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ifest. Using the off-shell structure of the N = 4 vector multiplets, we provide complete

N = 4 SYM actions in (2,0) AdS superspace for all types of N = 4 AdS supersymmetry.
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our results explain the mysterious structure of N = 4 supersymmetric Yang-Mills theo-
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1 Introduction

Recently, Samsonov and Sorokin [1] have constructed N = 4 supersymmetric Yang-Mills

(SYM) theories on S3, both in terms of N = 2 superfields and component fields. In the

N = 2 superspace setting, such a theory describes coupling of the vector multiplet to a

chiral scalar multiplet of R-charge q, with q arbitrary.1 The case q = 1 was actually

considered at the component level three years earlier by Hama, Hosomichi and Lee [2],

although the structure of extended supersymmetry transformations was not clarified by

these authors. The remarkable feature of the N = 4 SYM theories on S3 constructed

in [1, 2] is the fact that the N = 4 supersymmetry requires the action to include a Chern-

Simons term proportional to q/r, where r denotes the radius of S3. The presence of such

a Chern-Simons term calls for an explanation within a manifestly N = 4 supersymmetric

formulation of the theory.

Supersymmetric theories on S3 may naturally be obtained from those defined on three-

dimensional (3D) anti-de Sitter space, AdS3, by Wick rotation.2 There are three types

of 3D N = 4 AdS superspaces [3], in accordance with the existence of several versions of

N -extended AdS supergravity in three dimensions, the (p, q) AdS supergravity theories [4],

where p + q = N and p ≥ q. These are the (4,0), (3,1) and (2,2) AdS superspaces.

Furthermore, there exist three inequivalent versions of (4,0) AdS superspace [3]:

X = 0 ; (1.1a)

X 6= 0 , |X| 6= 2S ; (1.1b)

|X| = 2S . (1.1c)

Here the paramaters X and S are constant AdS values of the N = 4 Cotton superfield

and one of the superspace torsion components respectively [5, 6].3 The Cotton superfield

automatically vanishes, X = 0, for the (3,1) and (2,2) AdS superspaces [3]. The N = 4

AdS superspaces are conformally flat if and only if X = 0 [3]. The (3,1) AdS superspace

has no Euclidean analogue.

Building on the off-shell formulation for general 3D N = 4 supergravity-matter sys-

tems given in [6], ref. [7] provided a powerful formalism4 (off-shell supermultiplets, mani-

festly supersymmetric action principles etc.) to construct off-shell supersymmetric theories

in all the N = 4 AdS superspaces, as well as to reduce these theories to N = 2 AdS

superspaces [11]. However, the analysis in [7] was restricted to the case of the most general

N = 4 supersymmetric nonlinear sigma models, due to their remarkably rich geometric

structure and diverse physical properties associated with the different types of N = 4

1As argued in [1], a natural bound on the values of the R-charge emerges, 0 ≤ q ≤ 2, if the spectrum of

the theory is required to be free of negative energy states.
2Since S3 and AdS3 have different topologies, Wick rotation is a rather formal procedure, and some

additional care is required in order to make it well defined.
3It is natural to think of S as a superspace analogue of the square root of the scalar curvature. However,

there is no obvious spacetime interpretation for X.
4This formalism is inspired by the projective-superspace approach to 4D N = 2 supersymmetric theories

in Minkowski space [8–10].
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AdS supersymmetry. In the present note we apply the formalism of [7] to construct SYM

theories in the N = 4 AdS superspaces.

This paper is organized as follows. In section 2 we review the geometry of the various

3D N = 4 AdS superspaces. In section 3 we review the main results concerning the N = 4

vector multiplets in conformal supergravity and construct a new family of composite linear

multiplets in N = 4 AdS superspaces. The latter result is used in section 4 to construct

the N = 4 vector multiplet actions in all the N = 4 AdS superspaces. Sections 5 and 6 are

devoted to the reduction of the results obtained to (2,0) AdS superspace. Concluding com-

ments are given in section 7. The paper contains five technical appendices. In appendix A

we discuss the projective-superspace formulation for a 3D N = 4 Yang-Mills multiplet

in conformal supergravity. The isometries of N = 4 AdS superspaces are reviewed in

appendix B. The fundamentals of (2,0) AdS superspace are collected in appendix C. In

appendix D we present complete N = 4 SYM actions in (2,0) AdS superspace for all types

of N = 4 AdS supersymmetry. Finally, in appendix E we relate the N = 4 and N = 2

superspace formulations for N = 4 SYM theories in AdS3.

2 N = 4 AdS superspaces

In this section we review the salient points of the geometry of the various N = 4 AdS

superspaces constructed in [3].

