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Introduction. The existence of a RG flow between two CFT’s suggests that this the-

ories could be connected by a non-trivial interface which encodes the map from the UV

observables to the IR ones [1, 2] In particular in [2] such an interface (RG domain wall) was

constructed for the N = 2 superconformal models using matrix factorisation technique.

Later in [3] an algebraic construction of a RG domain wall for the unitary minimal

CFT models was proposed and was shown that the results agree with those of the leading

order perturbative analysis performed by A. Zamolodchikov in [4].

The leading order perturbative calculation of the mixing coefficients for the wider class

of local fields including non-primary ones again is in an impressive agreement with the RG

domain wall approach [5].

Higher order perturbative calculations [6, 7] further confirm the validity of this con-

struction.

In the same paper [3] Gaiotto suggests that a similar construction should be valid also

for more general coset CFT models. The N = 1 minimal superconformal CFT models [8–

10], which are the main subject of this paper, are among these cosets.

The Renormalisation Group (RG) flow between minimal N = 1 superconformal models

SMp and SMp−2 initialised by the perturbation with the top component of the Neveu-

Schwarz superfield Φ1,3 in leading order of the perturbation theory has been investigated

in [11] (see also [12, 13]).

Recently, extending the technique developed in [6] for the minimal models to the

supersymmetric case, in [14] the analysis of this RG flow has been sharpened even further

by including also the next to leading order corrections.

In this paper we specialise Gaiotto’s proposal to the case of the minimal N=1 SCFT

models. The method we use is based directly on the current algebra construction and,

in this sense, is more general than the one originally employed by Gaiotto for the case

of minimal models. Namely he heavily exploited the fact that the product of successive

minimal models can be alternatively represented as a product of N = 1 superconformal and
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Ising models. We explicitly calculate the mixing coefficients for several classes of fields and

compare the results with the perturbative analysis of [11, 14] finding a complete agreement.

The paper is organised as follows:

section 1 is a brief review of the 2d N = 1 superconformal filed theories.

Section 2 is devoted to the description of the coset construction of N = 1 SCFT. Of

course everything here is well known; our purpose here is to fix notations and list the

relevant formulae in a form, most convenient for the further calculations.

In section 3 we formulate Gaiotto’s general proposal for a class of coset CFT models.

Section 4 is the main part of our paper. We explicitly calculate the mixing coefficients

for the several classes of local fields in the case of the supersymmetric RG flow discussed

above using RG domain wall proposal. Then we compare this with the perturbation theory

results available in the literature finding a complete agreement.

1 N=1 superconformal field theory

In any conformal field theory the energy-momentum tensor has two nonzero components:

the holomorphic field T (z) with conformal dimension (2, 0) and its anti-holomorphic coun-

terpart T̄ (z̄) with dimensions (0, 2). In N = 1 superconformal field theories one has in

addition superconformal currents G(z) and Ḡ(z̄) with dimensions (3/2, 0) and (0, 3/2) re-

spectively. These fields satisfy the OPE rules

T (z)T (0) =
c

2z4
+

2T (0)

z2
+
T ′(0)

z
+ · · · , (1.1)

T (z)G(0) =
3G(0)

2z2
+
G′(0)

z
+ · · · , (1.2)

G(z)G(0) =
2c

3z3
+

2T (0)

z
+ · · · . (1.3)

The corresponding expressions for the anti-chiral fields look exactly the same. One should

simply substitute z by z̄. Further on we’ll mainly concentrate on the holomorphic part

assuming similar expressions for anti-holomorphic quantities implicitly. We can expand

T (z) in Laurent series

T (z) =
+∞∑

n=−∞

Ln
zn+2

, (1.4)

where Ln’s are the Virasoro generators. Due to the fermionic nature of the super current,

there are two distinct possibilities for its behavior under the rotation of the argument

around 0 by the angle 2π

G
(
e2πiz

)
= G(z) Neveu-Schwarz sector (NS) , (1.5)

G
(
e2πiz

)
= −G(z) Ramond sector (R) . (1.6)

The space of fields A of the superconformal theory decomposes into a direct sum

A = {NS} ⊕ {R} , (1.7)
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where the subspaces {NS} and {R} consist of the Neveu-Shwarz and the Ramond fields

respectively. By definition, the monodromy of G(z) around a Neveu-Schwarz field is trivial

(the case of eq. (1.5)) and its monodromy around a Ramond field produces a minus sign

(the case of eq. (1.6)). Because of these two possibilities the Laurent expansions for the

super-current will be

G(z) =
∑

k∈Z+1/2

Gk
zk+3/2

Neveu-Schwarz sector (NS) ,

G(z) =
∑
k∈Z

Gk
zk+3/2

Ramond sector (R) .

