) corresponding to a given angular momentum L. ~p denotes the relative mo-

mentum of the χi and χj particle as defined below in (4.3). With this definition ψ
(L,S)
e1e2, ij

is normalized to one, when the Sommerfeld effect is neglected, and the matrix element is

evaluated in the tree approximation.

In the first part of this section, we establish the relation between the non-relativistic

(NR) matrix element above, diagrammatic resummation and the solution of a multi-channel

Schrödinger equation. We then describe the actual solution of the Schrödinger equation.

We shall find that the standard method fails to provide an accurate result in many relevant

cases with kinematically closed channels and derive an alternative method that solves this

problem. This is our main result, since it allows to compute the Sommerfeld factors for

general MSSM parameter points. In practice, the solution with the full number of channels

is time-consuming and often not relevant, since the heavier channels have only a small effect

on the final result. In the final part of this section we therefore describe an approximation

to the treatment of heavier channels, which is accurate and fast for most practical purposes.
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pi + ka
ma1pi

mi

pj
mj −pj + ka

ma2

k

XA

XB

Γ

e1

e2

Figure 4. Diagrammatic representation of the leading (ladder) contributions to the non-relativistic

matrix element (4.1).

4.1 NR matrix elements and the Schrödinger equation

The enhancement of non-relativistic scattering originates from the potential loop momen-

tum region, when the momentum k of the exchanged virtual particle satisfies k0 � |~k | � µ,

where µ is the reduced mass of the two non-relativistic particles. It can be shown by power-

counting arguments, see for instance [42], that no other region requires resummation, and

that the enhancement from the potential region is only present in ladder diagrams. Relat-

ing the sum of ladder diagrams shown in figure 4 to the solution of a Schrödinger equation

involves a number of steps, which we now sketch.

The first consists of kinematic simplifications of the propagators in the potential region.

We already mentioned that the (k0)2 term can be dropped in the propagator of the ex-

changed particle, so that the interaction corresponds to a potential between the heavy parti-

cles. The pair of heavy-particle propagators in each ladder rung can also be simplified. Let

~pi =
µij
mj

~P + ~p, ~pj =
µij
mi

~P − ~p, (4.2)

be the momenta of the on-shell external state χiχj , and µij the reduced mass. Since

|~P |, |~p | � µij , the center-of-mass energy of the annihilation process is

√
s = mi +mj + E ≡ 2mLSP + E, E ≡ ~p 2

2µij
, (4.3)

up to higher-order terms in the non-relativistic expansion. For later purposes it proves

convenient to introduce the variable E, which measures energy from the common reference

value 2mLSP. Since mass differences mi+mj−2mLSP scale as mLSPv
2 by assumption, both

energy variables have the non-relativistic scaling E ∼ E ∼ mLSPv
2. The masses of the two-

particle state a in a given ladder rung are denoted by ma1 , ma2 , and Ma ≡ ma1 +ma2 . The

loop momentum energy-component integrals in each ladder rung can then be performed

employing

∫
dk0

a

2π

2ma1

(pi + ka)2 −m2
a1 + iε

2ma2

(−pj + ka)2 −m2
a2 + iε

=
−i

E − [Ma − 2mLSP]− (~p+~ka)2

2µa

. (4.4)
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To arrive at this result we systematically neglected higher-order terms in the non-relativistic

expansion. As discussed before, we must require that the mass differences along a given

heavy particle line are small, that is ma1 −mi and ma2 −mj should be of order mLSPv
2,

but we do not have to assume that mj −mi and ma2 −ma1 are small. Note that within

these approximations the denominator of the kinetic energy term, µa, could be equivalently

substituted by µij or mLSP/2, or any other two-particle state reduced mass.

With these simplifications to the ladder-diagram sum, the annihilation matrix element,

including the tree diagram with no exchange, can be written as

〈0|χc†e2ΓK

[
− i

2

←→
∂

]
χe1 |χiχj〉 = 〈ξc†j Γξi〉

× lim
Ê→E

(−1)

(
Ê − ~p 2

2µij

) ∫
d3~q

(2π)3
K[~q ]

(
G̃ie(~p, ~q; Ê) + (−1)L+S G̃iē(~p, ~q; Ê)

)
, (4.5)

where i refers to the initial two-particle state ij and e (ē) to the state e1e2 (e2e1) which

annihilates into light particles. Below we employ this compact notation to label two-particle

states by compound indices a, b, . . . . The function G̃ is defined through

G̃ab(~p, ~q;E) = − δab

E − [Ma − 2mLSP]− ~p 2

2µa

(2π)3δ(3)(~p− ~q )

+
1

E − [Ma − 2mLSP]− ~p 2

2µa

iHab(~p, ~q;E)
1

E − [Mb − 2mLSP]− ~q 2

2µb

(4.6)

and

Hab(~p, ~q;E) = i
∞∑

n=0

∫ [ n∏

i=1

d3~ki
(2π)3

]
V̂ aa1(~k1)

1

E − [Ma1 − 2mLSP]− (~p+~k1)2

2µa1

× V̂ a1a2(~k2 − ~k1) . . .
1

E − [Man − 2mLSP]− (~p+~kn)2

2µan

V̂ anb(~q − ~p− ~kn) . (4.7)

(For the term n = 0 we set a0 = a and ~k0 = 0.) The first term on the right-hand side of (4.6)

accounts for the tree diagram, a term with given n in (4.7) for the (n+ 1)-loop ladder dia-

gram with n+ 1 exchanges.11 The factors V̂ ab(k) contain the propagator of the exchanged

particle and coupling factors from the two vertices. These are the momentum-space poten-

tials discussed in section 3. Note that using the on-shell condition for the external particles

and non-relativistic approximations, the Dirac matrices from the numerator can be reduced

to the tree structure ξc†j Γξi. Depending on whether Γ = 12×2 or ~σ, the potentials for S = 0

or S = 1 must be used in the above equations, which causes the dependence of ψ
(L,S)
e1e2, ij

on

the total spin S. The angular-momentum dependence arises through K[~q ] in (4.5), which

reads K = 1 for L = 0 and K = ~q for L = 1. The limiting procedure in (4.5) is required

since the factor [Ê−~p 2/(2µij)] vanishes for Ê = E, while G̃ab(~p, ~q;E) develops a singularity

that corresponds to scattering states with relative-momentum kinetic-energy E.

11The loop integration of the last loop before the annihilation vertex is the ~q integral in (4.5).
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The second step consists of verifying that G̃ab(~p, ~q;E) is in fact the momentum-space

Green function of a certain Schrödinger operator. Indeed, one easily checks that it satisfies

the Lippmann-Schwinger equation

(
~p 2

2µa
− [E −Ma + 2mLSP]

)
G̃ab(~p, ~q;E)

+

∫
d3~k

(2π)3
V̂ ac(~k ) G̃cb(~p− ~k, ~q;E) = δab (2π)3 δ(3)(~p− ~q ), (4.8)

hence the Fourier-transform Gab(~r, ~r ′;E) is the Green function for the Schrödinger equation

(
−
~∇ 2

2µa
− E

)
Gab(~r, ~r ′;E) + V ac(r)Gcb(~r, ~r ′;E) = δab δ(3)(~r − ~r ′) (4.9)

with the coordinate-space potential

V ac(r) = V̂ ac(r) + δac
[
Ma − 2mLSP

]
. (4.10)

Note that this result could be obtained directly as an equation of motion from the effective

Lagrangian given in section 2 by including the potential in the unperturbed Lagrangian.

The third and final step uses elementary scattering theory to express (4.5) in terms of

eigenfunctions with energy E rather than the full Green function. Let us define the Green

operators

G(Ê) =
1

H − Ê − iε
, G0(Ê) =

1

H0 − Ê − iε
(4.11)

for the interacting and free Hamiltonians of the Schrödinger problem and the corresponding

momentum eigenstates

H|~p+, a〉 =
~p 2

2µa
|~p+, a〉, H0|~p , a〉 =

~p 2

2µa
|~p , a〉 . (4.12)

Note that G, G0 are matrix-valued operators with dimensionality related to the number

of two-particle states (χχ)a = χa1χa2 . Accordingly, the eigenstates carry a compound

index a that refers to the component of the wave-function proportional to the two-particle

state a. The states |~p+, a〉 are the exact stationary scattering states of H with eigenvalue

E = ~p 2/(2µa), while |~p , a〉 are plane waves. We may represent the former in the plane-wave

basis by [ψ̃E(~q )]ab = 〈~q , a|~p+, b〉. The Lippmann-Schwinger equation can be used to derive

|~p+, a〉 = GG−1
0 |~p , a〉. With these preparations we use (4.1), (4.5) to compute

K[~p ]ψ
(L,S)
e1e2, ij

= lim
Ê→E

(−1)

(
Ê − ~p 2

2µij

) ∫
d3~q

(2π)3
K[~q ] G̃ie(~p, ~q; Ê)︸ ︷︷ ︸

〈~p,i|G(Ê)|~q ,e〉

= lim
Ê→E

∫
d3~q

(2π)3
K[~q ] 〈~p, i|

(
~p 2

2µij
− Ê

)

︸ ︷︷ ︸
〈~p,i|G−1

0 (Ê)