According to the on-shell supergravity analysis of [4], there are three types of N = 4

AdS supersymmetry in three dimensions. This implies the existence of three inequivalent

maximally symmetric and conformally flat (p, q) AdS superspaces

AdS(3|p,q) =
OSp(p|2;R)×OSp(q|2;R)

SL(2,R)× SO(p)× SO(q)
, p+ q = 4 , p ≥ q . (2.1)

In accordance with the more recent analysis of [3], which was based on the use of the

off-shell formulation for 3D N = 4 conformal supergravity [5, 6], there exist two more

inequivalent versions of (4,0) AdS superspace. These superspaces are not conformally flat

and correspond to the choices (1.1b) and (1.1c). Their existence is due to the fact that for

N ≥ 4 there exist more general AdS supergroups in the case p − N = q = 0, than those

considered by Achúcarro and Townsend [4].

All the N = 4 AdS superspace geometries may be described using covariant derivatives

of the general form:

DA =
(

Da,D
īi
α

)

= EA
M∂M +

1

2
ΩA

cdMcd +ΦA
klLkl +ΦA

k̄l̄Rk̄l̄ . (2.2)

Here the operators Lkl and Rk̄l̄ generate the R-symmetry group SU(2)L×SU(2)R and act

on the covariant derivatives as

[

Lkl,Dīi
α

]

= εi(kDl)̄i
α ,

[

Rk̄l̄,Dīi
α

]

= εī(k̄Dil̄)
α . (2.3)
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For each of the N = 4 AdS superspaces, the covariant derivatives obey (anti-)commutation

relations of the form [3]:

{

Dīi
α ,D

jj̄
β

}

= 2i εijεīj̄Dαβ − 4i
(

Sij īj̄ + εijεīj̄S
)

Mαβ

+ 2iεαβε
īj̄(2S +X)Lij − 2iεαβε

ijSklīj̄Lkl

+ 2iεαβε
ij(2S −X)Rīj̄ − 2iεαβε

īj̄Sij k̄l̄Rk̄l̄ , (2.4a)
[

Dαβ ,D
kk̄
γ

]

= −2
(

δkl δ
k̄
l̄
S + Sk

l
k̄
l̄

)

εγ(αD
ll̄
β) , (2.4b)

[Da,Db] = −4S2Mab , (2.4c)

where the real tensor Sijīj̄ = S(ij)(̄ij̄) is covariantly constant, and the real scalars S, X and

S are constant. The parameter S determines the curvature of AdS3. Depending on the

superspace type, the parameters S, Sijīj̄ and X have the following explicit form [3]:

(4,0) AdS : S = S , Sijīj̄ = 0 , X arbitrary ; (2.5a)

(3,1) AdS : S =
1

2
S , Sijīj̄ =

1

2

(

εijεīj̄ − 2wīiwjj̄
)

S , X = 0 ; (2.5b)

(2,2) AdS : S = 0 , Sijīj̄ = lijrīj̄ S , X = 0 . (2.5c)

In the (3,1) case, the covariantly constant tensor wīi is real, wīi = wīi = εijεīj̄w
jj̄ , and

normalized as

wik̄wik̄ = δij , wkīwkj̄ = δī j̄ . (2.6)

In the (2,2) case, the real iso-triplets lij = lji and rīj̄ = rj̄ī are covariantly constant and

normalized as

liklkj = δij , rīk̄rk̄j̄ = δī j̄ . (2.7)

We emphasize that X can appear in the algebra only in the (4,0) case. For general

values ofX, the tangent space group of the (4,0) AdS supergeometry is the full R-symmetry

group SU(2)L×SU(2)R. For the two critical values, X = 2S and X = −2S, the SU(2)R or

SU(2)L group, respectively, can be gauged away.

In the non-critical case, |X| 6= 2S, the isometry group of (4,0) AdS superspace is

isomorphic to5

D(2, 1;α)× SL(2,R) , α 6= −1, 0 , (2.8)

for some α ∈ R. Here D(2, 1;α) is one of the exceptional simple supergroups, see, e.g., [12]

for a review.6 As is known, not all values of the real parameter α lead to distinct su-

pergroups. The point is that there is a finite group G (of order 6) of fractional linear

transformations of RP 1 = R ∪ {∞}, the compactified real line, with the property that

any transformation g ∈ G maps α → α′ = g(α) such that D(2, 1;α) and D(2, 1;α′) are

isomorphic [12]. The subset {−1, 0,∞} proves to be fixed under the action of G. Up to an

isomorphism, it suffices to restrict α to the range 0 < α ≤ 1. The case α = 1 corresponds

to the conformally flat (4,0) AdS superspace, for which X = 0. The isometry group of this

5We are grateful to Igor Samsonov and Dima Sorokin for this observation.
6Various supercosets based on the exceptional supergroup D(2, 1;α) were considered in [13].
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superspace is OSp(4|2)×SL(2,R). In general, there is a correspondence between α and the

(4,0) AdS parameter q = 1 + X
2S , which will play an important role in this paper. These

parameters may be identified in the domain 0 < α ≤ 1. The choice α = 0 corresponds to

q = 0, which is one of the two critical (4,0) AdS cases.7 The isometry group of this (4,0)

AdS superspace degenerates to SU(1, 1|2)× SL(2,R), see also the discussion in [13].

