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Abstract: In Monte Carlo simulations of N = 1 supersymmetric Yang-Mills theory the

mass of the unphysical adjoint pion, which is easily obtained numerically, is being used

for the tuning to the limit of vanishing gluino mass. In this article we show how to define

the adjoint pion in the framework of partially quenched chiral perturbation theory and we

derive a relation between its mass and the mass of the gluino analogous to the Gell-Mann-
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The N = 1 supersymmetric Yang-Mills theory (SYM) is the supersymmetric extension

of non-Abelian gauge theory. It describes gluons, belonging to gauge group SU(Nc), inter-

acting with their superpartners, the gluinos. The gluons are represented by non-Abelian

gauge fields Aµ(x) = Aa
µ(x)T a, a = 1, . . . , N2

c −1, where T a are the generators of the gauge

group. The gluinos λ(x) = λa(x)T a are spin 1/2 Majorana fermions. They are in the

adjoint representation of the gauge group and their gauge covariant derivative is given by

Dµλa = ∂µλa + g fabcA
b
µλc. The (on-shell) Lagrangian of SYM is

L = tr

[

−
1

2
FµνF µν + i λ̄γµDµλ − mgλ̄λ

]

, (1)

where Fµν is the non-Abelian field strength. A gluino mass term has been added, that

breaks supersymmetry softly. In the limit mg = 0 the action is invariant under a super-

symmetry transformation.

In recent years Monte Carlo simulations of SYM have been performed in order to study

its non-perturbative properties, in particular to determine the spectrum of low-lying bound

states; see [1, 2] and references therein. In these calculations the lattice regularisation

of SYM proposed by Curci and Veneziano [3] has been employed. Here the gluinos are

represented by Wilson fermions. Both supersymmetry and chiral symmetry are broken by

the lattice discretisation. In order to approach these symmetries in the continuum limit, a

fine-tuning of the bare gluino mass parameter is necessary [3, 4]. As in the Curci-Veneziano

formulation the gluino mass term is not protected against additive renormalisation, the

point of vanishing gluino mass is not given a priori, but has to be determined on the basis

of suitable observables.

One possibility to determine the gluino mass is to employ the lattice supersymmetric

Ward identities as discussed in [5]. Another, numerically much easier way is to monitor

the mass of the adjoint pion (a–π), which is the pion in the corresponding theory with

two Majorana fermions in the adjoint representation. The a–π is not a physical particle

in SYM, which only contains one Majorana fermion. Its mass can, however, obtained

unambiguously from the corresponding correlation function, which is obtained as follows.

One of the mesonic bound states described by SYM is the so-called adjoint η′ (a–η′), which

is a colourless pseudoscalar particle with interpolating field λ̄(x)γ5λ(x). Its correlation

function contains connected and disconnected fermionic contributions. The connected part

C(x, y) = 〈trsc[γ5(γµDµ)−1(x, y)γ5(γµDµ)−1(y, x)]〉, (2)

where trsc denotes a trace over Dirac and colour indices, yields the a–π-correlation function.

The adjoint pion mass is expected to vanish in the limit of a massless gluino accord-

ing to

m2

a–π ∝ mg, (3)

analogous to the Gell-Mann-Oakes-Renner (GOR) relation of QCD [6], as has been argued

on the basis of the OZI-approximation of SYM [7]. Indeed, numerical investigations of

both the gluino mass from supersymmetric Ward identities and the adjoint pion mass [8]

have shown that the points of their vanishing are consistent with each other, and that m2
a–π
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is proportional to mg. In practice the a–π is being used for tuning since it yields a more

precise signal than the supersymmetric Ward identities.

It is the purpose of this article to demonstrate that the adjoint pion can be defined

in a partially quenched setup, in which the model is supplemented by a second species of

gluinos and the corresponding bosonic ghost gluinos, in the same way as for one-flavour

QCD [9], and to show that the behaviour indicated in eq. (3) is indeed found in partially

quenched chiral perturbation theory.

