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1 Introduction

Precision measurements of the CMB radiation increasingly favor the paradigm that the

very early universe can be described by a phase of single-field slow-roll inflation [1, 2].

In particular, recent observations of polarization fluctuations in the CMB indicate the

possibility of substantial tensor modes among the primordial perturbations [3, 4]. This

necessitates large-field models of inflation, i.e., the inflaton field must traverse a trans-

Planckian field range during the last 60 e-folds of inflation [5]. Since large-field inflation is

potentially susceptible to an infinite series of Planck-suppressed operators, this requires an

understanding of possible quantum gravity effects. Thus, there has been renewed interest

in obtaining inflation models from string theory.

In this context natural inflation, first proposed in [6], is among the most promising

candidates. Here the flatness of the inflaton potential is guaranteed by an axionic shift sym-

metry which is exact in perturbation theory, but potentially broken by non-perturbative

effects [7, 8]. Nevertheless, discrete symmetries may survive which protect the potential

even at trans-Planckian field values. However, while axions are abundant in string theory

compactifications we still face a problem: trans-Planckian inflaton values require an ax-

ion decay constant which is larger than the Planck scale. However, in string theory one

generically expects the decay constant to be smaller than the string scale [9, 10].

Different paths have been proposed to address this problem. In N-flation [11, 12],

for example, many axions with sub-Planckian decay constants contribute to the trans-

Planckian field range of the inflaton, which is a linear combination of axions. However,
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this typically requires a very large number of axions which might be challenging to real-

ize explicitly while maintaining control over the models. Another option was considered

in [13], where the authors obtain trans-Planckian axions by choosing large gauge groups

and by stabilizing the Kähler moduli at values much below the Planck scale. In that case,

in principle one has to worry about perturbative control of the supergravity approxima-

tion, i.e., stringy corrections may be important. Furthermore, there is axion monodromy

inflation [14, 15] which uses a single sub-Planckian axion with a multi-valued potential to

create an effectively trans-Planckian field range during inflation.

Another way of obtaining a large effective axion decay constant from a few number of

axions is by alignment as proposed in [16] and further developed in [17, 18], or by kinetic

alignment [19].1 In the minimal setup of [16] there are two axions which appear as a

linear combination in multiple non-perturbative contributions to the superpotential. If the

axion decay constants are almost aligned one obtains an effective axion with a large decay

constant, although the individual decay constants were small. In this paper we focus on

the KNP alignment mechanism and its realization in E8 × E8 heterotic string theory [22]

on orbifolds [23, 24]. Progress in this direction has recently been made in [25], where the

authors embedded aligned natural inflation in a supergravity model motivated by heterotic

string compactifications on smooth Calabi-Yau manifolds with vector bundles. However,

the authors did not specify the mechanism of moduli stabilization or an underlying reason

for the alignment of the non-perturbative terms. The authors of [26] proposed a related

model of hierarchical axion inflation and how it could be embedded in type IIB string

theory. For other attempts to embed aligned natural inflation in type IIB string theory

see [27–32], and [33] for a related analysis.

We study whether alignment of heterotic axions may be achieved by considering world-

sheet instantons or a combination of the latter with gaugino condensates. Since the contri-

butions arise from completely different mechanisms a natural question arises: why should

the two effects be aligned? We attempt to answer this question, focusing our discussion

on heterotic orbifolds where the moduli dependence of both effects, the condensing gauge

group and the world-sheet instantons, can be computed using methods of conformal field

theory. We argue that an alignment of the two terms is not as unnatural as one may

think, essentially because the moduli dependence of both effects is determined by modular

weights and Dedekind η functions.

Furthermore, we address the issue of consistent moduli stabilization. Whenever infla-

tion is discussed in string theory one desires a hierarchy of the form

Ms, MKK > Mmoduli > H , (1.1)

where Ms denotes the string scale, MKK the Kaluza-Klein scale, and H is the Hubble scale

during inflation. This hierarchy is essential to ensure that inflation can be described by

an effective four-dimensional supergravity theory where the inflaton is the only dynamical

degree of freedom. In addition, in case of metastable vacua the barriers protecting the

minima of the moduli must be larger than H2. This is to avoid moduli destabilization

1See [20, 21] for related alignment mechanisms.
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during inflation as pointed out in [34, 35]. Using the terms needed for successful inflation

and other contributions to the superpotential we provide such a hierarchy explicitly for

the complex dilaton field and the two Kähler moduli whose axions combine to form the

effective inflaton. In a similar way this has recently been discussed for two Kähler moduli

in aligned inflation in [18].

