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1 Introduction

The supersymmetric (SUSY) threshold corrections to the bottom quark mass in the large

tanβ regime are often expressed as an approximation of the dominant gluino-sbottom and

chargino-stop loop contributions [1–3],

(
∆mb

mb

)app

=
8

3

g2
3

16π2
Mg̃(µ tanβ −Ab)I(M2

g̃ ,m
2
b̃1
,m2

b̃2
) +

λ2
t

16π2
µ(At tanβ − µ)I(µ2,m2

t̃1
,m2

t̃2
) . (1.1)

In order to fit the bottom quark mass, mb(MZ)SM = mb(MZ)MSSM (1 + ∆mb/mb),

where mb(MZ)MSSM is obtained from the evolution of the bottom Yukawa coupling from

a UV scale (such as the GUT scale) to the MZ scale. The effects of these supersymmetric

threshold corrections are important especially in the era of precision Higgs couplings and

flavor physics and has been a part of many analyses. For some recent work, see [4–12].

Let us first summarize some of the well-known consequences of the above expression

for a common type of model that has large tanβ such as models with third family Yukawa

unification (see, for example, [13–22]). In such models, the threshold corrections typically

need to be O(few)% and negative. These corrections can often be large thus the two terms

in (1.1) must either nearly cancel or both be suppressed.
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For µ > 0 and tanβ ' 50, At must be large and negative in order for the two

contributions to approximately cancel and yield a negative value. This in turn has con-

sequences for flavor physics. The branching ratio for Bs → µ+µ− receives large tanβ-

enhanced contributions from Higgs-mediated neutral currents that are proportional to

A2
t ( tanβ)6/M4

A [23, 24]. In order to be in agreement with the experimental value which

is measured at 3.2 × 10−9, MA must be large if At and tanβ are large. An important

constraint to then consider is the inclusive decay Bs → Xsγ to which the dominant SUSY

contributions are a chargino-stop loop and a top-charged Higgs loop [25–27]. The chargino

contribution is tanβ-enhanced and, with large and negative At, adds destructively to the

SM branching ratio. The charged Higgs contribution, on the other hand, adds construc-

tively to the SM branching ratio, but is suppressed by the heavy Higgs masses required to

be consistent with B(Bs → µ+µ−). Since the SM prediction is in good agreement with the

data, these two contributions must nearly cancel. Such a cancellation is difficult to obtain

in the given region of parameter space and one is then led to consider heavy scalars [19].

The situation is different for µ < 0 since the gluino contribution, which is the dominant

contribution, already has the needed sign. In this case, the parameters need not be large

in order to obtain a small threshold correction. This region of parameter space however

was initially disfavored due to conflicts with flavor physics. When µ < 0, the chargino

contributions add constructively with the SM contributions to the B(Bs → Xsγ) observable

and hence yield enhanced values [16, 21, 27–29]. Additional complications also arise due

to tensions with the (g − 2)µ observable in this regime, where the theoretical prediction is

too small to match the experimental value. More recently, viable models with µ < 0 have

been constructed but they typically have squark masses greater than 1 TeV [30–32].

Fitting the bottom quark mass and satisfying current experimental constraints from

flavor physics has therefore pushed Yukawa unified models into the territory of heavy

scalars. Other models may of course be constructed that evade such restrictions, but the

absence of the detection of any new physics at the LHC generically requires one to consider

heavy scalar masses. The current limits on the colored superpartner masses are already

approaching the TeV range [33, 34]. As we transition into the TeV region of the SUSY

parameter space, a re-evaluation of the approximations of SUSY threshold corrections to

the bottom quark is warranted. This is especially important in the era of precision physics

since the approximation is often invoked in studies of bottom quark mass and couplings.

In order to understand the size and behavior of the threshold corrections to the bottom

quark, we survey a large part of the parameter space of interest and choose to scan over

the parameters of the pMSSM instead of restricting ourselves to a particular model. For

each point, we calculate both the full, exact one-loop radiative corrections to the bottom

quark and compare with the value obtained from the approximate form of the corrections

as given in (1.1). For each point in the pMSSM scan, we additionally check the Higgs mass

and constraints from B(Bs → Xsγ) and B(B → µ+µ−).

This paper is organized as follows. The details of the parameter scan are presented

in 2. In 3, we present the full, exact one-loop corrections compared to the approximate form

of the contributions and motivate the need for a scrutiny of this approximation. We then

consider in turn each approximation made to the individual contributions to the threshold
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g1 = 0.46 g2 = 0.64 g3 = 1.2

Mt = 173.36 mb = 2.69 Vtb = 1

MZ = 91.1876 MW = 80.385 mh = 125.3

v = 246 tanβ = 50

1000 < {mQ3 ,mu3 ,md3} < 5000

100 < {mL3 ,me3} < 5000

−15000 < {At, Ab} < 15000

−1000 < {M1,M2} < 1000

500 < M3 < 2000

1000 < MA < 2000

−2000 < µ < 2000

Table 1: Parameter values and ranges at MZ . All masses in GeV.

correction in 4. 5 surveys the consequences of using the full expression of the threshold

corrections to the bottom quark. Finally, we conclude in 6.

