PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: February 13, 2015
ACCEPTED: April 6, 2015
PUBLISHED: May 8, 2015

Higgs, di-Higgs and tri-Higgs production via SUSY
processes at the LHC with 14 TeV

Melissa van Beekveld,** Wim Beenakker,*?¢ Sascha Caron,”’ Remco Castelijn,*"

Marie Lanfermann®® and Antonia Struebig®®
@ Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science,

Radboud University Nijmegen,
Mailbox 79, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands

b Nikhef,

Science Park, Amsterdam, The Netherlands
¢ Institute of Physics, University of Amsterdam,

Science Park 904, 1018 XE Amsterdam, The Netherlands

E-mail: mcbeekveld@gmail.com, W.Beenakker@science.ru.nl,
scaron@cern.ch, r.castelijn@nikhef.nl, marie.lanfermann@gmail.com,

antonia.struebig@cern.ch

ABSTRACT: We have systematically investigated the production of a Higgs boson with a
mass of about 125 GeV in the decays of supersymmetric particles within the phenomeno-
logical MSSM (pMSSM). We find regions of parameter space that are consistent with all
world data and that predict a sizeable rate of anomalous Higgs, di-Higgs and even tri-Higgs
events at the 14 TeV LHC. All relevant SUSY production processes are investigated. We
find that Higgs bosons can be produced in a large variety of SUSY processes, resulting
in a large range of different detector signatures containing missing transverse momentum.
Such Higgs events are outstanding signatures for new physics already for the early 14 TeV
LHC data. SUSY processes are also important to interprete deviations found in upcoming
Standard Model Higgs and di-Higgs production measurements.
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1 Introduction

The Higgs-boson discovery at the Large Hadron Collider (LHC) [1, 2] marks the beginning
of a new era in particle physics. It gives us exciting new possibilities to study the physics
of the Standard Model (SM) of particle physics. In this paper we investigate the next level
of Higgs-boson searches, namely the possibility that Higgs bosons with a mass of about
125 GeV are produced by processes involving physics beyond the SM.

Supersymmetry (SUSY) [3-16] is one of the conceivable extensions of the SM. It could
provide a natural candidate for cold dark matter if R-parity is conserved [17, 18] and it
allows for a stabilization of the electroweak scale by reducing the fine tuning of higher-
order corrections to the Higgs mass [16, 19-23]. In its minimal version, i.e. the Minimal
Supersymmetric Standard Model (MSSM), SUSY predicts superpartners for the existing



SM particles and two Higgs doublets instead of one. On top of that, R-parity is assumed
to be conserved in the MSSM, which results in the existence of a lightest supersymmetric
particle (LSP). If the LSP is a neutralino, i.e. a Majorana-fermion superpartner associated
with the neutral SM bosons in the electroweak sector, it is only weakly interacting and
stable. It escapes detection, which results in missing transverse momentum in the detector.

In the present study we investigate systematically the possibilities to produce Higgs
bosons with a mass myo ~ 125 GeV' in the decay of SUSY particles. This analysis is based
on the phenomenological MSSM (pMSSM) [24, 25]. The pMSSM is scanned for parameter
regions where the SUSY particles have a viable branching ratio to Higgs bosons. Only
those models are selected that fulfil the current constraints on SUSY. The relevance for the
upcoming LHC runs at 14 TeV is discussed in detail and the most relevant Higgs production
processes are identified. Higgs production via particular SUSY processes has been studied
e.g. in [26—29]. We calculate the allowed production rates for anomalous Higgs, di-Higgs and
tri-Higgs events. Subsequently, LHC events are simulated for each interesting model. These
events are classified into topologies according to the SM particles produced in association
with the Higgs boson(s) and the Higgs kinematics is studied. We identify topologies that
are interesting for extending the current SUSY searches. Experimentally the events might
be best detectable by explicitly “tagging” the Higgs boson(s) in SUSY searches. Since the
invariant mass of the (lightest) Higgs boson is known and well reconstructable in many
decay modes, and since we know that the SM rate to produce Higgs events with large
missing transverse momentum (and maybe other SM particles) is small, a “Higgs-tag” can
provide a unique signature for new physics. A special “Higgs-tag” for a boosted Higgs has
also been suggested [30-33].

A few analyses have already searched for such events in ATLAS and CMS data. Higgs
production via )?8)?% neutralino-chargino production has been investigated in ATLAS [34]
and CMS [35, 36]. In addition, searches have been pursued by CMS for a simplified
model with a Higgs produced in top squark decays [37, 38]. The present study aims
to systematically investigate the possibility to produce Higgs bosons within the current
constraints on SUSY by considering all relevant SUSY processes and decays.

This paper is organized as follows. In section 2 the most important supersymmetric
decay mechanisms for producing light Higgs bosons are discussed. In section 3 the pMSSM
parameter space is scanned for models that are consistent with all current experimental
constraints on SUSY and that have the potential to produce sizeable Higgs-boson event
rates. Finally, in section 4 the surviving pMSSM models are studied with regard to the
expected Higgs-boson event rates at the early stages of the upcoming LHC run and with
regard to special kinematical features, such as boosts and missing transverse momentum.

2 Supersymmetric decays into the lightest Higgs

In view of its important role in producing Higgs bosons, we start with a detailed discussion
of the neutralino/chargino sector. In the MSSM some of the superfields mix as a result of
SUSY breaking to form new mass eigenstates. Let’s first consider the neutral SM bosons in

!This study assumes that the discovered Higgs boson at myo ~ 125 GeV is the lightest neutral CP-even
Higgs boson of the MSSM.



the electroweak sector, i.e. the hypercharge B boson, neutral weak W3 boson and neutral
components of the two Higgs doublets. The associated Majorana-fermion superpartners,
i.e. the Bino B , neutral Wino W3 and neutral Higgsinos I:Tg and fIS, mix to form neutral
mass eigenstates called neutralinos (5{%2,3’4, numbered in increasing mass order). This
mixing is caused by off-diagonal terms in the neutralino mass matrix, which acts on the
Bino, Wino and Higgsino fields [39]:
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Here s, = sina and ¢, = cosa. The parameters M; and My are the SUSY-breaking
mass parameters for the Bino and Winos, p is the SUSY version of the SM Higgs-mass
parameter, cos 6y = myy/myz is the ratio of the SM W-boson and Z-boson masses, and
tan 8 is the ratio of the two Higgs vacuum expectation values.