The OPE’s (1.1), (1.2), (1.3) are equivalent to the Neveu-Schwarz-Ramond algebra relations

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m,0 ,

[Ln, Gk] =
1

2
(n− 2k)Gn+k , (1.8)

{Gk, Gl} = 2Lk+l +
c

3

(
k2 − 1/4

)
δk+l,0 ,

where {, } denotes the anticommutator. In this paper we’ll deal with minimal super-

conformal series denoted as SMp (p = 3, 4, 5 . . .) corresponding to the choice of the cen-

tral charge

cp =
3

2

(
1− 8

p(p+ 2)

)
. (1.9)

The main distinctive mark of the minimal super-conformal theories is that they have finitely

many super primary fields. These fields are numerated by two integers n ∈ {1, 2, · · · , p−1},
m ∈ {1, 2, · · · , p + 1} and will be denoted as φn,m. It is assumed that φp−n,p+2−m ≡
φn,m, hence the number of super primaries is equal to [p2/2] ([x] is the integer part of x).

φp−1,p+1 ≡ φ1,1 is the identity operator. For even (odd) n−m the super-conformal classes

[φn,m] form irreducible representations of the Neveu-Schwarz (Ramond) algebra. The fields

φn,m have dimensions

hn,m =
((p+ 2)n− pm)2 − 4

8p(p+ 2)
+

1

32
(1− (−)n−m) . (1.10)

2 Current algebra and the coset construction

We will use the coset construction [16, 17] of super-minimal models in terms of ŜU(2)k
WZNW models [18, 19].

Recall that WZNW models are endowed with spin one holomorphic currents. The

OPE relations of these currents specified to the case of ŜU(2)k read:

J0(z)J0(0) =
k/2

z2
+ reg ,

J0(z)J±(0) = ±J
±(0)

z
+ reg , (2.1)

J+(z)J−(0) =
k

z2
+

2J0(0)

z
+ reg ,

– 3 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
3

where k is the level. The isotopic indices ±, 0 convenient for the later use are related to

the usual Euclidean indices as:

J0 ≡ J3 and J± ≡ J1 ± iJ2 . (2.2)

The Laurent expansion of the currents reads

Ja(z) =
∑
n∈Z

Jan
zn+1

(2.3)

and the OPE rules (2.1) imply that the current algebra generators are subject to the

Kac̆−Moody algebra commutation relations[
J±n , J

±
m

]
= 0 ,[

J+
n , J

−
m

]
= knδn+m,0 + 2J0

n+m ,[
J0
n, J

±
m

]
= ±J±n+m , (2.4)[

J0
n, J

0
m

]
=
kn

2
δn+m,0 .

Notice that the subalgebra generated by Ja0 is simply the Lie algebra su(2).

The energy momentum tensor can be expressed through the currents with the help of the

Sugawara construction

T (z) =
1

k + 2

(
J0J0 +

1

2
J+J− +

1

2
J−J+

)
. (2.5)

As it is custom in CFT above and in what follows we assume that any product of local

fields taken at coinciding points is regularised subtracting singular parts of the respective

OPE. The central charge of the Virasoro algebra can be easily computed using (2.5). The

result is:

ck =
3k

k + 2
. (2.6)

The primary fields of the theory φj,m and corresponding states |j,m〉 are labeled by the

spin of the representation j = 0, 1/2, 1, . . . , k/2 and its projection m = −j,−j + 1, . . . , j.

The corresponding conformal dimensions are given by

h =
j(j + 1)

k + 2
. (2.7)

The zero modes of the currents act on the states |j,m〉 as1

J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉 ,

J0|j,m〉 = m|j,m〉 . (2.8)

We’ll need also the explicit form of the su(2) WZNW modular matrices

S(k)
n,m =

√
2

k + 2
sin

πnm

k + 2
. (2.9)

1Note that a consistent with eq. (2.8) conjugation rule for the primary fields would be φ†j,m =

(−)j−mφj,−m.
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It is well known that the N = 1 super-minimal models can be represented as a

coset [16, 17]

SMk+2 =
su(2)k × su(2)2

su(2)k+2
.

In particular the energy momentum tensor of SMk+2 is given by

T(su(2)k×su(2)2)/su(2)k+2
= Tsu(2)k + Tsu(2)2 − Tsu(2)k+2

. (2.10)

Indeed the combination of the central charges (2.6) corresponding to these three terms

matches with the central charge of the super-minimal models (1.9).

