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1 Introduction

The anti-de Sitter/conformal field theories (AdS/CFT) correspondence [1–3] has provided

us a useful theoretical method to study the strongly coupled systems in various fields of

physics. In recent years, it has been widely applied to study the holographic model of

superconductors [4–6]. It is indicated that the bulk AdS black hole becomes unstable and

scalar hair condenses as one tunes the temperature of black hole. Besides the bulk AdS

black hole spacetime, since the AdS soliton configuration has the same boundary topology

as the Ricci flat black hole and the AdS space in the Poincaré coordinates, a supercon-

ductor phase dual to an AdS soliton configuration without backreaction was studied in

ref. [7]. It was shown that if one increases a chemical potential µ to the AdS soliton,

there is a second order phase transition at a critical value µc beyond which the charge

scalar field turns on, even at zero temperature. Considering the backreaction of the matter

fields on the soliton geometry, a first order phase transition occurs for the same chemical

potential as the backreaction is strong enough [8]. When thinking about the higher order

correction to the Maxwell field, it is of interest to investigate the effect of the Born-Infeld

electrodynamics [9–14] on the insulator/superconductor transition. The Born-Infeld elec-

trodynamics, which was proposed in 1934 to avoid the infinite self-energies for charged

point particles arising in Maxwell theory [9], displays good physical properties including

the absence of shock waves and birefringence. It was found that the Born-Infeld electro-

dynamics is the only possible non-linear version of electrodynamics that is invariant under

electromagnetic duality transformation [10]. The Lagrangian density for Born-Infeld the-

ory is LBI =
1
b2

(

1−
√

1 + b2FabFab

2

)

with F 2 = FµνF
µν and this Lagrangian will reduce to

the Maxwell case as the coupling parameter b approaches zero. In the limit of the probe ap-

proximation, the Born-Infeld factor b has nothing to do with the insulator/superconductor
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transition [16]. In this paper we will extend the previous works by considering the full back-

reaction of the matter fields with the Born-Infeld electrodynamics on the soliton geometry.

On the other hand, the entanglement entropy has become a useful quantity for study-

ing some properties in quantum field theories and in many-body physics recently [17–23].

As is well known, dividing a given quantum system into a subsystem A and its complement,

the entanglement entropy of A is defined as the von Neumann entropy. In quantum many-

body physics, the entanglement entropy allows one to distinguish new topological phases

and characterize critical points. In the light of the AdS/CFT correspondence, the entangle-

ment entropy may provide us new insights into the quantum structure of spacetime [24, 25].

Ryu and Takayanagi [26, 27] have provided a proposal to compute the entanglement entropy

of CFTs from the minimal area surface in gravity side. This proposal provides a simple and

elegant way to calculate the entanglement entropy of a strongly coupled system which has a

gravity dual. Then, a lot of works have been carried out for investigating the entanglement

entropy in various gravity theories [28–36]. Refs. [33–35] presented the calculations of the

entanglement entropy for the AdS soliton geometry. Ref. [36] considered the case with

higher derivative corrections and studied the holographic entanglement entropy in Gauss-

Bonnet gravity. Ref. [37] studied the holographic entanglement entropy for general higher

derivative gravity and proposed a general formula for calculating the entanglement entropy

in theories dual to higher derivative gravity. Since the entanglement entropy behaves like

the thermal entropy of background black holes, it can indicate not only the appearance, but

also the order of the phase transition [38–40]. The authors [41] investigated the behavior

of the entanglement entropy in a simple holographic insulator/superconductor model at

zero temperature, and found that the entanglement entropy as a function of chemical po-

tential is not monotonic in the superconductor phase. Precisely, the entanglement entropy

first increases and reaches its maximum at a certain chemical potential and then decreases

monotonically as chemical potential increases. This non-monotonic behavior is quite dif-

ferent from the case of the metal/superconductor phase transition [38]. Furthermore, this

non-monotonic behavior of the entanglement entropy versus the chemical potential still

stands in the Stückelberg holographic insulator/superconductor model [42]. Motivated by

the study of the entanglement entropy in the higher correction to gravity and in the in-

sulator/superconductor transition, it is natural to study how the entanglement entropy

will be modified as a result of the correction to the Maxwell field. Here we would like

to study the entanglement entropy in the insulator/superconductor phase transition with

Born-Infeld electrodynamics in the two geometry configurations which are descried by the

half space and the strip one, respectively. We find that the non-monotonic behavior of

the entanglement entropy versus the chemical potential is universal in this model. And

the entanglement entropy increases as the Born-Infeld factor b increases in the supercon-

ductor phase. Particularly, the confinement/deconfinement phase transition exists in the

strip geometry.

