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1 Introduction

The occurrence of phase transitions in gravitational systems has been known since the

seminal work of Hawking and Page more than 30 years ago [1]. They uncovered a thermal

phase transition in asymptotically anti-de Sitter (AdS) spaces: when thermal radiation

in AdS is heated up beyond a certain temperature, it becomes unstable and eventually

collapses to form a black hole. This statement has been generalized to various setups

and entails many interesting consequences. For instance, in the context of AdS/CFT [2–4]

where quantum gravity in AdS space is conjectured to be dual to a Conformal Field Theory

(CFT), the Hawking-Page transition is interpreted as a confining/deconfining phase tran-

sition in the dual field theory at high temperature [5]. The Hawking-Page phase transition

in AdS3 gravity (between BTZ black holes [6, 7] and thermal AdS3) has also been studied

from various perspectives and shown to exhibit a surprisingly rich structure [8–10] (see
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also [11, 12]). Through AdS3/CFT2, the AdS3 quantum gravity partition function should

be equal to a CFT2 partition function of the form

Z(τ, τ̄) = Tre2πiτL0e2πiτ̄ L̄0 , (1.1)

where τ is the modular parameter of the torus on which the 2d CFT is defined. On the

gravity side the grand canonical partition function is usually expressed, for want of anything

better, as a euclidean path integral Z(τ) ∼
∫
Dge−kS[g] over all (smooth) metrics with

boundary metric a two torus with conformal structure τ . The latter encodes the thermal

properties of the geometries under consideration through the identifications z ∼ z+1 ∼ z+τ

with z = 1
2π (φ+ it) and τ = 1

2π (Θ + iβ), where β is the dimensionless inverse temperature

and Θ the angular potential. In the classical, large AdS-radius, large central charge limit

the partition function can be approximated in the saddle-point approximation as

Z(τ, τ̄) ∼
∑
gc

e−kS[gc], k =
c

24
=

`

16G
� 0, (1.2)

where c is the Brown-Henneaux central charge [13] and S[g] the classical gravity action.

This is the regime in which we will be working. The Gibbs free energy G(τ, τ̄) of the system

is defined as

Z(τ, τ̄) = e−βG(τ,τ̄). (1.3)

A crucial property of 2d CFTs whose partition functions can be obtained as the vacuum

amplitude on the torus is modular invariance. In particular, the modular S-transformation

implies that

Z(τ, τ̄) = Z

(
−1

τ
,−1

τ̄

)
. (1.4)

At zero angular potential Θ, this powerful property relates the behaviour of the partition

function at high and low temperatures. In these regimes, the free energy for generic CFTs

is universal and depends only on the central charges. Interestingly, it was shown [14] (see

also [15]) that for holographic CFTs (those dual to AdS3 gravity backgrounds), in the large

central charge limit, this universal behaviour extends all the way towards the self-dual

temperature

βsd = 2π. (1.5)

This peculiar behaviour of the free energy allows to explain why, while generic 2d CFTs have

no phase transition (lnZ and all its derivatives are continuous functions of β), holographic

CFTs do exhibit a first order phase transition at (1.5) at large c. This regime is precisely

the one of classical gravity and (1.5) then precisely corresponds to the AdS3 Hawking-

Page transition [14] where the classical actions of the black hole and thermal AdS3 saddles

coincide.

Modular invariance (1.4) is also at the heart of another striking result pertaining

to unitary 2d CFTs, the derivation of the asymptotic growth of states through Cardy’s

formula [16]. For large L0 and L̄0 charges and fixed central charges, the result is simply

SCFT(L0, L̄0) = 2π

√
c

6
L0 + 2π

√
c̄

6
L̄0. (1.6)
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This formula has deep implications for the black hole entropy problem. Indeed, while in

some situations the dual CFT can be thoroughly identified (the most famous example being

the symmetric orbifold CFT in the microscopic derivation of [17]), in many cases it can not.

However even then, expression (1.6) was shown to match the Bekenstein-Hawking of AdS3

black holes, based only upon symmetry arguments [18]. Moreover, it does so for all values

of the charges. The reason was elucidated recently in details [15]: in holographic CFTs

(defined more precisely as admitting a large central charge expansion and a sparse light

spectrum), the Cardy formula was shown to hold in the large c limit for L0, L̄0 of order c,

which is precisely the regime in which the Bekenstein-Hawking entropy is computed.

The upshot of the above discussion is that gravity computations strongly constrain

the properties that a holographic field theory dual to gravity in asymptotically AdS spaces

should display. On the other hand, in recent years, the relevance of gravity theories with

non-AdS boundary conditions have appeared in various holographic contexts. Examples

include dS/CFT [19], Kerr/CFT [20], AdS/Condensed Matter Theory [21, 22] and more

recently flat space Holography (see e.g. [23, 24] and references therein). In most of these

situations, not much is known about the potential dual field theories which are not ex-

pected to be (at least full-fledged) CFTs. In this work, we will focus on a class of spaces

called Warped AdS3 spaces (WAdS3). They have appeared at various occasions, namely

in string theory [25–30] and lower-dimensional gravity [31–38]. They are believed to be

relevant both to describe extremal black holes holographically as in Kerr/CFT and in Holo-

graphic Condensed Matter applications where they appear as factors of the corresponding

geometries [30, 39, 40]. As alluded to above, they do not satisfy Brown-Henneaux’s bound-

ary conditions, but rather belong to a phase space with V ir A û(1) symmetry [34, 37, 41].

These symmetries were shown to follow from chiral scale invariance in 2d field theories [42],

in a way similar to the emergence of full local conformal symmetry in 2d Poincaré and scale

invariant field theories. Two-dimensional field theories with V ir A û(1) local symmetries

have been introduced in [40] and named Warped Conformal Field Theories (WCFTs).

They share many remarkable features with 2d CFTs, as we will review in more details in

the next section. In particular, they exhibit a counterpart of the modular invariance (1.4)

and the symmetries are powerful enough to derive an analog of Cardy’s formula [16], de-

noted SWCFT. Furthermore, the Bekenstein-Hawking entropy of the black holes contained

in the gravitational phase space is exactly equal to SWCFT.

The goal of this paper is to investigate the existence of phase transitions in WAdS3

gravity and relate them to properties of the putative underlying WCFT. It is fair to say

that even generic WCFTs are rather elusive and explicit examples are scarce (see how-

ever [43, 44]). We will therefore use the gravity side as a guide to explore the basic re-

quirements a holographic WCFT should satisfy. As WAdS3 spaces do not satisfy Einstein’s

equations, we will use the simplest, purely metric, gravitational theory admitting them as

solutions: Topologically Massive Gravity (TMG) [45, 46]. The latter consists in a certain

higher-curvature, parity breaking, extension of Einstein gravity, which we will review in

due course.

