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1 Introduction

Among the variants of the seesaw mechanism, inverse seesaw [1–13] stands out as an at-

tractive one, due to its characteristic feature of generation of small neutrino mass without

invoking high energy scale in the theory. Although to realize such feature one has to pay

the price in terms of incorporation of additional singlet fermions, nevertheless, in different

GUT models accommodation of such type of neutral fermions are natural. Furthermore,

such mechanism appeals to the foreseeable collider experiments to be testified due to its

unique signature. The 9× 9 neutrino mass matrix in this mechanism is written as

mν =

 0 mD 0

mT
D 0 MRS

0 MT
RS µ

 (1.1)
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with the choice of basis (νL, ν
c
R, SL). The three matrices appear in mν are mD, MRS and µ

among them mD and MRS are Dirac type whereas µ is Majorana type mass matrix. After

diagonalization, the low energy effective neutrino mass comes out as

mν = mDM
−1
RSµ(mDM

−1
RS)T

= FµF T (1.2)

where F = mDM
−1
RS . Such definition resembles the above formula as a conventional type-I

seesaw expression of mν . However, mν contains large number of parameters and it is pos-

sible to fit them with neutrino oscillation experimental data [14–16] (but the predictability

is less). Our goal in this work is to find out a phenomenologically viable texture of mD

and µ with minimum number of parameters or equivalently maximum number of zeros.

We bring together two theoretical ideas to find out a minimal texture and they are

i) Scaling ansatz [17–27],

ii) Texture Zeros [28–45].

At the outset of the analysis, we choose a basis where the charged lepton mass matrix

(mE) and MRS are diagonal along with texture zeros in mD and µ matrices. We also

start by assuming the scaling property in the elements of mD and µ to reduce the number

of relevant matrices. Although, we are not addressing the explicit origin of such choice

of matrices, however, qualitatively we can assume that this can be achieved due to some

flavour symmetry [46] which is required to make certain that the texture zeros appear in

mD and µ are in the same basis in which mE and MRS are diagonal. We restrict ourselves

within the frame work of SU(2)L×U(1)Y gauge group however, explicit realization of such

scheme obviously more elusive which will be studied elsewhere.

2 Scaling property and texture zeros

We consider scaling property between the second and third row of mD matrix and the same

for µ matrix also. Explicitly the relationships are written as

(mD)2i

(mD)3i
= k1 (2.1)

(µ)2i

(µ)3i
= k2 (2.2)

where i = 1, 2, 3 is the column index. We would like to mention that although we have

considered different scale factors for mD and µ matrices, however, the effective mν is still

scale invariant and leads to θ13 = 0. Thus, it is obvious to further break the scaling ansatz.

In order to generate nonzero θ13 it is necessary to break the ansatz in mD since, breaking in

µ does not affect the generation of nonzero θ13 although in some cases it provides m3 6= 0.

In our scheme texture zero format is robust and it remains intact while the scaling ansatz

is explicitly broken. Such a scenario can be realized by considering the scaling ansatz and

texture zeros to have a different origin.
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Another point is to be noted that, since the µ matrix is complex symmetric whereas

mD is asymmetric, the scale factor considered in µ matrix is different from that of mD

to keep the row wise invariance as dictated by eq. (2.1) (for mD), and eq. (2.2) (for µ).

Finally, since the texture of MRS matrix is diagonal it is not possible to accommodate

scaling ansatz considered in the present scheme.

Let us now turn to further constrain the matrices assuming zeros in different entries.

Since, in our present scheme the matrix MRS is diagonal, we constrain the other two

matrices. We start with the maximal zero textures with scaling ansatz of general 3 × 3

matrices and list different cases systematically in table 1.

We consider all the matrices1 listed in table 1 as the Dirac type matrices(mD). As

the lepton number violating mass matrix µ is complex symmetric, therefore, the maximal

number of zeros with scaling invariance is 5. Therefore, only m5
3 and m5

5 type matrices

can be made complex symmetric with the scaling property and are shown in table 2 where

they are renamed as µ5
1 and µ5

2 with a different scale factor k2.

Now using eq. (1.2) we can construct mν and it is found that all the mass matrices

constructed out of these matrices are not suitable to satisfy the neutrino oscillation data.

The reason goes as follows:

Case A: mD (7, 6 zero) + µ5
1, µ5

2 (5 zero):

We can not generate nonzero θ13 by breaking the scaling ansatz because in this case all

the structures of mD are scaling ansatz invariant. This can be understood in the following

way: if we incorporate scaling ansatz breaking by k′1 → k1(1 + ε) all the structures of mD

are still invariant and mν matrix will still give θ13 = 0 as breaking of scaling in µ5
1 and

µ5
2 play no role for the generation of nonzero value of θ13. To generate nonzero θ13 it is

necessary to break scaling ansatz in the Dirac sector.