The framework of this paper is as follows. In section 2, we will introduce the holo-

graphic superconductor models and derive the equations of motions. In section 3, we will

study the phase transition in the AdS soliton gravity with Born-Infeld electrodynamics.

In section 4, we will calculate the holographic entanglement entropy for the half geometry

and strip space respectively. In section 5, we will conclude our main results of this paper.
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2 Equations of motion and boundary conditions

Let us begin with the action for a Born-Infeld electromagnetic field coupling with a charged

scalar field with a negative cosmological constant in five-dimensional spacetime

S =

∫

d5x
√−g

(

R+
12

L2

)

+

∫

d5x
√−g

[

1

b2

(

1−
√

1 +
b2F abFab

2

)

−|∇Ψ− iqAΨ|2 −m2|Ψ|2
]

, (2.1)

where L is the radius of AdS spacetime, g is the determinant of the metric, q and m are

respectively the charge and the mass of the scalar field, and b is the Born-Infeld coupling

parameter. Since we are interested in including the backreaction, we will choose the ansatz

of the geometry of the AdS soliton with the form

ds2 =
dr2

r2B(r)
+ r2

[

−eC(r)dt2 + dx2 + dy2 + eA(r)B(r)dχ2
]

. (2.2)

Without loss of generality, we set L = 1 in this paper. As in the usual AdS soliton, to get

a smooth geometry at the tip r0, χ should be periodic with the period

Γ =
4πe−A(r0)/2

r20B
′(r0)

, (2.3)

and B(r) vanishes at the tip of the soliton. The electromagnetic field and the scalar field

can be taken as

At = φ(r), ψ = ψ(r). (2.4)

The equations of motion under the above ansatz can be obtained as follows

ψ′′ +

(

5

r
+
A′

2
+
B′

B
+
C ′

2

)

ψ′ +
1

r2B

(

e−Cq2φ2

r2
−m2

)

ψ = 0 , (2.5)

φ′′ +

(

3

r
+
A′

2
+
B′

B
− C ′

2

)

φ′ − b2e−CB

(

3

r
+
A′

2
+
B′

2B

)

φ′3

−2ψ2q2φ

r2B

(

1− b2e−CBφ′2
)

3
2 = 0 , (2.6)

A′ =
2r2C ′′ + r2C ′2 + 4rC ′ + 4r2ψ′2 − 2e−Cφ′2(1− b2e−CBφ′2)−

1
2

r(6 + rC ′)
, (2.7)

C ′′ +
1

2
C ′2 +

(

5

r
+
A′

2
+
B′

B

)

C ′ −
[

φ′2(1− b2e−CBφ′2)−
1
2

+
2q2φ2ψ2

r2B

]

e−C

r2
= 0, (2.8)

B′

(

3

r
− C ′

2

)

+B

[

ψ′2 − 1

2
A′C ′ +

1− (1− b2e−CBφ′2)
1
2

r2b2B(1− b2e−CBφ′2)
1
2

+
12

r2

]

+
1

r2

(

e−Cq2φ2ψ2

r2
+m2ψ2 − 12

)

= 0, (2.9)
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where a prime denotes the derivative with respect to r. By considering a series solution

about the tip of the soliton (r = r0) and using the boundary condition B(r0) = 0, we get

four independent parameters, i.e., r0, ψ(r0), φ(r0) and C(r0). Interestingly, we note that

the above equations of motion have useful scaling symmetries

r → αr, (χ, x, y, t) → (χ, x, y, t)/α, φ→ αφ, (2.10)

C → C − 2 lnβ, t→ βt, φ→ φ/β. (2.11)

Therefore, we can pick any values for the position of the tip r0 and C(r0). Here, we take

r0 = 1, C(r0) = 0 for simplicity.