The construction of the super-current G is more subtle; it involves the primary fields

φ1,m of the level k = 2 WZNW theory (we denote the currents of this theory as Ka and

summation over the index a = ±, 0 is assumed):

G(z) = CaJ
a(z)φ1,−a(z) +DaK

a
−1φ1,−a(z) . (2.11)

The coefficients Ca, Da can be fixed requiring that the respective state be the highest

weight state of the diagonal current algebra J + K. In other words both J+
0 + K+

0 and

J+
1 +K+

1 annihilate the state

CaJ
a
−1|0〉|1,−a〉+Da|0〉Ka

−1|1,−a〉 . (2.12)

Up to an overall constant κ we get

D+ =
κ√
2
, D0 = κ , D− = − κ√

2
,

C+ = −3κ
√

2

k
, C0 = −6κ

k
, C− =

3κ
√

2

k
. (2.13)

The value of κ may be determined using the normalization condition of the the super-

current fixed by the OPE (1.3)

κ =

√
(k + 2)(k + 4)

(k + 6)(5k + 54)
, (2.14)

but this won’t be of importance for our goals.

3 Perturbative RG flows and domain walls

In a well known paper A. Zamolodchikov [4] has investigated the RG flow from minimal

model Mp to Mp−1 initiated by the relevant field φ1,3. Using leading order perturbation

theory valid for p � 1, for the several classes of local fields he calculated the mixing

coefficients specifying the UV-IR map.

It was shown in [11] that a similar RG trajectory connecting N = 1 super-minimal

models SMp to SMp−2 exists. In this case the RG flow is initiated by the top component

of the Neveu-Schwartz superfield Φ1,3. For us it will be important that also in this case a

detailed analysis of some classes of fields has been carried out.
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As it became clear later [12, 15], above two examples are just the first simplest cases

of more general RG flows. A wide class of CFT coset models

TUV =
ĝl × ĝm
ĝl+m

, m > l (3.1)

under perturbation by the relevant field φ = φAdj1,1 [15] at the IR limit flow to the theories

TIR =
ĝl × ĝm−l

ĝm
. (3.2)

Recently in [3] Gaiotto constructed a nontrivial conformal interface between successive

minimal CFT models and made a striking proposal that this interface (RG domain wall)

encodes the UV-IR map resulting through the RG flow discussed above. It was shown that

the proposal agrees with the leading order perturbative analysis of [4].

Generalization of leading order calculations to a wider class of local fields [5] as well

as next to leading order calculations [6, 7] further confirm the validity of this construction.

Actually in [3] Gaiotto suggests also a candidate for RG domain wall for the much

more general RG flow between (3.1) and (3.2). Let us briefly recall the construction. Since

a conformal interface between two CFT models is equivalent to some conformal boundary

for the direct product of these theories (folding trick), it is natural to consider the product

theory TUV × TIR
ĝl × ĝm
ĝm+l

× ĝl × ĝm−l
ĝm

∼ ĝm−l × ĝl × ĝl
ĝl+m

. (3.3)

Notice the appearance of two identical factors ĝl so one has a natural Z2 automorphism.

Essentially the proposal of Gaiotto boils down to the statement that the boundary of

the theory

TB =
ĝl × ĝl × ĝm−l

ĝl+m
, m > l (3.4)

acts as a Z2 twisting mirror. Explicitly the RG boundary condition is the image of the Z2

twisted TB brane

|B̃〉 =
∑
s,t

√
S
(m−l)
1,t S

(m+l)
1,s

∑
d

|t, d, d, s;B, Z2〉〉, (3.5)

where the indices t, d, s refer to the representations of ĝm−l, ĝl, ĝl+m respectively and S
(k)
1,r

are the modular matrices of the ĝk WZNW model.

In what follows we will examine in details the case of RG flow between N = 1 super-

minimal models. The method we apply directly explores the current algebra representation

in contrary to the analysis in [3] where a specific representation applicable only for the

unitary minimal series was used.