While finalizing this project, concerns about large-field inflation models, among them

aligned axion inflation, were raised by the authors of [36–38]. They argue that most mod-

els involving trans-Planckian axions are generically challenged by potential contributions

from gravitational instantons. In [37] the authors outline examples involving Euclidean

D-brane instantons in type IIB string theory. To fully assess the implications of these anal-

yses it would be interesting to study the potentially dangerous gravitational instantons

on heterotic orbifolds in order to explicitly check whether these instantons do arise or are

forbidden by the orbifold symmetries. This is, however, left for future investigation.

This paper is organized as follows. In section 2 we briefly review important properties

of orbifold spaces for reference in later sections. Afterwards, in section 3 we review the

axion alignment mechanism and explain how to compute the various contributions to the

superpotential. We discuss how this can be combined with moduli stabilization without

spoiling the alignment or the dynamics of inflation. In section 4 we present two toy exam-

ples of our mechanism based on the Z6−II orbifold of the mini-landscape models [39, 40].

Section 5 contains our conclusions and an outlook.

2 Properties of orbifolds

In this section we briefly review those properties of heterotic orbifolds relevant for our

discussion. A good and detailed review can, for example, be found in [41]. References [42,

43] discuss the relevance of these ingredients for moduli stabilization.

In the construction of Abelian heterotic toroidal orbifolds one starts with a six-torus T 6

parameterized by three complex coordinates z1,2,3 and mods out a discrete ZN symmetry2 θ,

θ : (z1, z2, z3) 7→ (e2πin1/Nz1, e
2πin2/Nz2, e

2πin3/Nz3) = (e2πiv1z1, e
2πiv2z2, e

2πiv3z3) , (2.1)

where we have defined the twist vector v = (v1, v2, v3). Requiring that the resulting

singular space is Calabi-Yau imposes v1+v2+v3 ∈ Z. The Z6−II orbifold, for example, has

v = (1/3,−1/2, 1/6), i.e., it acts with an order-three rotation on the first, with an order-

two rotation on the second, and with an order-six rotation on the third torus. Hence, each

orbifold has N twisted sectors θk, k = 0, . . . , N − 1. To ensure modular invariance of the

one-loop string partition functions, these twists have to be accompanied by a shift in the

E8 × E8 gauge degrees of freedom. This shift is parameterized by the shift-vector V . In

addition, depending on the geometry one can allow for up to six independent Wilson lines

Wi on the torus.

The massless string spectrum is given in terms of the twist v, the shift V , and the

Wilson lines Wi. In addition to the usual untwisted strings in the θ0 sector, which close

2A similar discussion applies to the case of ZM × ZN orbifolds.
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already on the torus, it contains new string states in twisted sectors θk which are called

twisted strings. These only close under the orbifold action and are thus forced to localize

at orbifold fixed points. Depending on the orbifold action and the toroidal lattice, the

amount of untwisted Kähler moduli Ti, i = 1, . . . , h1,1 and complex structure moduli Uj ,

j = 1, . . . , h2,1 may vary. In the Z6−II case, for example, one has h1,1 = 3 and h2,1 = 1.

The Ti parameterize the size of the three T 2 sub-tori while U parameterizes the shape of

the T 2 on which the orbifold has a Z2 action.

2.1 Modular transformations

The Kähler and complex structure moduli have an SL(2,Z) symmetry under which the Ti

transform as

Ti →
aiTi − i bi
i ciTi + di

, (2.2)

and likewise for the moduli Uj . Here, ai, bi, ci, di ∈ Z and aidi − bici = 1.

At zeroth order the Kähler potential of the moduli reads

Kmoduli = −
h1,1∑

i=1

ln(Ti + T i)−
h2,1∑

j=1

ln(Uj + U j) . (2.3)

It is readily checked that under the transformation (2.2) the Kähler potential transforms as

Kmoduli → Kmoduli +
h1,1∑

i=1

ln |i ciT
i + di|

2 +
h2,1∑

j=1

ln |i cjU
j + dj |

2 . (2.4)

Hence the shift symmetry of the moduli in the Kähler potential is protected by the modular

symmetry. Since G = Kmoduli + Kmatter + ln |W |2, which appears in the supergravity

Lagrangian, has to be invariant we find that the superpotential has to transform with

modular weight −1,

W → W
h1,1∏

i=1

(i ciT
i + di)

−1
h2,1∏

j=1

(i cjU
j + dj)

−1 . (2.5)

In addition to the Kähler and the superpotential, also the chiral fields have non-trivial

modular transformations,

Φα → Φα

h1,1∏

i=1

(i ciTi + di)
mi

α

h2,1∏

j=1

(i cjUj + dj)
ℓjα . (2.6)

The modular weights mi
α and ℓjα depend on the orbifold twisted sector k and oscillator

numbers. Defining wi(k) = kvi mod 1, they are given by [44–46]

mi =

{
0 , if wi = 0 ,

wi − 1− Ñ i + Ñ i ∗ , if wi 6= 0 .