Case B: mD (5 zero) + µ5
1, µ5

2 (5 zero):

The matrices in the last three rows (m5
4 to m5

12) of the ‘5 zero texture’ part of table 1

are ruled out due to the same reason as mentioned in Case A while, the matrices in the

first row i.e. m5
1, m5

2 and m5
3 give rise to the structure of mν as

A1 =

0 0 0

0 ∗ ∗
0 ∗ ∗

 (2.3)

where ‘∗’ represents some nonzero entries in mν . This structure leads to complete disap-

pearance of one generation. Moreover it has been shown in ref. [28] that if the number of

independent zeros in an effective neutrino mass matrix (mν) is ≥ 3 it doesn’t favour the

oscillation data and hence, ‘A1’ type mass matrix is ruled out.

Case C: mD (4 zero) + µ5
1 (5 zero):

There are 12 mD matrices with 4 zero texture and they are designated as m4
1,. . .m4

12 in

table 1. Due to the same reason as discussed in Case A, m4
10, m4

11 and m4
12 are not

1From now on we use mn as a mass matrix where n(= 4, 5, 6, 7) is the number of zeros in that matrix.
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7 zero texture

m7
1 =

 0 0 0

k1c1 0 0

c1 0 0

 m7
2 =

0 0 0

0 k1c2 0

0 c2 0

 m7
3 =

0 0 0

0 0 k1c3
0 0 c3


6 zero texture

m6
1 =

 d1 0 0

k1c1 0 0

c1 0 0

 m6
2 =

 0 d2 0

k1c1 0 0

c1 0 0

 m6
3 =

 0 0 d3
k1c1 0 0

c1 0 0


m6

4 =

d1 0 0

0 k1c2 0

0 c2 0

 m6
5 =

0 d2 0

0 k1c2 0

0 c2 0

 m6
6 =

0 0 d3
0 k1c2 0

0 c2 0


m6

7 =

d1 0 0

0 0 k1c3
0 0 c3

 m6
8 =

0 d2 0

0 0 k1c3
0 0 c3

 m6
9 =

0 0 d3
0 0 k1c3
0 0 c3


5 zero texture

m5
1 =

 0 0 0

k1c1 k1c2 0

c1 c2 0

 m5
2 =

 0 0 0

k1c1 0 k1c3
c1 0 c3

 m5
3 =

0 0 0

0 k1c1 k1c3
0 c1 c3


m5

4 =

 d1 d2 0

k1c1 0 0

c1 0 0

 m5
5 =

 0 d2 d3
k1c1 0 0

c1 0 0

 m5
6 =

 d1 0 d3
k1c1 0 0

c1 0 0


m5

7 =

d1 d2 0

0 k1c2 0

0 c2 0

 m5
8 =

0 d2 d3
0 k1c2 0

0 c2 0

 m5
9 =

d1 0 d3
0 k1c2 0

0 c2 0


m5

10 =

d1 d2 0

0 0 k1c3
0 0 c3

 m5
11 =

0 d2 d3
0 0 k1c3
0 0 c3

 m5
12 =

d1 0 d3
0 0 k1c3
0 0 c3


4 zero texture

m4
1 =

d1 0 0

0 k1c2 k1c3
0 c2 c3

 m4
2 =

0 d2 0

0 k1c2 k1c3
0 c2 c3

 m4
3 =

0 0 d3
0 k1c2 k1c3
0 c2 c3


m4

4 =

 d1 0 0

k1c1 0 k1c3
c1 0 c3

 m4
5 =

 0 d2 0

k1c1 0 k1c3
c1 0 c3

 m4
6 =

 0 0 d3
k1c1 0 k1c3
c1 0 c3


m4

7 =

 d1 0 0

k1c1 k1c2 0

c1 c2 0

 m4
8 =

 0 d2 0

k1c1 k1c2 0

c1 c2 0

 m4
9 =

 0 0 d3
k1c1 k1c2 0

c1 c2 0


m4

10 =

 d1 d2 d3
k1c1 0 0

c1 0 0

 m4
11 =

d1 d2 d3
0 k1c2 0

0 c2 0

 m4
12 =

d1 d2 d3
0 0 k1c3
0 0 c3


Table 1. Texture zeros with scaling ansatz of a general 3 × 3 matrix.
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µ5
1 =

0 0 0

0 k2
2s3 k2s3

0 k2s3 s3

 µ5
2 =

 0 k2s3 s3

k2s3 0 0

s3 0 0


Table 2. Maximal zero texture of µ matrix.

considered. Furthermore, mν arises through m4
1, m4

4 and m4
7 also correspond to the ‘A1’

type matrix (shown in eq. (2.3)) and hence are also discarded. Finally, remaining six mD

matrices m4
2, m4

3, m4
5, m4

6, m4
8 and m4

9 lead to the structure of mν with two zero eigenvalues

and obviously they are also neglected.