The plan of the paper is as follows. In section 2, we review some salient properties

of WCFTs, discussing in particular the existence of inequivalent thermal ensembles and
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the counterpart of modular invariance. Section 3 introduces the gravity theory under

consideration, considering as a warm-up the thermodynamic stability properties of BTZ

black holes and the Hawking-Page phase transition for AdS3 in TMG. With the technology

introduced in previous section, section 4 finally adresses the same questions for WAdS3

black holes and connects the results to properties of the WCFT partition function. In

section 5 we make a brief digression on inner horizon properties, and then conclude.

2 Warped AdS3 black holes and WCFT thermal ensembles

WAdS3 backgrounds are Lorentzian counterparts of the squashed three-sphere, and are

obtained by deforming the AdS3 metric as follows:

gWAdS = gAdS3 − 2H2ξ ⊗ ξ, (2.1)

where the real constant H2 is a deformation parameter and where ξµ is a constant-norm

Killing vector, belonging to one SL(2,R) factor of the SL(2,R)× SL(2,R) isometry group

of AdS3. By construction, the resulting geometry possesses an SL(2,R) × U(1) isometry

group, and is named Timelike, Spacelike or Null Warped AdS3 depending on the norm of

the deformation Killing vector (||ξ||2 = −1,+1 or 0 respectively). These metrics no longer

solve Einstein’s equations, but are a solution to the equations of motion of various higher-

curvature extensions of 3d gravity and of Einstein-Hilbert gravity coupled to matter fields.

Locally WAdS3 black holes can be obtained by quotienting the above (spacelike and

null) warped geometries, much like the BTZ black holes correspond to discrete quotients

of AdS3 [6, 7]. Here we will focus on the spacelike case. Various coordinate systems have

been used in the literature to describe these black holes. Their metric can be written as

(see [36], section 4)

ds2

l̂2
= dT 2 +

dr̂2

(ν2 + 3)(r̂ − r̂+)(r̂ − r̂−)
−
(

2νr̂ −
√
r̂+r̂−(ν2 + 3)

)
dTdθ

+
r̂

4

(
3(ν2 − 1)r̂ + (ν2 + 3)(r̂+ + r̂−)− 4ν

√
r̂+r̂−(ν2 + 3)

)
dθ2 (2.2)

with r̂ ∈ [0,∞[, T ∈]−∞,+∞[ and θ ∼ θ + 2π. The solution is free of naked CTCs when

the parameter ν2 > 1, in which case the solution is said to be spacelike stretched (otherwise

it is said to be squashed — this terminology originates from the fact that the warp factor

deforming the AdS3 can be greater or less than unity, see [36]; spacelike squashed black

holes are sometimes referred to as Godel black holes [27, 33]). The parameter ν is in general

fixed by the equations of motion in terms of the coupling constants of the theory at hand

and characterizes the deformation like the parameter H2 in (2.1). In particular, ν2 = 1

when H2 = 0 and we recover a locally AdS3 space ((2.2) then represents a BTZ black hole

in unusual coordinates).

The solutions (2.2) have well-defined thermodynamic properties. They are char-

acterized by a Hawking temperature, angular velocity, mass, angular momentum and

Bekenstein-Hawking entropy satisfying the first law of black hole mechanics. Their asymp-

totic behaviour, however, is unusual as can be seen from the leading terms in r̂ in (2.2):
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when ν2 6= 1, they cease to be asymptotically AdS3, i.e. they no longer satisfy Brown-

Henneaux’s boundary conditions [13]. Instead, they belong to the phase space of asymptot-

ically spacelike WAdS3 spaces (see (1.1) of [37]). These boundary conditions are preserved

by the following set of diffeomorphisms

`n = einθ∂θ − inr̂einθ∂r̂ (2.3)

pn = einθ∂T .

generating a centerless Virasoro-Kac-Moody U(1) algebra

i[`n `m] = (n−m)`n+m , i[`n, pm] = −m pn+m , i[pn, pm] = 0 . (2.4)

The corresponding canonical charges

Ln := Q`n , Pn := Qpn , (2.5)

satisfy the same algebra under Dirac brackets, with central extensions which we denote

by c and k for the Virasoro and U(1) Kac-Moody parts respectively. Their precise

expressions depend on the details of the gravitational theory under consideration, see

e.g. [30, 37, 40, 41].

Another useful description of the black holes (2.2) is by writing

ds2
WBTZ = ds2

BTZ − 2H2ξ ⊗ ξ (2.6)

where ds2
BTZ is the BTZ black hole metric (where we put Newton’s constant G to 1):

ds2
BTZ =

(
8M − r2

l2

)
dt2 − r2dr2

8Mr2 − r4

l2
− 16J2

+ 8J dt dφ+ r2dφ2 (2.7)

and ξ such that ||ξ||2 = 1 is given by

ξµ =
1√
8

√
l

(M l − J)
(−∂t + ∂φ) . (2.8)

This description makes the relation to BTZ and asymptotically AdS3 spaces more direct.

The change of boundary coordinates between (2.2) and (2.6) is (see appendix A for details)

φ− t

l
= −l̂ θ (2.9)

φ+
t

l
= −l̂

(
k

2P0
T + θ

)
with l =

√
4

3+ν2 l̂. We will often also set l = 1.

This change of coordinates is charge-dependent and will affect the form of the corre-

sponding boundary conditions, which take the form (x± = φ± t
l )

grr =
l2

r2
+O(r−4), g++ = j++r

4 + h++r
2 + f++, g+− =

(
1

2
+ j+−

)
r2 +O(1),

g−− = f−−, g+r = O(1/r), g−r = O(1/r3). (2.10)
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The change of coordinates (2.9) together with (2.5) implies that [40]

P̃0 := Q∂x+ =
P 2

0

k
, L̃0 := Q∂x− = L0 −

P 2
0

k
. (2.11)

In usual AdS/CFT set-ups, certain CFT density matrices on the field theory side

correspond to specific holographically dual geometries (more specifically, the latter actually

arise as saddle points in a quantum gravity path integral). In three dimensions for instance,

the CFT2 vacua on the plane or on the cylinder (ρ = |0〉〈0|), thermal density matrices

(ρ = e−βH) and grand canonical density matrices (ρ = e−β(H−ΩJ)) are dual to Poincaré

or global AdS3, static BTZ and rotating BTZ geometries, respectively. On the other hand

multi-particle descendant states of the form |ψ〉 = L−n1 . . . L−nm |0〉 are dual to AdS3

dressed up with boundary gravitons, i.e. AdS3 acted upon with finite Brown-Henneaux

diffeomorphisms. The field theory is understood to “live” at the conformal boundary of

AdS3, whose coordinates are identified with the field theory coordinates. In particular, the

change of coordinates between BTZ black holes and Poincaré AdS3, close to the boundary,

is precisely the one between Rindler and Minkowski observers in (1+1)-dimensions [8].