ℓj =

{
0 , if wj = 0 ,

wi − 1 + Ñ j − Ñ j ∗ , if wj 6= 0 .

(2.7)
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Here, the Ñ i and Ñ i ∗ are integer oscillation numbers. In the pth complex plane of the

untwisted sector we have mi
p = −δip, ℓ

j
p = −δjp. From this we find for the Kähler potential

for the matter fields at lowest order

Kmatter =
∑

α

h1,1∏

i=1

(
Ti + Ti

)mi
α

h2,1∏

j=1

(
Uj + U j

)ℓjα |Φα|
2 . (2.8)

Since the matter fields transform non-trivially and the superpotential has to have modular

weight −1, the coupling “constants” yα1...αL
of the L-point correlator

W ⊃ yα1...αL
Φα1

. . .ΦαL
(2.9)

have to be appropriate modular functions such that the overall modular weight is −1.

Specifically,

yα1...αL
Φα1

. . .ΦαL
∝

h1,1∏

i=1

h2,1∏

j=1

η(Ti)
2ri η(Uj)

2sj Φα1
. . .ΦαL

, (2.10)

where η denotes the Dedekind η function3 defined by

η(T ) = e−
πT
12

∞∏

ρ=1

(
1− e−2πρT

)
, (2.11)

and the constant parameters ri and sj are determined by the modular weights,

ri = −1−
∑

α

mi
α , sj = −1−

∑

α

ℓjα . (2.12)

The Dedekind η function transforms under modular transformations up to a phase,

η(T ) → (i cT + d)1/2 η(T ) . (2.13)

For T > 1 in Planck units we use the approximation

η(T ) = e−
πT
12 . (2.14)

As a result the non-perturbative superpotential terms are of the schematic form

WWS
NP = A(Φα) e

−
2π
12
(
∑

i riTi+
∑

j sjUj) . (2.15)

Note that, if the fields Φα are charged under an anomalous U(1) symmetry, S may appear

in the exponent as well. In particular, this is the case when the model-independent axion

contained in S cancels the anomalies, as explained in more detail below.

3In general, other modular functions can appear as well [47–50].
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2.2 Anomalous U(1) and FI terms

In orbifold models with shift embeddings, the primordial E8×E8 gauge symmetry is broken

rank-preservingly into Abelian and non-Abelian gauge factors. Generically one U(1) is

anomalous, henceforth denoted by U(1)A. This anomaly is canceled via a Green-Schwarz

(GS) mechanism [51]. More precisely, the dilaton S transforms under such an anomalous

gauge variation as S → S − iΛδGS, where Λ is the superfield gauge parameter and δGS is a

real constant. As a consequence the combination S + S − δGSVA is gauge-invariant, where

VA is the vector multiplet associated with U(1)A.

The non-trivial U(1)A transformation of S has two important consequences. First,

we observe that GS anomaly cancellation results in a field-dependent Fayet-Iliopoulos (FI)

term4 of the form

ξ =
δGS

(S + S)
. (2.16)

In order to preserve D-flatness, this means that some chiral orbifold fields Φα with ap-

propriate charge must get a vacuum expectation value (VEV) to cancel ξ. The VEV of

these fields can, at the same time, break unwanted extra gauge groups and lift vector-like

exotics and other extra hidden fields in a Higgs-like mechanism. Generically, the primor-

dial E8 × E8 is broken to many U(1) factors under which the orbifold fields are charged

simultaneously. Hence, D-flatness of the other U(1) symmetries requires that many fields

obtain a non-vanishing VEV. Second, superpotential terms involving the dilaton in the

exponent have to be such that the whole correlator is gauge-invariant.

Moreover, S has a non-trivial modular transformation to ensure anomaly cancellation

in the underlying sigma-model [54, 55]:

S → S +
1

8π2

h1,1∑

i=1

δi ln(iciTi + di) +
h2,1∑

j=1

δj ln(icjUj + dj) , (2.17)

where δi and δj are real constants of order 1 that can be computed from the sigma-model

anomaly cancellation condition. As a consequence, the modular invariant Kähler potential

of the dilaton reads

Kdilaton = − ln(Y ) = − ln


S + S +

1

8π2



h1,1∑

i=1

δi ln(Ti + T i) +

h2,1∑

j=1

δj ln(Uj + U j)




 .