4 RG domain walls for super minimal models

In the case of the N = 1 super-minimal models one should consider

ŝu(2)k × ŝu(2)2
ŝu(2)k+2

× ŝu(2)k−2 × ŝu(2)2
ŝu(2)k

∼ ŝu(2)k−2 × ŝu(2)2 × ŝu(2)2
ŝu(2)k+2

, (4.1)
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where the first coset on l.h.s. corresponds to the UV super conformal model SMk+2 and the

second one to the IR theory SMk. We denote by K(z) and K̃(z) the WZNW currents of

ŝu(2)2 entering in the cosets of the IR and UV theories respectively. The current of ŝu(2)k−2
WZNW theory will be denoted as J(z). Using (2.10) and the Sugawara construction, for

the energy-momentum tensor of the IR theory (the second factor of the l.h.s. of (4.1)) we get

Tir(z) =
1

k
J(z)J(z) +

1

4
K(z)K(z)− 1

k + 2
(K(z) + J(z))2,

which can be rewritten as

Tir(z) =
2

2k + k2
J(z)J(z)− 2

2 + k
J(z)K(z) +

k − 2

4(k + 2)
K(z)K(z). (4.2)

Similarly the energy-momentum tensor for the UV theory is equal to

Tuv(z) =
2

(2 + k)(4 + k)
J(z)J(z) +

2

(2 + k)(4 + k)
K(z)K(z)

− 2

4 + k
K(z)K̃(z) +

k

4(k + 4)
K̃(z)K̃(z)

+
4

(2 + k)(4 + k)
J(z)K(z)− 2

4 + k
J(z)K̃(z) . (4.3)

In order to get the one-point functions of the theory SMk+2 × SMk in the presence of

RG boundary, one needs explicit expressions of the states corresponding to fields φIRφUV

in terms of the states of the coset theory

TB =
ŝu(2)k−2 × ŝu(2)2 × ŝu(2)2

ŝu(2)k+2
. (4.4)

Let us denote the highest weight representation spaces of the current algebras J(z), K(z)

and K̃(z) as V
(J)
j , V

(K)
k and V

(K̃)

k̃
respectively (the lower indices specify the spins of the

highest weight states). It is convenient to fix a unique representative of a state of the

coset TB in the space V
(J)
j ⊗ V (K)

k ⊗ V (K̃)

k̃
requiring that the state under consideration be

a highest weight state of the diagonal current J + K + K̃. The simplest case to analyse

are the states corresponding to φIRn,nφ
UV
n,n. Since

hirn,n =
n2 − 1

4k
− n2 − 1

4(k + 2)
,

huvn,n =
n2 − 1

4(k + 2)
− n2 − 1

4(k + 4)
,

the total dimension of the product field is

hirn,n + huvn,n =
n2 − 1

4k
− n2 − 1

4(k + 4)
, (4.5)

so that the corresponding state is readily identified with (|j,m〉 denotes a primary state of

spin j and projection m)

|n− 1

2
,
n− 1

2
〉|0, 0〉|0, 0〉 ∈ V (J)

n−1
2

⊗ V (K)
0 ⊗ V (K̃)

0 . (4.6)
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Indeed, this is a spin n−1
2 highest weight state of the combined current J +K + K̃ and its

TB dimension

h
(J)
n−1
2

+ h
(K)
0 + h

(K̃)
0 − h(J+K+K̃)

n−1
2

coincides with (4.5). Notice that Z2 action (i.e. permutation of the second and third fac-

tors) on this state is trivial. Thus the overlap of this state with its Z2 image is equal to 1

and from (3.5)

〈φIRn,nφUV
n,n|RG〉 =

√
S
(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

. (4.7)

For large k and for n ∼ O(1) this gives 1 + 3/k2 +O(1/k3). We conclude that up to 1/k2

terms, the fields φUV
n,n flow to φIRn,n without mixing with other fields, in complete agreement

with both leading order [11] and next to leading order [14] perturbative calculations.

Next let us examine the more interesting case of Ramond fields φUV
n,n±1 which are

expected to flow to certain combinations of the fields φIRn±1,n [11].

Consider the state corresponding to φirn−1,nφ
uv
n,n−1. From (1.10) we get

hirn−1,n =
3

16
+

(n− 1)2 − 1

4k
− n2 − 1

4(k + 2)
, (4.8)

huvn,n−1 =
3

16
− (n− 1)2 − 1

4(k + 4)
+

n2 − 1

4(k + 2)
. (4.9)

Hence the conformal dimension of this product field will be

hirn−1,n + huvn,n−1 =
3

8
+

(n− 1)2 − 1

4k
− (n− 1)2 − 1

4(k + 4)
. (4.10)

There are three primaries in su(2)2 WZNW theory with j = 0, 1, 2 representations and

conformal dimensions 0, 3
16 and 1

2 respectively. So, to get the right dimension one should

choose a combination of states |n2 −1,m〉|12 , α〉|
1
2 , β〉. In addition this combination must be

the spin n
2 − 1 highest weight state of J + K + K̃ (to match with the last, negative term

of (4.10)). Thus we are lead to

Cαβ |
n

2
− 1,

n

2
− 1− α− β〉|1

2
, α〉|1

2
, β〉, (4.11)

where a summation over the indices α, β = ±1/2 is assumed. The highest weight condition

that the operator J+
0 +K+

0 + K̃0 annihilates this state, implies

√
n− 2C++ + C−+ + C+− = 0 .