G(Ê)|~q , e〉 =

∫
d3~q

(2π)3
K[~q ] [ψ̃E(~q )]∗ei . (4.13)
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The same result can also be derived from the spectral representation

G(Ê) =
∑

a

∫
d3~p

(2π)3

|~p+, a〉〈~p+, a|
~p 2

2µa
− Ê − iε

(4.14)

of the Green operator (ignoring the bound states not relevant to our discussion). Finally,

since K = 1 for L = 0 and K[~q ] = ~q for L = 1, we obtain

ψ
(0,S)
e1e2, ij

= [ψE(0)]∗e1e2, ij and ~pψ
(1,S)
e1e2, ij

= −i [~∇ψE(0)]∗e1e2, ij (4.15)

in terms of coordinate-space scattering wave-functions at the origin. Note that the result

carries two compound indices referring to two-particle states. The second, ij, refers to the

incoming two-particle state |~p , i〉 with kinetic energy E − (Mi − 2mLSP) in the cms frame

of the annihilation. The first, e = e1e2, specifies that only the component proportional to

the two-particle state e of the wave-function at the origin for this incoming state is picked

out by the annihilation operator χc†e2χe1 that defines ψ
(L,S)
e1e2, ij

. The wave-function [ψE(~r )]a,ij
can be obtained directly from the matrix-Schrödinger equation

([
−
~∇ 2

2µa
− E

]
δab + V ab(r)

)
[ψE(~r )]b,ij = 0 (4.16)

with the potential (4.10). The label ij refers to the fact that this equation should be solved

with the initial condition corresponding to a particular incoming two-particle state ij. Let

us finally mention that the complex conjugated scattering wave-function appears in (4.13)

because of the convention used for the left and right states in the definition of the Green

function (4.6). Using the opposite convention we would end up with [ψE(~q )]ei in (4.13)

but with V ba instead of V ab in the Schrödinger equation (4.16).12

4.2 Solution of the multi-channel Schrödinger equation

We first solve the matrix-Schrödinger equation for the Sommerfeld factors by following

closely the method described in [43]. Although, eventually, we will not use this method, we

discuss it to set up the framework for the subsequent improvement. Under our assumption

for the mass splittings, we can approximate µa ≈ mLSP/2 in the kinetic term, since the

difference is a v2 correction, which we consistently neglect in the long-distance part. The

Schrödinger equation now reads

([
−

~∇ 2

mLSP
− E

]
δab + V ab(r)

)
[ψE(~r )]bi = 0 , (4.17)

and we recall the definitions

√
s = 2mLSP + E and V ab(r) = V̂ ab(r) + δab

[
Ma − 2mLSP

]
. (4.18)

12For a symmetric potential the solutions for ψE(~r ) and [ψE(~r )]∗ are identical and the correct result

would be obtained even if the conventions for the Green function and the potential were not consistently

taken care of. However, in the MSSM the potential matrix is complex-hermitian in general.
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We also use the velocity variable v defined by

E ≡ mLSPv
2 . (4.19)

This implies that the threshold for co-annihilation channels occurs at finite velocities vth =

((mi +mj − 2mLSP)/mLSP)1/2. With the above redefinitions the dependence on the initial

scattering state appears only in the initial condition for the solution as indicated by the

subscript i of [ψE(~r )]bi, but not in the equation itself. We note that the MSSM matrix

potential is hermitian, but in general not symmetric, since the entries of the potential

matrix can be complex numbers. The potential is spherically symmetric. For large r, the

potential approaches the diagonal matrix Vinf with diagonal entries Vinf,a = Ma − 2mLSP.

We therefore define the wave numbers

k2
a = mLSP(E + iε− Vinf,a), (4.20)

which determine the asymptotic behaviour of the solutions. When E > Vinf,a, channel a is

kinematically open and ka is real. Otherwise the channel is closed and ka is imaginary.

The scattering solution describing an incoming plane wave propagating along the z-

direction and an outgoing scattered spherical wave takes the asymptotic form

[ψE(~r )]ai
r→∞

= δai e
ikaz + fai(θ)

eikar

r
. (4.21)

where, due to the azimuthal symmetry of the problem fai(θ) does not depend on the

azimuthal angle.13 Since the potential is non-diagonal, the scattered spherical wave is not

proportional to δai. The asymptotic behaviour (4.21) should be matched to the behaviour

of the general solution

[ψE(~r )]ai =
∑

L

[uL(r)]ab
r

Abi PL(cos θ), (4.22)

where PL(cos θ) denotes the Legendre polynomials. This expresses [ψE(~r )]ai as a superpo-

sition Abi of basis solutions [uL(r)]ab of the radial Schrödinger equation
([
− d2

dr2
+
L(L+ 1)

r2
−mLSPE

]
δab +mLSPV

ab(r)

)
[uL(r)]bi = 0 (4.23)

13The asymptotic form (4.21) applies to radial potentials vanishing faster than 1/r as r →∞. This holds

for Yukawa potentials, arising from massive mediator exchange, which is — besides the Coulomb interaction

from photon exchange — the relevant case for χχ pair annihilations. For Coulomb potentials, (4.21) does

not apply. However, photon-exchange does not change the neutralino state, so the 1/r potentials arise

exclusively in the diagonal entries of the potential matrix V (r), when written in the two-particle mass-

eigenstate basis. For large values of r, V (r) then always approaches a diagonal matrix (the non-diagonal

Yukawa potentials being exponentially suppressed) with entries Vinf,a + caα/r, containing the Coulomb

potential contributions as well as constant mass splitting terms. Accounting for the presence of long-range

Coulomb potentials, the exp (ikaz) factor in (4.21) should be replaced by the incoming wave-function in

presence of the Coulomb potential in the aa component of V (r), and in the outgoing scattered wave, one has

to replace exp (ikar) by exp (i(kar +mLSPcaα/(2ka) ln(2kar))). Since it can be shown that the subsequent

derivation of the Sommerfeld factor including Coulomb potentials on the diagonals of V (r) is completely

analogous to the short-range potential case, and leads to the same result for the enhancement factor, we

will for brevity refer to the asymptotic behaviour (4.21) in the following.
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for each partial wave. When V is a N × N matrix, there exist 2N linearly independent

solutions to (4.23) corresponding to the N independent initial conditions i, each of which

is an N -component vector with index a. N solutions are irregular at the origin, hence

restricting us to the set of N regular ones. The asymptotic behaviour of the ath component

of the regular linear independent solution for initial state i is given by

[uL(r)]ai
r→∞

= nai sin

(
kar −

Lπ

2
+ δai

)
(4.24)

with constant coefficients nai and scattering phases δai.
14 Matching the asymptotic be-

haviours of (4.21) and (4.22), we obtain

Abi = iL(2L+ 1)
[M−1]bi
ki

(no sum over i) (4.25)

with

Mai ≡ nai e−iδai . (4.26)

The basic ingredients (4.15) for the Sommerfeld factors now require the wave function

and its derivatives at the origin. We suppose that the annihilation operator is constructed

such that it overlaps only with a single partial wave L, the relevant cases in practice being

L = 0 (S-wave annihilation) and L = 1 (P -wave annihilation). The leading term in the

Taylor expansion of [uL(r)]ai around the origin is given by

[uL(r)]ai =
1

(L+ 1)!
[u

(L+1)
L (0)]ai r

L+1 + . . . (4.27)

with [u
(L+1)
L (0)]ai denoting the (L + 1)-th derivative at the origin. Hence using (4.25)

in (4.22), we have

[ψE(~r )]ai
r→0
= PL(cos θ)rL

iL(2L+ 1)

(L+ 1)!
[u

(L+1)
L (0)]ab

[M−1]bi
ki

. (4.28)

The quantity ψ
(L,S)
e1e2, ij

is defined in (4.1) as the ratio of the annihilation matrix element

to the same matrix element evaluated in the tree approximation, which corresponds to

replacing V by Vinf in the Schrödinger equation. The free Schrödinger equation can be

solved exactly, and one finds

[ψfree
E (~r )]ai

r→0
= PL(cos θ)rL

iL(2L+ 1)

(2L+ 1)!!
kLi δai . (4.29)

14Both depend on L, but we do not indicate this explicitly. Eq. (4.24) assumes short-range potentials. In

the presence of Coulomb potentials in the diagonal entries of the potential matrix V (r) into account, the

asymptotic behaviour of the regular basis solutions reads

[uL(r)]ai
r→∞

= nai sin

(
kar −

Lπ

2
+
mLSPcaα

2ka
ln(2kar)δai

)
.

The modifications match those of the scattering solution, see footnote 13.
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Comparison with (4.28) gives

ψ
(L,S)
e1e2, ij

=
(2L+ 1)!!

(L+ 1)!
[u

(L+1)
L (0)]∗eb

[M−1]∗bi
kL+1
i

(4.30)

for general L.