2 Parameter scan

The pMSSM parameter space is defined by {mQi ,mui ,mdi ,mLi ,mei , Ai,Mi,MA, µ, tanβ}
with the family index i = 1-3. We consider the inter-generational mixing to be negligible

and that the masses of the first two family scalars are large relative to the third family scalar

masses. We therefore ignore contributions to the bottom quark mass from the first two

families. In this analysis, we fix tanβ = 50 in which region the SUSY threshold corrections

are dominant.1 The ranges for the remaining SUSY parameters are given in 1. With these

parameter bounds, we randomly generate 50,000 points. We then use micrOMEGAs [35] to

calculate the quantities mh, B(Bs → µ+µ−), and B(Bs → Xsγ). Only points for which

these quantities satisfy current experimental bounds are retained.

For the Standard Model parameters, we use the measured values of the top quark, W,

Z, and Higgs masses. Note that we use mh = 125.3 GeV for all points when calculating

threshold corrections. After running through micrOMEGAs, the points that survive all have

a Higgs mass within 3 GeV of this value. This is at most a ∼2% difference. Furthermore,

the Higgs mass only occurs in the calculation of the neutral Higgs contribution. The error

in this approximation is therefore negligible and the results remain unaffected. For the

bottom quark mass, we use the RunDec package [36] to run mb(mb) to mb(MZ).

3 Exact vs. approximation

The complete set of one loop corrections to the bottom quark mass is given by [37]

∆mb(MZ) = ∆mg̃
b + ∆mχ̃±

b + ∆mχ̃0

b + ∆mH±
b + ∆mA

b + ∆mh
b + ∆mW

b + ∆mZ
b , (3.1)

with the tree level mass given by λb(MZ) v√
2
cosβ.

1With tanβ = 50, third family Yukawa unification can also be satisfied.
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Figure 1: The plot shows the full, exact one-loop threshold corrections to the bottom

quark mass vs. the approximate form of the correction given in (1.1). Darker shades of

blue represent increasing squark masses from 1 TeV to ≥4 TeV. The black (lower) diagonal

line represents where the exact and approximate forms would be equal. The red (upper)

diagonal line represents where the correction from the exact form is ∼12.5% larger than

the correction from the approximate form.

In 1, we present the results of the parameter scan by plotting the full, exact one-

loop threshold corrections to the bottom quark mass against the approximate form of the

corrections given in (1.1). The color gradient represents squark masses from 1 TeV at the

lightest to ≥4 TeV at the darkest. The black (lower) diagonal line represents where the

exact and approximate forms would be equal. The red (upper) diagonal line is to help

guide the eye and represents where the correction from the exact form is ∼12.5% larger

than the correction from the approximate form. All of the points lie along the latter line

and thus there is a nonnegligible difference between the exact and approximate forms of

the threshold correction in this region of parameter space. We now consider the individual

contributions in turn to discover the source(s) of the discrepancy.

4 Individual contributions

4.1 Gluino-sbottom

We look first at the approximation made to the gluino-sbottom contribution. Gluinos

couple to the down-type squarks and quarks proportional to the SU(3) gauge coupling g3

and hence contribute large corrections to the bottom quark mass. The corrections are

dominant when the squarks belong to the third family since the inter-generational mixings

between the squarks are typically (and by assumption in this study) small. The detailed
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calculation can be found in the appendix. We quote the final, exact form here [37].

∆mg̃
b =

8

3

g2
3

16π2

[
sin2θbMg̃

2

(
B0

(
p,Mg̃,mb̃1

)
−B0

(
p,Mg̃,mb̃2

))

−mb

2

(
B1

(
p,Mg̃,mb̃1

)
+B1

(
p,Mg̃,mb̃2

))]
, (4.1)

where the momentum of the bottom quark is given by p. In the limit p → 0 (which is a

good assumption here since p2 = m2
b), the Passarino-Veltman functions can be written as

B0(0,Mg̃,mb̃) = − ln

(
m2
b̃

Q2

)
+ 1 +

(
1

1− x

)
lnx (4.2)

B1(0,Mg̃,mb̃) =
1

2

[
− ln

(
m2
b̃

Q2

)
+

1

2
+

1

1− x +
lnx

(1− x)2
− θ(1− x) lnx

]
(4.3)

where x = m2
b̃
/M2

g̃ . The first term in the above expression simplifies to

sin2θbMg̃

2

[
B0

(
p,Mg̃,mb̃1

)
−B0

(
p,Mg̃,mb̃2

)]

=
sin2θbMg̃

2

[
ln

(
m2
b̃2

m2
b̃1

)
+M2

g̃

(
1

M2
g̃−m2

b̃1

ln

(
m2
b̃1

M2
g̃

)
− 1

M2
g̃−m2

b̃2

ln

(
m2
b̃2

M2
g̃

))]
.(4.4)

The angle sin2θb can be determined to be

sin2θb =
2mb(µ tanβ −Ab)√

(m2
b̃L
−m2

b̃R
)2 + (2mb(µ tanβ −Ab))2

=
2mb(µ tanβ −Ab)

m2
b̃2
−m2

b̃1

, (4.5)

where we have ignored terms proportional to MZ or mb. The trilinear coupling Ab is often

ignored since µ is enhanced by tanβ.2 Similarly, the second term in (4.1) is also neglected.