A further constraint

C++ −
√
n− 2C−+ = 0 ,

one obtains imposing the condition that this state should be an eigenstate of the Vira-

soro operator LIR
0 constructed from the energy-momentum tensor Tir (4.2) with eigenvalue

hirn,n−1 (4.8). Thus we get

C++ =
√
n− 2C−+ , C+− = −(n− 1)C−+

– 8 –
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(of course, the undefined overall multiplier could be fixed from the normalization condition).

Taking (normalized) scalar product of the state (4.11) with its Z2 image we find

〈φirn−1,nφuvn,n−1|RG〉 = − 1

n− 1

√
S
(k−2)
1,n−1S

(k+2)
1,n−1

Sk1,n
. (4.12)

Consideration of the product φirn+1,nφ
uv
n,n+1 fields is quite similar and leads to the state

Cαβ |
n

2
,
n

2
− α− β〉|1

2
, α〉|1

2
, β〉 ,

with the coefficients

C+− = 0 , C++ = − 1√
n
C−+ .

So, in this case

〈φirn+1,nφ
uv
n,n+1|RG〉 =

1

n+ 1

√
S
(k−2)
1,n+1S

(k+2)
1,n+1

Sk1,n
. (4.13)

Constructing the states corresponding to φirn−1,nφ
uv
n,n+1 and φirn+1,nφ

uv
n,n−1 is even simpler

and one easily gets |n2 − 1, n2 − 1〉|12 ,
1
2〉|

1
2 ,

1
2〉 and |n2 ,

n
2 〉|

1
2 ,−

1
2〉|

1
2 ,−

1
2〉 respectively. In both

cases the Z2 action is trivial, hence

〈φirn−1,nφuvn,n+1|RG〉 =

√
S
(k−2)
1,n−1S

(k+2)
1,n+1

Sk1,n
, (4.14)

〈φirn+1,nφ
uv
n,n−1|RG〉 =

√
S
(k−2)
1,n+1S

(k+2)
1,n−1

Sk1,n
. (4.15)

In the large k limit we get

〈φirn+1,nφ
uv
n,n+1|RG〉 =

1

n
+O(1/k2) , (4.16)

〈φirn+1,nφ
uv
n,n−1|RG〉 =

√
n2 − 1

n
+O(1/k2) , (4.17)

〈φirn−1,nφuvn,n+1|RG〉 =

√
n2 − 1

n
+O(1/k2) , (4.18)

〈φirn−1,nφuvn,n−1|RG〉 = − 1

n
+O(1/k2) , (4.19)

in complete agreement with the second order perturbation theory results [14].

We have analysed also the more complicated case of mixing of the primary Neveu-

Schwartz superfields Φn,n±2 and the descendant superfield DD̄Φn,n (here D and D̄ are the

super-derivatives). The details of calculations are presented in the appendix. Here are the

final results:

〈ψir
n+2,nψ

uv
n,n+2|RG〉 =

2

(n+ 1)(n+ 2)

√
S
(k−2)
1,n+2S

(k+2)
1,n+2

S
(k)
1,n

, (4.20)

〈φirn+2,nG
uv
− 1

2

φuvn,n|RG〉 =
2

n+ 1

√
S
(k−2)
1,n+2S

(k+2)
1,n

S
(k)
1,n

, (4.21)
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〈ψir
n+2,nψ

uv
n,n−2|RG〉 =

√
S
(k−2)
1,n+2S

(k+2)
1,n−2

S
(k)
1,n

, (4.22)

〈Gir
− 1

2

φirn,nφ
uv
n,n+2|RG〉 =

2

n+ 1

√
S
(k−2)
1,n S

(k+2)
1,n+2

S
(k)
1,n

, (4.23)

〈Gir
− 1

2

φirn,nG
uv
− 1

2

φuvn,n|RG〉 =
n2 − 5

n2 − 1

√
S
(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

, (4.24)

〈Gir
− 1

2

φirn,nφ
uv
n,n−2|RG〉 = − 2

n− 1

√
S
(k−2)
1,n S

(k+2)
1,n−2

S
(k)
1,n

, (4.25)

〈ψir
n−2,nψ

uv
n,n+2|RG〉 =

√
S
(k−2)
1,n−2S

(k+2)
1,n+2

S
(k)
1,n

, (4.26)