At the spatial infinity (r → ∞), as we want the spacetime to be asymptotically AdS,

the matter fields have the form

φ ∼ µ− ρ

r2
, (2.12)

ψ ∼ ψ−

r∆−

+
ψ+

r∆+
, (2.13)

where the conformal dimensions of the operators are ∆± = 2±
√
4 +m2, µ and ρ are the

corresponding chemical potential and charge density in the dual field theory, respectively.

According to the AdS/CFT correspondence, the coefficients ψ− and ψ+ correspond to the

vacuum expectation values ψ− =< O− >, ψ+ =< O+ > of an operator O dual to the

scalar field. For the sake of obtaining the stability in the asymptotic AdS region, we can

impose boundary conditions that either ψ− or ψ+ vanishes. In addition, in five-dimensional

spacetime, when −4 < m2 < −3, the scalar field admits two different quantization related

by a Legendre transform [43]. Hence, we will focus on the case m2 = −15/4, q = 2 and

ψ− = 0 in the following calculation. Furthermore, to recover the pure AdS boundary, we

also need A(r → ∞) = 0 and C(r → ∞) = 0.

Using the scaling symmetries (2.10), we can rescale the quantities as

Γ → 1

α
Γ, µ→ αµ, ρ→ α3ρ, 〈Ô2〉 → α

5
2 〈Ô2〉. (2.14)

In the next section, we will be centered on the following dimensionless quantities µΓ, ρΓ3

and 〈Ô2〉
2
5Γ.

3 Insulator/superconductor phase transition

To study the phase transition for Born-Infeld electrodynamics with full backreaction in

the five-dimensional AdS soliton spacetime, we make a coordinate transformation from

r−coordinate to z−coordinate by defining z = r0/r. Then, the equations of motion can be

– 4 –
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rewritten as

ψ′′ +

(

A′

2
+
B′

B
+
C ′

2
− 3

z

)

ψ′ +
1

z2B

(

e−Cq2φ2z2 −m2
)

ψ = 0 , (3.1)

φ′′ +

(

A′

2
+
B′

B
− C ′

2
− 1

z

)

φ′ − b2z4e−CB

(

A′

2
+
B′

2B
− 3

z

)

φ′3

−2ψ2q2φ

z2B

(

1− b2z4e−CBφ′2
)

3
2 = 0 , (3.2)

A′ = −z[2C
′′ + C ′2 + 4ψ′2 − 2z2e−Cφ′2(1− b2z4e−CBφ′2)−

1
2 ]

(6− zC ′)
, (3.3)

C ′′ +
C ′2

2
+

(

A′

2
+
B′

B
− 3

z

)

C ′ −
[

z2φ′2(1− b2z4e−CBφ′2)−
1
2

+
2q2φ2ψ2

B

]

e−C = 0, (3.4)

B′

(

3

z
+
C ′

2

)

−B

[

ψ′2 − 1

2
A′C ′ +

1− (1− b2z4e−CBφ′2)
1
2

z2b2B(1− b2z4e−CBφ′2)
1
2

+
12

z2

]

− 1

z2
(

e−Cq2z2φ2ψ2 +m2ψ2 − 12
)

= 0, (3.5)

where the prime now denotes a derivative with respect to z. The region r0 < r < ∞ now

corresponds to 1 > z > 0. From above discussion, by choosing φ(r0) as a shooting param-

eter, we can solve the equations of motion for the given m2, q, ψ(r0). After solving the

equations of motion, according to the AdS/CFT correspondence, we can get the chemical

potential µ and the charge density ρ from the asymptotic behavior of φ through eq. (2.12).

We can also get the vacuum expectation value of the scalar operator (< O >= ψ+) from

eq. (2.13). For each choice of ψ(r0), we can solve the equations of motion for ψ, φ,A,B,C.