Collecting terms, we arrive at the form in (1.1),

∆mg̃
b

mb
' 8

3

g2
3

16π2
Mg̃(µ tanβ −Ab)I(M2

g̃ ,m
2
b̃1
,m2

b̃2
) , (4.6)

where

I(a, b, c) =
ab ln

(
a
b

)
+ bc ln

(
b
c

)
+ ac ln

(
c
a

)

(a− b)(b− c)(a− c) . (4.7)

This is the expression that is typically used in most of the literature with large tanβ

models.

In 2, the exact, one-loop gluino-sbottom threshold correction to the bottom quark mass

is compared to the approximate form of this correction given in (1.1). Darker shades of

blue represent increasing squark masses from 1 TeV to ≥4 TeV. The black (lower) diagonal

line represents where the exact and approximate forms would be equal. The red (upper)

diagonal line represents where the correction from the exact form is ∼8% larger than the

correction from the approximate form. Because the approximate form of the gluino-sbottom

correction is equal to the terms in the exact form proportional to the B0 Passarino-Veltman

– 5 –



J
H
E
P
0
5
(
2
0
1
5
)
0
8
8

Figure 2: The plot shows the exact, one-loop gluino-sbottom threshold correction to

the bottom quark mass vs. the approximate form of this correction given in (1.1). Darker

shades of blue represent increasing squark masses from 1 TeV to ≥4 TeV. The black (lower)

diagonal line represents where the exact and approximate forms would be equal. The red

(upper) diagonal line represents where the correction from the exact form is ∼8% larger

than the correction from the approximate form.

Figure 3: We plot the Bg̃
0 term against the Bg̃

1 term (Bg̃
0 and Bg̃

1 are defined in the text).

Darker shades represent increasing sbottom masses. As the sbottom masses increase from

1 TeV to ≥4 TeV, the Bg̃
0 terms becomes smaller and the two terms are nearly the same

magnitude. Furthermore, the points along the vertical line have (µ tanβ −Ab) ' 0.
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functions the discrepancy must be due to the terms in the exact form proportional to the

B1 Passarino-Veltman functions.

We refer to the term in (4.1) containing the B0(1) Passarino-Veltman functions and its

prefactor as the “Bg̃
0(1)” term. In 3, the B0 term is plotted against the Bg̃

1 term. The color

gradient from light to dark represents increasing sbottom masses from 1 TeV to ≥4 TeV.

As the sbottom masses get pushed toward more than a few TeV, the Bg̃
0 term decreases

while the Bg̃
1 term slightly increases, and the two terms are nearly the same magnitude.

The increase in the Bg̃
1 term can be understood by considering (4.3) in the limit of large

sbottom masses. For a fixed gluino mass3 and in the limit of large x, one finds for the

Bg̃
1 term,

Bg̃
1

mb
' 4

3

g2
3

16π2

[
ln

(
mb̃1

mb̃2

Q2

)
− 1

2

]
. (4.8)

Thus the Bg̃
1 term grows logarithmically with increasing sbottom masses, which explains

why there appears to be a constant vertical shift of ∼8% from the diagonal line along which

the approximation is equal to the exact expression in 2. In this regime, where the Bg̃
0 term

is small, it is therefore important that the Bg̃
1 term not be ignored. Finally, the points

along the vertical line in 3 have (µ tanβ − Ab) ' 0, and so one must be careful to check

the size of Ab relative to µ tanβ also.

4.2 Chargino-stop

We turn now to the approximation made to the chargino-stop contribution. The charginos

couple to the up-type squarks and down-type quarks proportional to the SU(2) coupling g2

and the Yukawa couplings λt,b with strength depending upon their respective wino-higgsino

composition. The corrections dominate when the squarks are from the third family due

to CKM suppression of the contributions from the first two families of squarks. The

calculation is presented in detail in the appendix. The exact closed form cannot be put

into a simplified form as was the case for the gluino-sbottom contribution. This is due

to the non-trivial convolution of the elements of the stop mixing matrix, the elements of

the chargino mixing matrices, and the weak and Yukawa coupling constants obtained by

summing over the left and right stops and the two charginos. We therefore list the exact

results from the appendix and discuss the approximations made to obtain the form in (1.1).

