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1 Introduction

Much effort has been invested into the understanding of the application of holography

since its seminal papers [1–3]. Motivated by the fact that real world systems often exhibit

non-relativistic scale invariance at critical points, rather than relativistic invariance, it is

of interest to extend the holographic dictionary into non-relativistic context [4–8]. As a

model of non-relativistic scaling at a critical point on the boundary we require invariance

under

t→ λzt , ~x→ λ~x , (1.1)

where t denotes time, ~x denotes spatial coordinates on the holographic boundary and z is

called the dynamical exponent. For z = 1 the theory is Lorentz invariant. When z > 1 the

system obtains anisotropic scaling between space and time, often called Lifshitz scaling,

which violates Lorentz boost invariance.

The main goal of this paper is to determine the relaxation time of the d-dimensional

boundary theory with dynamical exponent z at some temperature T . Relaxation occurs

after having perturbed the system by an operator at the boundary. We consider operators

with scaling dimension ∆ and a spin-zero field as holographic dual in the bulk. We ob-

tain the relaxation time by computing quasinormal modes in the bulk and investigate the

dependence on d, z and ∆.

To obtain Lifshitz scaling and temperature on the boundary, we consider a black brane

solution of an Einstein-Maxwell-Dilaton (EMD) action [8, 9]. A black brane in the bulk

drives field excitation into dissipation. We then solve the (complexified) Klein-Gordon

equation of the spin-zero field in the probe limit. The resulting complex eigenvalues are

called the quasinormal frequencies corresponding to quasinormal modes. The smallest
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imaginary part of these eigenvalues is inversely proportional to the relaxation time τ of the

boundary system.

The quasinormal modes for z = 1 with d = 3, 4, 6 were studied numerically for the first

time in [10]. An analytic solution for d = 2, z = 1 was obtained in [11]. In this current

paper we find a generalization of this analytic solution for d = z+1 for vanishing momenta.

It reads

ωn = −i2πT
(

2n+
∆

z

)
, ⇒ τ =

z

2πT∆
, (1.2)

where T denotes temperature and n = 0 gives the lowest lying quasinormal mode. For

d = 3, z = 2 this equation coincides with the one found in [12]. For reviews on this topic

we recommend [13, 14].

A summary of previously obtained analytic and numerical solutions of quasinormal

modes of spin-zero fields, making usage of various bulk actions, entails: d = 2, z = 3 in

New Massive Gravity (NMG) [15], d ≥ 4, z = 2 in a R2 gravity setting [16] and d ≥ 2, z = 2

in a R3 gravity setting [17]. The case for d = 3, z = 2 has been studied in the Einstein-

Proca-Scalar (EPS) background [6, 18], in the EMD setup [12] and in a topological black

hole in a Einstein-Maxwell-Proca (EMP) background [19–21]. All these quasinormal mode

solutions were found to be purely imaginary. This signals that the corresponding system

is overdamped. In the papers [12, 16] it was therefore conjectured that for (most) Lifshitz

black holes the quasinormal modes are purely imaginary. Our conclusions will be different.

In our numerical analysis we find that for d > z + 1 the quasinormal modes have a real

component. However, for the case of d ≤ z+ 1 one continues to find overdamped solutions.

A brief outline of the paper is the following. In the next section we introduce notations

and derive the Schrödinger-like equation for quasinormal modes of a spin-zero field. In

section 3 we obtain the new analytic solution for quasinormal modes and analyze the

remaining cases using numerics. Here we chart the (non-)overdamped region. Next, in

section 4 we present the relaxation times and their behavior versus z, d and ∆. Finally, in

section 5 we present an outlook for possible future work.

2 Schrödinger problems for Lifshitz geometries

The objective is to obtain relaxation times for a boundary field theory probed by an

operator dual to a spin-zero field in the bulk. In order to pursue this goal we need to

compute quasinormal modes of a spin-zero field in an asymptotically Lifshitz black brane

background. This requires solving the equation of motion of a massive scalar field in the

EMD background, in the probe limit and subjected to appropriate boundary conditions.