Here, we present the solutions of these equations for the factor ψ0 = 1.5 by figures. In

figure 1, ψ(z) and φ(z) are the scalar field and static electric potential, respectively, and

A(z) and B(z) are two metric functions. For the fixed z, we can see that the functions have

different values with the increase of the Born-Infeld factor b. So it is of interest to study

the effect of the Born-Infeld factor b on the phase transition in this system. However,

the solutions obtained in this way have different periods Γ for the χ-coordinate. With

the aim of comparing different solutions for the same boundary behavior, we can use the

symmetry (2.14) to set all of the periods Γ equal. As the identification length Γ in the

pure soliton is π, we will scale all Γ for each solution to be Γ = π from now on. Note

that the tip r0 will be no longer at r0 = 1 after the scaling transformation. In figure 2,

we show the numerical behaviors of condensate and the charge density with the changes

of the chemical potential and the Born-Infeld parameter b. It can be seen from the left

plot of figure 2 that as the chemical potential µ exceeds a critical value µc for the given

mass and charge, the condensation of the operators emerges. This can be identified as a

superconductor phase. However, when less than µc, the scalar field is vanishing and this

can be thought of as the insulator phase. From the right plot of figure 2, we can see that

the insulator/superconductor phase transition here is typically the second transition in our

choice of parameters. At the critical chemical potential point, the critical value µc dose not
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Figure 1. A typical soliton solution with nonvanishing scalar hair for the different values of

parameter b. Here the value of the scalar field at the tip is ψ0 = 1.5. The four lines from bottom

to top correspond to increasing Born-Infeld factor, i.e., b = 0 (black), 0.4 (blue), 0.6 (red) and

0.8 (green), and the corresponding identifications are Γ ≃ 2.4478,Γ ≃ 2.4455,Γ ≃ 2.4310 and Γ ≃
2.4092, respectively.

b=0.0

b=0.4

b=0.6

b=0.8

3.0 3.5 4.0 4.5 5.0 5.5
0

1
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3

4

5

ΜG

<O>2�5G

b=0.0

b=0.4
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b=0.8

2.9 3.0 3.1 3.2 3.3 3.4
0

2

4
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8

10

12

ΜG

ΡG3

Figure 2. The condensate of operator 〈Ô+〉 (left plot) and charge density ρ (right plot) versus the

chemical potential for different parameters b, respectively. Here we set m2 = −15/4, q = 2 and the

critical chemical potential in this case is µc ≃ 2.9662. The four lines from bottom to top correspond

to increasing Born-Infeld factor, i.e., b = 0 (black), 0.4 (blue), 0.6 (red) and 0.8 (green) respectively.

change with the increase of the factor b, which implies that the critical chemical potentials

µc is independent of the Born-Infeld parameter b.

4 Holographic entanglement entropy

In this section, we study the holographic entanglement entropy in this holographic model

and investigate the effect of the Born-Infeld parameter b on the entanglement entropy.

The holographic method to calculate the entanglement entropy is as follows. Consider a

strongly coupled field theory with gravity dual, the entanglement entropy of a subsystem

A with its complement is given by searching for the minimal area surface A extended

into the bulk with the same boundary ∂A of A. The entanglement entropy of A with its

– 6 –
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complement is given by

SA =
Area(γA)

4GN
, (4.1)

where GN is the Newton’s constant in the bulk. Due to the fact that the choice of the

subsystem A is arbitrary, we can define infinite entanglement entropies accordingly.

4.1 Holographic entanglement entropy for a half space

We consider a simple case where A is chosen to be a half of the total space. We assume

that the subsystem is defined by x > 0 and extended in the y and χ directions, where

−R
2 < y < R

2 (R → ∞), 0 ≤ χ ≤ Γ. The entanglement entropy can be deduced from the

formula (4.1) as

Shalf
A

=
RΓ

4GN

∫ 1
ǫ

r0

re
A(r)
2 dr, (4.2)

where r = 1
ǫ is the UV cutoff. Note that the UV behavior of SA will not change after the

operator condensation. For the pure AdS soliton solution [41], its entanglement entropy

has two parts which are the divergent part and the convergent one respectively. The

divergent part of the entropy known as the area law will not change since the new solution

after the operator condensation still asymptotically approaches to AdS space near the AdS

boundary. However, the convergent part is the difference between the entropy in the pure