The full expression is [37]

∆m
χ̃±
i
b =

2∑

i=1

2∑

x=1

Bx
LRi

+
mb0

2
(AxLi

+AxRi
) (4.9)

2We keep Ab here in order to be consistent with the definitions of the squark masses.
3In this analysis we consider gluinos to have mass ≤2 TeV.
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with

Bx
LRi

= −
Φ̄x
i Φx

iMχ̃±
i

16π2
B0(p,Mχ̃±

i
,mt̃x

)

AxLi
= −(Φx

i )†Φx
i

16π2
B1(p,Mχ̃±

i
,mt̃x

)

AxRi
= −

(
Φ̄x
i

)†
Φ̄x
i

16π2
B1(p,Mχ̃±

i
,mt̃x

) . (4.10)

Here i = 1, 2 is the chargino index and x = 1, 2 is the stop index.

The couplings are given by

Φx
i =

λt√
2
V †i2 (ΓxR)† − g2V

†
i1 (ΓxL)†

Φ̄x
i =

λb√
2
U †i2ΓxL , (4.11)

where U, V are the chargino mixing matrices and ΓL,R are the columns of the stop mixing

matrix. The momentum of the bottom quark is given by p.

The terms containing the B1 functions are often neglected and so we focus on the Bx
LRi

contributions. Setting p = 0 and expanding these terms,

Bx
LRi

= −
Φ̄x
i Φx

iMχ̃±
i

16π2
B0(0,Mχ̃±

i
,mt̃x

)

=
−Mχ̃±

i

16π2

[
λb√

2
U †i2ΓxL

] [
λt√

2
V †i2 (ΓxR)† − g2V

†
i1 (ΓxL)†

]
B0(0,Mχ̃±

i
,mt̃x

) . (4.12)

Neglecting terms proportional to g2 and summing over the stops and charginos yields

2∑

i=1

2∑

x=1

Bx
LRi
'
−Mχ̃±

1

16π2

[
λbλtU

†
12V

†
12

sin2θt
2

] [
B0(0,Mχ̃±

1
,mt̃1

)−B0(0,Mχ̃±
1
,mt̃2

)
]

+
−Mχ̃±

2

16π2

[
λbλtU

†
22V

†
22

sin2θt
2

] [
B0(0,Mχ̃±

2
,mt̃1

)−B0(0,Mχ̃±
2
,mt̃2

)
]
. (4.13)

For |µ| > |M2|, one finds that U †12V
†

12 ' 0 and U †22V
†

22 ' 1, whereas for |µ| < |M2|,
one finds that U †12V

†
12 ' 1 and U †22V

†
22 ' 0. Furthermore, sin2θt = −2λtvd tanβ(At −

µ
tanβ )/(m2

t̃2
−m2

t̃1
) so that4

∆m
χ̃±
i
b

mb
' λ2

t

16π2
µ(At tanβ − µ)I(µ2,m2

t̃1
,m2

t̃2
) . (4.14)

Among the two charginos, the dominant corrections are only from the Higgsino and are

proportional to the Higgsino mass, µ. Hence the chargino corrections tend be larger when

|µ| > |M2| (heavier Higgsino) and smaller when |µ| < |M2| (lighter Higgsino) as shown

in 4. We refer to the term in (4.9) containing the B0(1) Passarino-Veltman functions and

its prefactor as the “Bχ̃±

0(1)” term.
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Figure 4: The plot shows that the dominant piece Bχ̃±

0 (defined in the text) of the chargino

corrections is small when |µ/M2| < 1 and can be large when |µ/M2| � 1. The vertical

dashed lines mark the crossover between these two regimes. Darker shades of blue represent

increasing squark masses from 1 TeV to ≥4 TeV.

Figure 5: The plot shows the exact, one-loop chargino-stop threshold correction to the

bottom quark mass vs. the approximate form of this correction given in (1.1). Darker

shades of blue represent increasing squark masses from 1 TeV to ≥4 TeV.

In 5, the exact, one-loop chargino-stop threshold correction to the bottom quark mass

is compared to the approximate form of this correction given in (1.1). Darker shades of blue

4The µ/ tanβ term is often neglected. We keep it here however in order to be consistent with the

definitions of the squark masses.
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represent increasing squark masses from 1 TeV to ≥4 TeV. It is clear that the chargino-stop

approximation is a good approximation over all of the parameter space, particularly in the

region in which the stops are heavy. We note that a nearly constant, positive contribution

from the Bχ̃±

1 term is present as in the gluino-sbottom case. Here however the contribution

is . 2% and leaves the chargino-stop approximation as a good approximation.

4.3 W , Z, Higgses, and neutralinos

Due to weaker coupling strengths compared to g3 and λt, the contributions to the thresh-

old correction of the bottom quark mass from W , Z, Higgses, and neutralinos are often

neglected. It is possible that while the gluino and chargino contributions may each be of

much greater magnitude than these other contributions, a cancellation occurs such that

their sum is of the same magnitude as the other contributions. Since these terms are

dropped altogether, the validity of this approximation is simply based on the magnitude

of their contribution compared to the total approximate correction as given in (1.1).