〈φirn−2,nGuv
− 1

2

φuvn,n|RG〉 = − 2

n− 1

√
S
(k−2)
1,n−2S

(k+2)
1,n

S
(k)
1,n

, (4.27)

〈φirn−2,nφuvn,n−2|RG〉 =
2

(n− 1)(n− 2)

√
S
(k−2)
1,n−2S

(k+2)
1,n−2

Sk1,n
. (4.28)

At the large k limit we get

〈ψir
n+2,nψ

uv
n,n+2|RG〉 =

2

n(n+ 1)
+O

(
1/k2

)
, (4.29)

〈φirn+2,nG
uv
− 1

2

φuvn,n|RG〉 =
2

n+ 1

√
n+ 2

n
+O

(
1/k2

)
, (4.30)

〈ψir
n+2,nψ

uv
n,n−2|RG〉 =

√
n2 − 4

n
+O

(
1/k2

)
, (4.31)

〈Gir
− 1

2

φirn,nφ
uv
n,n+2|RG〉 =

2

n+ 1

√
n+ 2

n
+O

(
1/k2

)
, (4.32)

〈Gir
− 1

2

φirn,nG
uv
− 1

2

φuvn,n|RG〉 =
n2 − 5

n2 − 1
+O

(
1/k2

)
, (4.33)

〈Gir
− 1

2

φirn,nφ
uv
n,n−2|RG〉 = − 2

n− 1

√
n− 2

n
+O

(
1/k2

)
, (4.34)

〈ψir
n−2,nψ

uv
n,n+2|RG〉 =

√
n2 − 4

n
+O

(
1/k2

)
, (4.35)

〈φirn−2,nGuv
− 1

2

φuvn,n|RG〉 = − 2

n− 1

√
n− 2

n
+O

(
1/k2

)
, (4.36)

〈φirn−2,nφuvn,n−2|RG〉 =
2

n(n− 1)
+O

(
1/k2

)
. (4.37)

Again, the results are in complete agreement with the next to leading order perturbative

calculations of [14].
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It is interesting to note that, though the mixing coefficients computed here in the

large k limit coincide with the respective cases of the φ1,3 perturbed minimal models, the

exact k dependence in supersymmetric case enters solely through the modular matrices, in

contrary to the quite complicated k dependence of the non supersymmetric case.

Acknowledgments

We thank Ruben Manvelyan, Rubik Poghossian, and Gor Sarkissian for introducing us

into this field of research. The work of Gabriel Poghosyan was partially supported by the

Armenian SCS grant 13-1C232. The work of Hasmik Poghosyan was partially supported

by the Armenian SCS grant 13-1C132 and by the Armenian-Russian SCS grant-2013.

A Mixing of the fields Φn,n±2 and the descendant DD̄Φn,n

Let us start with the product field φirn−2,nφ
uv
n,n−2. The corresponding dimensions are

hirn−2,n =
1

2
+

(n− 2)2 − 1

4k
− n2 − 1

4(k + 2)
, (A.1)

huvn,n−2 =
1

2
− (n− 2)2 − 1

4(4 + k)
+

n2 − 1

4(k + 2)
, (A.2)

hence

hirn−2,n + huvn,n−2 = 1 +
(n− 2)2 − 1

4k
− (n− 2)2 − 1

4(4 + k)
. (A.3)

A careful examination shows that the required state should be chosen among the combi-

nations ∑
α,β∈{−1,0,1}

Cα,β |
n− 3

2
,
n− 3

2
− α− β〉|1, α〉|1, β〉 . (A.4)

Indeed the other candidates such as Ja−1|n−32 , n−32 − a〉|0〉|0〉, K
a
−1|n−32 , n−32 − a〉|0〉|0〉 or

K̃α
−1|n−32 , n−32 − a〉|0〉|0〉 though have a correct total dimension, can not be combined to

get the required IR dimension (A.1). This can be easily seen by examining the zero mode

of the IR current

T ir =
1

k
J2 − 1

k + 2
(J +K)2 +

1

4
K2 . (A.5)

The only way to get the term 1/2 of (A.1) is to choose j = 1 representation of the current

K (see the last term of (A.5)).