A similar mixing phenomenon occurs in the charged sector, belonging to the charged
weak bosons W# and the charged components of the Higgs doublets. The associated
Dirac-fermion superpartners, i.e. the charged Winos W+ and Higgsinos ﬁ[jt/ 4> mix to form
charged mass eigenstates called charginos ()Z{EZ , numbered in increasing mass order) as a
result of the mixing in the chargino mass matrix [39]:

M. 2
Mgs = 2 V2egcoymz) (2.2)
V2sgco,mz 1

The mixing in the neutralino and chargino mass matrices stems from terms that go with
the Z-boson mass. However, in the case that Mj, My and |u| largely exceed the mass of
the Z-boson, the mixing terms are relatively small. If we neglect the mixing terms, the
neutralinos are either a Bino, a Wino or a symmetric/antisymmetric mix of both Higgsino
states, I;Tg /A= % (ﬁg +/_ I;Tg). The charginos are in that case either a charged Wino or
a charged Higgsino. The composition for all possible regimes is shown in table 1. In this
simplified case the mass of the Bino neutralino is M7, the masses of the Wino neutralino
and charginos are My, and the masses of the Higgsino neutralinos and charginos are |pu].
In fact some of the eigenvalues of the mass matrices will turn out to be negative. For
instance, ﬁg corresponds to the eigenvalue —u, whereas ﬁg corresponds to the opposite-
sign eigenvalue 4. In order to arrive at a proper (non-negative) definition of the mass of



Regime Composition neutralinos Composition charginos
My < My < |p (B,W,H, H) (W, H)
My < |u| < My (B.H,H,W) (H,W)
lu| < My < M, (H,H,B,W) (H, W)
lu| < My < M, (H,H,W,B) (H,W)
My < |u| < M, (W,H,H,B) (W, H)
M,y < M < |y (W,B,H, H) (W, H)

Table 1. Composition of the neutralinos (X9 ,X3, X5, X ) and charginos (Xli, )zzi)

all particles, an extra factor 4° will have to be absorbed into the definition of the negative-
mass eigenstates, which flips the sign of the corresponding mass eigenvalue. As we will see,
this extra factor v° has important consequences for the decay properties of the neutralinos.
When we switch on the mixing again, mixed neutralino states consisting of Binos,
Winos and Higgsinos will exist. However, since the mixing is small, there will always be a
part that dominates the state, which we then refer to as Binolike, Winolike or Higgsinolike.
The true masses of all the neutralinos and charginos behave as in the previously discussed
simplified case, which is governed by the three mass parameters M;, My and pu.

2.1 Neutralino and chargino decays into the lightest Higgs

If we choose the lightest neutralino to be the LSP, all supersymmetric particles will even-
tually decay into a lightest neutralino. The branching ratios of the most important direct
decay channels of neutralinos into the lightest Higgs boson h° accompanied by a LSP are
shown in figure 1. The lightest chargino plays an important role if it is of almost the same
mass as the lightest neutralino. Therefore the branching ratio of figure 1d is also included.

Some of the features of these decay processes can be explained very well kinematically
with the previously discussed simplified case. For example, the decay Y9 — X\ + hY is very
unlikely in the case that My, My > |u| or when the smallest two parameters of the set My,
Mo, |u| are relatively close (i.e. less than mjo apart), as can be seen in figure la. This
is because both neutralinos have more or less the same mass in that case, which means
that the decay X3 — X} + h° is kinematically not allowed. For the same reason the decay
>~<2i — )Ngli + hY is greatly suppressed in the region around M ~ ||, as can be seen in
figure 1d. In figure 1b we see that a similar thing holds for the decay Y5 — XJ + h° for
My ~ |u| < My or M = |p| < Ma, since in that case the lightest three neutralinos have
more or less the same mass.

For some of the features of these decay processes, such as the apparent complementarity
of BR(XS — X7 +h%) and BR(XS — X} +h°) for My > |u| > My, we have to dig a little bit
deeper. In order to facilitate the discussion we first list in table 2 the possible interactions
between the Binos, Winos and Higgsinos, from which the neutralinos and charginos inherit
their decay properties. In order to identify the interactions that involve the light Higgs
boson, the two Higgs doublets are represented by the associated five Higgs mass eigenstates
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Figure 1. Prominent direct branching ratios for the decay of neutralinos/charginos into the lightest
Higgs boson and the lightest neutralino/chargino in the case that ¢ = 500 GeV, tan 8 = 50 and all

other parameters scaled up to very high values.

B w3 HY HY W+ ffj/ .
B RO, HO A | KO, HO, A0 H¥
w3 RO, HO, A0 | 1O, HO, A° W+ HF
HY || hO, HO, A° | K0, HO, A Z HT WF
HY || hO HO, A0 | B0 HO, A° Z HF wF
W W HF HF z hO, HO, A°
ﬁjc/ 4 H¥ HT W W h, HO, AC Z

Table 2. Interactions between the Binos, Winos and Higgsinos. The entries indicate which fields

are involved in the interaction.

RO, HO A9 and H*. The h° field corresponds to the light CP-even Higgs boson, whereas
the other four fields correspond to the heavy CP-even, CP-odd and charged Higgs bosons,

respectively.



Besides the kinematical observations mentioned before, we observe the following fea-
tures in the various mass domains. These features mainly involve the competition between
the decay modes into the h° and alternative decay modes involving W or Z bosons.

The Binolike- Winolike-Higgsinolike mass domain My < My < |ul:

e The decay Y9 — X) + h tends to dominate the branching ratio of X3 if it is kine-
matically allowed, resulting in values for the branching ratio BR(X9 — X} +h°) that
can get close to unity (see figure 1a). As can be read off from table 2, this is caused
by the fact that the decay into the h° involves the (suppressed) Higgsino component
of either the Binolike X} or Winolike X5, whereas the decay into a Z boson involves
the (double suppressed) Higgsino components of both these neutralinos. At the same
time the decay Y9 — )ﬁc + WT is not allowed kinematically since Mg ~msy .

e The branching ratios BR()A{gA — X4 +h%) can only reach values that are substantially
smaller (see figures 1b and 1c), since the alternative decay modes %%4 — ﬁ[ + W
and )?%74 — X9 + h%/Z seriously reduce the maximum branching ratio for direct
decays into the LSP. Note, however, that the )?%4 neutralinos might be of interest for
di-Higgs decay modes in view of the possible two-step decays )?%74 — X9+hY followed
by X9 — X7 + hP.

The Winolike-Binolike-Higgsinolike mass domain My < My < |p|: the same arguments in
principle apply to this mass domain. However, in this case the (single suppressed) decay
mode X9 — X +WT cannot be avoided since Mg ~msy . As aresult BR(X3 = Xi+h°)
will at most reach 0.3 in this mass regime.

The Binolike-Higgsinolike- Winolike mass domain My < |p| < Ma:

e We observe both very large (almost unity) and very small branching ratios for the
decay into the h?, with as additional striking feature the apparent complementarity
of BR(X — X! + A%) and BR(XS — X7 + h°) (see figures la and 1b). This has to
do with the occurrence of negative-mass eigenstates in the Higgsino sector and the
associated factor 4° that is introduced in order to flip the sign of the mass eigenvalue.
If X9 corresponds to a genuine positive-mass eigentstate, then Y9 — X§ + h° is an
unsuppressed scalar decay mode (see table 2) that tends to dominate the single
suppressed decay into a Z boson. If Y9 corresponds to a negative-mass eigenstate,
then )?g — )z(l) + RO is a velocity-suppressed pseudoscalar decay mode and this time
the decay mode into a Z boson dominates. The observed complementarity follows
from the fact that )Zg and )?g correspond to opposite-sign mass eigenvalues, while at
the same time the suppression factors are such that the role of R and Z are effectively
interchanged in the two cases [40].

e The branching ratio BR(X] — X + h°) is even more reduced than in the previously
discussed mass domains (see figure 1c). This is caused by the larger number of
competing alternative decay modes, i.e. X} — ﬁc + W¥ and X} — 2873 +hY/Z.
Note, though, that the X neutralino might be of interest for di-Higgs decay modes
in view of the possible two-step decays Y — )?873 + A0 followed by 2873 — x§ + ho.