Case D: mD (4 zero) + µ5
2 (5 zero):

In this case, for m4
2 and m4

3 the low energy mass matrix mν comes out as a null matrix

while for m4
1 the structure of mν is given by

A2 =

0 ∗ ∗
∗ 0 0

∗ 0 0

 (2.4)

which is also neglected since the number of independent zeros ≥ 3. On the other hand rest

of the mD matrices (m4
4 to m4

9) correspond to the structure of mν as

A3 =

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 . (2.5)

Interestingly, a priori we cannot rule out the matrices of type A3, however it is observed

that mν of this type fails to generate θ13 within the present experimental bound (details

are mentioned in section 6.2.3). It is also observed that in this scheme to generate viable

neutrino oscillation data, four zero texture of both mD and µ matrices are necessary.

Therefore, now on we discuss extensively the four zero texture in both the sectors (Dirac

as well as Majorana sector).

3 4 zero texture

There are 126 ways to choose 4 zeros out of 9 elements of a general 3 × 3 matrix. Hence

there are 126 textures. Incorporation of scaling ansatz leads to a drastic reduction to only

12 textures as given in the table 1. In our chosen basis since MRS is taken as diagonal,

therefore, the structure of mD leads to the same structure of F . On the other hand

the lepton number violating mass matrix µ is complex symmetric and therefore from the

matrices listed in table 1, only m4
1 and m4

10 type matrices are acceptable. We renamed

those matrices as µ4
1 and µ4

2 and explicit structures of them are presented in table 3.

There are now 2 × 12 = 24 types of mν due to both the choices of µ matrices. We

discriminate different types of mD matrices in the following way:
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µ4
1 =

r1 0 0

0 k2
2s3 k2s3

0 k2s3 s3

 µ4
2 =

 r1 k2s3 s3

k2s3 0 0

s3 0 0


Table 3. Four zero texture of µ matrix.

mD

µ m4
1 m4

2 m4
3 m4

4 m4
5 m4

6 m4
7 m4

8 m4
9 m4

10 m4
11 m4

12

µ4
1 × × × × × ×
µ4

2 × × × × × ×

Table 4. Compositions of the discarded and survived structures of mν .

m4
D1 =

 d1 0 0

k1c1 0 k1c3

c1 0 c3

 m4
D2 =

 0 d2 0

k1c1 0 k1c3

c1 0 c3

 m4
D3 =

 0 0 d3

k1c1 0 k1c3

c1 0 c3



m4
D4 =

 d1 0 0

k1c1 k1c2 0

c1 c2 0

 m4
D5 =

 0 d2 0

k1c1 k1c2 0

c1 c2 0

 m4
D6 =

 0 0 d3

k1c1 k1c2 0

c1 c2 0


Table 5. Four zero textures of the Dirac mass matrices.

i) First of all, the texture m4
10, m4

11 and m4
12 are always scaling ansatz invariant due to

the same reason mentioned earlier in Case A and hence are all discarded.

Next the matrices m4
1, m4

2 and m4
3 are also ruled out due to the following:

a) When µ4
1 matrix is taken to generate mν along with m4

1, m4
2 and m4

3 as the Dirac

matrices, then the structure of the effective mν appears such that, one generation is

completely decoupled thus leading to two mixing angles zero for the matrix m4
1 and

two zero eigenvalues when we consider m4
2 and m4

3 matrices.

b) In case of µ4
2 matrix, the form of mν for m4

1 comes out as

A4 =

∗ ∗ ∗∗ 0 0

∗ 0 0

 (3.1)

which is phenomenologically ruled out and for other two matrices (m4
2 and m4

3) mν

becomes a null matrix. For a compact view of the above analysis we present the ruled

out and survived structures of mν symbolically in table 4.

Thus we are left with same six textures of mD for both the choices of µ and they are

renamed in table 5 as m4
D1, m4

D2, . . .m4
D6

.

Obviously, it is clear that the above analysis leads to altogether 12 effective mν matrices

arising due to six mD (m4
D1 to m4

D6) and two µ (µ4
1 and µ4

2) matrices.