Apart from the classical U(1)A axial symmetry, which is anomalous in the quantum

theory, SYM does not have a continuous chiral symmetry. Therefore it also does not show

spontaneous chiral symmetry breaking and does not have (pseudo-) Goldstone bosons like

pions, whose masses would vanish in the chiral limit. The symmetry can, however, be

enhanced artificially by adding additional flavours of gluinos λi(x), i = 2, . . . , N . If these

additional gluinos were dynamical, the resulting theory would be different from SYM and

would not be supersymmetric. On the other hand, if the additional gluinos are quenched,

which means that they are not taken into account in the fermionic functional integral,

the dynamical content of the model is identical to SYM and the correlation functions of

the original fields are unchanged. This situation can be called partially quenched. It can

be described theoretically by the introduction of bosonic ghost fermions [10], in our case

ghost gluinos. The contribution of the ghost gluinos exactly cancels the contribution of the

additional gluinos, and only the contribution of the original single gluino remains.

In the partially quenched setup adjoint pions can be formed out of the gluinos λ1 ≡ λ

and λ2 by means of λ̄iγ5(τα)ijλj , where τα are the Pauli matrices.

Let us begin by considering the introduction of N−1 additional gluino fields. Of central

importance for chiral perturbation theory and its partially quenched variant is the flavour

symmetry group and its spontaneous breakdown. The fermionic kinetic term λ̄iγ
µDµλi

in the Lagrangian has the same form as the corresponding quark term in QCD. Due to

the Majorana condition λ = Cλ̄T the left and right handed parts of the gluino fields are

not independent of each other and consequently the chiral symmetry group is not equal

to SU(N)L ⊗ SU(N)R but to some subgroup of it. If the hermitian generators of SU(N)

flavour transformations are denoted Tα, a short calculation reveals that the generators of

the subgroup of SU(N)L ⊗ SU(N)R consistent with the Majorana condition are given by

those Tα, for which Tα = −T ∗
α, (4)

and those Tαγ5, for which Tα = T ∗
α. (5)

They generate a subgroup isomorphic to SU(N), which is the chiral symmetry group of N

gluinos. Another way to view this group is to write the gluinos in terms of two-component

Weyl fermions χ,

λ =

(

χ

−ǫχ∗

)

, (6)

where ǫ is the two-dimensional antisymmetric spinor-metric, and to represent the kinetic

term as

Lg = χ†
i σ̄µDµχi . (7)
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From this expression one directly sees that SU(N) transformations of the Weyl fields χi

leave the kinetic term invariant.

The gluino mass term proportional to λ̄iλi is invariant under the subgroup H of SU(N),

which is generated by the N(N − 1)/2 imaginary Tα, i.e. Tα = −T ∗
α. The corresponding

group elements h = exp(ihαTα) are real orthogonal matrices, and we see that H = SO(N).

Assuming that the chiral symmetry group SU(N) of gluinos is spontaneously bro-

ken, accompanied by a non-vanishing gluino condensate 〈λ̄iλj〉 ∝ δij , the breakdown from

G = SU(N) to H = SO(N) is precisely one of the three scenarios for spontaneous symme-

try breakdown discussed by Peskin [11], adapted to Majorana fermions [12]. The Goldstone

boson manifold is the coset space G/H. Chiral perturbation theory is based on an effective

field theory for Goldstone bosons. For its formulation a suitable parameterisation of the

Goldstone boson manifold is needed. The general procedure for formulating effective the-

ories and finding the associated effective Lagrangians has been developed in ref. [13] and

leads to nonlinear representations of the chiral symmetry group.

As for the discussion of the adjoint pion in SYM it is sufficient to consider only one

additional gluino, we shall consider the case N = 2 for definiteness in the following. So

we have G = SU(2) and H = SO(2) = U(1). The subgroup H is generated by T2 = σ2/2.