(2.18)

Due to the loop suppression factor 8π2, these corrections are small as long as the Ti are

not stabilized at substantially larger field values than S. This is not the case in the models

we study.

4Notice that this commonly used terminology is slightly misleading. A field-dependent FI term is usually

the D-term of a complex field with a logarithmic Kähler potential, which, if integrated out at a high scale,

may mimic a constant FI term as the one introduced in [52]. We refer to the original discussion in [53] for

more details.
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2.3 Gauge kinetic function and gaugino condensation

The one-loop gauge kinetic function of a gauge group Ga at Kač–Moody level 1 is given

by [44, 54, 56]

fa(S, T, U) = S +
1

8π2

h1,1∑

i=1

bia(m)
gi
N

ln(η(T i))2 +
1

8π2

h2,1∑

j=1

bja(ℓ)
gj
N

ln(η(U j))2 , (2.19)

where bia are the β-function coefficients in the ith torus of the gauge group Ga. They are

non-vanishing in the N = 2 twisted sub-sectors of the theory and depend on the Dynkin

indices and on the modular weights of the states charged under Ga. Furthermore, the gi
are the order of the little group of the orbifold action in the ith torus, i.e., the order of the

group that leaves the ith torus fixed. Depending on the lattice and the presence of Wilson

lines, the modular symmetry group SL(2,Z) might be reduced such that only a subgroup

Γ0(N/gi) or Γ0(N/gi) is realized [57–59]. In the example of the factorized Z6−II orbifold

the N = 2 twisted sectors are θk with k = 2, 3, 4, N = 6, g1 = 2, g2 = 3 and the modular

group is not reduced.

The gauginos of Ga may condense at a scale ΛGC
a which depends on the low-energy

effective N = 1 β-function, given by

βa =
11

3
C2(Ada)−

2

3

(
C2(Ada) +

∑

ψRa

C2(Ra)

)
−

1

3

∑

φRa

C2(Ra) , (2.20)

where C2(Ra) is the quadratic Casimir operator of the irreducible representation Ra. Λ
GC
a

can then be written in terms of the gauge kinetic function as [60, 61],

ΛGC
a = e

−
8π2

βa
fa(S,T,U)

. (2.21)

As discussed above, all extra fields become massive. If their mass is larger than the con-

densation scale they can be integrated out. The β-function (2.20) is then simply 3č, where

č denotes the dual Coxeter number. The effective superpotential term generated by gaug-

ino condensation is ∝ (ΛGC
a )3. In addition, it depends on the fields charged under the

condensing gauge group and on the fields that get a VEV and give an effective mass term

to those fields. The final expression involves, in addition to the N = 2 beta function of the

condensing gauge group, the modular weights of the fields that enter in the condensate.

To obtain the final expression, we insert (2.19) into (2.21), and include a field-dependent

pre-factor from integrating out the heavy fields [62]. Using the transformation behavior of

the dilaton (2.17) and requiring that the result has again modular weight −1, we find

WGC
NP = B(Φρ) e

−
8π2

č
S+

∑
i(−2+ 2δi

č
) ln η(Ti)+

∑
j(−2+ 2δj

č
) ln η(Uj) . (2.22)

Hence, we observe that both the non-perturbative world-sheet instanton contribu-

tions (2.15) and the non-perturbative gaugino condensation terms (2.22) depend on the
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modular weights and on the Dedekind η function. The combined superpotential, us-

ing (2.19) and (2.14), has the schematic form

W ⊃
∏

α

Φα e
−

∑
α

qα
δGS

Y−
2π
12
(
∑

i riTi+
∑

j sjUj) +B(Φρ)e
−

8π2

č
S+ 2π

12
(
∑

i biTi+
∑

j bjUj) , (2.23)

where qα are the U(1)A charges of the fields Φα. Note that the modular weights m and

ℓ are negative and such that ri, sj ≥ 0 for most couplings. The constants bi and bj also

depend on the modular weights and in addition on the N = 2 beta function coefficients,

bi = 1−
∑

i

δi

č
, bj = 1−

∑

j

δj

č
. (2.24)

As mentioned before, the δi and δj are typically of order 1 so that bi, bj ≈ 1, especially for

large gauge groups. Note that in many couplings at least some of these constants are zero

and hence the corresponding modulus does not appear in those superpotential terms.

3 Inflation in heterotic orbifolds

Let us now discuss how inflation can be realized in heterotic orbifold compactifications.

We briefly review the alignment mechanism proposed in [16, 17] and subsequently put the

ingredients of section 2 together to build an aligned axion inflation model with all moduli

stabilized at a high scale.