2.1 Lifshitz brane

The metric line element of a black brane exhibiting Lifshitz scaling (1.1) on the boundary

can be expressed as

ds2 =
1

r2V 2(r)
dr2 − V 2(r)r2zdt2 + r2d~x2

d−1 , (2.1)
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where r is the radial bulk coordinate, which under Lifshitz symmetry scales as r → λr.

The limit r → ∞ corresponds to the boundary. The Lifshitz radius, a generalization of

the Anti-de Sitter radius, is put to unity in this paper. The blackening factor in the EMD

setup1 is [8]

V 2 = 1−
(rh

r

)d+z−1
, (2.3)

where rh denotes the horizon. The temperature of the black brane is given by

4πT = (d+ z − 1)rzh . (2.4)

To find the quasinormal modes we need to compute the tortoise coordinate r∗, which

characterizes the radial null curves obeying t = ±r∗ + constant. We consequently demand

dr∗ =
1

rz+1V 2
dr . (2.5)

The general solution, for d+ z > 1, is

r∗ = −r
−z

z
2 F1

[
1,

z

d+ z − 1
; 1 +

z

d+ z − 1
;
(rh

r

)d+z−1
]
, (2.6)

in terms of the hypergeometric function of the second kind. Without any loss of generality

we fix the integration constant to be zero. For the special case of d = z + 1 it becomes

r∗|d=z+1 = − 1

2zrzh
log

[
1 +

rzh
rz

1− rzh
rz

]
. (2.7)

Next we define Eddington-Finkelstein coordinates v and u as

v = t+ r∗ , u = t− r∗ , (2.8)

and we require infalling boundary conditions, for a field φ near the horizon to be

φ(r → rh) ∼ e−iωv = e−iωt−iωr∗ . (2.9)

This condition causes dissipation and complexifies the field φ.

2.2 Quasinormal modes of a scalar probe

We consider the equation of motion of a massive scalar field φ on the background of (2.1)

�φ = m2φ . (2.10)

Assuming the probe limit we ignore back reaction on the metric. We require boundary

conditions such that at the horizon the field φ has to be falling into the black brane and

1For different bulk fields, such as e.g. the EPS setup in d = 3 and z = 2, one has [6, 18]

V 2
EPS = 1 − r2

h

r2
. (2.2)
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that at radial infinity the field goes to zero, φ(r →∞) = 0. This system has a dissipative

nature since over time more and more field excitations will fall into the black brane while

the excitations at radial infinity are reflected. There is no incoming flux from the horizon

nor from the boundary. Quasinormal modes are the discrete values of energy ω for which

the equation of motion of φ is satisfied, taking into account these boundary conditions.

Making a plane wave Ansatz and a radial rescaling

φ = r
d−1

2 φ̃(r)e−iωt+i
~k·~x , (2.11)

where ~k denotes momentum, the Klein-Gordon equation in (2.10) can be written as a

one-dimensional time independent Schrödinger-like equation[
∂2
∗ + ω2 − V(r)

]
φ̃ = 0 , ∂∗ = rz+1V 2∂r . (2.12)

The corresponding potential is

V(r) = r2zV 2(r)

(
k2

r2
+m2 +

(d− 1)(d+ 2z − 1)

4
+

(d− 1)2

4

(rh

r

)d+z−1
)
. (2.13)

Asymptotically, near the boundary, the solution to the Schrödinger-like equation is given by

φ(r) ∼ Ar−∆− +Br−∆+ , ∆± =
d+ z − 1

2
±

√(
d+ z − 1

2

)2

+m2 , (2.14)

where A and B are independent of r. Applying the regular recipe for holography [2, 3], we

consider the term containing ∆ ≡ ∆+ to be the normalizable mode and hence the scaling

dimension of the operator O∆ dual to φ is ∆. Considering the Klein-Gordon inner product

we find that for this mode to be normalizable we have to constrain the scalar mass [22]∫ ∞
rh

drrd−z−2|Br−∆|2 <∞ , ⇒ m2 > −
(
d+ z − 1

2

)2

≡ m2
BF , (2.15)

where the contribution rd−z−2 is due to a volume factor resulting from taking a space-like

slice as integration area. The m2
BF is the minimal value above which m2 has to remain.