6 shows the size of these quantities relative to the total approximate correction. We find

that in the heavy squark regime the neutralino contribution is typically ≤1%. Furthermore,

the W and Z contributions are very close to 0 for all points. This leaves the contributions

from the Higgses, which give a correction of ∼4% for all points. Thus, in the heavy squark

regime in which the correction to the bottom quark mass given by (1.1) is small, the

contribution from the Higgses should not be ignored. Note that the contributions from the

Higgses are not tanβ-enhanced contributions [37]. The implications of this statement will

be discussed in 5.

5 Consequences

In the previous section, we compared the magnitude of the SUSY threshold corrections

to the bottom quark mass. Particularly, we have shown that the various approximations

made to obtain the common form in (1.1) all seem to be valid approximations with the

exception of neglecting the Bg̃
1 terms in the gluino-sbottom contribution and possibly the

contributions from the Higgses. In this section, we will highlight some of the consequences

of including these terms in the corrections to the bottom quark mass.

Fits to the bottom quark mass

A good choice of scale to integrate out the massive SUSY particles is the MZ scale. At the

MZ threshold one then has to match the value of mb before and after integrating out the

massive states. This leads to the relation

mb(MZ)SM = mb(MZ)MSSM (1 + ∆mb/mb) . (5.1)

mb(MZ)below can be determined by taking the value of mb(mb) = 4.19 GeV and running it

to the MZ scale. This is evaluated using the RunDec package to be mb(MZ)below = 2.69 GeV.

The hope then is that the right choice of bottom Yukawa coupling and the appropriate set

of SUSY boundary conditions at some UV scale will give rise to the necessary mb(MZ)above

and ∆mb/mb to satisfy (5.1).
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(a) Higgses

(b) Neutralinos (c) W,Z

Figure 6: The plots show the relative size of the total approximate correction in comparison with

the corrections from the contributions of the (top) Higgses, (bottom left) neutralinos, and (bottom

right) W , and Z.

When fitting the bottom quark mass, it is common to use the full, exact one-loop

correction. This is done in most numerical spectrum calculators, such as SOFTSUSY [5]

and SPheno [38]. Physical interpretations are often based however on the approximate

formula given in (1.1). As was shown in the previous section, additional terms, namely the

Bg̃
1 terms from the gluino-sbottom contributions and the contributions from the Higgses,

should also be included for a full description. These “missing” terms contribute ∼12% to

the correction. In 1 the conditions for obtaining an appropriate SUSY threshold correction

to the bottom quark mass in models with third family Yukawa unification were determined

by an interpretation of the approximate formula given in (1.1). We revisit this scenario

here to offer a more accurate interpretation.

In models with third family Yukawa unification, the SUSY threshold corrections to the

bottom quark typically need to be −O(few)%. For µ > 0, the common interpretation is At

– 11 –
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needs to be large and negative in order for the chargino-stop contribution to overcome the

Bg̃
0 term from the gluino-sbottom contribution. By including the “missing” terms, which

are positive, we see that the size of At is underestimated when the approximate form of the

corrections is used to interpret the size of the parameters. This is particularly true when the

squarks are heavy. In this regime, the chargino-stop term is suppressed but the “missing”

terms are not and so At must be quite large to overcome both the suppression by the heavy

stops and also the positive contribution from the missing terms. Increasing the size of At
requires increasing the size of MA in order to satisfy the experimental constraints coming

from B(B → µ+µ−) as discussed in 1. Altering the value of MA furthermore necessitates a

change in the value of the µ parameter in order to obtain consistent electroweak symmetry

breaking [37]. In large tanβ models, the off-diagonal elements of the stop mixing matrix,

which are functions of µ and At, play an important role in determining the sizes of the

stop masses. Thus adjusting the values of µ and At will lead to a different prediction for

the stop masses. Furthermore, the light CP-even (SM-like) Higgs mass is sensitive to the

degree of stop mixing, and an increase in At leads to a decrease in the Higgs mass. For

µ < 0, the common interpretation is that the parameters need not be large since the terms

in (1.1) already have the needed minus sign. Including the “missing” terms introduces a

positive contribution (these terms are not proportional to µ) that is relatively large and so

either At must be larger (which leads to the aforementioned effects) or Mg̃ must be larger

in order to overcome the additional contributions. Additionally, it has been pointed out

in earlier works that light Higgsinos are disfavoured in Yukawa unified GUTs [39, 40], and

this can be traced back to 4, where we see that the corrections from the chargino are small

for small µ and do not compensate for the large gluino corrections. In contrast, the points

with large µ, i.e., heavy Higgsinos, do yield large enough chargino corrections.

Higgs couplings to the bottom quark

The MSSM predicts four new physical Higgs states in addition to the SM-like Higgs boson.