– 6 –



J
H
E
P
0
5
(
2
0
1
5
)
0
7
7

Category A Category B

Matrices IA IIA IB IIB IIIB IVB

mD m4
D2 m4

D6 m4
D1 m4

D3 m4
D4 m4

D5

µ µ4
1 µ4

1 µ4
1 µ4

1 µ4
1 µ4

1

Table 6. Different Composition of mD and µ1 matrices to generate mν .

Category C Category D

Matrices IC IIC ID IID IIID IVD

mD m4
D1 m4

D4 m4
D2 m4

D3 m4
D5 m4

D6

µ µ4
2 µ4

2 µ4
2 µ4

2 µ4
2 µ4

2

Table 7. Different Composition of mD and µ2 matrices to generate mν .

4 Parametrization

Depending upon the composition of mD and µ we subdivided those 12 mν matrices in four

broad categories and each category is again separated in few cases and the decomposition

is presented in table 6 and table 7.

Throughout our analysis we consider the matrix MRS as

MRS =

p1 0 0

0 p2 0

0 0 p3

 . (4.1)

Following eq. (1.2), the mν matrix arises in Category A and Category B can be written in

a generic way as

mAB
ν = m0

 1 k1p p

k1p k
2
1(q2 + p2) k1(q2 + p2)

p k1(q2 + p2) (q2 + p2)

 (4.2)

with the definition of parameters as following

Set IA : m′0 =
d2

3s3

p2
3

, p′ =
p3c2

p2d3
, q′ =

c1p3

d3p1

√
r1

s3
, m0 = m′0, p = k2p

′, q = q′

Set IIA : m′0 =
d2

2s3

p2
2

, p′ =
p2c2

p3d2
, q′ =

c1p2

d2p1

√
r1

s1
, m0 = m′0k

2
2, p =

p′

k2
, q =

q′

k2

Set IB : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1
, q′ =

c3p1

d1p3

√
s3

r1
, m0 = m′0, p = p′, q = q′

Set IIB : m′0 =
d2

3s3

p2
3

, p′ =
c3

d3
, q′ =

c1p3

d3p1

√
r1

s1
, m0 = m′0, p = p′, q = q′

Set IIIB : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1
, q′ =

c2p1

d1p2

√
s3

r1
, m0 = m′0, p = p′, q = k2q

′

Set IVB : m′0 =
d2

2s3

p2
2

, p′ =
c2

d2
, q′ =

c1p2

d2p1

√
r1

s1
, m0 = m′0k

2
2, p = p′, q =

q′

k2
. (4.3)
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Similarly the mν matrix arises in Category C can be written as

mC
ν = m0

 1 k1(p+ q) p+ q

k1(p+ q) k2
1(2pq + p2) k1(2pq + p2)

p+ q k1(2pq + p2) (2pq + p2)

 (4.4)

with the following choice of parameters

Set IC : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1
, q′ =

c2p1

d1p2

√
s3

r1
, m0 = m′0, p = p′, q = k2q

′

Set IIC : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1
, q′ =

c3p1

d1p3

√
s3

r1
, m0 = m′0, p = p′, q = q′. (4.5)

For Category D the effective mν comes out as

mD
ν = m0

 0 k1p p

k1p k
2
1(q2 + 2rp) k1(q2 + 2rp)

p k1(q2 + 2rp) (q2 + 2rp)

 (4.6)

with the definition of parameters as

Set ID : m′0 =
d2

2r1

p2
1

, p′=
c1p1s3

d2p2r1
, q′=

c1

d2
, r′=

c3

d2
, m0 =m′0, p=k2p

′, q=q′, r=r′

Set IID : m′0 =
d2

3r1

p2
1

, p′=
c1p1s3

d3p3r1
, q′=

c1

d3
, r′=

c2

d3
, m0 =m′0, p=p′, q=q′, r=k2r

′

Set IIID : m′0 =
c1p1s3

d3p3r1
, p′=

c1

d1
, q′=

c1

d3
, r′=

c3

d3
, m0 =m′0, p=p′, q=k2q

′, r=r′

Set IVD : m′0 =
d2

2r1

p2
1

, p′=
c1p1s3

d2p2r1
, q′=

c1

d2
, r′=

c2

d2
, m0 =m′0, p=k2p

′, q=q′, r=r′

(4.7)

and in general, we consider all the parameters m0, k1, p, r and q are complex.

5 Phase rotation

As mentioned earlier, all the parameters of mν are complex and therefore we can rephase

mν by a phase rotation to remove the redundant phases. Here, we systematically study

the phase rotation for each category.