AdS soliton and the one in the pure AdS space. This implies that the entropy in the AdS

soliton is less than the one in the pure AdS space. Consequently, the general expression

for the entanglement entropy in the half embedding case is

Shalf
A

=
RΓ

4GN

∫ 1
ǫ

r0

re
A(r)
2 dr =

Rπ

8GN

(

1

ǫ2
+ s

)

, (4.3)

where s has no divergence and s = −1 corresponds to the pure AdS soliton. In our following

numerical calculations, we set zs = r0
r to require that the lower bound of the integral is

still equal to unit after the scaling transformation. Then, the entanglement entropy can be

rewritten as

Shalf
A

= − RΓ

4GN

∫ ǫr0

1

r20e
A(zs)

2

z3s
dzs =

Rπ

8GN

(

1

ǫ2
+ s

)

. (4.4)

We draw the picture of the entanglement entropy with respect to the chemical potential

and the Born-Infeld factor in the dimensionless factors sΓ2, µΓ and b. At the critical

chemical point µc which is presented by the vertical dotted green line in figure 3, the

entanglement entropy is continuous but its slope has a discontinuity. As a result, this

phase transition can be regarded as the second order one. And the value of the critical

chemical point µc dose not change as we increase the Born-Infeld factor b. This indicates

that the Born-Infeld factor has no effect on the critical chemical potential. Before the

phase transition, the value of the entanglement entropy s presented by the dotted red line

in figure 3 is a constant which indicates that this is the insulator phase. After the phase

transition, when the factor b = 0, i.e., the Born-Infeld field reduces to the Maxwell field,

our results are the same as that in the ref. [41]. For the fixed b, with the increase of the

– 7 –
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Figure 3. The entanglement entropy as a function of the chemical potential and Born-Infeld factor

respectively. The four lines from bottom to top correspond to increasing Born-Infeld factor, i.e., b

= 0 (black), 0.4 (blue), 0.6 (red) and 0.8 (green) respectively.

chemical potential µ, the entanglement entropy s first rises and forms a peak, then decreases

monotonously. This process implies that there is some kind of significant reorganization

of the degrees of freedom. When the parameter µ is fixed, the entanglement entropy s

increases as the Born-Infeld factor b increases.

4.2 Holographic entanglement entropy for a strip shape

After the holographic studies of entanglement entropy with the Born-Infeld electrodynamics

in the half embedding, it is of interest to investigate the holographic entanglement entropy

in a strip geometry. We now consider a belt shape for region A which is described by

− ℓ
2 ≤ x ≤ ℓ

2 , − R
2 < y < R

2 (R → ∞), where ℓ is defined as the size of region A. The

holographic dual surface γA defined as a three-dimensional surface is given by

t = 0, x = x(r), −R
2
< y <

R

2
(R→ ∞), 0 ≤ χ ≤ Γ. (4.5)

The holographic surface γA starts from x = ℓ
2 at r = 1

ǫ , extends into the bulk until it

reaches r = r∗, then returns back to the AdS boundary r = 1
ǫ at x = − ℓ

2 . Thus, the

induced metric on γA can be obtained

ds2 = hijdx
idxj =

[

1

r2B(r)
+ r2

(

dx

dr

)2
]

dr2 + r2dy2 + r2eA(r)B(r)dχ2. (4.6)

By using the proposal (4.1) and the boundary condition (4.5), the entanglement entropy

in the strip geometry is

SA[x] =
RΓ

2GN

∫ 1
ǫ

r∗

re
A(r)
2

√

1 + r4B(r)(dx/dr)2dr. (4.7)

– 8 –
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Since there are several extremal surfaces, we can deduce the equation of motion for the

minimal surface from eq. (4.7)

r5e
A(r)
2 B(r)(dx/dr)

√

1 + r4B(r)(dx/dr)2
= r3se

A(rs)
2

√

B(rs), (4.8)

where rs is a constant. It is of interest to study the case that the surface is smooth at

r = r∗, i.e., dx/dr|r=r∗ gets divergent. Then, the width ℓ of the subsystem A and the

entanglement entropy SA can be obtained in zs−coordinate

ℓ

2
= −

∫ r0ǫ

zs∗

1

r0

√

B(zs)
[

F (zs)
F (zs∗)