This is the Breitenlohner-Freedman (BF) bound. We require

A(ω, k,∆, d, z, T ) = 0 , (2.16)

in order to have no incoming or outgoing flux at radial infinity.

The BF bound (2.15) translates into the following bound on the scaling dimension

∆ =
d+ z − 1

2
+

√(
d+ z − 1

2

)2

+m2 >
d+ z − 1

2
. (2.17)

Marginal operators in a theory with Lifshitz scaling have ∆marginal = d + z − 1, so we

summarize
d+ z − 1

2
< ∆relevant < ∆marginal = d+ z − 1 < ∆irrelevant , (2.18)
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0

d

z

violates BF

relevant

irrelevant

d =
1−

z +
∆

d =
1−

z +
2∆

Figure 1. Visualization of (2.18). Exactly at the d = 1− z + ∆ line the operator is marginal. On

and above the line d = 1− z + 2∆ the BF bound is violated.

which can be visualized as in figure 1. A quasinormal mode is defined by solving the

Schrödinger-like equation (2.12) supplemented with boundary condition (2.9) at the hori-

zon and boundary condition (2.16) at radial infinity. Quasinormal modes ωn are then

obtained from

A(ω, k,∆, d, z, T ) = 0 , ⇒ ωn = ωRe(n, k,∆, d, z, T )− iωIm(n, k,∆, d, z, T ) , (2.19)

where integer n labels the overtone number of the quasinormal mode. By definition the

n = 0 gives the imaginary component closest to zero.

When ωIm is positive (in our conventions) it implies stability of the gravitational back-

ground under scalar perturbations. We can verify that ωIm is always positive due to the

fact that the potential is real, positive and strictly increasing. This conclusion follows from

a reasoning similar to the one given in [10], but adapted to Lifshitz scaling. One starts by

introducing φ̃ = e−iωr∗ φ̂(r) to (2.12) in order to obtain[
rz+1V 2(r)∂2

r +
[
∂r
(
rz+1V 2(r)

)
− 2iω

]
∂r −

V(r)

rz+1V 2

]
φ̂ = 0 . (2.20)

Multiplying this equation by φ̂∗ and integrating over r from rh to ∞, after integration by

parts, yields ∫ ∞
rh

dr

[
rz+1V 2(r)|∂rφ̂|2 + 2iωφ̂∗∂rφ̂+

V(r)

rz+1V 2(r)
|φ̂|2

]
= 0 . (2.21)

Taking the imaginary part of (2.21), applying integration by parts and inserting the result

back into (2.21) results in∫ ∞
rh

dr

[
rz+1V 2(r)|∂rφ̂|2 +

V(r)

rz+1V 2(r)
|φ̂|2

]
= −|ω|

2|φ̂(rh)|2

Imω
, (2.22)

where the left-hand side is ensured to remain positive with the potential under consideration

in this paper. This guarantees a negative imaginary value of ω.
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The connection between relaxation time and quasinormal modes follows from

|e−iωnt| = |e−iωRete−ωImt| = e−ωImt = e−t/τ , (2.23)

which violates unitarity due to dissipation. The relaxation time τ is defined as

τ ≡ 1/ωIm . (2.24)

Notice that the real part of the quasinormal mode is referred to as the dispersion relation.

For purely imaginary quasinormal modes we thus speak of the corresponding system being

overdamped.

3 Obtaining quasinormal modes

Finding the quasinormal modes by solving the Schrödinger-like equation (2.12) supple-

mented with boundary condition (2.9) at the horizon boundary condition (2.19) at radial

infinity is mostly done numerically in this paper. The case d = z + 1, however, can be

treated analytically for vanishing momenta, so we can consider this case separately.

3.1 Analytic solutions, d = z + 1

For the EMD background, an analytical solution of quasinormal modes is known d = 3,

z = 2 with k = 0 [12]. We now determine additional analytical solutions for the general

case of d = z + 1 with k = 0.