Therefore, having a BTZ black hole in the bulk corresponds to having a field theory at the

boundary as seen by an accelerated observer and the field theory will be in a thermal state.

The above statement relies essentially on the relation between Rindler and inertial

observers and the existence of a UV dual field theory at large r, but not on its exact

nature (conformal or not). A similar argument can be performed for WAdS3 spaces [40].

First, the symmetries (2.3) suggest that asymptotically spacelike WAdS3 spaces are dual

to a field theory with the corresponding symmetries, a Warped Conformal Field Theory

(WCFT) [40]. By analogy with the AdS3 situation, its vacuum on the plane is taken to be

dual to Poincaré spacelike WAdS3, with metric

ds2
PWAdS3

=
dy2 + dw+dw−

y2
− 2H2ξ ⊗ ξ, (2.12)

with

ξµ = y∂y + 2w−∂−, ||ξ||2 = 1. (2.13)

Second, the change of coordinates between (2.12) and (2.6) is

w+ =

√
r2 − l4π(T+ + T−)2

r2 − l4π(T+ − T−)2
e2πl T+x+

w− =

√
r2 − l4π(T+ + T−)2

r2 − l4π(T+ − T−)2
e2πl T−x−

y = 2π2l2

√
T−T+

r2 − l4π(T+ − T−)2
eπl (T−x−+T+x+) (2.14)

where the parameters T± are given by

T+ =
T

1− lΩ
, T− =

T

1 + lΩ
. (2.15)
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Near the r = ∞ boundary, (2.14) is just the change of coordinates from Minkowski to

Rindler space,1 so an observer in (x+, x−) coordinates will be in a thermal state described

by the density matrix ρ = e−β+P̃0−β−L̃0 , with

β± =
1

l T±
. (2.16)

Because of (2.11), this explains why the coordinate system of (2.6) is better suited to

describe the thermal properties of the Warped black holes.

Note that the thermal identifications (t, φ) ∼ (t+ iβ, φ− iβΩ), where β and Ω are the

inverse Hawking temperature and angular potential of (2.6) respectively, are trivial in the

(w+, w−) plane because of (2.14) and the relations

1

T
=

1

2

(
1

T−
+

1

T+

)
,

Ω l

T
=

1

2

(
1

T−
− 1

T+

)
(2.17)

Finally, the partition function for a WCFT at finite temperature and angular potential

can be written as

Z(β+, β−) = Tre−β+P̃0−β−L̃0 . (2.18)

The WCFT symmetries allow to determine the counterpart of modular invariance in these

theories as [40]

Z(β+, β−) = Z

(
4π2

β+
,

4π2

β−

)
. (2.19)

Defining τ = 1
2π (−βΩE + iβl ), with ΩE = iΩ the Wick-rotated angular potential, (2.19) is

rewritten using (2.17) as

Z(τ, τ̄) = Z

(
−1

τ
,−1

τ̄

)
(2.20)

and therefore takes exactly the same form as in 2d CFTs. In particular, at zero angular

potential, β+ = β− = β and (2.19) singles out a self-dual temperature

βwsd = 2π, (2.21)

the same way as in 2d CFTs.

The warped modular invariance relation then allows to obtain an expression for the

degeneracy of states as

SWCFT = 4π

√
−P̃ vac0 P̃0 + 4π

√
−L̃vac0 L̃0 . (2.22)

In deriving (2.22), a small angular potential limit has been taken (similar to the high-

temperature limit of Cardy’s formula) and the operators L̃0 and P̃0 were assumed to be

bounded from below (which in gravity language coincides with the requirement that the

1Rindler space usually depends on one parameter, the Rindler temperature (or acceleration). This case

corresponds to T+ = T− in the above and yields a thermal density matrix ρ = e−βH for the Minkowski

vacuum as seen by the Rindler observer. When T+ 6= T−, the resulting state is ρ = e−β(H−ΩJ), with

T−1 =: β and Ω given by (2.17).

– 7 –
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metrics (2.2) display a horizon hiding the singularity), taking the values ˜P vac0 and ˜Lvac0 on

the ground state.

Defining quantities cR and cL through

˜Lvac0 = −cR
24
, ˜P vac0 = −cL

24
, (2.23)

the resulting expression (2.22) looks exactly like the Cardy formula for a 2d CFT. However,

its origin is different since it derives from the WCFT symmetries, which are purely right-

moving. Furthermore, in unitary 2d CFTs, the vacuum values of the Virasoro zero modes

are univoquely determined in terms of the central charges. The situation is different in

WCFTs: there, as discussed in [40] ˜Lvac0 is fixed in terms of the Virasoro central extension

c, while ˜P vac0 depends on the details of the theory and is not determined by symmetries

alone. In Holographic WCFTs, ˜P vac0 can be computed from the gravitational charges of the

vacuum geometry. The latter corresponds to (2.6) for M = −1/(8 l) and J = 0. At those

values the resulting geometry has an enhanced SL(2, R) × U(1) isometry and is smooth.

Then the Bekenstein-Hawking entropy of the black holes (2.2) is found to match the WCFT

one [40]:

SBH = SWCFT. (2.24)

The validity of (2.24) actually extends beyond the slowly-rotating regime, the same way

the Cardy formula’s validity extends beyond the high-temperature limit to explain the

Bekenstein-Hawking entropy of AdS3 black holes. Similarly to the AdS3 case [15], this is

likely to constrain the spectrum of Holographic WCFTs.

In the following, we will be interested in studying possible phase transitions in holo-

graphic WCFTs between Warped black holes and the global vacuum put at finite potentials.