3.1 The alignment mechanism

Remember that alignment means, on the level of the effective potential for two axions τ1,2,

V = κ1 (1− cos(β1τ1 + β2τ2)) + κ2 (1− cos(n1τ1 + n2τ2)) , (3.1)

that there is a flat direction if

β1
n1

=
β2
n2

. (3.2)

Notice that the coefficients βi and ni are the inverse of the axion decay constants. To slightly

lift this flat direction one can introduce a small misalignment parameterized by [17]

k :=
1

n2
−

β1
β2

1

n1
, (3.3)

which vanishes for perfect alignment. After rotating to a convenient field basis,

(τ1, τ2) 7→ (ϕ1, ϕ2) and canonically normalizing the kinetic terms, we obtain for the almost

flat direction ϕ1 an effective decay constant feff which reads [17, 25]

feff =
β2
1

√
(β−2

1 + β−2
2 )(β−2

1 + n−2
1 )

kn1β2
. (3.4)

It is arbitrarily large for arbitrarily small k and hence closely aligned axions τi. A sizeable

tensor-to-scalar ratio r ≈ 0.05 requires a misalignment of k ≈ 0.2.
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3.2 Alignment and moduli stabilization on orbifolds

A complete treatment of stabilizing all moduli while keeping three MSSM generations of

particles and one pair of Higgs fields with realistic Yukawa couplings, decoupling extra

vector-like exotics, and breaking additional U(1) symmetries generically present in these

models is beyond the scope of this paper. Moduli stabilization in similar setups without

considering inflation has been investigated in [42, 43]. However, the mechanisms used

there typically yield masses below the currently favored large Hubble scale and are thus

incompatible with single-field inflation.

From the discussion in section 2 it should be clear that the effective potential (3.1)

is sourced by a superpotential with two non-perturbative terms, both of which contain

two Kähler moduli T1 and T2. In particular, we mostly focus on the two Kähler moduli

which correspond to the tori that have an N = 2 sub-sector.5 In fact, all orbifolds have at

least three untwisted Kähler moduli and up to three untwisted complex structure moduli.

Concerning their stabilization, note that those Kähler moduli which correspond to tori that

have fixed points in all twisted sectors θk do not enter in the gauge kinetic function and

thus can only be stabilized via world-sheet instantons. Whether they appear in a world-

sheet instanton coupling depends on the modular weights as discussed above. For the sake

of simplicity we assume that the moduli not involved in the stabilization or alignment

mechanism, as well as other potentially present fields, have been stabilized at a scale above

H and consequently decouple from inflation.

The real parts of the Ti govern the size of the compactification manifold. The imagi-

nary parts, albeit not involved in the anomaly cancellation except for the small one-loop

contribution, enjoy an axionic shift symmetry inherited from the SL(2,Z) symmetry. They

yield a cosine-potential as in (3.1) and can consequently be used as inflaton candidates.

The real part of the complex dilaton field determines the gauge coupling strength while

its imaginary part is the so-called universal axion which is responsible for Green-Schwarz

anomaly cancellation, cf. section 2.2. For a suitable choice of the superpotential, comprised

of the terms generically available in orbifold compactifications, the effective potential after

integrating out all moduli and the universal axion takes the form (3.1). In the following

we discuss which parts of the superpotential may achieve this while ensuring consistent

stabilization of the aforementioned relevant moduli.

Inflation with world-sheet instantons only. A first option is to employ only world-

sheet instanton contributions. For two aligned Kähler moduli this has recently been dis-

cussed in [18], based on the mechanism proposed in [63]. We extend this to include dilaton

stabilization by considering the part of the orbifold superpotential which has the form

W = χ1

[
A1(φα, χβ)e

−n1T1−n2T2 − P1(χγ)
]
+ χ2

[
A2(φµ, χν)e

−n3T1−n4T2 − P2(χρ)
]

+ χ3

[
A3(χσ)e

−
q

δGS
S
− P3(χλ)

]
,

(3.5)

where the χi and φi are untwisted and twisted chiral superfields, respectively, and ni =
π
6 ri

in the notation of (2.23). Note that we have neglected the loop contributions to S. To

5In the prime orbifolds Z3 and Z7 no torus has an N = 2 sub-sector while in the ZM × ZN orbifolds all

three tori do.
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obtain the correct Ti dependence in the various terms twisted fields necessarily enter the

functions Ai, while the Pi are functions of untwisted moduli. Since untwisted fields have

modular weight −1 they do not induce a moduli dependence of the couplings. Likewise,

the moduli dependence in the couplings of A1 and A2 arises from the twisted fields. The

discussion has again been tailored to the Z6−II orbifold. For other orbifolds, especially

for ZM × ZN orbifolds, there also exist couplings that involve only twisted states which

nevertheless have modular weight −1, so that no extra Ti occur in these terms.