For the (3,1) and (2,2) AdS geometries, the R-symmetry sector of the superspace

holonomy group is a subgroup of SU(2)L × SU(2)R [3]. For the (3,1) supergeometry, the

relevant subgroup is SU(2)J generated by

Jkl = Lkl + wk
k̄wl

l̄Rk̄l̄ , or Jk̄l̄ = wk
k̄w

l
l̄Lkl +Rk̄l̄ = wk

k̄w
l
l̄Jkl . (2.9)

The generators Jkl and Jk̄l̄ leave w
īi invariant, Jklw

īi = Jk̄l̄w
īi = 0. Since the R-symmetry

curvature is spanned by the generators of SU(2)J , it is possible to choose a gauge in which

the R symmetry connection takes its values in the Lie algebra of SU(2)J ; in this gauge,

the parameter wīi is constant.

In the (2,2) case, the R-symmetry sector of the superspace holonomy group is the

Abelian subgroup U(1)L ×U(1)R of SU(2)L × SU(2)R generated by

L := lklLkl , R := rk̄l̄Rk̄l̄ . (2.10)

This subgroup leaves invariant the covariantly constant parameters lkl and rk̄l̄. In the

remainder of the paper, we choose a gauge in which only this subgroup appears in the (2,2)

covariant derivatives. In this gauge the parameters lkl and rk̄l̄ are constant.

3 Vector multiplets in N = 4 AdS superspaces

There are two inequivalent N = 4 vector multiplets in three dimensions, left and right

ones.8 In a curved N = 4 superspace [6], they may be described in terms of gauge-invariant

field strengths, W ij = W ji = Wij and W īj̄ = W j̄ī = Wīj̄ , which transform under the left

and right subgroups of the supergravity R-symmetry group SU(2)L×SU(2)R, respectively,

and obey the inequivalent analyticity constraints9

D(īi
α W kl) = 0 , (3.1a)

Di(̄i
α W k̄l̄) = 0 . (3.1b)

A real symmetric isospinor W ij under the constraint (3.1a) is called a left linear multiplet.

Similarly, eq. (3.1b) defines a right linear multiplet.

The field strengths introduced may be interpreted as special examples of the covariant

projective N = 4 supermultiplets studied in [6]. Let us introduce left and right isospinor

7The two critical (4,0) AdS superspaces, which are characterized by the choices q = 0 and q = 2, have

isomorphic isometry groups.
8The existence of two inequivalent 3D N = 4 vector multiplets was first discussed by Brooks and

Gates [14]. The modern off-shell formulation for these multiplets was given by Zupnik [15] in the rigid

supersymmetric case. In the locally supersymmetric case, these multiplets were described in [6].
9Here we focus our attention on the Abelian vector multiplets. In appendix A we elaborate on the

non-Abelian case.
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variables, vL := vi ∈ C
2 \ {0} and vR := vī ∈ C

2 \ {0}, and use them to define two different

subsets, D
(1)̄i
α and D

(1̄)i
α , in the set of spinor covariant derivatives Dīi

α ,

D(1)̄i
α := viD

īi
α , D(1̄)i

α := vīD
īi
α , (3.2)

as well as the index-free superfields

W
(2)
L := vivjW

ij ≡ W (2) , W
(2)
R := vīvj̄W

īj̄ ≡ W (2̄) (3.3)

associated with the left and the right linear multiplets, respectively. Now, the con-

straints (3.1a) and (3.1b) turn into the generalized chirality conditions

D(1)̄i
α W

(2)
L = 0 , (3.4a)

D(1̄)i
α W

(2)
R = 0 . (3.4b)

The superfield W
(2)
L (vL) is called a left O(2) multiplet. Similarly, W

(2)
R (vR) is called a right

O(2) multiplet.

All results concerning left vector multiplets may be related to the right ones by applying

the so-called mirror map [6, 15]. Therefore we restrict our analysis to the case of left vector

multiplets.