Why this case is special from an analytic point of view can be understood from ob-

serving two simplifications which occur to (2.12) in this case. Firstly, the potential only

depends on terms containing r2z. This simplifies the r-dependence of the potential V
tremendously. Secondly, r∗ depends only on rz and can be analytically inverted to rz(r∗),

which enables one to directly express the potential V in terms of r∗. In other cases one is

unable to accomplish this or it simply yields a much more complex expression.

However, in order to compute this analytic expression it is convenient to switch back

from φ̃ to φ, require d = z + 1, and write (2.12) in the form(
−r2zV 2(r)m2 + ω2 − r2zV 2(r)

k2

r2

)
φ+ ∂2

∗φ+ rz+1V 2(r)
z

r
∂∗φ = 0 . (3.1)

We make use of the substitution

y =
(rh

r

)2
, (3.2)

in order to obtain

ω2yz − r2z−2
h

[
m2r2

h + k2y
]

(1− yz)
r2z

h (1− yz)2y
φ− 4

(z − 1) + yz

1− yz
φ′ + 4yφ′′ = 0 , (3.3)

which, when assuming k = 0, is solved by

φ = c1y
∆−

2 (1− yz)β 2 F1

[
∆−
2z

+ β,
∆−
2z

+ β;
∆−
z

; yz
]

+ c2y
∆+

2 (1− yz)β 2 F1

[
∆+

2z
+ β,

∆+

2z
+ β;

∆+

z
; yz
]
.

(3.4)
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In the last expression c1, c2 are some constants and

β =
iω

4πT
. (3.5)

The deltas are the same as given in (2.14). We continue by requiring both boundary

conditions. We start with the boundary condition at r →∞, which corresponds to y → 0.

We want Dirichlet boundary conditions to hold here. Taking the limit one obtains

φ(y → 0) ∼ c1y
∆−

2 + c2y
∆+

2 ∼ c1r
−∆− + c2r

−∆+ , (3.6)

thus we put c1 = 0 in order to match the required boundary behavior from (2.16). When

taking the limit we made use of the identity

2 F1[a, b; c; 0] = 1 for all a, b, and c non-zero, (3.7)

which can be found in e.g. [23]. Next we apply the boundary condition at the horizon

r = rh, which corresponds to y = 1. We can relate the behavior at y = 1 to the behavior

at y = 0 using

2 F1[a, a; c; z] =
Γ(c)Γ(c− 2a)

Γ(c− a)2 2 F1[a, a; 2a− c+ 1; 1− z]

+ (1− z)c−2aΓ(c)Γ(2a− c)
Γ(a)2 2 F1[c− a, c− a; c− 2a+ 1; 1− z] ,

(3.8)

where Γ denotes the gamma function. Using (3.7) we arrive at

φ = lim
y→1

(1− yz)β
{

Γ (∆+/z) Γ (−2β)

Γ (∆+/(2z)− β)2 + (1− yz)−2β Γ (∆+/z) Γ (2β)

Γ (∆+/(2z) + β)2

}
. (3.9)

Now we have to identify the ingoing modes as written down in (2.9). From (2.7) we collect

r∗|d=z+1 =
1

4πT
[log (1− yz)− 2 log (1 + yz)] , (3.10)

such that we are able to identify

e−iωt (1− yz)±β = e−iωte±iω
log(1−yz)

4πT = e−iω(t±r∗)(1 + yz)∓
iω

2πT , (3.11)

which leaves us to the conclusion that we have to put the term with the positive power of

β to zero. This is accomplished by requiring

1

Γ (∆+/(2z)− β)
= 0 , ⇒ ω

2πT
= −i

(
2n+

∆

z

)
, (3.12)

where n is a positive integer. For z = 2 the result restores the finding in [12]. For z = 1

we obtain the case of [11]. This solution holds for any d > 1 and at all times exhibits

overdamped behavior. It is concluded from (2.24) that

τd=z+1 =
z

2πT∆
, (3.13)

which implies that higher anisotropy corresponds to a longer relaxation time. From the

numerics it is observed that this holds as long as z > d− 1.
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3.2 Numerical solutions, d 6= z + 1

Initially we started by solving the Schrödinger-like equation (2.12) using the method de-

scribed in [10]. This method, in essence, solves the Schrödinger-like equation by using a

power series Ansatz. Applying the boundary conditions, results in a recursive relation be-

tween different terms in the power series Ansatz. This recursive relation is too cumbersome

to be handled analytically. We thus have to resort to numerical methods.