3 BTZ black holes in TMG

In this section, we analyse the thermodynamics and Hawking-Page transition of the BTZ

black hole in Topologically Massive Gravity (TMG). We first review some relevant aspects

of TMG and then present the thermodynamic quantities for the BTZ back hole and AdS3

in TMG. These quantities will be used to analyse the local stability of BTZ and also the

Hawking-Page transition.

The TMG action is given by the Einstein-Hilbert action plus a gravitational Chern-

Simons term

S =
1

16π

∫
d3x
√
−g(R− 2Λ) +

1

16π

1

2µ

∫
d3x
√
−gελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµτΓτνρ

)
(3.1)

with µ the Chern-Simons coupling who can be taken positive without loss of generality. It

is important to notice that the Chern-Simons term breaks parity. Pure general relativity

(GR) is recovered in the limit µ→∞. The equations of motion are

Rµν −
1

2
gµνR+ Λgµν +

1

µ
Cµν = 0 (3.2)

– 8 –
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where Cµν = ε αβ
µ ∇α

(
Rβν − 1

4gβνR
)

is the Cotton tensor who is symmetric, traceless and

identically conserved. Moreover, it vanishes identically for GR solutions. Therefore all GR

solutions are solutions of TMG. The conserved charges, the mass and angular momentum

associated to the Killing vectors ∂t and ∂φ respectively, are modified by the presence of

the Chern-Simons term. Their expressions can be found using the general covariant phase

space method of [47–49] or, because we are dealing with exact Killing vectors, in the ADT

formalism [35, 41, 50, 51]. Their derivations are implemented in the “Surface Charge”

package.2 The entropy is also modified [35, 52–54]. Writing the metric in ADM form

ds2 = −N(r)2dt2 +
dr2

f(r)2
+R(r)2(Nφ(r)dt+ dφ)2, (3.3)

the entropy in TMG is given by

STMG
± =

π

2
R(r±)− π

2µ

R(r)2f(r)Nφ(r)′

2N(r)

∣∣∣∣
r=r±

. (3.4)

In order for BTZ to satisfy the equations of motion, the cosmological constant has to

be Λ = −1 (we set l = 1) while the Chern-Simons coupling can be arbitrary. The non

extremal BTZ metric is given by

gµν =


(
8M − r2

)
0 4J

0 1
16J2

r2
+r2−8M

0

4J 0 r2

 (3.5)

with M2 > J2. This condition guarantees the absence of naked singularities. The ADM

functions defined in (3.3) for BTZ are

N(r)2 = f(r)2 =
16J2

r2
+ r2 − 8M , Nφ(r) =

4J

r2
, R(r)2 = r2. (3.6)

3.1 Thermodynamic quantities

The horizons are located at

r± = 2

√
M ±

√
M2 − J2. (3.7)

We express the thermodynamic quantities in terms of the BTZ conserved charged in GR

(M,J) and also in terms of the horizons radii (r±).

MTMG JTMG STMG T Ω

(M,J) M + J
µ J + M

µ π
√√

M2 − J2 +M 2
√
M2−J2

π
√√

M2−J2+M

J√
M2−J2+M

+ πJ

µ
√√

M2−J2+M

(r+, r−)
r2
++r2

−
8 + r+r−

4µ
r+r−

4 +
r2
++r2

−
8µ

πr+
2 + πr−

2µ

r2
+−r2

−
2πr+

r−
r+

(3.8)

2G. Compère, http://www.ulb.ac.be/sciences/ptm/pmif/gcompere/package.html.
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The temperature and the angular velocity are not modified by the presence of the Chern-

Simons term since they depend only on the metric. These quantities satisfy the first law

of black hole thermodynamics, namely

dM = TdS + ΩdJ. (3.9)

3.2 Stability and Hawking-Page transition

We study the stability in the grand canonical ensemble, i.e. at fixed temperature and

angular velocity. The relevant thermodynamic potential is the Gibbs free energy G(T,Ω).

In gravity theories it is given by (1.3):

G(T,Ω) = TS[gc] (3.10)

where gc is a euclidean saddle with boundary torus of modular parameter τ = 1
2π (−βΩE +

iβl ). Evaluating S[gc] can be a tricky procedure, even more subtle in TMG that the action

is not diffeomorphism-invariant. For asymptotically AdS3 spaces however, the result is

known [55]. At fixed potentials (T,Ω), there are at least two geometries contributing to

the partition function in a saddle point approximation: thermal AdS3 and rotating BTZ

with parameters (r+, r−) given by (3.8). The result for thermal AdS3 is

SE [AdS(τ)] =
iπ

12 l
(cτ − c̃τ̄) (3.11)

where c, c̃ are the central charges of the theory and τ̄ is the complex conjugate of τ . In

TMG, they are

c, c̃ =
3 l

2

(
1± 1

µ l

)
. (3.12)

So, in TMG, we have

SE [AdS(τ)] = − 1

8 l T

(
1− ΩE

µ

)
, (3.13)

and the Gibbs free energy is

GAdS = − 1

8 l

(
1− ΩE

µ

)
. (3.14)

For rotating BTZ, the usual trick is to notice that BTZ is equivalent to thermal rotating

AdS in certain coordinates. The details are reviewed in appendix B. We have that

ds2
BTZ

[
−1

τ

]
= ds2

AdS[τ ] (3.15)

and hence the Euclidean on-shell action for BTZ is

SE [BTZ(τ)] = − iπ

12 l

(
c

τ
− c̃

τ̄

)
. (3.16)

In TMG, we get

SE [BTZ(τ)] = − l2 π2T

2(1 + l2 Ω2
E)

(
1− ΩE

µ

)
(3.17)

and hence the free energy.
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It is important to notice that these derivations are very specific to AdS3 spaces and

could not systematically be used for spaces with different asymptotics. One can however

proceed indirectly. Indeed, the first law of thermodynamics can be integrated to yield

G = M − TS − ΩJ. (3.18)

For BTZ and AdS, using (3.8) and the fact that the AdS3 vacuum has M = −1/8, J = 0

and zero entropy in the classical limit, we get

GBTZ(T,Ω) = − π2T 2

2(1− Ω2)

(
1 +

Ω

µ

)
(3.19)

GAdS(T,Ω) = −1

8

(
1− Ω

µ

)
(3.20)

which coincides with the above results obtained in euclidean signature.3

3.2.1 Local stability

We are asking if the considered phase is locally stable, i.e. under small perturbations.

The second law of thermodynamics states the stability criteria, namely a stable system

satisfies ∆S ≤ 0 where ∆S is the variation of the entropy. As we are considering small

perturbations, we develop ∆S in Taylor series ∆S = δS + δ2S + δ3S + . . .. Therefore,

at thermodynamic equilibrium (δS = 0), a system will be stable if and only if δS2 ≤ 0.