In the above parameterization we assume that the fields entering Ai and Pi obtain non-

vanishing vacuum expectation values via F - and D-terms. In our supergravity analysis we

treat them as numerical constants given by the VEVs of these fields. Those VEVs are

generically of the order of the string scale, Ms . 0.1. We assume that the other fields

we have not made explicit obtain a mass in a similar way from couplings to fields that

get a VEV.

The effective theory defined by (3.5) and the Kähler potential discussed in section 2

has a supersymmetric Minkowski vacuum at 〈χ1〉 = 〈χ2〉 = 〈χ3〉 = 0. The auxiliary fields

of the χi stabilize the complex scalars S, T1, and T2 at mass scales determined by the

Ai and Pi. In the heterotic mini-landscape models of [39, 40] there are many examples

in which the coefficients ni are such that sufficient alignment is possible. There is then a

light linear combination of T1 and T2 whose imaginary part is the inflaton field. All other

degrees of freedom can be sufficiently stabilized in many examples. More details and an

explicit example which realizes the hierarchy (1.1) are given in section 4.

After inflation has ended supersymmetry must be broken to avoid phenomenological

problems. As pointed out in [18] the above scheme can accommodate low-energy supersym-

metry breaking, for example, via the F -term of a Polonyi field. A more generic situation on

orbifolds is supersymmetry breaking via gaugino condensates. As is well-known, these can

also lead to a suppression of the supersymmetry-breaking scale compared to the Hubble

scale. From the perspective of aligned inflation this is desirable in the above setup, since

the gaugino condensate must not interfere with the alignment of T1 and T2. No matter how

supersymmetry is broken, the resulting vacuum will have a positive cosmological constant

which is determined by the scale of supersymmetry breaking. This must be cancelled by a

fine-tuned constant contribution to the superpotential to high accuracy.

Since many non-Abelian gauge groups arise from the breaking of E8×E8 the appearance

of gaugino condensates is quite generic in orbifolds. In the following we discuss an example

in which a gaugino condensate participates in the alignment mechanism.

Inflation with world-sheet instantons and gaugino condensates. A second option

to achieve alignment and moduli stabilization is to use a combination of gaugino conden-

sates and world-sheet instantons. In this case supersymmetry is necessarily broken at a

high scale in order to stabilize all fields above the Hubble scale. In many models we find

superpotentials of the form (2.23), or more specifically

W = χ1

[
B1e

−
8π2

č
S+β1T1+β2T2 − P1

]
+ χ2

[
A1e

−n1T1−n2T2 − P2

]
+ χ3

[
A2e

−
q

δGS
S
− P3

]
,

(3.6)
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with βi =
π
6 bi. The notation and the field dependence of the Ai, Pi, ni is as in the previous

example, and again we assume them to be constants arising from other fields that obtain

a VEV. As explained in section 2.3 the βi depend on the particle content of the N = 2

sub-sector and the modular weights of χ1 and the fields entering B1. In the effective

theory of inflation B1 is assumed to be constant as well. It is in general a non-analytic

function of mesonic degrees of freedom which are integrated out above the scale of gaugino

condensation. As explained in more detail in [42], B1〈χ1〉 determines the meson mass in

the vacuum, which must be larger than H and the condensation scale to ensure decoupling

in the effective theory and during inflation. This means that 〈χ1〉 6= 0 in such setups. This

is typically guaranteed by D-terms associated with U(1)A or, as in the above case, other

U(1) symmetries. This means that the superpotential in (3.6) yields a type of racetrack

potential for the moduli, which are stabilized by their own F -terms and those of the χi.

Moduli stabilization via the superpotential in (3.6) generically yields dS vacua since

supersymmetry is broken by the gaugino condensate. The scale of supersymmetry breaking

is proportional to B1〈χ1〉 and necessarily lies, as explained above, close to the inflationary

Hubble scale. However, to avoid a potentially destructive back-reaction of the auxiliary

fields responsible for supersymmetry breaking, cf. the discussion in [64], one must find

examples in which the gravitino mass is not substantially larger than H. We demonstrate

that this is possible in a second benchmark model in section 4.

4 Two benchmark models

Let us now turn to two examples. We chose to discuss inflation in the context of the

Z6−II mini-landscape models because these are the most-discussed models in the literature.

However, the mechanisms discussed here apply to most orbifolds in a similar vein.

4.1 Example 1: world-sheet instantons only

Let us start with the situation described in section 3.2, where we stabilize the moduli via

world-sheet instantons only. We assume that some untwisted and twisted fields Φα have

obtained a string-scale VEV from D-terms which we do not include explicitly here. As

explained above, we take the χi to be untwisted and the φi to be twisted matter fields.