The time it takes for the power series to converge numerically, is found to increase

dramatically for z > 1. It was already noted by the authors of [10] themselves that

increasing d increases computation time. This is connected to the fact that increasing d,

increases the power of r in the potential, yielding a more complex recursive relation, which

amplifies the time it takes to converge. Noting that when increasing z that the power of r

in the potential gets larger too, explains the rise of computation time.

To decrease computational time we adopted the Improved Asymptotic Iteration Meth-

od, as described in [24]. This method, however making use of a recursive structure as well,

relies on (as opposed to the previously mentioned algorithm) the observation that

χ′′(x) = λ0(x)χ′(x) + s0(x)χ(x) , ⇒ χ(n+2)(x) = λn(x)χ′(x) + sn(x)χ(x) , (3.14)

where the superscripted (n + 2) denotes the order of derivation. The λ0 and s0 are poly-

nomials to which λn and sn are related in a recursive fashion including various orders of

derivatives as well. From the ratio of the (n+ 3)th and (n+ 2)th derivatives, one shows

d

dx
log
(
χ(n+2)(x)

)
=
λn+1

(
χ′(x) + sn+1(x)

λn+1(x)χ(x)
)

λn

(
χ′(x) + sn(x)

λn(x)χ(x)
) . (3.15)

Now we introduce the asymptotic aspect of the method. If for some sufficiently large n

sn
λn
≈ sn+1

λn+1
, (3.16)

one can solve (3.15) and, by plugging this back into (3.14), find a solution for χ(x). This

approach is called the Asymptotic Iteration Method and was originally developed by [25].

The Improved Asymptotic Iteration Method entails, as modification to the original ap-

proach, some convenient power series expansions of sn and λn in order to simplify their

respective recursive relations.

To put this algorithm to our use we choose to rescale the coordinate r into a dimen-

sionless parameter with a finite range in the following way

x = 1− rh

r
. (3.17)

We rewrite equation (2.12) into

φ̃′′(x) +

(
∂x
[
(1− x)2h(x)

]
(1− x)2h(x)

)
︸ ︷︷ ︸

≡Q(x)

φ̃′(x) +

(
r2

h

ω2 − V(x)

[(1− x)2h(x)]2

)
︸ ︷︷ ︸

≡R(x)

φ̃(x) = 0 , (3.18)
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where h(r) = rz+1V 2(r) and the accents denote derivatives with respect to x. We aim to

scale out the behavior near the horizon and the boundary. This is done by employing the

scaling

φ̃(x) = xA(1− x)Bχ(x) , A =
−iω

(d+ z − 1)rzh
, B =

z

2
+

√
m2 +

(d+ z − 1)2

4
.

(3.19)

Using that

∂x
[
xA(1− x)B

]
= xA(1− x)B

≡F (x)︷ ︸︸ ︷[
Ax−1 −B(1− x)−1

]
, (3.20)

we rewrite (3.18) as

χ′′(x) + [2F (x) +Q(x)]︸ ︷︷ ︸
=λ0

χ′(x) +
[
F 2(x) + ∂xF (x) +Q(x)F (x) +R(x)

]︸ ︷︷ ︸
=s0

χ(x) = 0 . (3.21)

Now that the form of (3.14) is obtained, we can in principle construct λn and sn for any

n. The quasinormal modes ω are obtained by requiring and solving

sn(x, ω)λn+1(x, ω)− sn+1(x, ω)λn(x, ω) ≈ 0 , (3.22)

for some large value of n. Typically we use n ∼ 30 to obtain certainty up to at least two

decimals. In our case for z > 1 we obtained quicker convergence with this algorithm, than

when using the first mentioned algorithm. We reproduced the results from [10] for the case

of a black brane in table 1 in the appendix as a check.