We can avoid the computation of the phase-shift matrix Mbi by making use of the fact

that the Wronskian matrix is r-independent. Let [vL(r)]ai be the N linearly independent

singular basis solutions with asymptotic behaviours

[vL(r)]ai
r→0
=

δai
rL

, [vL(r)]ai
r→∞

= [T †]ai e−ikar , (4.31)

which defines the matrix T . The Wronskian is defined as

[WL]ij = [v†L(r)]ia[u
′
L(r)]aj − [v† ′L (r)]ia[uL(r)]aj , (4.32)

where the prime denotes the derivative.15 Inserting the asymptotic behaviour of the regular

and singular solutions, we obtain

[WL(r)]ij
r→0
=

2L+ 1

(L+ 1)!
[u

(L+1)
L (0)]ij , [WL(r)]ij

r→∞
= iL

∑

a

kaTiaMaj . (4.33)

Both expressions must be equal due to the constancy of the Wronskian, which implies

[u
(L+1)
L (0)]ab [M−1]bi =

(L+ 1)!

2L+ 1
iL ki Tai (4.34)

Plugging this into (4.30) gives

ψ
(L,S)
e1e2, ij

= (2L− 1)!! i−L
T ∗ei
kLi

, (4.35)

which expresses ψ
(L,S)
e1e2, ij

in terms of the large-r behaviour of the singular solutions. This

can be obtained from the regular solutions as described below. The Sommerfeld factor is

defined through the square of the annihilation amplitude. The definition (2.23) can now

be evaluated in the form

Si[f̂(2S+1LJ)] =

(
(2L− 1)!!

kLi

)2 [T †]ie f̂
χχ→χχ
ee′ (2S+1LJ)Te′i

f̂χχ→χχii (2S+1LJ)|LO

, (4.36)

which is equivalent to the result first derived in [43]. Note, in compound-index notation,

f̂χχ→χχee′ = f̂χχ→χχ{e1e2}{e4e3} and f̂χχ→χχii = f̂χχ→χχ{ij}{ij}.
In practice, the matrix-Schrödinger equation must be solved numerically. We obtain

the matrix T from the regular solutions by the following three steps:

15Eq. (4.32) is a generalization of the expression WL considered in [43]. There the potential matrix

was assumed to be real-symmetric, such that the transpose of the matrix vL appeared in the definition

of WL, instead of the hermitian conjugate. Due to the generic hermiticity property of the Schrödinger

equation, the definition of WL with hermitian conjugates (4.32) looks more natural even in the case of

real-symmetric potentials.
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(1) Determine the N linearly independent regular solution vectors [uL(r)]ai for i =

1, . . . , N for given L by solving the radial Schrödinger equation with initial conditions

[uL(r0)]ai =
1

2L+ 1
r̂L+1

0 δai , [u′L(r0)]ai =
L+ 1

2L+ 1
r̂L0 δai , (4.37)

where r̂0 is close to zero. In practice, we work with the dimensionless, scaled variable

r̂ = mLSPvr and use r̂0 = 10−7. The normalization is chosen such that [u
(L+1)
L (0)]ai =

δai(L+ 1)!/(2L+ 1), in which case the Wronskian equals [WL(r)]ij = δij .

(2) Pick a large value r∞, such that the asymptotic behaviour (4.31) of the irregular

solution applies, and the Wronskian evaluates to

[WL]ij = TiaUaj
!

= δij (4.38)

with

Uaj(r∞) = eikar∞
(
[u′L(r∞)]aj − ika[uL(r∞)]aj

)
, (4.39)

and [uL(r)]aj known from step 1. Hence the matrix T appearing in (4.36) follows

from matrix inversion,

T = U−1 . (4.40)

(3) Since in practice the Schrödinger equation can only be solved up to some finite

value of r, check the stability of the result by varying (and increasing) r∞ until T is

independent of r∞ within a certain target accuracy.

The procedure described here has been implemented in Mathematica and works well,

when all N states included in the multi-channel Schrödinger equation are degenerate to a

high degree. This is the case in MSSM parameter regions where the Sommerfeld enhance-

ment is most effective, such as the wino or Higgsino limit for the neutralino, and when the

other states not related to the wino or Higgsino electroweak multiplet are decoupled and

ignored. However, our aim is to compute the Sommerfeld-enhanced radiative corrections in

a larger part of the MSSM parameter space, when the mass splittings become larger than

in the wino or Higgsino limit. In this case the method outlined above encounters severe

numerical problems, as we now describe, and fails to provide the desired solution.

For the purpose of illustration we consider a MSSM parameter point where the LSP

is wino-like. The relevant masses are mLSP = mχ0
1

= 2749.4 GeV, mχ+
1

= 2749.61 GeV

and mχ0
2

= 2950.25 GeV. Further details of the models are not relevant for the following

discussion. We first compute the Sommerfeld factor S ≡ Sχ0
1χ

0
1
[f̂(1S0)] as function of

x∞ = mLSPvr∞ by keeping only the χ0
1χ

0
1 and χ+

1 χ
−
1 two-particle states in the Schrödinger

equation and the annihilation process. The velocity is chosen v = 0.012, slightly below

the threshold for the χ+
1 χ
−
1 state. The result S(x∞) is shown as the light-grey (red),

dashed curve in the upper panel of figure 5. After a rapid variation with a peak structure,

the Sommerfeld factor reaches a plateau and for x∞ > 50 stays at the constant value

S(∞) ≈ 199.59. Next, we add the χ0
1χ

0
2 state to the problem, so that the Schrödinger

system is now for a 3 × 3 matrix. Since the new state is 200 GeV heavier and moreover
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Figure 5. S- and P -wave Sommerfeld factors S ≡ Sχ0
1χ

0
1
[f̂(1S0)] (upper plot) and Sχ0

1χ
0
1
[f̂(3PJ)]

(lower plot) for v = 0.012 in a wino-like model as described in the text. The light-grey (red) dashed

curve shows S(x∞), when only the χ0
1χ

0
1 and χ+

1 χ
−
1 two-particle states in the Schrödinger equation

and the annihilation process are kept and the asymptotic regime is reached for x∞ > 50. The

dark-grey (blue) solid curve shows the result when the χ0
1χ

0
2 state is included. In this case, the

evaluation fails for x∞ > 2 and no reliable result is obtained.

rather weakly coupled to the two lowest, nearly degenerate wino states, we expect that it

should have little effect on the value of the Sommerfeld factor. However, now the numerical

solution fails when x∞ is slightly large than 1, as seen from the dark-grey (blue) curve in

figure 5, which drops to 0 after a few spikes. It is not possible to reach the plateau, where

S(x∞) stabilizes. A similar behaviour impedes the calculation of the P -wave Sommerfeld

factor, as shown in the lower panel of figure 5.

The numerical instability originates from the presence of kinematically closed two-

particle state channels, here the χ0
1χ

0
2 state. When the mass splittings become larger or v

small, the situation 2mLSP +mLSPv
2 < Mb is rather generic. To quantify the issue suppose

that b in the Schrödinger equation (4.23) is a closed channel, while a refers to the two-

LSP χ0
1χ

0
1 channel. The solution [uL(x)]bi for the closed channel involves an exponentially

growing component proportional to eκbr where κ2
b = mLSP(Mb − [2mLSP + mLSPv

2]). In
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the absence of channel mixing, the solutions for the kinematically open channels would be

oscillating. The off-diagonal potentials V ab(r) that couple the different channels decrease

as e−MEWr/r, where MEW is the mass scale set by the electroweak gauge boson exchange

that mediates the channel mixing. Hence, the open-channel solutions [uL(x)]ai inherit the

exponential growth from the closed channels. For the two-LSP χ0
1χ

0
1 channel, exponential

growth occurs when at least one of the included kinematically closed channels b satisfies

Mb − [2mLSP +mLSPv
2] >

M2
EW

mLSP
. (4.41)

Since typically mLSP � MEW for the dark matter scenarios of interest, this condition is

easily satisfied unless all two-particle states included in the computation are very degenerate

within a few GeV or less. In consequence the formally linearly independent solutions [uL]ai
degenerate and the matrix Uai becomes ill-conditioned with exponentially growing entries

in the rows corresponding to open channels a. The matrix inversion (4.40) can no longer

be done in practice for r∞ large enough such that the asymptotic regime is reached, which

causes the instability seen in figure 5.

4.3 Improved method

To avoid the matrix inversion (4.40) we seek a method where the inverse of U defined

in (4.39) follows directly from the solution of a differential equation system. This can indeed

be found by an adaptation of the reformulation of the Schrödinger problem described in [44].

We work with the dimensionless radial variable x = mLSPvr and dimensionless wave

numbers k̂a = ka/(mLSPv) = [1+iε−(Ma−2mLSP)/E]1/2. The radial equation (4.23) reads

[u′′L(x)]ai +

[(
1− L(L+ 1)

x2

)
δab − V ab(x)

E

]
[uL(x)]bi = 0 . (4.42)

We separate the asymptotic value of the potential by defining V (x) = Vinf + V̂ (x), such

that Vinf contains the mass splittings, and is diagonal, while V̂ (x)
x→∞

= 0. The method

proposed in [44] starts with the variable phase ansatz16

[uL(x)]ai = fa(x)αai(x)− ga(x)βai(x) (no sum over a). (4.43)

Here

fa(x) =

√
πx

2
JL+ 1

2
(k̂ax) ga(x) = −

√
πx

2

[
YL+ 1

2
(k̂ax)− iJL+ 1

2
(k̂ax)

]
(4.44)

are linearly independent Bessel function solutions of the free Schrödinger equations

[u′′L(x)]ai +

[
k̂2
a −

L(L+ 1)

x2

]
[uL(x)]ai = 0 (4.45)

16We do not indicate the dependence on L of the functions of the right-hand side of the ansatz. Further-

more, in subsequent equations we do not write explicitly when an index appearing twice is not summed,

since this should be clear from the index structure of the equation. For instance, in the following equation

as well as later ones, such as (4.45), the left-hand side has indices ai, so a should not be summed.
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The Wronskian of the free solutions is

f ′a(x)ga(x)− fa(x)g′a(x) = 1. (4.46)

The ansatz doubles the set of unknown functions by introducing αai(x) and βai(x) and the

additional freedom can be eliminated by imposing the condition

fa(x)α′ai(x)− ga(x)β′ai(x) = 0 (4.47)

for every ai [44]. The condition reduces the N second-order differential equations (4.42) to

a system of 2N coupled differential equations of first order for αai(x) and βai(x).