The Winolike-Higgsinolike-Binolike mass domain My < |u| < Mj: the previous arguments
in principle apply to this mass domain as well. However, in this case the decay modes
%8’3 — )“{f + W cannot be avoided. This reduces the maximum combined branching ratio
for the decays into h? and Z to roughly 0.3. For this maximum combined branching ratio
again a complementarity phenomenon is observed (see figures la and 1b).

The Higgsinolike LSP mass domain |p| < M 2

e As mentioned before, the decay Y9 — X) + kY is not allowed kinematically since both
neutralinos have more or less the same mass in the Higgsinolike LSP case.

e The branching ratio BR(XS — X{ + h") is strongly reduced, since the alternative
decay modes X3 — )A{Ii + WF and X9 — Xy + h%/Z cannot be avoided as a result of
the approximate mass-degeneracy of X9, X3 and 5{{‘ Moreover, based on the above-
given complementarity discussion we know that at least one of the YJ — X3 + h°/Z
decay modes will not be suppressed. Note, though, that X3 — X3+ A in itself already
constitutes a direct SUSY decay channel into the lightest Higgs boson.

The chargino decays:

e The lightest chargino can never decay directly into the lightest Higgs boson. This is
due to the fact that R-parity conservation forbids a decay to a neutral Higgs boson.
For this a lighter charged supersymmetric fermion is needed, which is not present
in the case of the lightest chargino. It is possible for a lightest chargino to decay
into three particles, but such three-particle chargino decay modes with a Higgs boson
featuring in the final state are rather rare.

e For My < |u| the branching ratio BR(X3 — Xi +h°) can reach maximum values of up
to 0.35 as a result of the competition from the unavoidable decay mode )zQi — X0+WE
as well as the decay mode )ZQi — >~<1i + Z. The total branching ratio for multi-step
decays into the lightest Higgs boson can substantially exceed 0.35 in view of the
possibility of two-step decays of the form )th — X9 4+ W followed by X9 — X + h°
if MLQ < ‘ ,u,\.

e For |u| < M; the branching ratio BR(X; — Xi + h°) gets additionally reduced by
the alternative decay mode to the second Higgsinolike neutralino. Again multi-step
decay modes can substantially enhance the branching ratio for the decay into the h°.

In conclusion, the branching ratios for direct decays of neutralinos/charginos into the LSP
and the lightest Higgs boson can be pretty large, reaching maximum values close to one
for )?873. For Sﬁ there is effectively no decay into the lightest Higgs boson. For the heavier
states Y) and X;ﬁ the direct-decay branching ratios can reach 0.35 at best. However, for
these heavy SUSY particles the total branching ratio for multi-step decays into the LSP and
the lightest Higgs boson can be substantially larger if the non-Higgs decay step gives rise
to %8’3 , which can subsequently decay into the lightest Higgs boson with high probability.



2.2 Sfermion decays into the lightest Higgs

Next we give a brief summary of the other supersymmetric decay channels that can pro-
duce a lightest Higgs boson, starting with the sfermions (squarks and sleptons), the scalar
superpartners of the SM fermions (quarks and leptons). Such decay modes will play a role
later on when the masses of the sfermions are not artificially scaled up to very high values.
In this context it should also be noted that, apart from the interactions listed in table 2,
the Binos, Winos and Higgsinos can also decay into fermion-sfermion pairs, involving the
Yukawa interactions.

Since the Wino couples only to left-handed sfermions, the decays of left-handed (fL)
and right-handed (fR) sfermions are different. In addition, the couplings to Higgsinos are
Yukawa suppressed. This results in a profound difference between the decays of 1st/2nd
generation sfermions and 3rd generation sfermions, since only the latter may have a large
coupling to the Higgsinos.

Direct decays of sfermions into the lightest Higgs boson:

e First of all there is the possibility to have a mass difference between left- and right-
handed sfermions. As a result, there is the possibility for fL R — j?Rq . + hY decay
modes if the mass difference between the left- and right-handed sfermions exceeds
125 GeV. The couplings involved in this decay mode are Yukawa suppressed in the
pMSSM. Therefore, the direct decay is mostly relevant for 3rd generation sfermions.

e The sfermions of the 3rd generation are mixtures of left- and right-handed states,
indicated by ]?1,2 (numbered in increasing mass order). Therefore, there is an ad-
ditional possibility for a direct decay via j; — fl + hY. This decay can involve
a non-Yukawa-suppressed (gauge) coupling between two left- or two right-handed
components of the sfermion mass eigenstates. For 3rd generation squarks the gauge
coupling and the Yukawa coupling can be of the same order of magnitude, which can
lead to unexpected cancellations between both direct h? production mechanisms in
that case.

Indirect decays of 1st/2nd generation sfermions into the lightest Higgs boson: sfermions
can decay to heavy neutralinos or the heavy chargino, which can subsequently decay into
lighter neutralinos or charginos and the lightest Higgs boson. The decay pattern differs for
the left- and right-handed sfermions, depending on the composition of the LSP.

o Winolike LSP: the direct decay of the right-handed sfermions to the LSP is sup-
pressed. If kinematically allowed the right-handed sfermions will decay to the Binolike
neutralino, with the decay to the Higgsinolike states being Yukawa suppressed. As ex-
plained above, this Binolike neutralino can decay with a moderately large branching
ratio to the k¥, since the decay to the Z boson is double suppressed. The left-handed
sfermions predominantly decay to the LSP, which strongly reduces indirect decays
into the lightest Higgs boson.

e Higgsinolike LSP: the decay of the right and left-handed 1st/2nd generation sfermions
to the LSP is Yukawa suppressed. If possible, these sfermions will decay to the heavier



Bino- or Winolike states. As explained above, these states can decay with reduced
branching fraction to the h°.

e Binolike LSP: if the X{ is Binolike, the right-handed sfermions predominantly decay
to the LSP. However, the left-handed sfermions still prefer to decay (if kinematically
allowed) to the heavier Winolike neutralino/chargino. This is caused by an intrinsic
oy /S0y, ~ 1.9 enhancement factor of the weak coupling of sleptons compared to
the hypercharge coupling, with an additional factor 3 enhancement for squarks. As
explained above, in these models the Winolike neutralino can have a large branching
ratio to Higgs bosons. If it is a X, then decays to charginos are also possible. If it is
a Xy, then its branching ratio to h” bosons is potentially very large and can be close
to unity.

For 3rd generation sfermions the couplings to the Higgsinolike states are not Yukawa sup-
pressed anymore and can even become large for top squarks. This results in a richer
structure of possible decay modes and a more prominent role of Higgsinolike states as
decay products. In that case indirect Higgs production can also become important in sce-
narios where Higgsinolike states have a large branching ratio into the lightest Higgs boson,
as described in the previous subsection.