The coupling of the Higgs bosons to the bottom quark depends on the MSSM parameters,

particularly, tanβ. In addition, the couplings also depend on the bottom quark threshold

corrections and the effect of these corrections have been the subject of many works espe-

cially in the large tanβ regime [41–54]. The low energy effective Lagrangian coupling the

bottom quark with the up- and the down-type Higgs bosons in the MSSM including the

supersymmetric threshold corrections can be written as

Leff = −λ0
b b̄

0
R

[
(1 + ∆1)φ0

d + ∆2φ
0∗
u

]
b0L + h.c. , (5.2)

where

φ0
d =

1√
2

(
vd +H cosα− h sinα+ iA sinβ − iG0 cosβ

)
(5.3)

φ0
u =

1√
2

(
vu +H sinα+ hcosα+ iAcosβ + iG0 sinβ

)
. (5.4)

Here ∆2 represents the coupling of the bottom quark to the “wrong” Higgs, which is

generated by the radiative effects discussed in this paper. The corrections to the coupling
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of the bottom quark to the down-type Higgs are represented by ∆1. The ∆2 interactions

are tanβ-enhanced while the ∆1 corrections are not. The expression in (5.4) must be

matched to the renormalized Lagrangian given by [44]

Leff = −λbb̄R
[
φ0
d +

∆b

tanβ
φ0∗
u

]
bL + h.c. , (5.5)

yielding the relations

λb = λ0
b(1 + ∆1) (5.6)

∆b

tanβ
=

∆2

1 + ∆1
. (5.7)

Consider the gluino contribution in the approximate form of the threshold corrections

given by (1.1). The µ-term, which is proportional to tanβ, is included in ∆2 while the

Ab-term is included in ∆1. The ∆1 correction is typically found to be O(1)% and is

therefore often neglected [44]. We point out here that neither the Bg̃
1 terms from the gluino-

sbottom contribution nor the contributions from the Higgses are proportional to tanβ, and

therefore they enhance ∆1 by ∼12%. By considering the forms of the effective couplings

of the Higgses to the bottom quark, we can determine if this enhancement translates to a

nonnegligible correction. The effective couplings are given by [41]

g̃hb =
ghb

(1 + ∆b)

(
1− ∆b

tanα tanβ

)
(5.8)

g̃Hb =
gHb

(1 + ∆b)

(
1 +

∆b

cotα tanβ

)
(5.9)

g̃Ab =
gAb

(1 + ∆b)

(
1− ∆b

tan 2β

)
, (5.10)

where gh,H,Ab are the tree level couplings. In the decoupling limit, tanα→ −cotβ and we

obtain

g̃hb = ghb (5.11)

g̃Hb =
gHb

(1 + ∆b)

(
1− ∆b

tan 2β

)
' gHb

(1 + ∆b)
(5.12)

g̃Ab =
gAb

(1 + ∆b)

(
1− ∆b

tan 2β

)
' gAb

(1 + ∆b)
. (5.13)

We therefore only need to determine the extent to which ∆1 affects the size of the factor

(1 + ∆b)
−1. From (5.7), the factor may be written as

1

1 + ∆b
=

1 + ∆1

1 + ∆1 + ∆2 tanβ
≡ δ12 . (5.14)

Let us define δ2 ≡ (1 + ∆2 tanβ)−1 and δΦ to be the relative change between ignoring ∆1

and including it,

δΦ ≡
δ12 − δ2

δ2
. (5.15)
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Figure 7: The plot shows the relative size of δ2, the correction to the heavy Higgs-bottom coupling

ignoring the ∆1 contribution, and δ12, the correction to this coupling including the ∆1 contribution.

The parameter δΦ is defined in the text. The region within the vertical dashed lines is where most

of the points from the parameter scan lie.

By setting ∆1 = 0.12, δΦ can be plotted as a function of ∆2 tanβ as shown in 7. For

positive values of ∆2 tanβ, the relative change is never more than 6%. Unless ∆2 tanβ

is O(1), the relative correction to the heavy Higgs couplings is only a few percent. The

effect of including ∆1 can be more drastic if ∆2 tanβ is negative. As ∆2 tanβ approaches

−O(1), the relative change increases quickly to the nearly the same magnitude. Such

large, negative values of ∆2 tanβ may be a more extreme case however. For most values

of ∆2 tanβ obtained in the parameter scan (< 40%), the relative change is again only a

few percent. Thus unless the magnitude of the tanβ-enhanced corrections to the bottom

quark mass are O(1) it is safe to neglect the ∆1 correction to the couplings of the bottom

quark with the heavy Higgses.5 Note that in calculating the Bg̃
1 contribution to ∆1 we take

Q = MZ . If the scale is chosen to be higher, then Bg̃
1 would be smaller and the relative

change, δΦ, would be more suppressed.