The important quantities in the present approach are the matrix-functions N , α̃, de-

fined by

Nab = fagaδab − gaOabgb (4.48)

with Oab defined through βai = Oab αbi, and

α̃ai =
αai
ga

. (4.49)

From the original Schrödinger equation for [uL]ai and the above definitions, one derives

that N and α̃ satisfy the first-order differential equations

N ′ab = δab +

(
g′a
ga

+
g′b
gb

)
Nab −Nac

V̂cd
E

Ndb , (4.50)

α̃′ai = Zabα̃bi with Zab ≡ −
g′a
ga
δab +

V̂ac
E

Ncb . (4.51)

The initial conditions (4.37) translate into

Nab(x0) =
x0

2L+ 1
δab, α̃ai(x0) = xL0 δai . (4.52)

where x0 is a number close to zero, which we set to 10−7. Up to this point we essentially

reviewed the modification of the variable phase method proposed in [44].

The crucial observation is now that

[u′L]ai = α̃ai +
g′a
ga

[uL]ai , (4.53)

which implies that the matrix Uai from (4.39) is asymptotically trivially related to α̃ai,

since

Uai = eik̂ax
(

[u′L(x)]ai − ik̂a[uL(x)]ai

)

= eik̂ax α̃ai + eik̂ax
(
g′a
ga
− ik̂a

)
[uL(x)]ai

x→∞
= eik̂ax α̃ai (4.54)

The last equality follows, because g′a/ga − ik̂a vanishes for large x. Specifically, for the

relevant cases L = 0, 1,

g′a
ga
− ik̂a =





0 L = 0

− 1

x(1− ik̂ax)
L = 1

(4.55)
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We recall that our task is to compute the inverse U−1 for large enough x, such

that the result is practically x-independent. This is now easily accomplished, since us-

ing d(α̃−1α̃)/dx = 0, (4.51) can be turned into the differential equation

α̃−1 ′
ia = −α̃−1

ib Zba, α̃−1
ia (x0) = x−L0 δia . (4.56)

with Z given in (4.51), and then

Tia(x∞) = [U−1]ia(x∞) = e−ik̂ax∞ α̃−1
ia (x∞) (4.57)

from the solution to (4.56) for sufficiently large x∞.

To summarize, the matrix T and hence the Sommerfeld factors (4.36) are computed

by the following three steps:

(1) Solve for Nab the first-order differential equations (4.50) with initial conditions (4.52)

for every b = 1, . . . , N .

(2) Solve (4.56) with Z given by (4.51).

(3) Evaluate (4.57) for several x∞ and check (by varying and increasing x∞) that T is

independent of x∞ within a certain target accuracy.

To illustrate the improved performance of the method developed in this section, we

show in the upper plot of figure 6 the same result as in figure 5, that is, the S-wave

Sommerfeld factor Sχ0
1χ

0
1
[f̂(1S0)] in the wino-LSP model described at the end of section 4.2,

but now using the new method. The solution for the three-state case that was impossible

to obtain with the standard method can now be evolved to sufficiently large x∞, such

that the Sommerfeld factor can be extracted without difficulty. In fact, the two curves

referring to the two-state solution and the one including the heavier χ0
1χ

0
2 state cannot be

distinguished on the scale of the plot. As expected, the heavier state has no effect on the

Sommerfeld enhancement in this particular model — the enhancement factor changes only

by a tiny amount from S(∞) ≈ 199.59 to S(∞) ≈ 199.72.

The lower plot of figure 6 shows the corresponding results for a P -wave Sommerfeld

factor, here for Sχ0
1χ

0
1
[f̂(3PJ)]. Once again the two-state solution (light-grey/red curve

[invisible]) and the one including the heavier χ0
1χ

0
2 state (dark grey/blue curve) cannot be

distinguished on the scale of the plot. The plateau is reached for x∞ > 50 with S(∞) ≈
4.31. We also show the two-state solution with the standard method (light-grey/red dashed

curve). All results agree for large enough x∞, but contrary to the S-wave case there is a

visible difference for x∞ < 10. The difference arises from the approximation in the second

line of (4.54), which implies that the U matrix in the standard and new method agree only

for large x∞ in general. The “approximation” is exact only for L = 0. For the P -wave case

the difference vanishes as 1/x2
∞. Since there is no numerical restriction on x∞ with the

new method, the difference can always be made sufficiently small as seen in the lower plot.

Note that it would not be possible to compute the P -wave Sommerfeld factor with the

standard method for the three-state problem, since the matrix inversion becomes unstable

at x∞ ≈ 2, as in the S-wave case.
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Figure 6. S- and P -wave Sommerfeld factors S ≡ Sχ0
1χ

0
1
[f̂(1S0)] (upper plot) and Sχ0

1χ
0
1
[f̂(3PJ)]

(lower plot) for v = 0.012 in a wino-like model as described at the end of section 4.2 using the

improved solution method. The light-grey (red) curve shows S(x∞), when only the χ0
1χ

0
1 and

χ+
1 χ
−
1 two-particle states in the Schrödinger equation and the annihilation process are kept. The

dark-grey (blue) curve shows the result when the χ0
1χ

0
2 state is included. In both plots the two cases

are now indistinguishable. The lower plot shows in addition (light-grey (red) dashed) the P -wave

Sommerfeld factor with the “old” method for the two-state problem.

4.4 Second-derivative operators

The above method allows us to calculate the matrix elements of the S- and P -wave op-

erators Oχχ→χχ{e4e3}{e2e1} and the associated operators Qχχ→χχ{e4e3}{e2e1} proportional to mass dif-

ferences. In order to fully describe the Sommerfeld enhancement of the short-distance

annihilation cross section at order v2, we further require the matrix element of the second-

derivative operators Pχχ→χχ{e4e3}{e2e1}. For spin-0 it is defined as [15]

Pχχ→χχ{e4e3}{e2e1}(
1S0) =

1

2

[
χ†e4χ

c
e3 χ

c†
e2

(
− i

2

←→
∂

)2

χe1 + χ†e4

(
− i

2

←→
∂

)2

χce3 χ
c†
e2χe1

]
, (4.58)

with obvious generalization to spin-1. We show in this section that the matrix element

of Pχχ→χχ{e4e3}{e2e1} can be obtained from the non-derivative S-wave operators by the rela-
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tions (2.20), (2.22). To this end, we show that

〈0|χc†e2Γ

(
− i

2

←→
∂

)2

χe1 |χiχj〉 = κ∗ee′ 〈0|χc†e′2Γχe′1
|χiχj〉 , (4.59)

where in compound index notation (2.22) reads

κ ee′ = ~p 2
e δee′ + 2µeα2

∑

a

mφac
(a)
ee′ . (4.60)

We start from (4.5) and (4.13), which for the specific case at hand imply

〈0|χc†e2Γ

(
− i

2

←→
∂

)2

χe1 |χiχj〉 = 〈ξc†j Γξi〉
∫

d3~q

(2π)3
~q 2
(

[ψ̃E ]∗ei(~q ) + (−1)S [ψ̃E ]∗ēi(~q )
)
. (4.61)

The momentum-space Schrödinger equation (4.16) leads to

∫
d3~q

(2π)3
~q 2 [ψ̃E ]∗ei(~q ) = 2µe(2mLSP −Me + E)

∫
d3~q

(2π)3
[ψ̃E ]∗ei(~q )

− 2µe

∫
d3~q

(2π)3

d3~k

(2π)3
[V̂ ee′(~k )]∗ [ψ̃E ]∗e′i(~q − ~k) (4.62)

The momentum-space potential is a sum of terms from the exchange of gauge and Higgs

bosons,

V̂ ee′(~k ) = 4πα2

∑

a

c
(a)
ee′

~k2 +m2
φa

, (4.63)

where mφ is the mass of the exchanged gauge boson, α2 = g2
2/(4π) the SU(2) gauge coupling

and c
(a)
ee′ the coefficients of the potentials given in table 2 of appendix A. Shifting ~q → ~q+~k

in (4.62) factorizes the two integrations. Employing dimensional regularization gives the

finite result ∫
dd−1~k

(2π)d−1

1

~k2 +m2
φ

d→4
= −mφ

4π
(4.64)

for the linearly divergent integral. Inserting this into (4.61), we obtain

〈0|χc†e2
(
− i

2

←→
∂

)2

χe1 |χiχj〉 = 〈ξc†j Γξi〉
∫

d3~q

(2π)3
[ψ̃E ]∗e′i(~q )

×
[

2µe(2mLSP −Me + E)δe′e + 2µeα2

∑

a

mφac
(a)∗
ee′

]
+ (−1)S {e→ ē}

= 〈ξc†j Γξi〉
∫

d3~q

(2π)3
[ψ̃E ]∗e′i(~q)

(
κ∗ee′ + (−1)S κ∗ēe′

)
, (4.65)

where the last equality follows from the definition (4.60) of the matrix κ and the expression

for the relative momentum of the two-particle state e, ~p 2
e = 2µe(2mLSP−Me+E)+O(~p 4

e ).