Furthermore, we consider χ3 to carry U(1)A charge q = 1.

The Kähler potential in this case reads

K = − ln
(
S + S

)
− ln

(
T1 + T 1 − |χ1|

2
)
− ln

(
T2 + T 2 − |χ2|

2
)
+ |χ3|

2 , (4.1)

where we have neglected the loop contributions to S. The contributions (2.8) of the twisted

fields do not affect the results of our discussion as long as all VEVs of the matter fields are of

the order of the string scale or below. We consider the part of the full superpotential given

in (3.5). The possible values for the modular weights ni are taken from the orbifolder [65],

in this case n1 = π/6, n2 = π/6, n3 = π/3, and n4 = π/2. In typical models δGS ∼ O(0.1)

and the U(1)A charges of the fields entering A2 are O(1), such that we obtain an overall

prefactor of S of order 1. The VEVs of the fields entering A2 cancel the D-term induced

by δGS. The remaining input parameters for this example are summarized in table 1. The
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A1 A2 A3 P1 P2 P3

3.2 · 10−4 6.8 · 10−4 1.6 · 10−3 9.7 · 10−5 3.2 · 10−5 2.6 · 10−4

Table 1. Input parameters for the constants used in Example 1. The Ai and Pi arise from 3- and

4-point couplings.

〈T1〉 = 〈T 1〉 〈T2〉 = 〈T 2〉 feff ns r

1.06 1.24 5.7 0.96 0.03

Table 2. CMB observables and other relevant parameters for 60 e-folds of inflation in Example 1.

resulting theory has a supersymmetric vacuum at 〈χ1〉 = 〈χ2〉 = 〈χ3〉 = 〈ImS〉 = 0 and

〈ReS〉 ≈ 1.8. The lightest eigenvalue in the mass matrix corresponds to the aligned linear

combination of T1 and T2. A convenient field basis is therefore

T1 → T̃1 = aT1 + bT2 , T2 → T̃2 = −bT1 + aT2 , (4.2)

with a ≈ −0.64 and b ≈ −0.77 in this case. T̃2 is the lightest direction and Im T̃2 is the

inflaton. In the vacuum its real part is as heavy as the inflaton because supersymmetry is

unbroken. Thus, one may worry that it contributes quantum fluctuations to the system,

yielding a multi-field inflation model. However, during inflation Re T̃2 receives a soft mass

term of the same order as the Hubble scale. Indeed, a numerical analysis of the coupled

equations of motion, similar to the one carried out in [18], reveals that all fields except

the inflaton are sufficiently stabilized during inflation. For 60 e-folds of slow-roll inflation

we summarize the predictions for the CMB observables and other relevant parameters

in table 2.

Apparently, successful inflation in line with recent observations is possible in this setup.

However, since we have chosen to only employ a portion of the total superpotential of such

orbifold models, one may worry about additional terms which can interfere with moduli

stabilization or the alignment mechanism. In particular, there may be terms of the form

W ⊃ C(Φα)e
−f(T1,T2) , (4.3)

where the function f contains some linear combination of the two moduli. On the one

hand, this term clearly breaks supersymmetry if C(Φα) 6= 0. The effects on inflation,

however, are not significant as long as the resulting gravitino mass is not much larger than

H, which is generically fulfilled. On the other hand, the additional dependence on the

moduli may interfere with the alignment of the effective inflaton field. We have verified

that this is negligible as long as C < Ai. This means that additional terms of this type must

be suppressed up to slightly higher order than the ones in the part of the superpotential

we consider.
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B1 A1 A2 P1 P2 P3

14.4 6.8 · 10−3 3.6 · 10−3 2.1 · 10−4 9.1 · 10−5 7.1 · 10−4

Table 3. Input parameters for the constants used in Example 2. The Ai and Pi arise from 3- and

4-point couplings.

〈S〉 = 〈S〉 〈T1〉 = 〈T 1〉 〈T2〉 = 〈T 2〉 〈χ1〉 〈χ2〉 〈χ3〉

1.6 1.97 1.16 9.6 · 10−3 −7.9 · 10−2 −2.2 · 10−2

Table 4. Vacuum expectation values of all relevant fields in the dS minimum with 〈V 〉 ≈ 2 · 10−14.

In addition, the imaginary parts of the χi obtain VEVs much smaller than 1.