6 Conclusions

We have examined the validity of common approximations of the SUSY threshold correc-

tions to the bottom quark mass. To avoid model dependency, we chose to work in the

context of the pMSSM and performed a parameter scan to survey a large region of param-

eter space. In particular we considered large tanβ and squark masses of O(few) TeV. This

choice is motivated by the absence of any newly discovered colored particles at the LHC.

Comparing the full, exact one-loop expression to the common approximate form, we

found for each point that the full expression is larger than the approximate expression by

∼12.5%. The main sources of the discrepancy were determined to be the contributions

5It is expected that the LHC and ILC will be able to measure Higgs couplings to within a few percent [55,

56]. It will then be necessary to include the ∆1 corrections.
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from the wave function renormalization coming from the gluino-sbottom diagrams (∼8%)

and the contributions from the Higgses (∼4%), both of which are often neglected.

The consequences of an invalid approximation for the bottom quark threshold correc-

tions were discussed for fits to the bottom quark mass and for the effective Higgs couplings

to the bottom quark. We found that using the common approximation to determine the

size of SUSY parameters needed to obtain desired bottom quark threshold corrections leads

to an underestimation of the parameters. As for the effective Higgs couplings, including

the oft-neglected contributions leads to a modification of O(few)% for nearly all points

from the parameter scan. Thus the common approximation for the bottom quark thresh-

old correction remains quite accurate for low energy bottom-Higgs phenomenology, even

in the heavy squark regime.
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A Gluino-sbottom

Gluinos couple with the down-type squarks and quarks proportional to the SU(3) gauge

coupling g3 and hence contribute large corrections to the bottom quark mass. The correc-

tions are dominant when the squarks belong to the third family since the inter-generational

mixings between the squarks are typically (and by assumption in this study) small. We

will now calculate the individual diagrams shown in 8 considering the contributions from

the two bottom squarks.

The three diagrams correct the inverse propagator

S(p) =
i

/p−m− Σ(p)
, (A.1)

where −iΣ is the sum of the three diagrams in 8:

− iΣ(p) = −iBLR − ip · σ̄AL − ip.σAR . (A.2)

The Lagrangian after including the corrections from the diagrams can be written as

L = b∗i /Db(1−AL) + b̄∗i /Db̄(1−AR) + b̄b(mb0 +BLR) . (A.3)

By rescaling b and b̄ by 1√
1−AL

and 1√
1−AR

, respectively, the corrected bottom quark

mass can be written as

mb =
mb0 +BLR√

1−AL
√

1−AR
' mb0 +BLR +

mb0

2
(AL +AR)

⇒ ∆mb = mb −mb0 = BLR +
mb0

2
(AL +AR) . (A.4)
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¯̃b
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(a) -i Bx
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bk
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j

x

(c) -i p · σAx
R

Figure 8: Gluino-sbottom loops that give corrections to the inverse propagator of the

bottom quark.

We evaluate the loop integrals in each of the diagrams in 8:

−iBx
LR =

(
i
√

2g3ΓxRT
aj
l

)∫ d4k

(2π)4

[
iMg̃

k2 −M2
g̃

](
−i
√

2g3(ΓxL)†T akj

)[ i

(p− k)2 −m2
b̃x

]

= −8

3
g2

3ΓxR (ΓxL)†
∫

d4k

(2π)4

Mg̃(
k2 −M2

g̃

)(
(p− k)2 −m2

b̃x

)

−ip · σ̄AxL =
(
−i
√

2g3ΓxLT
aj
l

)∫ d4k

(2π)4

[
ik.σ̄

k2 −M2
g̃

](
−i
√

2g3(ΓxL)†T akj

)[ i

(p− k)2 −m2
b̃x

]

= −i8
3
g2

3ΓxL (ΓxL)†
∫

d4k

(2π)4

ik · σ̄(
k2 −M2

g̃

)(
(p− k)2 −m2

b̃x

)

−ip · σAxR =
(
i
√

2g3ΓxRT
aj
l

)∫ d4k

(2π)4

[
ik.σ

k2 −M2
g̃

](
i
√

2g3(ΓxR)†T akj

)[ i

(p− k)2 −m2
b̃x

]

= −i8
3
g2

3ΓxR (ΓxR)†
∫

d4k

(2π)4

ik · σ(
k2 −M2

g̃

)(
(p− k)2 −m2

b̃x

) . (A.5)

Using the standard definition of the Passarino-Veltman functions,

B0(p,m1,m2) = 16π2

∫
d4k

i(2π)4

1

(k2 −m2
1)((k − p)2 −m2

2)

pµB1(p,m1,m2) = 16π2

∫
d4k

i(2π)4

kµ
(k2 −m2

1)((k − p)2 −m2
2)
, (A.6)
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we get

Bx
LR =

8

3

g2
3

16π2
ΓxR (ΓxL)†Mg̃B0

(
p,Mg̃,mb̃x

)

AxL = −8

3

g2
3

16π2
ΓxL (ΓxL)†B1

(
p,Mg̃,mb̃x

)