We can rename the dummy index e′ → ē′ in the second term of (4.65), and use that
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κēē′ = κee′ (since the potentials for χe1χe2 → χe′1χe′2 and χe2χe1 → χe′2χe′1 involve the same

coupling structure), to write (4.65) as

〈0|χc†e2
(
− i

2

←→
∂

)2

χe1 |χiχj〉=κ∗ee′ 〈ξc†j Γξi〉
∫

d3~q

(2π)3

(
[ψ̃E ]∗e′i(~q )+(−1)S [ψ̃E ]∗ē′i(~q )

)
, (4.66)

which proves (4.59). Note that the second term in the definition (4.60) of κ is only present

for the exchange of massive particles, and not for the Coulomb potential. The factor κ can

be absorbed into an effective annihilation matrix ĝκ as has been done in (2.22).

In parameter-space regions where the Sommerfeld effect is important and the exchange

of a particle with mass mφ � mLSP leads to an enhancement of the radiative correction,

all terms in κ are parametrically of the same order, since Me − mLSP ∼ E ∼ mLSPv
2,

and α2mφ ∼ vmEW ∼ mLSPv
2. A general MSSM parameter point, however, may also

lead to heavy Higgs bosons, which though strongly suppressed in the potential, may give

a large contribution to the last term in square brackets. The origin of this unphysical

power-counting breaking contribution is the linearly divergent integral (4.64). Since heavy

Higgs-boson exchange causes a suppressed, local (χ†χ)2 potential interaction, the simplest

solution is to decouple the heavy Higgs bosons by not including them into the MSSM poten-

tial of section 3. After this decoupling, the generated local interaction is a O(v2) correction

to the long-distance part, which we consistently neglect. In practice, we simply eliminate

Higgs-exchange from the potential for Higgs masses mH/mLSP > 0.5 unless mH < 100 GeV.

4.5 Approximate treatment of heavy channels

For a generic MSSM parameter space point the two-particle states will span a certain mass

range and not be degenerate. While the improved method for the Schrödinger-equation

solution allows us to cover the non-degenerate case without numerical instabilities there are

still practical limitations related to the increasing CPU time, as the number of states, and

hence the dimensionality of the matrix increases. For example, if for a given MSSM model

and scattering energy E, the computation of the 1S0 Sommerfeld factor in the charge-

neutral channel for a velocity close to the threshold of a nearly degenerate state takes 0.1 s

when only two out of the total of 14 channels are included in the computation, the CPU time

increases to 14 s for four channels, 5 min for 8 channels and reaches nearly three hours for

the solution of the full 14× 14 matrix problem.17 Since even for a single MSSM parameter

set, many Sommerfeld factors must be computed for a single scattering energy, and further

the thermal average requires an integral over the scattering energy, CPU considerations

restrict the number of channels, for which the Schrödinger equation is solved exactly.

However, an exact solution of the 14× 14 problem is only necessary if all 14 states are

nearly degenerate, which is rarely the case. As soon as the mass splitting becomes large,

the heavier two-particle states should have little effect on the Sommerfeld enhancement

of the lighter states, since the propagator of the heavier state in one of the loops of the

ladder diagram series is off-shell and does not lead to an enhancement. Yet there is the

17The numbers strongly depend on the model and velocity but provide an indication of the increase in

CPU time as the number of channels increases.
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possibility that a heavy state couples more strongly to the annihilation process than the

lighter states and hence effectively enhances the annihilation rate. To cover this case, we

allow the heavy channels to appear in the last loop before the annihilation vertex, but not

elsewhere in the ladder diagrams. Moreover, the non-relativistic power-counting shows that

there is a suppression factor of order [E/(Mh − 2mLSP)]a when a light channel is replaced

by a heavy one, with a = 1/2 for the contribution in the last loop before the annihilation,

but a = 3/2 when the heavy state appears inside the ladder, which justifies the omission.

In the following, we describe how the effect of the heavy channels in the last loop can be

absorbed into an effective annihilation matrix for the lighter channels.

We divide the total number N of two-particle states (14 in method-2 in the charge-

neutral sector) into n light states, which will be treated exactly, and N − n heavy states,

which we include only in the last loop.18 Suppose that h = {h1h2} refers to one of the

heavy states, then by extension of (4.5) we obtain

〈0|χc†h2ΓK

[
− i

2

←→
∂

]
χh1 |χiχj〉 = 〈ξc†j Γξi〉 lim

Ê→E
(−1)

(
Ê − ~p 2

2µij

)

×
∫

d3~q

(2π)3

∫
d3~k

(2π)3
K[~q ] V̂ lh(~q − ~k)

1

E − [Mh − 2mLSP]− ~q 2

2µh

G̃il(~p,~k; Ê)

+ (−1)L+S {h→ h̄} , (4.67)

where l refers to the light channels summed over, and G̃il is the Green function of the

Schödinger operator for the n × n problem for the light-states. The potential interaction

V̂ lh converts the light channel into the annihilating heavy channel h.

The annihilation cross sections matrix elements such as above are multiplied by annihi-

lation matrices f̂ee′ ≡ f̂χχ→χχ{e1e2}{e4e3} and summed over all two-particle channels e, see (2.13).

Dividing the sum over e into the sum over light and the sum over heavy channels and

proceeding for the heavy channels from (4.67) to the integral involving the wave-function

similar to (4.13), we find

f̂ee′ 〈0|χc†e2ΓK

[
− i

2

←→
∂

]
χe1 |χiχj〉 = 2 〈ξc†j Γξi〉

∫
d3~q

(2π)3
[ψ̃E ]∗li(~q )

×


f̂le′K[~q ] + f̂he′

∫
d3~k

(2π)3
K[~k ] V̂ lh(~k − ~q) 1

E − [Mh − 2mLSP]− ~k 2

2µh


 , (4.68)

where the sum over l (h) runs only over the light (heavy) channels, and the equality in (4.68)

holds when heavy channels contribute only in the last loop before the annihilation of the

perturbative expansion of the matrix element.

Our aim is to write the square bracket as an effective annihilation matrix f̂ eff
le′K[~q ] for

the light channels. We write the potential as in (4.63) and perform the integration over

18We also include them as external states, but only at tree-level. Heavy external states are not relevant for

the relic-density calculations, since they are Boltzmann-suppressed, except for special cases such as resonant

annihilation of the heavy state, in which the resonant enhancement of the cross section compensates the

Boltzmann suppression.
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loop momentum ~k to obtain

f̂ eff, right
ll′ = f̂ll′ + Ilh f̂hl′ , (4.69)

with

Ilh = α2

∑

a

c
(a)
lh (−2µh) IL(2µh(Mh − [2mLSP + E]− iε),mφa , ~q

2) . (4.70)

for S-wave matrix elements (L = 0, K[~q ] = 1)

I0(y,m, ~q 2) =
i

2
√
~q 2

ln
i(m2 − y + ~q 2) + 2m

√
~q 2

i(m2 − y − ~q 2) + 2
√
y ~q 2

, (4.71)

and for the P -wave case (L = 1, K[~q ] = ~q )

I1(y,m, ~q 2) =

√
y −m
2~q 2

+
i(m2 − y + ~q 2)

2(~q 2)3/2
ln
i(m2 − y + ~q 2) + 2m

√
~q 2

i(m2 − y − ~q 2) + 2
√
y ~q 2

. (4.72)

The superscript “right” reminds us that (4.67) represents only “one half” of the four-

fermion operator that accounts for the square of the annihilation amplitude. Accounting

for the fermion bilinear matrix element that multiplies the annihilation matrix from the

left then gives

f̂ eff
ll′ = f̂ll′ + Ilh f̂hl′ + I∗l′h f̂lh + IlhI

∗
l′h′ f̂hh′ (4.73)

for the effective annihilation matrix in the space of light states including the heavy states

in the last loop of the ladder.

We wish to note that the result (4.69) taking channel index h to run over all rele-

vant two-particle states regardless of their mass provides the leading-order non-relativistic

approximation to the 1-loop annihilation amplitude of the state l, which has also been

obtained by direct expansion in [45]. It can be checked that the loop integrals IS,P defined

in the latter reference, are equal to (2π|~q |)I0,1.19

The expressions for IL above are not yet useful, since they define functions of ~q 2, hence

the evaluation of (4.68) would require the full momentum-space wave-function [ψ̃E ]li(~q ),

which is not available, and not just the value and derivative at r = 0 in coordinate space.