3.3 Analysis of numerical output

We focus on d = 2, 3, 4 because of their relevance in real world systems. We choose

momentum to be vanishing and leave the k 6= 0 to future work. For clearness we restrict

ourselves to ∆ = 3, 4, 5.5 and values of z for 1 through 6. To get some intuition for the

behavior of the quasinormal modes in the complex plane, when varying z, we present a

cartoon in figure 2.

In figure 3 we plot the real part of the quasinormal modes versus z. A sample of the

data can also be found in table 2 in the appendix. In the region d ≤ z+ 1 we find that the

system is overdamped. For d > z+1 we find a non-zero real part. This result is interesting

when taking into account the conjectures of [12, 16], which state that for (most) Lifshitz

black holes the quasinormal modes are purely imaginary. Moreover, finding underdamped

cases for d > z + 1 contrasts the overdamped cases found for d ≥ 4, z = 2 in a R2 gravity

setting [16] and d ≥ 2, z = 2 in a R3 gravity setting [17]. We present a cartoon of the

qualitative structure of the overtones of the quasinormal modes in the complex plane in

figure 4. We summarize figures 1 and 4 in figure 5 for clarity. Notice that for fixed ∆, d

and increasing z, the real part is strictly decreasing, until it hits d = z + 1. When fixing z

we have the relation that higher ∆ corresponds to a greater real part in the underdamped

region.
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−ωIm

z = 1

z > 1

z ≥ d− 1

n = 0

n = 1

n = 2

etc.

Figure 2. The hollow dots denote the location of the quasinormal modes when z = 1. The n

denotes the overtone number. When increasing z, the location of quasinormal mode will follow the

arc towards the vertical axis. At z = d− 1 the mode, for the first time, hits the vertical axis. From

there on, for any z ≥ d − 1, the quasinormal mode remains somewhere on the vertical axis. We

stress that remaining on the vertical axis is because of the vanishing real part when z ≥ d− 1 and

corresponds to overdamped systems.

Re(ω0)

4πT

z
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−
−
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−
−
−
−
−
−
−
−
−

d
=
z

+
1

0

1

1 2 3 4 5 6

Figure 3. The real part of the computed quasinormal modes. For d = 2 the value is zero

everywhere, as can be read off from table 2 in the appendix. Diamonds correspond to ∆ = 5.5,

triangles correspond to ∆ = 4 and the dots correspond to ∆ = 3.
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z +

1

overdamped

●
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Figure 4. The line given by d = z + 1 divides quasinormal modes in being overdamped or under-

damped. Both plots within the separated regions show the qualitative behavior of the overtones of

the quasinormal modes in those regions. Exactly at and underneath the line d = z + 1 the system

is overdamped.

d

relevant

irrelevant

z

d =
z +

1

violates BF

relevant
overdamped

irrelevant
overdamped

d =
1−

z +
∆

d =
1−

z +
2∆

Figure 5. The information from figures 1 and 4 is summarized. Exactly at the d = 1− z + ∆ line

the operator is marginal. On and above the line d = 1− z+ 2∆ the BF bound is violated. Exactly

at and underneath the line d = z + 1 the system is overdamped.

4 Relaxation times

In figure 6 we present the relaxation time versus z. For the relaxation times the point

d = z + 1 leaves its footprint as well as in the real part, by separating different behaviors

on either side of this point. A sample of the data points is given in table 2 in the appendix.

Features which we gather from figure 6 are:

• Higher scaling dimension ∆ of an operator corresponds to a lower relaxation time.

• Increasing z, the amount of anisotropy, corresponds to a higher relaxation time τ

when d ≤ z + 1.

• Overdampedness is independent of the dimension of the operator.
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Figure 6. Results of the relaxation times τ , numerically computed from quasinormal modes.

Diamonds correspond to ∆ = 5.5, triangles correspond to ∆ = 4 and the dots correspond to ∆ = 3.