To get correct IR dimension one should impose the condition that the zero mode of

(J + K)2 on the state (A.4) must acquire the eigenvalue n−1
2

n+1
2 . Together with our

usual requirement of being a highest weight state of the J +K + K̃ algebra this fixes the

coefficients up to an overall multiplier

C+0 =

√
n− 3

2
C00 , C++ = −

√
n− 3

2

√
n− 4

n− 2
C00 ,

C+− =
1− n

2
C00 , C0+ = − 2

n− 2

√
n− 3

2
C00 ,

C−+ = − 1

n− 2
C00 , C−0 = C0− = C−− = 0 .
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This leads to the one point function

〈φirn−2,nφuvn,n−2|RG〉 =
2

(n− 1)(n− 2)

√
S
(k−2)
1,n−2S

(k+2)
1,n−2

Sk1,n
. (A.6)

In the same way we construct the state corresponding to φirn+2,nφ
uv
n,n+2

Cαβ |
n+ 1

2
,
n+ 1

2
− α− β〉|1, α〉|1, β〉 ,

where

C++ = − 1√
n
C00, C−+ = −

√
n+ 1

2
C00, C0+ = C00 (A.7)

(all other Cαβ vanish) and

〈ψir
n+2,nψ

uv
n,n+2|RG〉 =

2

(n+ 1)(n+ 2)

√
S
(k−2)
1,n+2S

(k+2)
1,n+2

S
(k)
1,n

. (A.8)

The state corresponding to ψir
n+2,nψ

uv
n,n−2 is simply |n+1

2 , n+1
2 〉|1,−1〉|1,−1〉 and

〈ψir
n+2,nψ

uv
n,n−2|RG〉 =

√
S
(k−2)
1,n+2S

(k+2)
1,n−2

S
(k)
1,n

. (A.9)

Similarly for ψir
n−2,nψ

uv
n,n+2 the state is |n−32 , n−32 〉|1, 1〉|1, 1〉 and

〈ψir
n−2,nψ

uv
n,n+2|RG〉 =

√
S
(k−2)
1,n−2S

(k+2)
1,n+2

S
(k)
1,n

. (A.10)

Let us now consider states corresponding to the descendant field Gir
−1/2ψ

ir
n,nψ

uv
n,n+2.

Partial dimensions of the field φirn,nφ
uv
n,n+2 are

hirn,n =
n2 − 1

4k
− n2 − 1

4(k + 2)
,

huvn,n+2 =
1

2
+

n2 − 1

4(k + 2)
− (n+ 2)2 − 1

4(k + 4)
,

hirn,n + huvn,n+2 =
1

2
+
n2 − 1

4k
− (n+ 2)2 − 1

4(k + 4)
.

Evidently the correct representative of the respective state is

|n− 1

2
,
n− 1

2
〉|0〉|1, 1〉 . (A.11)

Using the expression (2.11) its is straightforward to find the result of the action of the

super-current mode Gir
−1/2 on this state:

Gir
− 1

2

|n− 1

2
,
n− 1

2
〉|0〉|1, 1〉 = CaJ

a
0 |
n− 1

2
,
n− 1

2
〉|1,−a〉|1, 1〉

+DaK
a
0 |
n− 1

2
,
n− 1

2
〉|1,−a〉|1, 1〉 , (A.12)

– 12 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
3

where the coefficients Ca, Da are given by (2.13) (one should replace k by k−2). The final

result is:

Gir
− 1

2

|n− 1

2
,
n− 1

2
〉|0〉|1, 1〉 = −3(n− 1)

k − 2
|n− 1

2
,
n− 1

2
〉|1, 0〉|1, 1〉

+
6

k − 2

√
n− 1

2
|n− 1

2
,
n− 3

2
〉|1, 1〉|1, 1〉 . (A.13)

Thus for the one-point function we get

〈Gir
− 1

2

φirn,nφ
uv
n,n+2|RG〉 =

2

n+ 1

√
S
(k−2)
1,n S

(k+2)
1,n+2

S
(k)
1,n

. (A.14)

Consideration of the remaining cases do not involve new ingredients and we will simply list

the results.

• The state corresponding to φirn,nφ
uv
n,n−2 is:

− 1√
n− 2

|n− 1

2
,
n− 5

2
〉|0〉|1, 1〉+ |n− 1

2
,
n− 3

2
〉|0〉|1, 0〉

−
√
n− 1

2
|n− 1

2
,
n− 1

2
〉|0〉|1,−1〉 .