However, we would like to make use of these expressions only for heavy channels when

the mass splitting Mh − 2mLSP is large compared to the scattering energy E. Since the

typical relative momentum scales as ~q 2 ∼ mLSPE, we can expand the integrals IL in√
~q 2/(Mh − 2mLSP). Keeping only the leading term in this expansion, we approximate

I0(y,m, ~q 2)→ 1√
y +m

I1(y,m, ~q 2)→ 2
√
y +m

3(
√
y +m)2

. (4.74)

19The non-relativistic expansion performed in [45] keeps in addition terms proportional to mass differences

between the incoming χ’s and the virtual χ’s inside the loop that originate from the numerator of the full

1-loop amplitude. In our approach, the latter can correspond to corrections of O(v2) to the long-distance

part, which we do not consider, as well as to the short-distance annihilation, where we have kept all

(mi −mLSP)/mLSP ∼ O(v2) terms in the Wilson coefficients of the annihilation operators. We note that

similar (mi −mLSP)/mLSP terms arise as well from other sources, for instance from the anti-particle pole

contribution in the q0-integration of the full amplitude, which have been neglected in [45] and also in our

approach, since they are a class of O(v2) long-distance corrections.
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Inserting this into (4.70) gives

Ilh|L=0 = −2µhα2

∑

a

c
(a)
lh√

yh +mφa

(4.75)

Ilh|L=1 = −2µhα2

∑

a

c
(a)
lh

2
√
yh +mφa

3(
√
yh +mφa)2

(4.76)

with yh = 2µh(Mh− [2mLSP +E]− iε), from which the effective annihilation matrix (4.73)

follows.

The case of the second-derivative S-wave operator is somewhat more complicated,

since one has to apply the equation-of-motion relation discussed in the previous section to

the factor K[~k ] = ~k 2 in (4.68). This is done by writing

~k 2 = 2µh

(
2mLSP + E −Mh −

[
2mLSP + E −Mh −

~k 2

2µh

])
(4.77)

which leads to the same factor as in (4.65). The result is that the effective annihilation

matrix for the second-derivative operators reads

ĝeff
κ,ll′= ĝκ,ll′+

1

2

[
Ilh,D2

ĝhl′

M2
+I∗l′h,D2

ĝlh
M2

+Ilh|L=0I
∗
l′h′,D2

ĝhh′

M2
+Ilh,D2I∗l′h′|L=0

ĝhh′

M2

]
, (4.78)

where

Ilh,D2 = 2µhα2

(
(2mLSP + E −Mh)(−2µh)

∑

a

c
(a)
lh√

yh +mφa

+
∑

a

mφa c
(a)
lh

)
. (4.79)

The factor M in each term in (4.78) is built from the particle species that enter the two-

particle states specified by the indices of the accompanying g matrix, as defined in (2.9).

For instance ĝlh/M
2 ≡ ĝlh/[(ml1 +ml2 +mh1 +mh2)2/4].

To illustrate the quality of approximation to the heavy channels described in this sec-

tion, we employ the same wino-LSP model as discussed at the end of section 4.2. The spec-

trum of neutralino masses is mχ0 = {2749.4, 2950.25, 3062.98, 3083.54}GeV, the chargino

masses are mχ+ = {2749.61, 3074.26}GeV. We consider the charge-neutral two-particle

state sector with method 2, in which case there are 14 two-particle states of increasing

mass. We study the approach to the full treatment of the 14 × 14 matrix problem by

plotting in figure 7 the dependence of the Sommerfeld factor S ≡ Sχ0
1χ

0
1
[f̂(1S0)] of the

lightest χ0
1χ

0
1 state in the S-wave, spin-0 configuration on the number of states included in

the computation. As n increases from 1 to 14, the dashed curve shows S(x∞ = 200), when

only the n lightest states are included and the remaining ones are ignored. The solid curve

shows the result, when the n lightest states are included in the solution of the Schrödinger

equation, and the remaining 14−n heavier channels are treated approximately by including

them in the last loop before the annihilation. For the purpose of this comparison we keep

the δme4e1δme4e1/M
2
Z,W terms in the potential for all 14 two-particle states, not only for

those n treated exactly, such that the potential is independent of the number of states n

treated exactly.20

20This is explains why S(x∞ = 200) for v = 0.012 shown in the upper plot approaches the value 212.18
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Figure 7. Dependence of the Sommerfeld factor S ≡ Sχ0
1χ

0
1
[f̂(1S0)] in the charge-neutral sector

on the number of states included in the computation. As n increases from 1 to 14, the dashed

curve shows S(x∞ = 200), when only the n lightest states are included and the remaining ones are

ignored. The solid curve shows the result, when the n lightest states are included in the solution

of the Schrödinger equation, and the remaining 14 − n heavier channels are treated approximately

by including them in the last loop before the annihilation. We show the result for two velocity

points, v = 0.012 (upper plot), slightly below the threshold for the nearly degenerate χ+
1 χ
−
1 state,

and v = 0.15 (lower plot).

We show the result for two velocity points, v = 0.012 (upper plot), slightly below the

threshold for the nearly degenerate χ+
1 χ
−
1 state, and v = 0.15 (lower plot). The figure shows

that n = 1 is always a poor approximation. This says that it is necessary to treat the nearly

degenerate χ+
1 χ
−
1 state exactly, as is of course expected, since the bulk of the enhancement

rather than the previously quoted value S(∞) ≈ 199.59, which corresponds to n = 2 on the dashed curve.

If, one the other hand the mass-difference terms in the potential are neglected entirely, we obtain S(x∞ =

200) ≈ 206.06, hence their effect is small. This is expected, since the Sommerfeld enhancement is mainly

generated by the two lowest, nearly degenerate states, for which the mass difference terms are completely

negligible. The rise of S in figure 7 when adding states 11, 13 and 14, which suggests that these states are

comparatively more important than the lower ones (except the first and second), should be taken with a grain

of salt, since it originates from the (δm/MEW)2 terms of the potential, which here are included for all states.
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comes from the mixing of the χ0
1χ

0
1 state with the charged state in models where the LSP

is almost pure wino. Once n > 1, the dependence of the Sommerfeld enhancement on the

remaining states is no longer large, resulting in only another 5% increase. We observe that

the results that include the heavy channels approximately have a smoother approach to the

full result attained for n = 14 than the ones that leave out the heavier channels completely.

This demonstrates that it is a good approximation to include the heavy channels only in last

loop before the annihilation process, but to neglect them in the Schrödinger equation. In

the two cases shown, it is essentially sufficient to treat only two states exactly and all other

states approximately, as the solid curve for n = 2 is already very close to the n = 14 value.

While this shows that the one-loop approximation for heavy states is often a good

approximation to the full, resummed result, it does not prove that either of the two, the

one-loop or full resummed treatment of very heavy channels in the non-relativistic approxi-

mation is a reasonable approximation to the true loop corrections, since the non-relativistic

approximation in the potential region is not expected to be a good approximation to the

exact loop integral for very heavy channels. Since such states have little influence on

the Sommerfeld factor anyway, in practice, we simply include them by the approximate

procedure described in this section.

5 Summary

With this paper we conclude the presentation of the non-relativistic MSSM effective theory

formalism, designed to calculate the enhanced radiative corrections to pair-annihilation of

neutralinos and charginos at small relative velocity. The construction of the NRMSSM

is similar to the non-relativistic EFT for heavy quarkonium annihilation. Characteristic

features of the NRMSSM are the presence of more than one heavy particle species; mas-

sive mediators exchanged among the heavy particles, which generate electroweak Yukawa

(rather than colour Coulomb) potentials; and weak couplings that allow one to compute

the long-distance matrix elements; these contains the so-called Sommerfeld enhancements.

The framework developed here applies to general MSSM scenarios, where the LSP is an

arbitrary admixture of the electroweak gauginos, and accounts for the co-annihilations with

all the neutralino and charginos, which are nearly mass degenerate with the LSP.

Papers I [14] and II [15] focused on the short-distance part of the annihilation process,

providing analytic results for the Wilson coefficients that reproduce the tree-level annihi-

lation rates of neutralinos and charginos including up to P - and next-to-next-to-leading

order S-wave effects, i.e. up corrections of O(v2
rel). The present paper describes all the nec-

essary ingredients to account for the long-range interactions that produce the Sommerfeld

enhancements in the annihilation rates at the leading order in the non-relativistic power-

counting, which treats α2 ∼ vrel ∼ MZ,W /mLSP. The calculated enhancements thus sum

up large O(α2/vrel)
n, n = 1, 2, . . . , quantum corrections to the tree-level annihilation rates

to all orders. The main results of this this work are:

• A general formula for the Sommerfeld-corrected annihilation cross-section for a given

channel χiχj that includes O(v2
rel) corrections in the short-distance part has been
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written down in (2.24). The formula is a generalization of the tree-level approximation

σχiχj vrel = a + b v2
rel. Since the Sommerfeld factors depend on the partial-wave

configuration of the annihilating state, σχiχj vrel has been decomposed in (2.24) as a

sum over partial waves, where the annihilation coefficients for each partial wave were

computed in papers I and II.

• Compact analytic results for the potential interactions among the chargino and neu-

tralino pairs for a general MSSM parameter point, which feed into the multi-channel

Schrödinger equation that has to be solved to obtain the Sommerfeld correction fac-

tors. Transitions among different states are accounted for by the off-diagonal entries

in the potential.