Category A,B. The Majorana type mass matrix mν can be rotated in phase space

through

m′ABν = P TmAB
ν P (5.1)

where P is a diagonal phase matrix and is given by P = diag(eiΦ1 , eiΦ2 , eiΦ3).

Redefining the parameters of mν as

m0 → m0e
iαm , p→ peiθp , q → qeiθq , k1 → k1e

iθ1 (5.2)

– 8 –
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with

Φ1 = −αm
2
,Φ2 = −

(
θ1 + θp +

αm
2

)
,Φ3 = −

(
θp +

αm
2

)
(5.3)

the phase rotated m′ABν appears as

m′ABν = m0

 1 k1p p

k1p k
2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

 (5.4)

where θ = 2(θq − θp) and all the parameters m0, p, q and k1 are real. Thus there is only a

single phase parameter in m′ABν .

Category C.

In a similar way, the mass matrix of Category C can be rephased as

m′Cν = m0

 1 k1(p+ qeiθ) p+ qeiθ

k1(p+ qeiθ) k2
1(2pqeiθ + p2) k1(2pqeiθ + p2)

p+ qeiθ k1(2pqeiθ + p2) (2pqeiθ + p2)

 (5.5)

with the same set of redefined parameters as mentioned in eq. (5.2) and (5.3) and the

diagonal phase matrix mentioned in the previous case with θ = θq − θp.

Category D.

For this category the rephased mass matrix comes out as

m′Dν = m0

 0 k1p p

k1p k
2
1(q2eiα + 2rpeiβ) k1(q2eiα + 2rpeiβ)

p k1(q2eiα + 2rpeiβ) (q2eiα + 2rpeiβ)

 (5.6)

with r → reiθr , α = 2(θq − θp), β = (θr − θp) and the rest of the parameters are already

defined in eq. (5.2) and eq. (5.3).

6 Breaking of the scaling ansatz

Since the neutrino mass matrix obtained in eq. (5.4), (5.5) and (5.6) are all invariant under

scaling ansatz and thereby give rise to θ13 = 0 as well as m3 = 0. Although vanishing

value of m3 is yet not ruled out however, the former, θ13 = 0 is refuted by the reactor

experimental results. Popular paradigm is to consider θ13 = 0 at the leading order and

by further perturbation nonzero value of θ13 is generated. We follow the same way to

produce nonzero θ13 through small breaking of scaling ansatz. It is to be noted in our

scheme, generation of nonzero θ13 necessarily needs breaking in mD. To generate nonzero

m3 breaking in µ matrix is also necessary along with mD, however, in Category B since

det(mD = 0) even after breaking in the µ matrix mν still gives one of the eigenvalue equal

to zero. On the other hand for Category C and Category D, µ4
2 has always zero determinant

because of being scaling ansatz invariant and therefore, leads to one zero eigenvalue as that

of Category B. It is the Category A for which we get nonzero θ13 as well as nonzero m3

after breaking the scaling ansatz in both the matrices (mD and µ).
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In the following, we invoke breaking of scaling ansatz in all four categories through

i) breaking in the Dirac sector (θ13 6= 0, m3 = 0)

ii) breaking in the Dirac sector as well as Majorana sector (θ13 6= 0, m3 6= 0) and later

we discuss separately both the cases.

6.1 Breaking in the Dirac sector

6.1.1 Category A,B

We consider minimal breaking of the scaling ansatz through a dimensionless real parameter

ε in a single term of different mD matrices of those categories as

m4
D2 =

 0 d2 0

k1(1 + ε)c1 0 k1c3

c1 0 c3

 , m4
D6 =

 0 0 d3

k1(1 + ε)c1 k1c2 0

c1 c2 0

 (6.1)

for Category A and

m4
D1 =

 d1 0 0

k1c1 0 k1(1 + ε)c3

c1 0 c3

 , m4
D3 =

 0 0 d3

k1(1 + ε)c1 0 k1c3

c1 0 c3


m4
D4 =

 d1 0 0

k1c1 k1(1 + ε)c2 0

c1 c2 0

 , m4
D5 =

 0 d2 0

k1(1 + ε)c1 k1c2 0

c1 c2 0

 (6.2)

for Category B. We further want to mention that breaking considered in any element of

the second row are all equivalent. For example, if we consider breaking in the ‘23’ element

of m4
D2 it is equivalent to as considered in eq. (6.1). Neglecting the ε2 and higher order

terms, the effective mν matrix comes out as

m′ABεν = m0

 1 k1p p

k1p k
2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

+m0ε

0 0 0

0 2k2
1q

2eiθ k1q
2eiθ

0 k1q
2eiθ 0

 . (6.3)

As mentioned earlier, that for Category B, det(mD) = 0 and it is not possible to generate

m3 6= 0 even if we consider breaking in the µ matrices. On the other hand , the matrices

in Category A posses det(mD) 6= 0 and thereby give rise to m3 6= 0.