2.3 Heavy Higgs-boson decays into the lightest Higgs

Also the heavy Higgs particles can decay into the h?. These particles are a consequence
of SUSY, which requires more than one Higgs doublet, but as far as R-parity is concerned
they qualify as “SM” particles. Consequently, these particles do not necessarily have to
decay into the LSP and therefore do not necessarily give rise to large missing transverse
momentum in their decay chains. A comprehensive overview of the decays of the heavy
Higgs bosons is given in [41].

o Direct decays: as will be discussed later, all surviving MSSM models have M 4 values
exceeding 300 GeV. This is known as the decoupling limit (large M,) and conse-
quently all heavy Higgs bosons have similar masses, which blocks decays among
heavy Higgs bosons. The heavy CP-even Higgs boson H® can directly decay to two
h? bosons. The CP-odd Higgs boson A° can decay to h’Z. The charged Higgs bosons
H?* can decay to W*h0. The corresponding branching ratios tend to be rather small,
because in most surviving MSSM models tan  is relatively large ( > 10) and conse-
quently the decays of the heavy Higgs bosons to b-quarks are dominant. Later on
we will encounter a couple of exceptional models that have the lowest values for M4
and at the same time a relatively small value for tan 8 in order to survive the exper-
imental constraints. Such models have noticeable branching ratios for direct heavy
Higgs-boson decays into the lightest Higgs. More details can be found in ref. [41].

o Indirect decays: the heavy Higgs bosons also have the possibility to decay into heavy
neutralinos or charginos (if kinematically allowed), especially if one of these decay
states is Higgsinolike and the other Bino- or Winolike (see table 2). Those states
can subsequently decay to h', sometimes with high branching ratios. This can, for
instance, result in di-Higgs production from an A° decay.



3 Finding candidate pMSSM models: simulation and constraints

The MSSM has more than 100 free parameters. Most of those parameters are not relevant
for LHC physics. In the pMSSM the free parameters are reduced to 19 by demanding
CP-conservation, minimal flavour violation and degenerate mass spectra for the 1st and
2nd generations of sfermions. The LSP is required to be the neutralino X9 in order to
have a viable dark-matter candidate. This reduced model should cover a large fraction
of the relevant SUSY phase space for h° production. The 19 remaining parameters are
10 sfermion masses,? 3 gaugino masses M 1,2,3, the ratio of the Higgs vacuum expectation
values tan 3, the Higgsino mixing parameter u, the mass m4 of the CP-odd Higgs-boson
AY and 3 trilinear scalar couplings Aptr

3.1 Generation and pre-selection of pMSSM model-sets

SUSY-HIT [42] is used to generate the particle spectra of the 19-parameter pMSSM models.
Only models are selected with a neutralino as LSP. The Higgs mass has been precisely
determined by ATLAS and CMS to be 125.4 (ATLAS [43]) and 125.0 GeV (CMS [44])
with uncertainties of 0.3 — 0.4 GeV for each experiment. We select only models with a
lightest Higgs boson h® within the range:

124.4 GeV < myo < 126.5 GeV . (3.1)

In addition we produce two statistically independent sets of models:

e Set A: Higgs production via direct decay of an arbitrary SUSY particle or a heavy
Higgs boson.
As described in the previous section, Higgs production can occur via various different
decays of SUSY particles. In addition, h® bosons can be produced in the decay of
heavy Higgs bosons. For this set we require in the preselection that at least one SUSY
particle or heavy Higgs boson has a direct branching ratio to h" exceeding 20%.

e Set B: Higgs production via direct decays of charginos or neutralinos.
Since Higgs production via neutralino or chargino decays is most important, a second
set of models dedicated to these decays is produced. For this set we required that at
least one of the following direct branching ratios exceeds 20%:

BR(X534 = X1 +h") > 02 or

3.2
BR(X3 — X; + %) >0.2. (3.2)

The advantage of set B is that less model points are needed to study the most relevant
Higgs production modes, since Higgs production predominantly originates from the decay of
a heavy neutralino or chargino. Those neutralinos and charginos can be directly produced

2The corresponding sfermion labels are @1, @3, El, Zg, u1, (71, us, J3, €1 and e3. Here 1 indicates the
light-flavoured mass-degenerate 1st and 2nd generation sfermions and 3 the heavy-flavoured 3rd generation.
The labels @ and L refer to the superpartners of the left-handed fermionic SU(2) doublets, whereas the
other labels refer to the superpartners of the right-handed fermionic SU(2) singlets.
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or they are produced in cascade decays of predominantly squarks or gluinos, since these
coloured SUSY particles can have a large cross section. The advantage of set A is its larger
coverage of possible 3rd-generation and heavy-Higgs decay modes.

3.2 Parameter space coverage with a particle filter

This study has not the objective to provide a statistical interpretation like a “coverage”
or a “likelihood” for a given parameter region. The objective is to find regions in the
parameter space that are consistent with the global constraints on SUSY and where in
addition the production of h° bosons is large (or close to maximal) in order to determine
possible rates and topologies for SUSY Higgs production at the LHC. Each of our parameter
sets represents a viable model point that could be realized in nature.

We use a simplified two-step particle filter algorithm [45] to find model points in the
pMSSM parameter space.

1. First the 19 parameters of the pMSSM (3 gaugino masses, 6 squark masses, 4 slepton
masses, 3 trilineair couplings, M 4, p and tan () are chosen randomly from a flat prior
distribution. The squark and slepton masses and M4 have ranges between 100 GeV
and 3000 GeV. The Higgsino mixing term p, which in principle can be negative, ranges
between -3000 GeV and 3000 GeV. This is also the case for the trilineair couplings,
although we choose the ranges in that case between -5000 GeV and 5000 GeV to
be sure that the trilinear couplings will not restrict the simulation too much. The
lower bound on the gaugino masses is chosen to be 10 GeV to ensure that neutralinos,
charginos and gluinos with very low masses are also evaluated. Finally, the ratio tan 3
of the Higgs vacuum expectation values is chosen between 1 and 50. For each set of
pMSSM parameters SUSY-HIT [42] is used to generate the SUSY particle spectra and
mixing matrices. Subsequently the preselection criteria of the previous subsection are
checked. Model-sets are generated randomly within the given parameter range until
we find 10000 model-sets fulfilling the preselection requirements.

2. These model-sets are then used as seeds (or particles) to build a posterior probability
distribution from which further model-sets are generated. The posterior probability
distribution is chosen as a sum of multi-dimensional Gaussian distributions centered
around the parameter values S of each seed point. The multi-dimensional width of
the Gaussian distributions is set to 10%, 25% and 40% of L, where Ly is the extent
of the parameter space in dimension d out of 19. Around each seed further models
are generated. The three sets are compared in order to evaluate the dependence on
the width of the sampling. A comparison of the width dependence and a comparison
of sets A and B is shown in figure 18 in the appendix. Since no significant difference
is found all sets have been merged. This simulation process continues until in total
at least 250000 models survive all preselection criteria.

3.3 Experimental constraints

The code micrOMEGAs [46] is used to calculate specific observables for each model-set
in order to compare them with the experimental restrictions. The following constraints
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impact especially the neutralino and chargino mixing and can also influence their decay to
the lightest Higgs boson.

e From the WMAP and the Planck data we adopt the cold dark-matter (DM) relic
density in the universe [47, 48]. We select a region corresponding to the last Planck
central value 0.1186 = 0.0031 including an 10% (upper) and 20% (lower) theoretical
uncertainty:3

0.094 < Q.h?* < 0.131 . (3.3)

e The limits from the 85.3 days Large Underground Xenon (LUX) data [49] are taken
into account. To compare the calculated proton/neutron cross sections oP/™) to the
experimental limits, we use a normalized cross section for a point-like nucleus [50]:

(Z\/O'(p) +(A—=2Z)Vo )2
o= yE , (3.4)
with A and Z the mass number and atomic number of the target. In our case the
target is xenon with A = 131 and Z = 54.

e We implement the LHCb and CMS measurements of the branching ratio of the
strange B meson to two muons [51, 52] by demanding

BR(B? — ptp7) = (3.0119) x 107 . (3.5)

e We impose the LEP limits on the invisible width of the Z boson and on the SUSY
particle masses as implemented in micrOmegas.