A star denotes that the operator at that point is marginal. The curve stops on the right when

the BF bound is violated. The highlighted points denote when the operator is relevant, otherwise

the point is irrelevant. However, around the region d = z + 1 we did not put any highlights for

readability’s sake.
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5 Outlook

The results in this paper were obtained from the holographic point of view. It would be

interesting if, in the spirit of [11], one could reproduce these results directly from the field

theory side. In particular it would be interesting to understand the difference between the

regimes d ≤ z + 1 and d > z + 1. In context of this we make the following observation.

Consider a free d-dimensional theory with Lifshitz scaling and a dispersion

ω ∼ |k|z . (5.1)

The number of states Ω(k) up to momentum |k| is obtained by taking a spherical k-space

volume and dividing it by the volume occupied per allowed state, resulting in

Ω(k) ∼ kd−1 . (5.2)

The density of states D(ω) is defined as

D(ω) =
dΩ(k(ω))

dω
=
dΩ(k)

dk

dk(ω)

dω
∼ ω

d−2
z ω

1−z
z = ω

d−(z+1)
z . (5.3)

Notice that there is a qualitatively different behavior between the regimes d < z + 1

and d > z + 1. For d < z + 1, the density of states decreases with energy, whereas for

d > z + 1 it increases with energy. Perhaps this behavior is related to the underdamped

and overdamped phases after adding interactions. Moreover, for d < z + 1 one is tempted

to relate the divergence at ω = 0 to energy rapidly dissipating into many available modes

and link this to overdampedness. However, further research is needed to make this possible

connection obvious. We leave this for future work.
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A Tabulated numerical results for selected quasinormal modes

In table 1 we present data in order to compare to the results of [10]. Table 2 contains a

sample of the results used in this paper.
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d = 3 d = 4 d = 6

rh ωIm ωRe ωIm ωRe ωIm ωRe

100 266.38 184.94 274.66 311.94 261.24 500.74

50 133.19 92.47 137.33 155.97 130.62 250.37

10 26.63 18.49 27.46 31.19 26.12 50.07

5 13.31 9.24 13.73 15.59 13.06 25.03

1 2.66 1.84 2.74 3.11 2.61 5.00

Table 1. Results which can be compared to [10]. Notice that this corresponds to putting the mass

m to zero and z = 1.

∆ = 3 ∆ = 5.5

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

z Re(ω0)
4πT 4πTτ Re(ω0)

4πT 4πTτ Re(ω0)
4πT 4πTτ Re(ω0)

4πT 4πTτ Re(ω0)
4πT 4πTτ Re(ω0)

4πT 4πTτ

1 0 2/3 0.61 1.12 0.54 2.27 0 4/11 1.14 0.53 1.13 0.93

4/3 0.00 1.03 0.39 1.15 0.45 2.01 0.00 0.54 0.66 0.57 0.87 0.87

5/3 0.00 1.30 0.21 1.23 0.36 1.91 0.00 0.69 0.32 0.63 0.64 0.87

2 0.00 1.55 0 4/3 0.28 1.89 0.00 0.82 0 8/11 0.46 0.90

7/3 0.00 1.80 0.00 1.83 0.204 1.90 0.00 0.95 0.00 0.96 0.31 0.95

8/3 0.00 2.04 0.00 2.15 0.13 1.94 0.00 1.09 0.00 1.13 0.18 1.02

3 0.00 2.28 0.00 2.44 0.00 1.21 0.00 1.28 0 12/11

10/3 0.00 2.52 0.00 2.72 0.00 1.34 0.00 1.42 0.00 1.38

11/3 0.00 2.76 0.00 2.99 0.00 1.47 0.00 1.56 0.00 1.57

4 0.00 2.99 0.00 1.60 0.00 1.70 0.00 1.73

13/3 0.00 3.23 0.00 1.72 0.00 1.84 0.00 1.89

14/3 0.00 3.46 0.00 1.85 0.00 1.97 0.00 2.04

5 0.00 1.98 0.00 2.11 0.00 2.19

16/3 0.00 2.10 0.00 2.24 0.00 2.33

17/3 0.00 2.23 0.00 2.37 0.00 2.48

6 0.00 2.35 0.00 2.50 0.00 2.63

Table 2. Parts of the results which are used to plot figure 3 and 6. Empty rows signal violation of

the BF bound.
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