Now to calculate the eigenvalues, mixing angles, JCP, the Dirac and Majorana phases

we utilize the results obtained in ref. [47], for a general complex matrix. We should mention

that the formula obtained in ref. [47], for Majorana phases is valid when all three eigenvalues

are nonzero. However, when one of the eigenvalue is zero (in this case m3 = 0) one has

to utilize the methodology given in ref. [18], which shows, a general Majorana type mass

matrix mν can be diagonalized as

U †mνU
∗ = diag(m1,m2,m3) (6.4)
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or alternely,

mν = Udiag(m1,m2,m3)UT (6.5)

where

U = UCKMPM . (6.6)

The mixing matrix UCKM is given by (following PDG [48]) convention)

UCKM =

 c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s23s13e
iδcp c12c23 − s12s13s23e

iδcp c13s23

s12s23 − c12s13c23e
iδcp −c12s23 − s12s13c23e

iδcp c13c23

 (6.7)

with cij = cos θij , sij = sin θij and δCP is the Dirac CP phase. The diagonal phase matrix

PM is parametrized as

PM = diag(1, eαM , ei(βM+δCP)) (6.8)

with αM and βM + δCP are the Majorana phases.

Writing eq. (6.5) explicitly with m3 = 0 we can have expressions for six independent

elements of mν in terms of the mixing angles, two eigenvalues and the Dirac CP phase,

from which the m11 element can be expressed as

m11 = c2
12c

2
13m1 + s2

12c
2
13m2e

2iαM (6.9)

and therefore the Majorana phase αM comes out as

αM =
1

2
cos−1

{
|m11|2

2c2
12s

2
12c

4
13m1m2

− (c4
12m

2
1 + s4

12m
2
2)

2c2
12s

2
12m1m2

}
. (6.10)

The Jarlskog measure of CP violation JCP is defined in usual way as

JCP =
Im(h12h23h31)

(∆m2
21)(∆m2

32)(∆m2
31)

(6.11)

where h is a hermitian matrix constructed out of mν as h = mνm
†
ν .

6.1.2 Category C

In this case breaking is considered in mD as

m4
D1 =

 d1 0 0

k1(1 + ε)c1 k1c2 0

c1 c2 0

 , m4
D4 =

 d1 0 0

k1(1 + ε)c1 0 k1c3

c1 0 c3

 (6.12)

and the scaling ansatz broken mν appears as

m′Cεν = m0

 1 k1(p+ qeiθ) p+ qeiθ

k1(p+ qeiθ) k2
1(2pqeiθ + p2) k1(2pqeiθ + p2)

p+ qeiθ k1(2pqeiθ + p2) (2pqeiθ + p2)


+m0ε

 0 k1qe
iθ 0

k1qe
iθ 2k2

1pqe
iθ k1pqe

iθ

0 k1pqe
iθ 0

 . (6.13)
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Quantity 3σ ranges

|∆m2
31| N 2.31< ∆m2

31(103 eV −2) < 2.74

|∆m2
31| I 2.21< ∆m2

31(103 eV −2) < 2.64

∆m2
21 7.21< ∆m2

21(105 eV −2) < 8.20

θ12 31.3o < θ12 < 37.46o

θ23 36.86o < θ23 < 55.55o

θ13 7.49o < θ13 < 10.46o

Table 8. Input experimental values [16].

6.1.3 Category D

Breaking in mD in this case is incorporated through

m4
D2 =

 0 d2 0

k1c1 0 k1(1 + ε)c3

c1 0 c3

 , m4
D3 =

 0 0 d3

k1c1 0 k1(1 + ε)c3

c1 0 c3


m4
D5 =

 0 d2 0

k1c1 k1(1 + ε)c2 0

c1 c2 0

 , m4
D6 =

 0 0 d3

k1c1 k1(1 + ε)c2 0

c1 c2 0

 (6.14)

and the corresponding mν comes out as

m′Dεν = m0

 0 k1p p

k1p k
2
1(q2eiα + 2rpeiβ) k1(q2eiα + 2rpeiβ)

p k1(q2eiα + 2rpeiβ) (q2eiα + 2rpeiβ)


+m0ε

0 0 0

0 2k2
1rpe

iβ k1rpe
iβ

0 k1rpe
iβ 0

 . (6.15)

6.2 Numerical analysis

In order to perform the numerical analysis to obtain allowed parameter space we utilize

the neutrino oscillation data obtained from global fit shown in table 8.