The WMAP /Planck results place severe constraints on the models as can be seen
in figure 2. The LSP’s of the surviving models turn out to be mostly Binolike, with a
relatively low mass, and to a lesser extent Higgsinolike or Winolike, with a relatively high
mass. This is caused by the possibility of coannihilation of the LSP together with the
lightest chargino or next-to-lightest neutralino, which is mostly absent for Binolike LSP’s.
In order to reduce the efficiency of the coannihilation and have a DM relic density that
is not too low, Higgsinolike and Winolike LSP’s are substantially heavier than Binolike
LSP’s. The occurrence of Winolike LSP’s is suppressed within the simulated parameter
space, since in that case the coannihilation turns out to be very efficient. Among the
useful models that survive the WMAP /Planck constraint we have found only a few with a
Winolike LSP.

Having checked the impact of the WMAP /Planck constraint, we now impose the LUX
limits on the surviving models. The additional impact of the LUX limits is much smaller,
as can be seen in figure 3 where the LUX experimental limits are imposed. Given the
WMAP /Planck and LUX constraints, the By and LEP constraints have little additional
impact on the number of viable models. Notable exceptions are the surviving models in
figure 3 with a very light Higgsinolike LSP, which are removed by the LEP constraints on
the lightest chargino mass.

3 A value of approximately 10% is due to uncertainties entering the calculations of the relic density from
SUSY parameters. The lower uncertainty is slightly larger, in order to include the possibility to have small
additional sources of Dark Matter.
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After a first iteration about 250 models survived. These models were again used
to construct a posterior for a second particle-filter iteration, producing in total about
430 models that fulfil all constraints. As expected the success rate with this posterior is
increased.

3.4 ATLAS constraints: event generation, fast simulation and analysis

The remaining model-sets are compared with recent constraints from LHC SUSY searches
at 7TeV and 8 TeV centre-of-mass energies. Most important are constraints from searches
for squarks and/or gluinos and chargino-neutralino production. Searches for heavy Higgs
production had no influence on the remaining models. The mass constraint on the h® boson
demands either large M4 or very heavy top squarks. In fact, the model with the lightest A°
boson in our sample has M 4 ~ 330 GeV. Since tan § = 6.9 is relatively small for this model,
it is not excluded by the ATLAS and CMS searches for heavy Higgs production [53, 54].

The limits of the ATLAS experiment on light squarks, gluinos and chargino-neutralino
production are implemented by emulating the ATLAS analysis chain. Events from LHC
collisions are generated for each pMSSM model and the detector response is simulated by
a fast detector simulation. The acceptance and efficiency is determined by applying the
most important ATLAS analysis cuts on the simulated events. Finally, these numbers are
used to calculate the expected number of signal events for each signal region and analysis.
Subsequently, these expected yields are compared to the model-independent 95% C.L.
limits provided by ATLAS.

PYTHIA 6.4 [55] is used for the event simulation of proton-proton (pp) collisions at a
7TeV and 8 TeV centre-of-mass energy. All SUSY production processes are enabled. For
every model point and each centre-of-mass energy 10000 events are generated, which we
found to be enough even for the models with the smallest selection efficiencies. To get
as close as possible to the ATLAS analysis we use DELPHES 3.0 [56] as a fast detector
simulation with the default ATLAS detector card, modified by setting the jet cone radius
to 0.4. The PYTHIA output is read in by DELPHES in HepMC format, which is produced
by HepMC 2.04.02 [57]. The object reconstruction is done by DELPHES, which uses the
same anti-kp jet algorithm [58] as ATLAS. Also included in the reconstruction are isolation
criteria for electrons and muons. We do not emulate pile-up events.

The 7TeV analysis implementation is identical to ref. [59]. The selection efficiencies
of our own implementation were compared to ATLAS in ref. [59] and were found to agree
within uncertainties. For this study the implementation used in ref. [59] was updated
using the recent 8 TeV selection criteria. For the chargino-neutralino searches the SROTa
selection with all 20 bins was implemented as described in ref. [60]. For the squark and
gluino searches all 13 signal regions without explicit W selection of ref. [61] are considered.
In order to check constraints from multi-b-jet searches we included also signal region SR-
0¢-A from [62].

Preliminary direct searches for decays into h® bosons from neutralinos do not influence
the remaining models. The mass of the lightest neutralino with a sizeable branching ratio
to Higgs bosons is about 185 GeV and the mass of the LSP is at least 40 GeV. This is well
beyond the exclusion reach of the ATLAS and CMS searches in these channels [34-36].
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Figure 4. Lightest light-flavoured squark mass against the gluino mass for models that survive
the ATLAS constraints (red crosses) and models that are excluded by ATLAS (blue dots).

After the event selection, the event counts are scaled to the luminosities considered
in the analyses with leading order cross sections as provided by Pythia. The limits on
the effective cross sections given by the ATLAS analyses are used to calculate a limit on
the number of signal events passing the cuts. No attempt was made to include theoretical
uncertainties. In the studied SUSY mass range these uncertainties are small compared to
the differences of the ATLAS and DELPHES setups and would not change drastically any
conclusion of this work.

In the end, 252 of the models passed all selection criteria. Figure 4 shows the excluded
and non-excluded models as a function of the gluino mass and the minimal mass of the
first and second generation squarks mrql“in. Most excluded model points are due to limits on
squarks and gluinos and have squark or gluino masses below about 1500 GeV, in agreement
with current LHC limits. All models with a gluino mass below 750 GeV are excluded.
Remarkably, a large fraction of models with low squark masses is still allowed. One well-
known reason for this is that the lightest squark can be compressed with the Y9 as shown
in figure 5. This leads to very soft jets from squark decays. The squarks might only be
visible via mono-jet signatures.

The enhancement of Higgs production in the studied models leads to a second interest-
ing feature that causes the fraction of non-excluded models in this study to be larger than
previously found in other scans (e.g. in [63]). In many non-excluded models the lightest
squarks are compressed with a heavy neutralino/chargino. To illustrate this we indicate the
minimal mass of all first and second generation squarks and the gluino by A. Figure 6 shows
the smallest difference min(AA) between A and the masses of all neutralinos and charginos
as a function of A (given that the neutralino or chargino mass is smaller than A). In con-
trast to figure 5, all non-excluded models with A < 800 GeV have a mass difference AA
below 300 GeV, which implies that many squarks are compressed with )?873’ 4 or a chargino.
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Figure 5. The excluded and non-excluded models as a function of the LSP mass and the minimum
of the gluino mass and the masses of the first and second generation squarks min(mglin, mg).
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Figure 6. The same as in figure 5, but this time the LSP mass is replaced by the smallest difference
min(AA) between A = min(mg‘i“, mg) and the masses of all neutralinos and charginos (given that
the neutralino or chargino mass is smaller than A).