− 1
]

dzs, (4.9)

SA = − RΓ

2GN

∫ r0ǫ

zs∗

r20
z3s
e

A(zs)
2

√

1− F (zs∗)

F (zs)
dzs +

RΓℓ

4GN

√

F (zs∗)r
3
0 =

Rπ

4GN

(

1

ǫ2
+ s

)

,

(4.10)

where zs∗ =
r0
r∗
, and F (zs) is

F (zs) =
1

z6s
B(zs)e

A(zs). (4.11)

There is also a disconnected solution describing two separated surfaces that are located at

x = ± ℓ
2 , respectively. The entanglement entropy for this disconnected geometry which is

independent of ℓ is just twice of the half embedding solution (4.3) that we have discussed

above. Moreover, the entanglement entropy in insulator/superconductor transition with

Born-Infeld electrodynamics for the strip geometry is related to the chemical potential, the

width of the subsystem A and the Born-Infeld parameter. Here, we use the diagrams to

show the relationships among the dimensionless quantities sΓ2, ℓΓ−1, µΓ and b. The left-

hand picture of figure 4 shows the behavior of the entanglement entropy as a function of

chemical potential and width for b = 0.3. With the increase of the width ℓ, the entanglement

entropy s increases but the value of µmax becomes bigger. The curve will flatten out and

finally become a line in the limit ℓ→ 0 as the length decreases. In addition, the behavior of

the entanglement entropy with respect to the chemical potential is similar to the case in the

half geometry. Specifically, as the chemical potential µ increases, the entanglement entropy

s first rises and reaches its maximum at a certain value of chemical potential denoted as

µmax, then it decreases monotonously.

The right-hand picture in figure 4 shows the behavior of the entanglement entropy

as a function of chemical potential and Born-Infeld factor for ℓΓ−1 = 0.165. For a given

µ, if the value of the chemical potential is small, the Born-Infeld factor b has a relative

small effect on the entanglement entropy s. However, if the chemical potential is large

enough, the Born-Infeld factor has the obvious effect on the entanglement entropy. With

the increase of the factor b, the entanglement entropy s becomes bigger . Note that, as the

chemical potential increases, the holographic entanglement entropy first rises and arrives at

its maximum and then it decreases monotonously whether the Born-Infeld electrodynamics

exists or not.

– 9 –
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Figure 4. The entanglement entropy for the various factors, i.e., the belt width, the Born-Infeld

factor and the chemical potential. For the left-hand plot, the three lines from top to bottom

correspond to ℓΓ−1 = ∞ (blue), ℓΓ−1 = 0.181 (red) and ℓΓ−1 = 0.165 (green). In the right-hand

one, the four lines from bottom to top correspond to b = 0 (black), 0.4 (blue), 0.6 (red) and 0.8

(green), respectively.

ΜG=6.9165

b=0.0

b=0.4
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b=0.8
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-11
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-9

-8
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2

Figure 5. The entanglement entropy versus the strip width with different factors b for µΓ = 6.9165.

The four lines from bottom to top correspond to increasing Born-Infeld factor, i.e., b = 0 (black),

0.4 (blue), 0.6 (red) and 0.8 (green) respectively.

The entanglement entropy versus the strip width with different factors b for µΓ =

6.9165 is shown in figure 5. The horizontal dotted lines represent the discontinu-

ous solutions, the vertical dotted lines represent the critical widths of the confine-

ment/deconfinement phase transition and the solid one comes from the connected con-

figuration. As the chemical potential is fixed, there exists confinement/deconfinement

phase transition [30, 33, 34] at the critical width point ℓc. Since the physical entropy is

determined by the choice of the lowest one, when ℓ < ℓc, the entanglement entropy comes

from the connected surface and has the non-trivial dependence on ℓ, which describes a de-

confinement phase. And the entanglement entropy increases with the increase of the width

ℓ. As ℓ > ℓc, the entanglement entropy for disconnected configuration is favored and has

nothing to do with the width ℓ, which indicates a confinement phase. Interestingly, both

in the confinement and deconfinement superconducting phase, the entanglement entropy

– 10 –
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Figure 6. The left plot shows the critical belt width with respect to the chemical potential for

different b and the right one presents the behavior of entanglement entropy as a function of belt

width at critical point of the confinement/deconfinement transition for different chemical potential.