It is easy to adapt it for the considered ensemble. For example, in the grand canonical

ensemble, the stability condition becomes the requirement for a system to have the Hessian

H of its free energy G(T,Ω) negative definite, i.e. the eigenvalues of

H =

(
∂2G
∂T 2

∂2G
∂T∂Ω

∂2G
∂Ω∂T

∂2G
∂Ω2

)
(3.21)

are negative.

For BTZ at fixed temperature and angular velocity in TMG, we get the following

conditions

Ω2 < 1 , µ2 > 1. (3.22)

The first condition is just the non extremality condition. Therefore, BTZ black holes are

locally stables for TMG with µ > 1. Note that GR case is consistently included: the non

extremal BTZ black holes are indeed locally stable in GR. Moreover, µ = 1 and Ω = 1

define the boundaries of the stability area, they are called the spinodal curve.

3.2.2 Global stability and modular invariance

The question of global stability is to determine which phase among the possible ones is the

most likely. Here, for each µ bigger than 1,4 we have two classical solutions contributing

3This requires to analytically continue the Chern-Simons coupling.
4In order for the system to still be locally stable. It is meaningless to talk about a phase who is globally

stable but not locally.
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(a) GR limit, e.g. µ = 50 (b) µ = 3 (c) Local stability limit µ . 1

Figure 1. BTZ-AdS phase diagram for different Chern-Simons couplings. BTZ dominates in the

purple section and AdS in the white.

as classical saddle points: the BTZ black hole and rotating thermal AdS both at modular

parameter τ .5 In the classical limit, the partition function reduces then to

Z(τ) = e−SE [AdS(τ)] + e−SE [BTZ(τ)], (3.23)

so we need to compare the free energies of the two possible phases.

The difference in free energies is

∆GAdS = GAdS −GBTZ =

(
−1

8
+

π2T 2

2(1− Ω2)

)
+

Ω

µ

(
1

8
+

π2T 2

2(1− Ω2)

)
. (3.24)

When ∆G > 0 (< 0), it means that BTZ (AdS) is the dominant phase. The second

term due to Chern-Simons term cancels in the absence of rotation. Therefore the phase

diagram will be same as in pure GR, the Hawking-Page transition occurring at the self-dual

temperature (1.5).

With rotation, the Chern-Simons contribution does not factorise and has a impact

of the phase transition behaviour. As µ decreases from ∞ (pure GR), the Chern-Simons

contribution becomes bigger and we observe a growing asymmetry between positive and

negative angular velocities. It is the signature of the parity breaking of the Chern-Simons

term. Graphically, the situation is presented in figure 1 for different values of µ.

4 Phase transitions in WAdS3

We now turn to the analysis of the Warped black holes introduced in (2.6). Their met-

ric reads

gµν =


−r2 − H2(−r2−4J+8M)

2

4(M−J) + 8M 0 4J − H2(4J−r2)(−r2−4J+8M)
4(M−J)

0 1
16J2

r2
+r2−8M

0

4J − H2(4J−r2)(−r2−4J+8M)
4(M−J) 0 r2 − H2(4J−r2)

2

4(M−J)

 . (4.1)

5We discard the other Euclidean solutions of [8, 10] for the moment since they don’t have a well defined

Lorentzian continuation.
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In order to satisfy the equations of motion of TMG, the cosmological constant Λ and

the Chern-Simons couping µ have to be

µ = 3
√

1− 2H2 , Λ = −3 + 2H2

3
. (4.2)

The range of allowed values for H2 to keep µ real and Λ negative is

− 3

2
< H2 <

1

2
. (4.3)

In ADM formalism, the functions appearing in (3.3) are

N(r)2 =
4
(
2H2 − 1

) (
−16J3 + 16J2M + J

(
8Mr2 − r4

)
+Mr2

(
r2 − 8M

))
H2 (r2 − 4J)2 + 4r2(J −M)

f(r)2 =
16J2

r2
− 8M + r2

Nφ =
−16

(
H2 − 1

)
J2 + 16

(
2H2 − 1

)
JM +H2r2

(
r2 − 8M

)
H2 (r2 − 4J)2 + 4r2(J −M)

R(r)2 =
4r2(M − J)−H2

(
r2 − 4J

)2
4(M − J)

. (4.4)

The horizons are located in

r± = 2

√
M ±

√
−J2 +M2 (4.5)

and the thermodynamic quantities are

MTMG JTMG STMG T Ω

(3−4H2)M+J

3
√

1−2H2

(3−4H2)J+M

3
√

1−2H2

π(J−(4H2−3)(
√
M2−J2+M))

3
√

(1−2H2)(
√
M2−J2+M)

2
√
M2−J2

π
√√

M2−J2+M

J√
M2−J2+M

(4.6)

Notice that the thermodynamic potentiels are not affected by the deformation.

As argued in section 2, the global ground state corresponds to the above geometry

with M = −1
8 and J = 0, referred to as Timelike WAdS3 because the norm of the (real)

deformation vector now has become negative. Its metric is

g =

−r2 + 2H2
(
−r2 − 1

)2 − 1 0 −2H2r2
(
−r2 − 1

)
0 1

r2+1
0

−2H2r2
(
−r2 − 1

)
0 r2

(
1 + 2H2r2

)
 . (4.7)

We now reproduce the discussion we presented for BTZ, avoiding the caveat of having

to compute on-shell actions in TMG by evaluating (3.18) directly, and discuss the issue of

stability and Hawking-Page transition. To this end we compute the free energies and obtain

GWAdS(T,Ω) = −3− 4H2 − Ω

24
√

1− 2H2
(4.8)

GWBTZ(T,Ω) = −
π2T 2

(
3− 4H2 + Ω

)
6
√

1− 2H2 (1− Ω2)
. (4.9)
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4.1 Local stability

The local stability implies that

Ω2 < 1 , H2 <
1

2
. (4.10)

As H2 and µ are related by (4.2), the second condition implies µ2 > 0. Note that the BTZ

case (H2 = 0) in TMG is consistently included. Therefore, in the ensemble considered, the

Warped black holes are always locally stable.