6.2.1 Category A,B

We first consider Category A,B for which the neutrino mass matrix is given in eq. (6.3). The

parameter ε is varied freely to fit the extant data and it is constrained as 0.04 < ε < 0.7.

However, to keep the ansatz breaking effect small we restrict the value of ε only upto 0.1.

For this range of ε (0 < ε < 0.1) under consideration the parameter spaces are obtained as

1.78 < p < 3.40, 1.76 < q < 3.42 and 0.66 < k1 < 1.3. It is interesting to note a typical

feature of this category is that the Dirac CP phase δCP comes out too tiny and thereby

generating almost vanishing value of JCP (≈ 10−6) while the range of the only Majorana

phase in this category is obtained as 77o < αM < 90o.

As one of the eigenvalue m3 = 0 therefore, the hierarchy of the masses is clearly

inverted in this category. The sum of the three neutrino masses Σimi(= m1 + m2 + m3)

– 12 –
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Figure 1. Plot of p vs k1 (left), q vs k1 (right) for the Category A,B with ε = 0.1..

Figure 2. Plot of |m11| vs Σimi for Category A,B with ε = 0.1.

and |m11| are obtained as 0.088 eV < Σimi < 0.104 eV and 0.0102 eV < |m11| < 0.0181 eV

which predict the value of the two quantities below the present experimental upper bounds.

To illustrate the nature of variation, in figure 1 we plot p vs k1 and q vs k1 while in figure 2

a correlation plot of Σimi with |m11| is shown for ε = 0.1 and it is also seen from figure 1

and 2 that the ranges of the parameters do not differ much compare to the values obtained

for the whole range of ε parameter.

In brief, distinguishable characteristics of this category are i) tiny JCP and δCP ii)

inverted hierarchy of the neutrino masses. At the end of this section we will further discuss

the experimental testability of these quantities for all the categories.

6.2.2 Category C

In this case it is found that a small breaking of ε (0.02 < ε < 0.09) is sufficient to accom-

modate all the oscillation data. We explore the parameter space and the ranges obtained

as 3.42 < p < 6.07, 1.68 < q < 3.02 and 0.7 < k1 < 1.32. The hierarchy obtained in this

– 13 –
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Figure 3. Plot of p vs k1 (left), q vs k1 (right) for the Category C with ε = 0.09.

Figure 4. Plot of |m11| vs Σimi for Category C with ε = 0.09.

case is also inverted due to the vanishing value of m3. The other two quantities Σimi and

|m11| come out as 0.0118 eV < |m11| < 0.019 eV and 0.088 eV < Σimi < 0.105 eV. Similar

to the previous category JCP is vanishingly small due to low value of δCP. The range of

the Majorana phase αM is obtained as 81o < αM < 89o. In figure 3 we plot k1 vs p and k1

vs q for ε = 0.09 that predicts almost the same ranges of the parameters (p, q and k1) and

all other quantities (|m11|, Σimi, αM and JCP) as obtained from the whole range of ε. We

present a correlation plot of Σimi with |m11| in figure 4.

6.2.3 Category D

In case of Category D, although a priori it is not possible to rule out m′Dεν without going into

the detailed numerical analysis, however in this case even if with ε = 1 it is not possible to

accommodate the neutrino oscillation data. Specifically, the value of θ13 is always beyond

the reach of the parameter space. Exactly for the same reason the mν matrix of type A3

in eq. (2.5) is phenomenologically ruled out.
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6.3 Breaking in Dirac+Majorana sector

In this section we focus on the phenomenology of the neutrino mass matrix where the

scaling ansatz is broken in both the sectors. This type of breaking is only relevant for

Category A since in this case mD is nonsingular after breaking of the ansatz and the

resultant mν gives rise to nonzero θ13 along with m3 6= 0. In all the other categories due

to the singular nature of mD, inclusion of symmetry breaking in the Majorana sector will

not generate m3 6= 0. Thus we consider only Category A under this scheme.