The homogeneous space SU(2)/U(1) is isomorphic to the sphere S 2. Therefore it would

be possible to represent the Goldstone boson field by a real unit vector field ~n(x) and

formulate the effective Lagrangian as a non-linear σ-model for ~n(x). In our case there is,

however, another way, which is more convenient for explicit calculations.

Abstractly defined, the coset space G/H is equal to the set of cosets gH with g ∈ G.

Every element of SU(2) (apart from exceptional points) can be parameterised uniquely as

g = exp(iα1T1 + iα3T3) exp(iα2T2)
.
= uh (8)

with real parameters αk. Therefore the elements of the coset space G/H can be parame-

terised as

u = exp(iα1T1 + iα3T3). (9)

These matrices are unitary and symmetric, uT = u. One could now set up chiral pertur-

bation theory by introducing the field α(x) = α1(x)T1 + α3(x)T3 via

u(x) = exp

(

i
α(x)

F

)

, (10)

where F is a dimensionful constant, analogous to the pion decay constant in chiral pertur-

bation theory for QCD [14]. The transformation law of u(x) under the chiral group SU(2)

would, however, be complicated. Instead we introduce the field

U(x) = exp

(

i
φ(x)

F

)

(11)

through

U(x) = u(x)2 = u(x)u(x)T . (12)
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This matrix valued field transforms in a simple way under SU(2), namely

U(x) → U ′(x) = V U(x)V T , V ∈ SU(2), (13)

similar to the case of QCD. Two examples of invariant expressions are tr(AB†) and

tr(AB†CD†) with A, B, C, D being derivatives of U(x).

The effective Lagrangian can now be constructed in a standard way. Let

χ = 2B0M = 2B0mg1 (14)

be the mass term. The coefficient B0 is the second low-energy constant, familiar from the

case of QCD [6, 14]. It is equal to the ratio of the gluino condensate 〈λ̄λ〉 to F 2. The

leading order effective Lagrangian is given by

L2 =
F 2

4
tr(∂µU∂µU †) +

F 2

4
tr(χU † + Uχ†) (15)

as for QCD. The next to leading order terms can be taken over from Gasser and

Leutwyler [14], and are not reproduced here. They contain further low-energy constants

Li, the so-called Gasser-Leutwyler coefficients.

Let us now return to SYM, where in addition to the original sea gluino the additional

valence gluino is introduced in a partially quenched manner. It is therefore accompanied

by a ghost gluino ρ(x), having the same Lorentz transformation properties, but being a

boson. The chiral symmetry group is enhanced to the graded group SU(2—1) and the

Goldstone boson field φ(x), appearing in the chiral field U(x), is now a graded 3×3 matrix

valued field,

φ =







φss φsv φsg

φvs φvv φvg

φgs φgv φgg






(16)

where the labels s, v and g stand for sea, valence and ghost. For a graded matrix

M =

(

A B

C D

)

, (17)

where A is a 2 × 2 matrix and D a 1 × 1 matrix (number), the supertrace is defined by

str(M) = tr(A) − tr(D). (18)

The leading order effective Lagrangian reads

LP Q
2

=
F 2

4
str(∂µU∂µU †) +

F 2

4
str(χU † + Uχ†). (19)

Based on the effective Lagrangian the masses of the pseudo-Goldstone bosons can be cal-

culated in partially quenched chiral perturbation theory [15, 16]. We have calculated the

masses in next-to-leading order. Whereas the tree-level contributions are similar to the ones
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in QCD, the loop contributions differ due to the different group structure. The adjoint

pion is represented by φsv. For its mass ma–π = Msv we find

M2

sv = 2B0mg +
(2B0mg)2

F 2
(30L8 − 2L4 − 7L5 + 8L6), (20)

with the low-energy coefficients Li mentioned above. Interestingly the loop contribution

vanishes so that no chiral logarithm appears in M2
sv. For small mg we recognise the desired

GOR-relation

m2

a–π = 2B0mg. (21)
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