As discussed in section 2, in many cases the squarks do not directly decay to the
LSP, especially in the model points selected for this study. If e.g. the LSP is Binolike, the
lightest g7, prefers to decay (if kinematically allowed) into the heavier Winolike neutralino
or chargino. This is caused by a 3¢, /sy =~ 5.5 enhancement factor of the weak coupling
with respect to the hypercharge coupling. If the squark happens to be compressed with the
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Winolike neutralino, jets from the squark decays are also soft and the remaining signature
is determined by the branching ratios of the heavier Winolike neutralino. In these models
the Winolike neutralino can have a large branching ratio to Higgs bosons. If it is a XJ , then
decays to charginos are also possible. If the chargino decay is dominant, SUSY searches
with leptons might be sensitive to these points. Searches asking for one lepton in the final
state typically exclude simplified models with degenerate squarks decaying to charginos
if mz < 800GeV and mzo < 300 GeV (see e.g. [64]). After applying all other search
constraints we find no model that fulfills these requirements. If the Winolike neutralino is
a Xy, then explicit searches for Higgs production from squarks might give a unique discovery

possibility. Similar multi-step decays are possible in other cases as outlined in section 2.

4 Analysis of the candidate models

4.1 Branching ratios

The branching ratios of all SUSY particles for decays into the lightest Higgs boson k" have
been determined for all surviving models. These branching ratios include also multi-step
decays to the Higgs boson, i.e. particles can have a non-zero branching ratio even if they
do not couple to the Higgs boson directly. We show in figure 7 the branching ratio for
all MSSM particles to the light Higgs boson h°. All models are shown in grey in order
to indicate the ranges of these branching ratios. The possible decay processes have been
described in more detail in section 2.

The sfermions can have decay branching ratios of up to 0.4, with the values for left- and
right-handed sfermions strongly varying from model to model. The 52 and t5 squarks have
a larger branching ratio due to the direct decay j; — fl + hY. As explained in section 2,
the )?(2)73 neutralinos can have branching ratios close to unity. The )@t charginos can have
a branching ratio that substantially exceeds 0.35 due to multi-step decays. The branching
ratios of the heavy Higgs bosons range up to ~ 0.4 due to direct as well as multi-step
decays. Some models with interesting features are shown in colour. These models, which
are labeled A—E, are shown in table 3 and are discussed in more detail below.

If we go one step further and take a look at all supersymmetric particles that decay
into at least two Higgs bosons, the heaviest neutralino has the highest branching ratio,
as can be seen in figure 8. Although it is not the preferred decay channel, it can decay
into a )?(2),3, which can subsequently decay into a LSP. Both decays can produce one h°
boson. The sfermions can decay into two h? bosons via the intermediate decay into a heavy
neutralino. The H° boson can directly decay to two h® bosons, the A and H* bosons
decay via heavy neutralinos/charginos. The t top squark can decay to t; + h° and ¢; can
subsequently decay to one more h°.

4.2 Event generation, fast simulation and analysis

In order to determine the phenomenological relevance of h? production via SUSY processes,
the LHC production rate needs to be determined. The generation of simulated events
of pp collisions at a centre-of-mass energy of 14TeV for each candidate model utilises
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PYTHIAG6.4, HepMC 2.04.02 and DELPHES 3.0, just as described in section 3.4. In the
simulation the branching ratio of the h® boson into two photons has been set to unity
manually. This is done in order to prevent interference of jets or leptons originating from
h0 decays when analysing the jet multiplicities in the final states later on in this section. All
other decay channels of the A boson have been assigned a zero branching ratio. This does
not affect the total h° production rates. A total number of 100000 events are generated
for each of the approximately 250 candidate models that survive all previous constraints.
All SUSY production processes are enabled.

4.3 Determining the expected number of events with Higgs bosons

The number of expected Higgs (h°), di-Higgs and tri-Higgs events is calculated for an
integrated luminosity of 10fb~! for each SUSY production process. For each model point
the branching ratios to the h? as well as the SUSY production cross sections orsup,; for
each subprocess I.SU B; are considered. All cross sections are determined by PYTHIA. No
attempt was made to include NLO corrections. In general these NLO corrections would
further increase the production rate. So, in that sense our estimates are conservative. The
number of events with at least one, two or three h? bosons is calculated as

Nezvér}:gs =Lint - OISUB; - [335(5’ —>1h% + X)

+BR5(C — 0h° + X) - BR5(D —> 11° +Y)], (4.1)

e%gﬁgs = Lint - OISUB, * [BRG(CN’ —>1h" + X) - BR3(D —»> 1% + V)

+ BR5(C = 00 + X) - BR5(D —> 21° +Y)

+ BR(C =2 20+ X) - BR(D — 00 + ). (42)
Nezvgr]fs = Lint - 0150, - [BR5(C —> 11" + X) - BR5(D —> 21" +Y)

+ BRA(C —> 210+ X) - BRs(D — 100 +Y)

+ BR&(C = 0h° + X) - BR5(D —> 3h° +Y)

+BRG(C =2 30° + X) - BR5(D — 01’ +Y)] . (4.3)

4.3.1 Higgs production via SUSY processes

Figure 9 shows the rate of events with > 1A for all SUSY production processes normalized
to an integrated luminosity of 10 fb=!. The most important classes of production processes
are squark-(anti)squark production, in particular for left-handed squarks (see figure 23 in
the appendix), chargino-neutralino production (see also figure 19 in the appendix) and
neutralino pair production (see also figure 20 in the appendix). Next in line are the asso-
ciated production of a neutralino/chargino and a light squark (see also figures 21 and 22
in the appendix), and the production of pairs of bottom or top squarks (see also figure 24
in the appendix).

Due to the nature of the mixing matrix, A’ production via neutralino-pair and chargino-
neutralino processes are correlated. Large Higgs production rates are possible if the heavier
neutralinos/chargino are relatively light and decay to h°. Examples are model D and F
shown in table 3.
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As can be seen in model B or C, Higgs production from squarks can still be large when
at the same time Higgs production via chargino/neutralino processes is supressed. This
happens when the charginos and non-LSP neutralinos are too heavy (about 600-800 GeV
in model B and C) for direct production. These heavy neutralinos/charginos can, however,
still be produced in the decay of a slightly heavier squark. As described in sections 2 and 3
such squark decays might be dominant. Searching for squark production might then be the
only possibility to detect these models. Similar neutralino/chargino decays are important
to produce light Higgs bosons in bottom squark decays.

The associated production of a chargino/neutralino and a squark can also be inter-
esting for h® production. For the same mass of the produced particles the associated
production cross section is in between the (electroweak) chargino/neutralino production
and the (strong) squark production. This process can be important if the mass of the
chargino/neutralino is similar to the mass of the squark, i.e. if one of the squarks is rather
light. As explained before squarks can still be light in our models, e.g. if the squark decays
via a heavy chargino/neutralino rather than directly to ). It is then difficult to detect
the squarks in the conventional way at the LHC. An example is model C' where the left-
handed squark (mass 760 GeV) decays with 65% branching ratio into the ﬁc and with 30%
branching ratio into X3 (both with a mass of 627 GeV). The X9 decays with 85% branching
ratio into a h? boson.