We consider the breaking in mD as mentioned in eq. (6.1) and the ansatz broken

texture of µ4
1 matrix is given by

µ4
1 =

r1 0 0

0 k2
2s3 k2(1 + ε′)s3

0 k2(1 + ε′)s3 s3

 (6.16)

where ε′ is a dimensionless real parameter. The effective neutrino mass matrix mν comes

out as

m′Aενε′ = m0

 1 k1p p

k1p k
2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

+m0ε

0 0 0

0 2k2
1q

2eiθ k1q
2eiθ

0 k1q
2eiθ 0


+m0ε

′

 0 k1p p

k1p 0 0

p 0 0

 . (6.17)

6.3.1 Numerical results

As mentioned above, ε′ = 0 leads to inverted hierarchy with m3 = 0 and thus to generate

nonzero m3 a small value of ε′ is needed. Similar to the previous cases two breaking

parameters ε and ε′ can be varied freely through the ranges that are sensitive to the

oscillation data and are obtained as 0.06 < ε < 0.68 and 0 < ε′ < 1. It is to be noted

that although the ε parameter is restricted due to θ13 value, ε′ is almost insensitive to

θ13 and it can vary within a wide range as 0 < ε′ < 1. A correlation plot of ε with

ε′ is shown in figure 5. However, as mentioned earlier, the effect of the breaking term

should be smaller than the unbroken one, therefore, to obtain the parameter space for this

category we consider breaking of the scaling ansatz in both the sectors only upto 10 %

and consequently for all combinatorial values of ε and ε′ the parameters p, q and k1 vary

within the ranges as 1.07 < p < 3.10, 1.03 < q < 3.12 and 0.67 < k1 < 1.31. Interestingly,

although all the eigenvalues are nonzero in this case, the hierarchy is still inverted. JCP

is found to be tiny (≈ 10−6) again due to small value of δCP. The Majorana phases are

obtained as −96o < αM < 74o and −1000 < βM + δCP < 102o followed by the bounds on

Σimi and |m11| as 0.088 eV < Σimi < 0.11 eV and 0.010 eV < |m11| < 0.022 eV which are

well below the present experimental upper bounds. In figure 6 we demonstrate the above

predictions for ε = ε′ = 0.1. In the left panel of figure 6 the inverted hierarchical nature

is shown and in the right panel variation of the Majorana phases is demonstrated. Some

comments are in order regarding predictions of the present scheme:
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Figure 5. Correlated plot of ε with ε′.

Figure 6. Plot of (m1/m3) vs (m2/m1) (left) and βM + δCP vs αM (right) after breaking of the

scaling ansatz in both the sectors of Category A for a representative value of ε = ε′ = 0.1.

1. After precise determination of θ13 taking full account of reactor neutrino experimental

data, it is shown that the hierarchy of the light neutrino masses can be probed through

combined utilization of NOνA and T2K [49] neutrino oscillation experimental results

in near future. Thus the speculation of hierarchy in the present scheme will be

clearly verified. Moreover, taking the difference of probabilities between P (νµ → νe)

and P (ν̄µ → ν̄e) information on the value of JCP can be obtained using neutrino and

anti neutrino beams.

2. More precise estimation of the sum of the three light neutrino masses will be obtained

utilizing a combined analysis with PLANCK data [50] and other cosmological and

astrophysical experiments [51] such as, Baryon oscillation spectroscopic survey, The

Dark energy survey, Large Synoptic Survey Telescope or the Euclid satellite data [52]

etc. Such type of analysis will push Σimi ∼ 0.1 eV (at the 4σ level for inverted order-
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ing) and Σimi ∼ 0.05 eV (at the 2σ level for normal ordering). Thus the prediction

of the value of Σimi in the different categories discussed in the present work will

also be tested in the near future. Furthermore, the NEXT-100 [53] will probe the

value of |m11| up to 0.1 eV which is a more precise estimation than the EXO-200 [54]

experimental range (0.14-0.38 eV).

7 Summary and conclusion

In this work we explore the phenomenology of neutrino mass matrix obtained due to inverse

seesaw mechanism adhering i) Scaling ansatz, ii) Texture zeros within the framework of

SU(2)L × U(1)Y model with three right handed neutrinos and three left chiral singlet

fermions. Throughout our analysis we choose a basis in which the charged lepton mass

matrix (mE) and the MRS matrix (appeared in inverse seesaw mechanism due to the

coupling of νR and SL) are diagonal. It is found that four is the maximum number of zeros

that can be allowed in mD and µ matrices to obtain viable phenomenology. We classify

different four zero textures in four different categories depending upon their generic form.

Since scaling ansatz invariance always gives rise to θ13 = 0, we have to break such ansatz.

We consider breaking in mD and also in µ matrices. We explore the parameter space and

it is seen that one category (Category D) is ruled out phenomenologically. The hierarchy

obtained in all the cases are inverted and it is interesting to note that all such categories

give rise to tiny CP violation measure JCP due to small value of δCP. In conclusion, further

observation of hierarchy of neutrino masses and CP violation in the leptonic sector in the

forthcoming experiments will conclusively refute or admit all these categories obtained in

the present scheme.
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