The four lines from bottom to top correspond to b = 0 (black), 0.4 (blue), 0.6 (red) and 0.8 (green),

respectively.

depends on the Born-Infeld parameter. With the increase of the factor b, the entanglement

entropy becomes bigger. Moreover, the critical width ℓc increases as the factor b increases

for µΓ = 6.9165.

In short, there totally exist four phases probed by the holographic entanglement en-

tropy in the belt shape, i.e., the insulator phase, superconductor phase, and their corre-

sponding confinement/deconfinement phases. These phases are characterized by the chem-

ical potential and strip width. Although the Born-Infeld factor has no effect on the critical

chemical potential µc of the insulator/superconductor transition, its influence on the criti-

cal width of the confinement/deconfinement phase transition is not trivial. In the insulator

phase, from the left-hand plot of figure 6, we can see that the critical length ℓc is a constant

which means the parameter ℓc is independent of the Born-Infeld factor b. However, in the

superconductor phase, the critical width ℓc depends both on the chemical potential µ and

the Born-Infeld factor b. To be specific, when the chemical potential µ is fixed, the critical

length ℓc increases with the increase of the factor b. For the fixed Born-Infeld factor b,

the change of the critical width ℓc with the chemical potential µ is also non-monotonic

but it is different from the behavior of the entanglement entropy s in figure 4. The value

of the critical width ℓc first increases and reaches the maximum at the certain chemical

potential µmax, then it decreases monotonously. Note that the critical width ℓc decreases

more and more slowly as the chemical potential µ increase. This non-monotonic behavior

of the critical width versus the chemical potential is due to the fact that there is a knot

which is drawn in the right-hand plot of figure 6.

5 Summary

We have studied the phase transition and the holographic entanglement entropy for the

Born-Infeld electrodynamics with full backreaction in five-dimensional AdS soliton space-

time. We find that the value of the critical chemical potential µc is independent of the

Born-Infeld parameter b, which indicates that the Born-Infeld electrodynamics has no effect

on the critical chemical potential of the insulator/superconductor transition.
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In the half space, at the critical point the entanglement entropy is continuous but its

slope has a discontinuous change. Consequently, this phase transition can be regarded as

the second order one. Before the phase transition, the value of the entanglement entropy is

a constant, which indicates that it is an insulator phase. After the phase transition, for the

fixed b, with the increase of the chemical potential µ, the entanglement entropy first rises

and arrives at its maximum, then decreases monotonously. This implies that there is some

kind of significant reorganization of the degrees of freedom. However, when the parameter

µ is fixed, the entanglement entropy increases as the Born-Infeld factor b increases.

More interesting things have been found in the strip geometry. As it is shown in fig-

ure 4, for the given b or ℓ, the non-monotonic behavior of the holographic entanglement

entropy with respect to the chemical potential still holds even the Born-Infeld electrody-

namics exists. While the chemical potential is fixed, the holographic entanglement entropy

increases monotonously with the increase of the width of subsystem A and the Born-Infeld

factor, respectively. From figure 5, the confinement/deconfinement phase transition exists

at the critical width point ℓc. And the value of the critical width relies on not only the

critical chemical potential, but also the Born-Infeld factor. For the fixed µ, the critical

width increases with the increase of the Born-Infeld parameter. Interestingly, for the fixed

b, with the increase of the chemical potential µ, the critical length first increases and forms

a peak, then decreases continuously. Note that, in the left-hand plot of figure 6, the crit-

ical width ℓc decreases more and more slowly as the chemical potential µ increase. This

non-monotonic behavior of the critical width versus the chemical potential is due to the

fact that there is a knot which is drawn in the right-hand plot of figure 6.
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