• A novel method to solve the multi-channel Schrödinger equation. The standard

method does provide an accurate result for the Sommerfeld factors when kinemat-

ically closed channels are included due to numerical instabilities caused by the ex-

ponential growth of some of the solutions. The new method solves this problem by

reformulating the Schrödinger equation for the quantity relevant for the Sommerfeld

factor instead of solving for the scattering wave functions. This important improve-

ment yields accurate numerical solutions when many non-degenerate two-particle

channels are included, up to CPU time limitations.

• An approximate treatment of heavy channels, which can includes them in an effective

annihilation matrix for the Schrödinger equation of a lower-dimensional problem. We

demonstrated that including heavy channels only in the last loop before annihilation

provides a good approximation to the full resummed result, and thus reduces the

number of channels to be treated exactly.

While this paper, as well as papers I and II, have been dedicated to the technical details

describing the computation of the Sommerfeld-enhanced annihilation cross sections, the

investigation of the effect on the relic abundance in well-motivated MSSM scenarios with

heavy neutralino LSP is the subject of an accompanying publication [16], which further

illustrates the general use and potential of the framework.
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A Explicit expressions for the MSSM potential

The leading-order non-relativistic potential interactions among MSSM neutralino and

chargino two-particle states are given in this appendix. Table 2 provides the coeffi-

cients of the Yukawa terms e−mXir/r generated by the exchange of boson Xi (Xi =

Z,W±, γ,H0
m, A

0
1, H

±) for each process. The complete potential is obtained as the sum of

the coefficients multiplied by the corresponding potential terms. The contribution from the

pseudoscalar Goldstone boson (A0
2) does not have to be considered, since it cancels against

a piece of the Z-exchange potential, as explained in section 3. A similar cancellation occurs

between the charged pseudo-Goldstone bosons G± = H±2 and part of the W±-exchange

potential. The coefficients have been written in terms of the coupling factors as defined

in (3.1), (3.3), whose explicit expressions are given next.

The (axial-) vector and (pseudo-) scalar couplings, that encode chargino interactions

with the neutral scalar and pseudo-scalar Higgs particles (H0
m, A

0
m), the Z-boson or the

photon read

s
H0
m

ij (p
H0
m

ij ) = − 1

2
√

2

[
Z1m
R

(
Z̃2j∗
− Z̃1i∗

+ ± Z̃2i
− Z̃

1j
+

)
+ Z2m

R

(
Z̃1j∗
− Z̃2i∗

+ ± Z̃1i
− Z̃

2j
+

) ]
,

s
A0
m

ij (p
A0
m

ij ) = − i

2
√

2

[
Z1m
H

(
Z̃2j∗
− Z̃1i∗

+ ∓ Z̃2i
− Z̃

1j
+

)
+ Z2m

H

(
Z̃1j∗
− Z̃2i∗

+ ∓ Z̃1i
− Z̃

2j
+

) ]
,

vZij = − 1

4cW

(
Z̃1i
− Z̃

1j∗
− + Z̃1i∗

+ Z̃1j
+ + 2(c2

W − s2
W )δij

)
,

aZij =
1

4cW

(
Z̃1i∗

+ Z̃1j
+ − Z̃1i

− Z̃
1j∗
−
)
,

vγij = −sW δij ,
aγij = 0 , (A.1)

where H0
1 ≡ H0, H0

2 ≡ h0 and A0
1 ≡ A0, A0

2 ≡ G0. We have used the abbreviations

sW = sin θW and cW = cos θW , with θW denoting the Weinberg angle. The coupling factors

for the three-point interaction of an incoming neutralino χ0
j , an outgoing chargino χ+

i and

either an incoming charged Higgs particle G+ or H+ or an incoming W+-boson are given by

sH
+
m

ij (pH
+
m

ij ) = −1

2

[
Z2m
H

(
Z̃4j∗
N Z̃1i∗

+ +
1√
2
Z̃2i∗

+ (Z̃2j∗
N + tan θW Z̃

1j∗
N )

)

± Z1m
H

(
Z̃3j
N Z̃

1i
− −

1√
2
Z̃2i
− (Z̃2j

N + tan θW Z̃
1j
N )

) ]
,

vWij =
1

2

(
Z̃2j∗
N Z̃1i

− + Z̃2j
N Z̃

1i∗
+ +

1√
2
Z̃3j∗
N Z̃2i

− −
1√
2
Z̃4j
N Z̃

2i∗
+

)
,

aWij =
1

2

(
Z̃2j∗
N Z̃1i

− − Z̃2j
N Z̃

1i∗
+ +

1√
2
Z̃3j∗
N Z̃2i

− +
1√
2
Z̃4j
N Z̃

2i∗
+

)
, (A.2)

where H+
1 ≡ H+ and H+

2 ≡ G+, and the mixing matrices are defined as in ref. [48].

Finally, three-point interactions of an incoming χ0
j and an outgoing χ0

i with a (pseudo-)

– 48 –



J
H
E
P
0
5
(
2
0
1
5
)
1
1
5

α2 e
−MZ r

r
α2 e

−MW r

r
α2
r

α2 e
−mφ r

r
α2 e

−M
H+ r

r

χ0
e1χ

0
e2 → χ0

e4χ
0
e3

λZv
(0),Z
e4e1 v

(0),Z
e3e2

+λS a
(0),Z
e4e1 a

(0),Z
e3e2

0 0 −s(0),φ
e4e1 s

(0),φ
e3e2 0

χ+
e1χ
−
e2 → χ+

e4χ
−
e3

−λZvZe4e1vZe3e2
+λS a

Z
e4e1a

Z
e3e2

0 −vγe4e1vγe2e3 −sφe4e1 sφe2e3 0

χ0
e1χ

0
e2 → χ+

e4χ
−
e3 0

−λW vWe4e1vW∗e3e2

+λS a
W
e4e1a

W ∗
e3e2

0 0 −sH+

e4e1 s
H+∗
e3e2

χ0
e1χ

0
e2 → χ−e4χ

+
e3 0

−λW vW∗e4e1v
W
e3e2

+λS a
W∗
e4e1a

W
e3e2

0 0 −sH+∗
e4e1 s

H+

e3e2

χ0
e1χ

+
e2 → χ0

e4χ
+
e3

λZv
(0),Z
e4e1 v

Z
e3e2

+λS a
(0),Z
e4e1 a

Z
e3e2

0 0 −s(0),φ
e4e1 s

φ
e3e2 0

χ0
e1χ
−
e2 → χ0

e4χ
−
e3

−λZv(0),Z
e4e1 v

Z
e2e3

+λS a
(0),Z
e4e1 a

Z
e2e3

0 0 −s(0),φ
e4e1 s

φ
e2e3 0

χ0
e1χ

+
e2 → χ+

e4χ
0
e3 0

λW vWe4e1v
W∗
e2e3

+λS a
W
e4e1a

W∗
e2e3

0 0 −sH+

e4e1 s
H+∗
e2e3

χ0
e1χ
−
e2 → χ−e4χ

0
e3 0

λW vW∗e4e1v
W
e2e3

+λS a
W∗
e4e1a

W
e2e3

0 0 −sH+∗
e4e1 s

H+

e2e3

χ+
e1χ

+
e2 → χ+

e4χ
+
e3

λZvZe4e1v
Z
e3e2

+λS a
Z
e4e1a

Z
e3e2

0 vγe4e1v
γ
e3e2 −sφe4e1 sφe3e2 0

χ−e1χ
−
e2 → χ−e4χ

−
e3

λZvZe1e4v
Z
e2e3

+λS a
Z
e1e4a

Z
e2e3

0 vγe1e4v
γ
e3e2 −sφe1e4 sφe2e3 0

Table 2. Potentials describing the non-relativistic interactions among chargino and neutralino pairs

in the MSSM. The potential from neutral scalar exchange φ has to be summed over the “physical”

neutral Higgs bosons, φ = H0, h0, A0. The expressions obtained from the table correspond to the

potential entries in method-1. The potentials for the channels not shown are obtained trivially by

interchanging indices (like χ−χ+ → χ−χ+ or χ+χ0 → χ+χ0) or are vanishing (like χ−χ+ → χ+χ−).

We have introduced λS ≡ (3− 4S) and λZ/W = 1 + δme4e1δme3e2/M
2
Z/W .
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scalar Higgs particle or the Z-boson involve the following (axial-) vector or (pseudo-)

scalar coupling factors:

s
(0),H0

m
ij (p

(0),H0
m

ij ) =
1

4

[ (
Z2m
R Z̃4i∗

N − Z1m
R Z̃3i∗

N

)(
Z̃2j∗
N − tan θW Z̃1j∗

N

)
+ (i↔ j)

]
± c.c. ,

s
(0),A0

m
ij (p

(0),A0
m

ij ) =
i

4

[ (
Z2m
H Z̃4i∗

N − Z1m
H Z̃3i∗

N

)(
Z̃2j∗
N − tan θW Z̃1j∗

N

)
+ (i↔ j)

]
± c.c. ,

v
(0),Z
ij (a

(0),Z
ij ) =

1

4cW

(
Z̃3i
N Z̃

3j∗
N − Z̃4i

N Z̃
4j∗
N ∓ (i↔ j)

)
. (A.3)

The (axial-) vector and (pseudo-) scalar coupling factors in (A.1) and (A.3), which are all

related to interactions with neutral SM and Higgs particles, satisfy

v∗ij = vji , a∗ij = aji ,

s∗ij = sji , p∗ij = −pji . (A.4)

as a consequence of the hermiticity of the underlying SUSY Lagrangian.