4.2 Global stability and modular invariance

There is a priori no obvious counterpart of expression (3.11) for the thermal WAdS3 geom-

etry. However, βGWAdS(T,Ω) evaluated here above can be rewritten in a suggestive way

(after continuing Ω to euclidean signature) as

βGWAdS(T,Ω) =
iπ

12 l
(cRτ − cLτ̄) (4.11)

where cL/R were defined through (2.23) and are given by

cR =
2 l√

1− 2H2

(
1−H2

)
, cL = l

√
1− 2H2. (4.12)

Expression (4.11) is the would-be Euclidean on-shell action for the WAdS thermal back-

ground. Now, using the same change of coordinate as the one mapping thermal AdS3 on

BTZ we observe (see appendix B) that

ds2
WBTZ

[
−1

τ

]
= ds2

WAdS[τ ]. (4.13)

Therefore, one expects

βGWBTZ(T,Ω) = − iπ

12 l

(cR
τ
− cL

τ̄

)
. (4.14)

This is found to coincide with the result from the integrated first law (4.9). Similarly

to the situation in AdS3 [8], this suggests the existence of an SL(2,Z) family of Warped

black holes.

To establish the phase diagram, we now compare the two free energies (4.8)(4.9).

In the case without rotation, we have the same behaviour as BTZ in TMG because the

deformation parameter appears in the same global factor in the two free energies. So, the

phase transition behaviour is independent of the deformation parameter.

In the general case, there is an asymmetry in the angular velocity due to the Chern-

Simons term. We have the same qualitative behaviour than the BTZ-AdS case in TMG. As

H2 becomes bigger, or equivalently µ becomes smaller, the asymmetry is larger. Graphi-

cally, the situation is present in figure 2 for different values of µ.
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(a) Flat space limit H2 = − 3
2

or

µ = 6 and Λ . 0

(b) Stretched-squashed limit

H2 = 0 or µ = 3 and Λ = −1

(c) Local stability limit H2 . 1
2

or µ & 0 and Λ . −2/3

Figure 2. WBTZ-WAdS phase diagram for different deformation parameter values. WBTZ dom-

inates in the purple section and WAdS in the white. Figure 2(b) coincides with the previous

figure 1(b) since for these values WBTZ (WAdS3) simply reduces to BTZ (AdS3). Otherwise,

for generic values of µ the graphs are different as from (3.24), (4.8), (4.9) and (4.2) one gets

∆GWAdS −∆GAdS = (µ−3)(2µ−3)(Ω2−1+4π2T 2)
24(Ω2−1) , thus only vanishing at the special values µ = 3 and

µ = 3/2.

5 A digression on inner horizons

A priori, we could think that what happens inside a black hole has no repercussion what-

soever on the dynamics outside. Nevertheless, it was argued that inner horizon thermo-

dynamic quantities combined with outer horizon ones can for instance give us information

about the scattering data around the black hole [56–58]. In the previous section, we have

shown that the warped black hole and background free energies could be expressed in a

simple way in terms of the thermal torus parameter τ and the parameters cL and cR defined

in (2.23). While the latter can be obtained in general from asymptotic symmetries [41], cL
instead depends on the vacuum background charges and is not fixed by symmetries alone.

In this section, we show how both values can be derived from inner and outer horizon

properties, following [38, 57, 59].

5.1 Inner horizon thermodynamic quantities

The thermodynamic quantities for the BTZ and the WBTZ black holes at the inner horizon

are computed below:

STMG
− T− Ω−

BTZ(M,J) π
√
M −

√
M2 − J2 + πJ

µ
√
M−
√
M2−J2

2
√
M2−J2

π
√
M−
√
M2−J2

J
M−
√
M2−J2

BTZ(r+, r−) πr−
2 + πr+

2µ

r2
+−r2

−
2πr−

r+
r−

WBTZ(M,J)
π((4H2−3)(

√
M2−J2−M)+J)

3
√

(2H2−1)(
√
M2−J2−M)

2
√
M2−J2

π
√
M−
√
M2−J2

J
M−
√
M2−J2

(5.1)
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We denote the quantities related to the inner and outer horizon with a index − and +

respectively. We note the following symmetry between the outer and inner horizon quan-

tities:

S+ = S−|r+↔r− , T+ = − T−|r+↔r− , Ω+ = Ω−|r+↔r− . (5.2)

This symmetry implies that the inner quantities also satisfy at a first law of thermody-

namics6 as noted previously in [60–64]

dM = −T−dS− + Ω−dJ. (5.3)

5.2 Central and vacuum charges from inner thermodynamics

We now derive an expression for the quantities cL and cR from the horizons thermody-

namics. As we previoulsy emphasized, only cR is interpreted as a Virasoro central charge,

while cL is just a notation for the quantity (2.23), which we will still call “central charge”

by convention.

For theories without gravitational anomalies, it was highly suggested that the tem-

peratures and the central charges of the dual field theories can be rederived in scattering

data. The properties of the Klein-Gordon equation in a black hole background, exhibiting

a hidden conformal symmetry [65], are highlighted by the techniques of monodromies [56].

They turn out to be closely related to inner and outer horizon thermodynamics. We extend

the results of [56] in the case with gravitational anomalies as TMG.

Left and right temperatures and entropies are defined as

TR,L =
T− ± T+

Ω− − Ω+
(5.4)

and

S± = SR ± SL. (5.5)

We have SR,L ∝ TR,L for BTZ and WBTZ black holes. To prove this fact, we consider the

product of the horizon entropies. It can be expressed in terms of the conserved charges Q

associated with ∂t and ∂φ,

S+S− = G(Q∂t , Q∂φ). (5.6)

We take the variation of this equation. We express the left hand side in terms of SL, SR
and their variations δSL, δSR,

δ(S+S−) = 2(SRδSR − SLδSL). (5.7)

The variation of the right hand side is δG
δQ∂t

δQ∂t + δG
δQ∂φ

δQ∂φ . Now, the inner and outer

first laws read [56, 66]

δS± = ± 1

T±
(δQ∂t − Ω±δQ∂φ). (5.8)

6In general, it was showed that under reasonable assumptions, the first law of thermodynamics at the

outer horizon implies the one at the inner horizon [57].
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We inverse this equation and obtain the variation of the charges in terms of δS± and finally

in terms of δSR,L. We get

δQ∂t = δSR

(
TR(Ω− + Ω+)+TL(Ω+ − Ω−)

2

)
− δSL

(
TR(Ω+ − Ω−)+TL(Ω+ + Ω−)

2

)
(5.9)

δQ∂φ = δSRTR − δSLTL. (5.10)