Higgs-boson production via top squarks can be enhanced for light stops. An example
is model D, which has a t; mass of 850 GeV and a t» mass of 1130 GeV. Both stops decay
to h? bosons predominantly via heavy neutralinos with branching ratios of 20 — 25%. This
gives rise to special final-state topologies, involving top quarks, (possibly multiple) Higgs
bosons and missing transverse momentum. Higgs-boson production via gluinos proceeds
through the decay into light squarks. In the case of model D, these light squarks are top
squarks, leading to spectacular event topologies where the gluino (or even both gluinos)
can decay into hOtt x9.

The most important Higgs production processes are summarized in table 4. In some
models (e.g. model D) h° production is significant for almost all important SUSY pro-
duction processes. When all contributions to h° production from SUSY interactions are
summed up, realistic models are found that lead to about 3000 events with at least one h°
for 10 fb~! of data. In almost all models a significant amount of missing tranverse momen-
tum due to the LSP’s is expected. This makes the events different from h° production via
SM processes.

4.3.2 Di-Higgs production via SUSY processes

Since SUSY particles are pair produced and both particles can decay to a light Higgs boson,
SUSY processes can be a significant source of events containing two h° bosons. We will
show that this di-Higgs production rate can be significant.
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processes final state(s) Example model
> 110 production

processes with > 100 events

qrqr, jets+h04Emiss C,B
qL9R jets+h04Emiss C,B
JrRAR jets+h0+Emiss B
tots tE4hOEmiss (D)
b b-jets+ RO+ Emiss -
aLxs jets+h0+Emiss C
QLXT jets+(leptons)+hO+Emiss C
XX jets+(leptons)+hO+Emiss E.D
XXy jets+(leptons)+h04-Fmiss E.D
XXy jets+(leptons)+hO+ERiss E.D
Xax) jets—+(leptons)+hO+ERiss E
g9 jets-+hO+ERSS top quarks-+h0-+Emiss D
H° 2h0 A
A° Z+hY A

> 210 production

processes with > 20 events

aLar jets+2h0+Emiss C,B
JLaR jets+2h0+Emiss B
tols tE+2R0+ Emiss (D)
biby b-jets+2h0+ Emiss —
aLxs jets—+2h0+Emiss C
X9 jets+(leptons)+2h0+ Emiss E,D
X3 X4 jets+(leptons)+2h04Emiss E
HO 2h0 A

> 3h° production

processes with > 5 events
X3 X4 jets+(leptons)+3h0+Emiss E
qLar jets+3h0+Emiss B

Table 4. List of most relevant SUSY processes to produce light Higgs bosons and the corresponding
final-state topologies of interest, where EX* indicates the presence of missing transverse momentum
in the final state. Numbers are given for 10 fb~1.
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Di-Higgs production is of utmost importance in the SM to measure the triple-Higgs
coupling. As such, the measurement of di-Higgs production is a central research objective
for the high luminosity phase of the LHC. The SM di-Higgs production has an expected
next-to-next-to-leading order (NNLO) cross section of roughly 40 fb [65], leading to about
400 events for 10fb~!. These events are very difficult to detect due to the enormous SM
background rate.

In the MSSM another important source of di-Higgs events is the production of heavy
Higgs bosons (see figure 25 in the appendix). Model A predicts an enourmous rate of >
2000 di-Higgs events, visible as a di-Higgs resonance. Heavy Higgs production is discussed
separately in the next subsection. Di-Higgs events from processes involving SUSY particles
are different due to the presence of large missing transverse momentum. The background
from SM processes can be reduced by a large factor with cuts on this quantity. Figure 10
shows the di-Higgs production rate per SUSY process normalized to 10fb~t. Model C
predicts the largest SUSY production rate for di-Higgs events with about 350 events for
10fb~!. This rate can also be compared with 10 and 4.2 events expected from the SM
tthh® or ZhPhY processes, which have a cross section of 1.0fb at leading order [66, 67]
and 0.42 fb at NNLO [66], respectively. SUSY processes can therefore significantly enhance
di-Higgs signatures in SM di-Higgs searches. Any deviation from the SM expectations in
these searches needs therefore to be interpreted carefully, since deviations could be the
result of SUSY decays.

The SUSY di-Higgs production is dominated by squark processes, followed by the
direct production of heavy neutralinos/charginos. The most important SUSY di-Higgs
production processes are summarized in table 4.

4.3.3 Tri-Higgs production via SUSY processes

Due to the multi-step decays of heavy neutralinos there is the possibility that one heavy
neutralino can decay to two h? bosons. The corresponding branching fractions were dis-
cussed in section 4.1 and Y9 was found to be the dominant source. This makes it possible to
produce three Higgs bosons in one event. Figure 11 shows the number of tri-Higgs events
per SUSY process normalized to 10fb~!. Up to 20 tri-Higgs events can be produced,
predominantly via squark production. The dominant tri-Higgs production processes are
summarized in table 4. The SM tri-Higgs production cross section is 0.044 fb [68] leading
to an expectation of only 0.4 events for 10fb~!. Tri-Higgs production might become im-
portant for large luminosities or, after a LHC discovery, for determining e.g. the neutralino
mixing matrix.

4.4 The lightest Higgs boson from heavy-Higgs production processes

For the sake of completeness, simulated events with primary interaction processes involving
heavy Higgs particles are also investigated briefly. This investigation utilises the calculation
of events with at least one h® boson according to equation (4.1), but this time only the
branching ratios of the heavy Higgses into one or more light Higgs boson(s) are taken into
account.
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Figure 10. Number of expected events containing at least two h° bosons in cascades of supersym-
metric origin for all candidate models. The vertical axis indicates the supersymmetric final states
of the primary interaction process.
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states of the primary interaction process.
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the final states of the primary interaction process.

As can be seen in figure 12, for most models the h® event rates from heavy Higgs
production processes is low. This is caused by the decoupling limit. Due to the mass
constraint on the lightest Higgs-boson, most models have an A° boson that is much heavier
than the Z boson. In this decoupling limit all heavy Higgses are nearly mass degenerate
and truly heavy. As a result, the heavy-Higgs production cross sections are relatively small
and the h¥ event rates rather modest. The models with parameters that place them in
the decoupling limit only reach a maximum of about 50 h° events for single heavy-Higgs
production. Exceptions are a couple of models including model A, which have a smaller
value for M4 and which are therefore less firmly in the decoupling limit. These models also
have a relatively small value for tan 3, which results in a noticeable H° — 2h° branching
ratio (see table 3) and substantially larger h° event rates beyond 1000 events. Also heavy
Higgs production can have an effect on the Standard Model Di-Higgs production rate as
discussed in [69].

It must be kept in mind, though, that the heavy Higgs particles are not strictly speaking
supersymmetric particles and are therefore not expected to lead to events with a large
missing transverse momentum in the detector due to the LSP.