B Equivalence between method-1 and method-2

We wish to show in this appendix by means of an example, that using any of the two basis

of two-particle states introduced in section 3, named as method-1 and method-2, gives the

same outcome for the Sommerfeld enhancement factors.

Let us consider the simple case of a system which in method-1 consist of three states

labelled with a = 11, 12, 21, corresponding to χ1χ1, χ1χ2 and χ2χ1, respectively. We can

think of χ1 and χ2 as two different neutralinos (or two different charginos), and we note

that only state 11 is composed of identical particles. Conversely, the basis of method-2 is

built from only two states, (χχ)11 and (χχ)12.

The Schrödinger equation in method-1 is a 3 × 3 matrix where the generic potential

matrix V
(1)
ab (a, b = 1, 2, 3) reads

V (1)(r) =




V11 V12 V12

V21 V22 V23

V21 V23 V22



, (B.1)

and we have used that the potential for scattering of state 11 to either 12 or 21 is the same,

since the exchange of state 12 by 21, which corresponds to crossing the lines of χ1 and χ2

in the diagram, gives the same amplitude due to the identical particle nature of the state

11. In addition we have taken into account that V32 = V23 (as well as V33 = V22), since the

amplitudes that produce these potential terms only differ by a relabeling of the internal

vertices of the associated diagram. Note that hermiticity requires as well that Vab = V ∗ba.
The Schrödinger equation (4.23) in method-1 when applied to a generic multi-component

wave function Ψ = (u1, u2, u3) reads

Du1 + V11 u1 + V12 (u2 + u3) = 0 ,
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Du2 + V21 u1 + V22 u2 + V23 u3 = 0 ,

D u3 + V21 u1 + V23 u2 + V22 u3 = 0 . (B.2)

D stands for the differential operator multiplying δab in (4.23), whose specific form is

irrelevant for the current discussion, and we also omit writing explicitly the dependence

of the quantities ua and Vab on the independent variable r. We have to seek for three

independent solutions of the system (B.2). Let us first choose two solutions of the form

Ψi = (
√

2u1i, u2i, u2i), with i = 1, 2. Then the set of equations (B.2) applied to Ψ1,2 reduce

to two independent ones (since eqs. (B.2) are symmetric in u2 and u3), and acquire the form

Du1i + V11 u1i +
√

2V12 u2i = 0 ,

D u2i +
√

2V21 u1i + (V22 + V23)u2i = 0 , (B.3)

for i = 1, 2. A third solution to (B.2) is chosen as Ψ3 = [uL]a3 = (0, u23,−u23), in which

case only one equation remains:

Du23 + (V22 − V23)u23 = 0 . (B.4)

In order to compute the Sommerfeld enhancement factors we need the matrix T and the

annihilation matrix, see (4.36). The entries of the annihilation matrix in method-1 read

[f̂(2S+1LJ)](1) =




1+(−1)S+L

2 f̂11
1+(−1)S+L

2 f̂12
1+(−1)S+L

2 f̂12

1+(−1)S+L

2 f̂21 f̂22 (−1)S+L f̂22

1+(−1)S+L

2 f̂21 (−1)S+L f̂22 f̂22



, (B.5)

where we have used the symmetry relations under the exchange of the particle labels

e1 ↔ e2 derived in [14, 15], namely f̂{e2e1}{e4e3}
(

2S+1LJ
)

= (−1)S+L f̂{e1e2}{e4e3}
(

2S+1LJ
)

and likewise for the exchange e3 ↔ e4, to write the annihilation matrix entries involving

state 21 in terms of those of 12. These same relations also tell us that the annihilation

rates involving channel 11 vanish for odd L + S, since such an state cannot be formed

out of two identical spin-1/2 particles. Note also that f̂21 = f̂∗12. On the other hand, the

matrix T is determined following (4.34) from the matrices [u
(L+1)
L (0)]ab and Mab (4.26),

which are both built from the independent solutions of the Schrödinger equations. Given

the solutions Ψi, i = 1, 2, 3, suggested above these matrices must have the structure

[u
(L+1)
L (0)] =




√
2U11

√
2U12 0

U21 U22 U23

U21 U22 −U23



, M =




√
2M11

√
2M12 0

M21 M22 M23

M21 M22 −M23



. (B.6)

With the matrix T built from (B.6), we can readily compute the Sommerfeld factors

for method-1 using (4.36). For the case L + S = even, and up to the global factor
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[(2L+ 1)!!/(L+ 1)! kL+1
a ]2, we obtain

S even
11 =

∣∣∣∣
M22 U11 −M21 U12

M12M21 −M11M22

∣∣∣∣
2

+ 2

∣∣∣∣
M22 U21 −M21 U22

M12M21 −M11M22

∣∣∣∣
2 f̂22

f̂11

+ 2
√

2 Re

[
(M22 U21 −M21 U22) (M22 U11 −M21 U12)∗

|M12M21 −M11M22|2
f̂12

f̂11

]
,

S even
12 =

∣∣∣∣
M12 U21 −M11 U22

M12M21 −M11M22

∣∣∣∣
2

+
1

2

∣∣∣∣
M12 U11 −M11 U12

M12M21 −M11M22

∣∣∣∣
2 f̂11

f̂22

+
√

2 Re

[
(M12 U21 −M11 U22) (M12 U11 −M11 U12)∗

|M12M21 −M11M22|2
f̂12

f̂22

]
, (B.7)

whereas for L+ S = odd

S odd
11 = 0 ,

S odd
12 =

∣∣∣∣
U23

M23

∣∣∣∣
2

. (B.8)

The Sommerfeld factors for the state 21 are found to be equal to those of state 12; this

should be the case since both states are physically equivalent. We have used that f̂21 = f̂∗12

to write (B.7) in a more compact form.

Let us now turn to method-2. As mentioned above in this case the basis is given by

the two states a = 11, 12. Applying the rules described in section 2 (see (3.17) and the

discussion following that equation), we can build the potential matrix entries corresponding

to method-2 from those of method-1. Distinguishing even and odd S + L, we find

V (2), even(r) =




V11

√
2V12

√
2V21 V22 + V23


 , V (2), odd(r) =




0 0

0 V22 − V23


 . (B.9)

In particular, note that for odd L + S the identical-particle state 11 does not exist, and

the entries of the potential matrix involving that state have to be set to zero, to avoid that

a potential transition 11 → 12 could give a non-vanishing annihilation amplitude for an

incoming state 11, as argued in section 2. In method-1 this is taken into account auto-

matically and one gets the result S odd
11 = 0, as found in (B.8), at the expense of using two

different states (12 and 21) to describe the physical state built from χ1 and χ2. Coming back

to method-2, we then see that in the odd L+S sector we deal with just a single annihilating

state. We can therefore switch to a one-dimensional problem with V (2), odd(r) = V22− V23.

The Schrödinger equations which derive from the potential V (2), even for the wave func-

tion Ψ̃ = (ũ1, ũ2) of method-2 read

D ũ1 + V11 ũ1 +
√

2V12 ũ2 = 0 ,

D ũ2 +
√

2V21 ũ1 + (V22 + V23) ũ2 = 0 . (B.10)
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Eqs. (B.10) agree with (B.3) obtained previously for the components of the solutions Ψ1,2

of method-1. Therefore we can choose Ψ̃1 = (u11, u21) and Ψ̃2 = (u12, u22) as linear

independent solutions for method-2 in the case L + S = even. The matrices [u
(L+1)
L (0)]

and M that derive from solutions Ψ̃1,2 follow immediately:

[u
(L+1)
L (0)]even =



U11 U12

U21 U22


 , M even =



M11 M12

M21 M22


 . (B.11)

For the case of odd L+ S, there is just one equation,

D ũ2 + (V22 − V23) ũ2 = 0 , (B.12)

which is the same differential equation as (B.4), satisfied by the component u23 of Ψ3.

Hence, we can choose Ψ̃ = u23 as solution for odd L+ S. The (one-dimensional) matrices

[u
(L+1)
L (0)] and M for odd L+ S are simply given by

[u
(L+1)
L (0)]odd = U23 , Modd = M23 . (B.13)

Finally, we require the annihilation matrices in method-2 to compute the Sommerfeld

factors. These are obtained from those of method-1 by adding a factor of 1/
√

2 for each

identical-particle state involved in the entry, as explained in section 2:

f̂ (2), even =




1
2 f̂11

1√
2
f̂12

1√
2
f̂21 f̂22


 , f̂ (2), odd = f̂22 . (B.14)

From the expressions for [u
(L+1)
L (0)] and M obtained for the even and the odd cases

in (B.11) and (B.13), respectively, it is immediate to compute the corresponding T

matrices. The Sommerfeld factors for method-2 then follow from (4.36) by inserting

the annihilation matrices (B.14). This straightforward computation yields results for

the Sommerfeld factor of states 11 and 12 for even and odd L + S that match the

formulae (B.7) and (B.8) derived above using method-1.
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