The variation of (5.6) is

SRδSR − SLδSL =

(
1

4

δG

δQ∂t

(
TL
TR

(Ω+ − Ω−) + (Ω− + Ω+)

)
TR +

1

2

δG

δQ∂φ
TR

)
δSR (5.11)

−

(
1

4

δG

δQ∂t

(
TR
TL

(Ω+ − Ω−)+(Ω− + Ω+)

)
TL +

1

2

δG

δQ∂φ
TL

)
δSL. (5.12)

So we get

SR =

(
1

4

δG

δQ∂t

(
TL
TR

(Ω+ − Ω−) + (Ω− + Ω+)

)
+

1

2

δG

δQ∂φ

)
TR (5.13)

SL =

(
1

4

δG

δQ∂t

(
TR
TL

(Ω+ − Ω−) + (Ω− + Ω+)

)
+

1

2

δG

δQ∂φ

)
TL. (5.14)

It turns out that the quantities SR,L/TR,L usually happen to be constant, which are con-

ventionally denoted by π2l
3 cR,L. We then obtain

SR,L =
π2l

3
cR,LTR,L (5.15)

justifying the name “central charges” for cR,L from the similarity between (5.15) and 2d

CFT entropies.

It is more convenient to express the central charges in terms of the horizons quantities,

they are

cR,L =
3

2π2

(
δ(S+S−)

δQ∂φ
+
δ(S+S−)

δQ∂t

(
Ω+T− ± Ω−T+

(T− ± T+)

))
. (5.16)

For BTZ, we have right and left temperatures given by

TR,L =
r+ ± r−

2π
. (5.17)

The product of horizon entropies is

S+S− = π2

(
JTMG +

MTMG

µ

)
. (5.18)

The central charges are

cR,L =
3l

2

(
1± 1

µl

)
. (5.19)
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For WBTZ, the right and left moving temperature are the same as BTZ. The product of

horizon of the entropies is

S+S− = −
π2
((

4H2 − 3
)
JWBTZ −MWBTZ

)
3
√

1− 2H2
. (5.20)

The central charges are

cR = 2 l
1−H2

√
1− 2H2

(5.21)

cL = l
√

1− 2H2. (5.22)

Performing the change of variables (see appendix A) to the usual system of coordinates for

the warped black holes. We get the following central charges

cR =
l̂ (5ν2 + 3)

ν(ν2 + 3)
, cL =

4ν l̂

(3 + ν2)
(5.23)

which are exactly the ones found in [36].

6 Outlook

The aim of this paper was to study phase transitions for asymptotically WAdS3 black

holes. The latter have been conjectured to be dual to certain thermal density matrices in

a 2d WCFT. After reviewing the Hawking-Page phase transition for BTZ black holes in

TMG and its relation to modular invariance of the dual holographic CFT2, we turned to

WAdS3 black holes viewed as UV deformations of BTZ. Comparing the Gibbs free energies

of the black hole and the WAdS thermal background in a given ensemble, we observed a

phase transition analogous to the one present in AdS3: for high temperatures, the partition

function is dominated by the black hole phase, while at low temperatures the dominant

one is a thermal gaz in WAdS3. The transition was found to occur along a curve in the

(β,Ω) plane defined by

cR

(
τ +

1

τ

)
− cL

(
τ̄ +

1

τ̄

)
= 0. (6.1)

Considering the solution τ = − 1
τ and τ̄ = − 1

τ̄ corresponds to putting the theory at vanish-

ing angular potential and yields the self-dual temperature (2.21) of the WCFT partition

function:

βHP = βwsd = 2π. (6.2)

We note that despite the deformation, the thermodynamic potentials β and Ω remained

unaltered compared to their BTZ expressions, and that the parameter τ parametrizing the

boundary torus characteristic of a thermal theory on a circle was unchanged. The WCFT

partition function being invariant under (2.19) and trivially under τ → τ + 1 due to the

circle identifications is also therefore invariant under the whole SL(2,Z) modular group, as

already noted in [40]. Moreover taking into account the SL(2,Z) family of warped black

holes suggested by (4.13) would yield in similar phase diagram as in AdS3 gravity [8, 10].
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Let us conclude with a few additional comments. First, we want to comment on the

relation between the present analysis and the work [67]. There the authors concluded that

the warped black holes are locally unstable for all temperatures, in apparent contradiction

with our results. This discrepancy is resolved by observing that the ensemble they con-

sidered, Z(βbm,Θbm) = Tre−βbmP0+iΘbmL0 , differs from the one we considered (2.18) which

was argued to be the one describing the warped black holes, see section 2. This leads

to different conclusions regarding stability (actually, BTZ black holes would be unstable

in the former ensemble). Second, we focused here on TMG at ν2 6= 1. At the specific

value ν2 = 1, spacelike warped black holes no longer exist and reduce to BTZ. However,

another class of black holes and boundary conditions exist, containing the Null Warped

spaces and black holes [68]. The asymptotic symmetry group consists there of a chiral

copy of a Virasoro algebra. Whether similar phase transitions are present is left as an open

question. Third, in view of (2.22) and (2.21), which already inform us about some of the

properties a holographic WCFT should exhibit in the spirit of [14, 15], one cannot help

but notice the striking ressemblance with the behaviour of a traditional holographic CFT2.

Actually, WAdS3 spaces were originally proposed to be dual to a 2d CFT [36]. However,

the full conformal symmetry of WAdS3 spaces in theories with purely gravitational degrees

of freedom, if present, has not been uncovered so far. The situation is different when these

spaces are embedded in string theory or when matter fields are present [30, 69, 70]. In

that case, it was shown that all consistent boundary conditions for AdS3 could be mapped

to boundary conditions for WAdS3 through the introduction of an auxiliary, locally AdS

metric constructed out of the original metric and matter fields. In particular, a phase space

with 2 copies of a Virasoro algebra could be constructed [71]. On the other hand, recently

Hofman and Rollier argued that the minimal setting to describe WCFTs holographically

is a SL(2, R) × U(1) Chern-Simons theory [44], rather than a higher-curvature extension

of Einstein-Hilbert theory like TMG. It would be interesting to reconsider our analysis

in these two contexts. This could clarify the exact nature of field theories dual to these

spaces, and the possible relation between CFTs and WCFTs, which ultimately could be

relevant to Kerr/CFT.
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A Coordinate systems for WAdS3 black holes