4.2 Example 2: world-sheet instantons and gaugino condensates

The setup which includes a gaugino condensate is slightly more generic, but also more

complicated. Similar to the previous example the Kähler potential reads

K = − ln
(
S + S

)
− ln

(
T1 + T 1 − |χ1|

2
)
− ln

(
T2 + T 2 − |χ2|

2
)
+ |χ3|

2 , (4.4)

where we have once more neglected the loop-suppressed correction to the dilaton Kähler

potential and the contribution of the twisted matter fields. The superpotential is this time

given by (3.6) with n1 = π/2, n2 = π/3, β1 = π/6, β2 = π/6 and q/δGS = 1. As in the

previous example, the FI term of U(1)A is canceled by the VEVs of the fields entering A2.

Note that χ3 cannot cancel this FI term since we assume in our example that its charge

has the wrong sign. Nevertheless, on orbifolds fields are typically charged under many

U(1) factors simultaneously. To account for this, we include a D-term ζ originating from

another U(1) under which χ3 has charge −1,

VD =
1

S + S
(χ3Kχ3

− ζ)2 , (4.5)

with ζ = 10−3. This D-term is canceled by 〈χ3〉 6= 0, which results in a non-vanishing

VEV of the other fields, 〈χ1,2〉 6= 0. All other input parameters are summarized in table 3.

The resulting scalar potential has a dS vacuum specified in table 4. The positive vacuum

energy can be cancelled by a fine-tuned constant contribution to W , and the gravitino mass

in the near-Minkowski vacuum is m3/2 ≈ 6.2 · 10−7. There is again a lightest direction in

the mass matrix which is T̃2 with a ≈ −0.82 and b ≈ −0.56, and its imaginary part is

the inflaton. Once more we solve the coupled equations of motion to ensure that all other

degrees of freedom are sufficiently stable during inflation. The CMB predictions for this

second case are summarized in table 5. Further contributions to the superpotential must

satisfy the same constraints as in Example 1 to not interfere with inflation.

5 Conclusions

We have analyzed the feasibility of natural inflation with consistent moduli stabilization

in heterotic orbifold compactifications. To allow for the trans-Planckian axion field range
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feff ns r

5.7 0.96 0.04

Table 5. CMB observables for 60 e-folds of inflation and the effective axion decay constant in

Example 2.

favored by recent observations of the CMB polarization, we implement aligned natural

inflation with two axions. Generic properties of orbifolds naturally permit sufficient align-

ment for 60 e-folds of slow-roll inflation with a detectable tensor-to-scalar ratio and a scalar

spectral index of ns ≈ 0.96, and at the same time provide a mechanism to stabilize the

relevant moduli and the dilaton.

The alignment is produced by two non-perturbative terms in the superpotential of the

orbifold. They may either be sourced by two world-sheet instantons which couple to twisted

and untwisted matter fields, or by a world-sheet instanton and a gaugino condensate of

a non-Abelian gauge group in the hidden sector of the primordial E8 × E8. The axions

which mix are the imaginary parts of two complex untwisted Kähler moduli, governing

the size of two tori. A crucial observation is that both possible non-perturbative effects

are determined by the modular weights of the fields involved in the coupling and the

Dedekind η function. This leads to many instantonic couplings with similar coefficients

in the exponential, corresponding to the individual axion decay constants, which in turn

allows for aligned inflation. Since any embedding of inflation in string theory must address

moduli stabilization, we demonstrate how both Kähler moduli and the dilaton can be

stabilized at a high scale. This can happen through the terms needed for inflation and

additional terms involving the VEVs of twisted and untwisted matter fields.

In the case of two world-sheet instantons all axion coefficients are determined by sums

of modular weights and the Dedekind η function. Thus, the more fields are involved in

the correlator, the larger the coefficients of the moduli in the instantonic terms. This way,

couplings generated at fourth or higher order generically have coefficients which allow for

just the right amount of alignment. The case in which inflation is driven by a world-sheet

instanton and a gaugino condensate is more constrained, and thus more predictive. The

coefficients in the gaugino condensate are fixed by symmetry arguments and the Dedekind

η function. Alignment can occur when the world-sheet instanton coupling is introduced

at sufficiently high order. In both cases, additional terms in the superpotential do not

interfere with inflation or moduli stabilization, as long as their magnitude is below the

inflationary Hubble scale.

We provide benchmark models for both cases to illustrate our findings. In the first

case we find a supersymmetric Minkowski vacuum in which the flattest direction is a linear

combination of the two Kähler moduli, the imaginary part of which is the aligned inflaton.

All other degrees of freedom are stabilized at a higher scale and decouple from inflation.

During inflation the real part of the aligned modulus receives a Hubble-scale soft mass and

is sufficiently stable as well. This situation is similar in the second case, although in the

vacuum supersymmetry is spontaneously broken by the gaugino condensate withm3/2 . H.
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