AxR = −8

3

g2
3

16π2
ΓxR (ΓxR)†B1

(
p,Mg̃,mb̃x

)
. (A.7)

Now we are ready to calculate the corrections to the bottom quark mass from the three

diagrams as estimated in (A.4):

∆mg̃
b =

∑

x=1,2

Bx
LR +

mb0

2
(AxL +AxR)

=
8

3

g2
3

16π2

∑

x=1,2

{
ΓxR (ΓxL)†Mg̃B0

(
p,Mg̃,mb̃x

)

−mb

2
B1

(
p,Mg̃,mb̃x

)
(ΓxL (ΓxL)† + ΓxR (ΓxR)†)

}
. (A.8)

This is the exact expression for the one-loop threshold corrections to the bottom quark

mass coming from the gluino-sbottom loops. In a full three family model, the ΓL,R are

the 6× 3 squark mixing matrices, and all the down-type squarks give rise to corrections to

the bottom mass. Ignoring the off-diagonal elements that introduce the inter-generational

mixing, we can consider a 2 × 2 block that mixes the two bottom squarks. The sbottom

mixing matrix can be written as

Γ =

(
Γ1
L Γ1

R

Γ2
L Γ2

R

)
=

(
cosθb sinθb
− sinθb cosθb

)
, (A.9)

such that
(
b̃1
b̃2

)
= Γ

(
b̃L
b̃R

)
. (A.10)

Then, ∆mg̃
b simplifies to

∆mg̃
b =

8

3

g2
3

16π2

[
sin2θbMg̃

2

(
B0

(
p,Mg̃,mb̃1

)
−B0

(
p,Mg̃,mb̃2

))

− mb

2

(
B1

(
p,Mg̃,mb̃1

)
+B1

(
p,Mg̃,mb̃2

))]
. (A.11)

B Chargino-stop

The charginos couple to the up-type squarks and down-type quarks proportional to the

SU(2) coupling g2 and the Yukawa couplings λt,b with strength depending upon their

respective wino-higgsino composition. The corrections dominate when the squarks are

from the third family due to CKM suppression of the contributions from the first two
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b
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b̄χ̃+
i χ̃−

i

p− k

Mχ̃±
i

t̃x
¯̃tx

(a) -i Bx
LR

b

p pk

bχ̃+
i

p− k

t̃x

(b) -i p · σ̄Ax
L

b̄

p pk

b̄χ̃−
i

p− k

¯̃tx

(c) -i p · σAx
R

Figure 9: Chargino-stop loops that give corrections to the inverse propagator of the

bottom quark.

families of squarks. We calculate here the individual diagrams shown in 9 considering the

contributions from the two stop squarks. The calculation of the chargino-stop diagrams is

similar to the calculation of the gluino-sbottom diagrams and yields.

−iBx
LRi

=

∫
d4k

(2π)4

[
iΦ̄x

i

] iMχ̃±
i

k2 − (Mχ̃±
i

)2
[iΦx

i ]

[
i

(p− k)2 −m2
t̃x

]

−ip · σ̄AxLi
=

∫
d4k

(2π)4

[
i (Φx

i )†
] ik · σ̄
k2 − (Mχ̃±

i
)2

[iΦx
i ]

[
i

(p− k)2 −m2
t̃x

]

−ip · σAxRi
=

∫
d4k

(2π)4

[
i
(
Φ̄x
i

)†]
[

ik · σ
k2 − (Mχ̃±

i
)2

]
[
iΦ̄x

i

]
[

i

(p− k)2 −m2
t̃x

]

Φx
i =

λt√
2
V †i2 (ΓxR)† − g2V

†
i1 (ΓxL)†

Φ̄x
i =

λb√
2
U †i2ΓxL , (B.1)

where Φ and Φ̄ are the effective couplings of the bottom quark to a chargino mass eigenstate

and a top squark. The gaugino fraction of the chargino couples proportional to the SU(2)

gauge coupling g2 and does not couple to the right-handed squarks. The Higgsino fraction

of the charginos couples proportional to the Yukawa coupling of the top quark, λt. Once

again, using the standard definition of the Passarino-Veltman function defined in (A.6), we
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get,

Bx
LRi

= −
Φ̄x
i Φx

iMχ̃±
i

16π2
B0(p,Mχ̃±

i
,mt̃x

)

AxLi
= −(Φx

i )†Φx
i

16π2
B1(p,Mχ̃±

i
,mt̃x

)

AxRi
= −

(
Φ̄x
i

)†
Φ̄x
i

16π2
B1(p,Mχ̃±

i
,mt̃x

) . (B.2)

The corrections to the bottom quark mass from the three diagrams in 9 are then

∆m
χ̃±
i
b =

2∑

i=1

2∑

x=1

Bx
LRi

+
mb0

2
(AxLi

+AxRi
) , (B.3)

where the sum runs over the two chargino mass eigenstates and the two stop eigenstates.
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