In this section, we present the change of coordinates and variables between two different

metrics describing the spacelike stretched warped black holes: the metric (2.2) from [36]
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and (4.1) from [40]. The first metric is

ds2

l̂2
= dT 2 +

dr̂2

(ν2 + 3)(r̂ − r̂+)(r̂ − r̂−)
−
(

2νr̂ −
√
r̂+r̂−(ν2 + 3)

)
dTdθ

+
r̂

4

(
3(ν2 − 1)r̂ + (ν2 + 3)(r̂+ + r̂−)− 4ν

√
r̂+r̂−(ν2 + 3)

)
dθ2 (A.1)

with ν2 > 1 and r+ > r− > 0 in order to describe non extremal black holes. The coordinates

are (T, r̂, θ). To be a solution of TMG equations of motion, we need

µ =
3ν

l̂
, Λ = − 1

l̂2
. (A.2)

The second is the deformed BTZ metric given by (4.1)

gµν =


− r2

l2
− H2(−r2−4lJ+8l2M)

2

4l3(lM−J)
+ 8M 0 4J − H2(4lJ−r2)(−r2−4lJ+8l2M)

4l2(lM−J)

0 1
16J2

r2
+ r2

l2
−8M

0

4J − H2(4lJ−r2)(−r2−4lJ+8l2M)
4l2(lM−J)

0 r2 − H2(4Jl−r2)
2

4l(lM−J)


(A.3)

with H2 < 0 and l/,M > |J |. The coordinates are (t, r, φ). To be a solution of the TMG

equations of motion, we need

µ =
3
√

1− 2H2

l
, Λ = −3 + 2H2

3l2
. (A.4)

The change of coordinates and variables is given by

l = 2
l̂√

3 + ν2
(A.5)

H2 =
3

2

(1− ν2)

(3 + ν2)
(A.6)

M =

(
ν2 + 3

)2 (
ν2
(
2r̂2
− + r̂−r̂+ + 2r̂2

+

)
− 2ν(r̂− + r̂+)

√
(ν2 + 3) r̂−r̂+ + 3r̂−r̂+

)
256l̂2ν2

(A.7)

J =

(
ν2 + 3

)3/2(
ν2(r̂+ − r̂−)2 −

(
ν(r̂− + r̂+)−

√
(ν2 + 3) r̂−r̂+

)2
)

128l̂ν2
(A.8)

t = − 2l̂2T
√
ν2 + 3

(
ν(r̂− + r̂+)−

√
(ν2 + 3) r̂−r̂+

) (A.9)

r =
1

4ν

√
(ν2 + 3)

(
ν2(−3r̂−r̂+ + 4r̂(r̂− + r̂+))− 4νr̂

√
(ν2 + 3) r̂−r̂+ + 3r̂−r̂+

)
(A.10)

φ = l̂

(
−θ +

T

ν(r̂− + r̂+)−
√

(3 + ν)r̂−r̂+

)
. (A.11)

Introducing the û(1) level [41]

k = −ν
2 + 3

6ν
(A.12)
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and mass

Q∂T =: P0 =
ν2 + 3

24

(
r+ + r− −

√
r+r−(3 + ν2)

ν

)
(A.13)

we get (2.9).

B Modular invariance

We present the details of the modular invariance property of BTZ and WBTZ black holes.

For this section, we are working in Euclidean signature. The Wick rotation in TMG is

given by

t→ itE , r− → −irE− , µ→ −iµE . (B.1)

The BTZ coordinates have the following periodicities [72]

(t, φ) ∼ (t+ β, φ+ Φ) ∼ (t, φ+ 2π) (B.2)

with

β =
2πl2r+

(rE−)2 + r2
+

, Φ = −
2πlrE−

(rE−)2 + r2
+

. (B.3)

The first one is needed to avoid a conical singularity at the event horizon and the second

is the required identifications to have a black hole rather than a black string. It is useful

to repackage the thermal and angular potential in a complex parameter τ , called modular

parameter

τ ≡ 1

2π

(
Φ + i

β

l

)
. (B.4)

For BTZ, it is

τBTZ = − l

rE− + irp
. (B.5)

The BTZ black hole is locally AdS, so we can write a change of coordinates to bring

the BTZ metric to the one of AdS. Performing the following change of coordinates [55]

t̃ =
r−t

l
+ r+φ , ρ = l

√
r2 − r2

+

(rE−)2 + r2
+

, φ̃ =
rE−φ

l
− r+t

l2
, (B.6)

the resulting metric becomes that of euclidean AdS with certain identifications on (t̃, φ̃).

The first identification of (B.2) implies that

(t̃, φ̃) ∼ (t̃, φ̃− 2π).

while from the second yields

(t̃, φ̃) ∼ (t̃+ βAdS, φ̃+ ΦAdS)

with

βAdS = 2πr+ , ΦAdS = 2π
rE−
l
. (B.7)
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We therefore end up with a thermal rotating AdS at temperature and angular veloc-

ity (B.7). The corresponding modular parameter (B.4) is

τAdS =
rE− + ir+

l
, (B.8)

related to the one of BTZ by

τBTZ = −1/τAdS. (B.9)

In short, we have rederived the equivalence between a BTZ black hole at τ and a thermal

rotating AdS space-time at −1/τ [55]:

ds2[BTZ(τ)] = ds2

[
AdS

(
−1

τ

)]
. (B.10)

We now discuss the WBTZ case of section 4. We saw that the thermodynamic poten-

tials are the same as BTZ. Moreover, the change of variables (B.6) brings the WBTZ metric

to the WAdS timelike one. As we have the same modular parameter and the same change

of variables, we have the same modular invariance property. In other words, WBTZ black

hole at a particular τ is equivalent to the thermal rotating background WAdS at −1/τ ,

ds2[WBTZ(τ)] = ds2

[
WAdS

(
−1

τ

)]
. (B.11)
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[61] M. Cvetič, G.W. Gibbons and C.N. Pope, Universal Area Product Formulae for Rotating and

Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301

[arXiv:1011.0008] [INSPIRE].

[62] A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner

mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].

[63] M. Ansorg and J. Hennig, The Inner Cauchy horizon of axisymmetric and stationary black

holes with surrounding matter, Class. Quant. Grav. 25 (2008) 222001 [arXiv:0810.3998]

[INSPIRE].

[64] A. Curir, Remarks on a possible relation between gravitational instantons and the spin

thermodynamics of a Kerr black hole, Lett. Nuovo Cim. 31 (1981) 517 [INSPIRE].

[65] A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black

Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

[66] R.M. Wald, Black hole entropy is the Nöther charge, Phys. Rev. D 48 (1993) 3427
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