The result of Gir
− 1

2

action on this state looks ugly:

|n− 1

2
,
n− 3

2
〉|1,−1〉|1, 1〉+

n− 5

2
√
n− 2

|n− 1

2
,
n− 5

2
〉|1, 0〉|1, 1〉

−
√

3n− 9

2n− 4
|n− 1

2
,
n− 7

2
〉|1, 1〉|1, 1〉 −

√
n− 1

2
|n− 1

2
,
n− 1

2
〉|1,−1〉|1, 0〉

−n− 3

2
|n− 1

2
,
n− 3

2
〉|1, 0〉|1, 0〉+

√
n− 2|n− 1

2
,
n− 5

2
〉|1, 1〉|1, 0〉

+
(n− 1

2

) 3
2 |n− 1

2
,
n− 1

2
〉|1, 0〉|1,−1〉 − n− 1

2
|n− 1

2
,
n− 3

2
〉|1, 1〉|1,−1〉

multiplied by an overall factor 6
k−2 . The corresponding one-point function simply is:

〈Gir
− 1

2

φirn,nφ
uv
n,n−2|RG〉 = − 2

n− 1

√
S
(k−2)
1,n S

(k+2)
1,n−2

S
(k)
1,n

. (A.15)

• In the φirn−2,nφ
uv
n,n case the corresponding state is

|n− 3

2
,
n− 3

2
〉|1, 1〉|0〉 . (A.16)

Now we must act on this state by the operator Guv
−1/2

Guv
−1/2|

n−3

2
,
n−3

2
〉|1, 1〉|0〉 =

(
Ca(Ka

0 + Ja
0 )+DaK̃

a
0

)
|n− 3

2
,
n− 3

2
〉|1,−a〉|0〉

= −3(n−1)

k
|n− 3

2
,
n− 3

2
〉|1, 1〉|1, 0〉+

6

k
|n− 3

2
,
n− 3

2
〉|1, 0〉|1, 1〉

+
6

k

√
n− 3

2
|n− 3

2
,
n− 5

2
〉|1, 1〉|1, 1〉 .
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The one point function:

〈φirn−2,nGuv
− 1

2

φuvn,n|RG〉 = − 2

n− 1

√
S
(k−2)
1,n−2S

(k+2)
1,n

S
(k)
1,n

. (A.17)

• The state corresponding to the field φirn+2,nφ
uv
n,n is

− 1√
n
|n+ 1

2

n− 3

2
〉|1, 1〉|0〉+ |n+ 1

2
,
n− 1

2
〉|1, 0〉|0〉

−
√
n+ 1

2
|n+ 1

2
,
n+ 1

2
〉|1,−1〉|0〉 . (A.18)

Acting by Guv
−1/2 on this state we get

n− 1

2
√
n
|n+ 1

2
,
n− 3

2
〉|1, 1〉|1, 0〉+

√
n+ 1

2

(
n− 1

2

)
|n+ 1

2
,
n+ 1

2
〉|1,−1〉|1, 0〉

−
√

3n− 3

2n
|n+ 1

2
,
n− 5

2
〉|1, 1〉|1, 1〉+

n− 1√
n
|n+ 1

2
,
n− 3

2
〉|1, 0〉|1, 1〉

−n− 1

2
|n+ 1

2
,
n− 1

2
〉|1, 0〉|1, 0〉 − n− 1

2
|n+ 1

2
,
n− 1

2
〉|1,−1〉|1, 1〉

multiplied by 6
k . The result for one-point function:

〈φirn+2,nG
uv
− 1

2

φuvn,n|RG〉 =
2

n+ 1

√
S
(k−2)
1,n+2S

(k+2)
1,n

S
(k)
1,n

. (A.19)

• Finally, the state corresponding to the field Gir
− 1

2

φirn,nG
uv
− 1

2

φuvn,n is

(CaJ
a
0 +DaK

a
0 )
(
Cb

(
Kb

0 + Jb0

)
+DbK̃

b
0

)
|n− 1

2
,
n− 1

2
〉|1,−a〉|1,−b〉 (A.20)

which after some algebra becomes(
n− 1

2

)2

|n− 1

2
,
n− 1

2
〉|1, 0〉|1, 0〉 −

√
n− 1

2

n− 1

2
|n− 1

2
,
n− 3

2
〉|1, 0〉|1, 1〉

−n− 1

2
|n− 1

2
,
n− 1

2
〉|1, 1〉|1,−1〉 −

√
n− 1

2

n− 3

2
|n− 1

2
,
n− 3

2
〉|1, 1〉|1, 0〉

+

√
n− 1

2

√
n− 2|n− 1

2
,
n− 5

2
〉|1, 1〉|1, 1〉

multiplied by 36
k(k+2) . The respective one-point function is equal to

〈Gir
− 1

2

φirn,nG
uv
− 1

2

φuvn,n|RG〉 =
n2 − 5

n2 − 1

√
S
(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

. (A.21)
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