4.5 Kinematic distributions for Higgs events from SUSY

Boost of the h? boson. When a supersymmetric particle decays into a h° boson, the
mass difference between mother and daughter (initial and final) state can lead to a boost. In
hadronic pp collisions the main contribution to h° production by SM processes is expected
to be from gluon-gluon fusion, and to a lesser extent from WW/ZZ fusion. A second
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Figure 13. Qualitative distribution (in %) of the h°-boson boost in terms of Bho = wy0/c for
the main h° hadroproduction processes in the SM (red, blue) and in pMSSM models via SUSY
processes (grey). The distributions are each normalised to unity. Only those pMSSM models are
presented that predict more than 100 h° bosons produced via SUSY processes for 10fb~!.

relevant contribution is expected from associated tth" production, which is expected to
lead to h° bosons that are more boosted in view of the larger (top-quark) mass scale in
the process. Both processes are shown in figure 13 in order to compare the h°-boson boost
(Byo) distributions originating from SUSY and SM processes. Due to the larger mass scale
of the SUSY processes the kY bosons are on average more boosted, even more than in t£h"
production. In extreme cases a heavy SUSY particle with mass > 1TeV decays to a h°
boson and a SUSY particle with a mass of O(100GeV), leading to a very large boost. As
an opposite extreme, we find one case where a squark with m = 1.5 TeV decays to a )zg
with m = 1.17 TeV, which subsequently decays to a h® and a X} with m = 1.04TeV. In
such compressed scenarios the h? boost is even lower than expected from SM processes.

Missing transverse momentum. Figure 14 shows the missing transverse momentum
distributions from SUSY processes for the selected pMSSM models. The generated events
are normalized to an integrated luminosity of 10fb~!. All models have on average large
missing transverse momentum up to several 100 GeV, permitting the introduction of se-
lection cuts of 100-200 GeV in order to reduce backgrounds from SM processes. The
production of heavy Higgs bosons is not considered. Model A has low missing transverse
momentum since the A boson originates from a heavy H° boson, which does not decay
to the LSP.
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Figure 14. Number of expected events containing at least one h? boson as a function of missing
transverse energy E2 in cascades of supersymmetric origin (i.e. without the production of heavy
Higgs bosons).

Final states with h? bosons. After the detector response is simulated with DELPHES,
the final states are determined. Selection cuts are applied, requiring the leptons, i.e. elec-
trons or muons, to have a transverse momentum of at least 20 GeV. For the jets this lower
limit is chosen to be 50 GeV. B-jets and hadronic tau decays are counted as jets. Both
leptons and jets are only considered if they are located within the pseudorapidity® region
of [n®*J¢| < 2.5. In addition to the overlay removal that is automatically performed in
DELPHES, a stricter overlap removal of ARq; > 0.6 is applied.” The generated events
are again normalised to an integrated luminosity of 10fb~1.

The lepton and jet multiplicities for events requiring a missing transverse momentum
of at least 100 GeV are shown in figures 15, 16 and 17. The most populated channels for
single Higgs production are the channels that contain > 1 — 4 jets, with close to 1000
events, and mono-higgs® production, with up to 200 events for 10fb~!. In some cases very
high jet multiplicities can occur, as can be seen in figure 17. Channels with one lepton
lead to ~ 100 events and channels with two leptons to less than 10 events. Higher lepton
multiplicities are not important for h? production. Di-Higgs and tri-Higgs production is
dominantly found in channels with > 2 jets. Another notable feature is that the production
of neutralino pairs can lead to events with two Higgs bosons, missing transverse momentum
and nothing else, i.e. no leptons and no jets.

ip=—In [tan(g)] in terms of the polar angle 6 w.r.t. the beam axis.
SARap = ,/(An)ib + (Aqﬁ)i,b in terms of the pseudorapidity difference An and the difference in az-

imuthal angle A¢ between the objects (leptons/jets) a and b.
5The 0-lepton, 0-jet channel, which is dominated by neutralino-pair production.
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Figure 15. Number of expected events containing at least one h° boson in cascades of supersym-
metric origin with E%iss > 100 GeV. The event rates are split up according to specific combinations
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5 Conclusion

We have systematically investigated the possibilities to produce a 125 GeV Higgs boson (h°)
via SUSY processes within the phenomenological MSSM (pMSSM). We find the following
interesting features:

Given global constraints on the pMSSM, it is possible to produce Higgs events with a
large rate in the upcoming LHC data at the increased centre-of-mass energy. We have
found valid pMSSM models that could produce more than 3000 Higgs, 300 di-Higgs
and/or 20 tri-Higgs events already with an integrated luminosity of 10fb~1.

A relation is observed between large Higgs-production rates via squark decays to
heavy neutralinos and inherent difficulties to exclude such models in conventional
(non-Higgs) LHC searches. This is caused by the fact that Higgs production requires
a less compressed neutralino mass spectrum, which can bring the heavy neutralinos
closer to the lowest-lying squark states, thereby reducing the available amount of
energy for additional jets.

In some models Higgs production is significant for almost all important SUSY pro-
duction processes, which can have large repercussions on SM Higgs studies and SUSY
searches.

Higgs production via SUSY processes might significantly enhance the event rates for
SM Higgs and di-Higgs searches, especially in final states with missing transverse
momentum. The allowed SUSY production rates can be reduced by upcoming (neg-
ative) SUSY searches at higher LHC energies, especially if new dedicated searches
for events with A" bosons and missing transverse momentum are performed.

Higgs production processes can likewise be of importance for a SUSY discovery via
“Higgs tagging”. We found that the different SUSY production channels can lead to
a large variety of interesting event topologies and kinematics. Of special interest are
multi-jet channels with up to three Higgs bosons, “mono-Higgs” channels with up to
two Higgs bosons, one-lepton channels with one Higgs boson and Higgs production in
association with top or b-quarks, all with a sizeable amount of missing transverse mo-
mentum. The list is completed by searches for heavy Higgs bosons decaying directly
or via neutralinos/charginos into h° bosons.

— 33 —



A Selected illustrative figures

BR BR
o f 2 2 9 9 o o o o 2 2 B2 2 o S o o
o o - e LN w 2 o @& N = ©
AR P AR RRLLNNRRAR Ry N R ARRA AR AR RN RRN ENRRARANS st CTCT LTI [T OO [ L T T LT T T T T T
Ne i | i i we ] | : i : t i
S £
Nt[j Nx"
£ £
ata) N""l
21 =1
Eql Eat
% T
» >
= ©
S s
©1 o
et et
a a
= -
s =
I3 <
£! !
o ot
£ o
o ot
E] 3
o 2N
73] w1
E =
A A
I
T Tt
-t -t
. i
o1 ’_m‘ll_
@ 3
B !
=zt z1
= |
- -
x| =)
n - g o
=t =1
ol Al
GE KGR
=i =1
T Tl
BR BR
o © 2o © o o o o © s © © °o © o o oS o
o LN w o ® N @ o 4 o LN w o ® N m o
R RN N LRLRY LR SRR A RE RN AR AN RRRRN ENR RARRRR SNl LN AR RRRRRE A RN ARANARRRRRARRRANE]
s | | ; ! : i 54 ; | x . . |
=1 =
S )
Fati Z“:.‘l
s s
Eali Bk
T T
] G
> >
C Ca
I I
s s
@ @t
et et
a a
El !
K] =
c c
B &1
o o
o ot
£ =
@ @
@ ot
E b
o o
T T
_—'n ]
rs"}» fal
o o
@ @
L !
<1 <1
o B
= iR
oy y
= LB
= =
<t =<1
= <
o Al
foE e
21 =1
o "

Figure 18. Branching ratios into h° for all MSSM particles. The plots show set B with the width
of the Gaussian particle filter set to 10% (upper left), 25% (upper right) and 40% (lower left) of the
full extent of the parameter space in each dimension. The lower right figure shows for comparison
set A, which has a different Higgs branching ratio requirement.
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