As shown in [6], the constraint (3.1a) may be solved in terms of an unconstrained

gauge prepotential that is a right weight-zero tropical multiplet VR(vR). The most general

solution to the analyticity constraint (3.1a) is

W ij =
i

4

(

Dijīj̄ − 4iSijīj̄
)

∮

γ

(vR, dvR)

2π

uīuj̄
(vR, uR)2

VR(vR) , (vR, uR) := vīuī , (3.5)

where we have defined

Dijīj̄ := Dα(i(̄iDj)j̄)
α . (3.6)

The right-hand side of (3.5) involves a constant isospinor uR = uī constrained only by the

condition (vR, uR) 6= 0 which must hold along the closed integration contour γ. It can be

shown that (3.5) is invariant under an arbitrary infinitesimal variation of uR, which may

be represented as δuR = αuR + βvR, with α, β ∈ C. Thus W ij is independent of uR. The

right-hand side of (3.5) is invariant under gauge transformations

δVR = i
(

λ̆R − λR

)

, (3.7)

where the gauge parameter λR(vR) is a right arctic weight-zero multiplet, see [6] for more

details.

It is important to point out that the field strength of the left vector multiplet, W
(2)
L (vL),

is a left projective multiplet. However, its gauge prepotential, VR(vR), is a right projective

multiplet.

All previous results in this section hold for the general curved N = 4 superspace as

defined in [6]. The specific feature of the AdS geometries is that a composite right O(2)

– 6 –
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multiplet may be constructed starting from the left vector multiplet. Consider the tensor

superfield

W īj̄ := −
i

12
Dijīj̄Wij , (3.8)

which can equivalently be realized as the right isotwistor superfield

W
(2)
R (vR) := vīvj̄W

īj̄ ≡ W (2̄) . (3.9)

Making use of the algebra
{

D(1̄)i
α ,D

(1̄)j
β

}

= − 4iS(2̄)ijMαβ − 2iεαβε
ijS(2̄)klLkl + 2iεαβε

ij(2S −X)R(2̄) , (3.10a)

S(2̄)ij := vīvj̄S
ij īj̄ , R(2̄) := vīvj̄R

īj̄ (3.10b)

in conjunction with the equations

[

R(2̄),D(1̄)i
α

]

= 0 , R(2̄)W ij = 0 , Dīi
αW

jk =
2

3
εi(jDī

αlW
k)l , (3.11)

it is a short calculation to prove that

D(1̄)i
α W

(2)
R = 0 ⇐⇒ Di(̄i

α W j̄k̄) = 0 . (3.12)

Therefore, W īj̄ is a right linear multiplet.10 This superfield and its mirror image will be

our crucial building blocks to construct N = 4 SYM actions in AdS3.

It is possible to express W
(2)
R in terms of the gauge prepotential VR. The result is

W
(2)
R (vR) = ∆

(4)
R

∮

(v̂R, dv̂R)

2π (vR, v̂R)
2VR(v̂R) . (3.13)

Here we have introduced the right analyticity projection operator

∆
(4)
R =

1

48
D(2̄)kl

(

D
(2̄)
kl − 4iS

(2̄)
kl

)

=
1

48

(

D(2̄)kl − 4iS(2̄)kl
)

D
(2̄)
kl . (3.14)

It is obtained from the projection operator ∆
(4)
R defined in the curved-superspace case [6]

by switching off those torsion tensors which vanish in the AdS superspaces.11

For any supergravity background, there is an alternative procedure [16] to construct a

composite right linear multiplet, Gīj̄ , from the left vector multiplet:

Gīj̄ =
i

4

(

Dijīj̄ + 8iSijīj̄
)

(

Wij

WL

)

, WL :=
√

W ijWij . (3.15)

It is applicable only in the case when WL is nowhere vanishing, WL 6= 0. The superfield Gīj̄

proves to be primary under the super-Weyl transformations [16]. Unlike Gīj̄ , our composite

linear multiplet (3.8) exists only in the AdS superspaces. Its definition does not require

W ij to be nowhere vanishing. These results are similar to those derived many years ago

by Siegel for the 4D N = 2 tensor multiplets [17].

10Starting from W īj̄ , we can construct a left linear multiplet, and so on and so forth. As a result, we

have a procedure to generate higher-derivative left and right linear multiplets.
11The fundamental property of ∆

(4)
R is that Q

(n)
R := ∆

(4)
R T

(n−4)
R is a right weight-n projective multiplet

for any right isotwistor superfield T
(n−4)
R (vR), see [6] for more details.

– 7 –
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4 SYM actions in N = 4 AdS superspaces

To start with, we recall the locally supersymmetric action principle in N = 4 matter-

coupled supergravity [6]. In general, the N = 4 supersymmetric action may be presented

as a sum of two terms, the left SL and right SR ones,

S = SL + SR . (4.1)

The right action has the form

SR =
1

2π

∮

γR

(vR, dvR)

∫

d3x d8θ E C
(−4)
R L

(2)
R , E−1 = Ber

(

EA
M
)

, (4.2)

where the Lagrangian L
(2)
R (vR) is a real right projective multiplet of weight 2. The action

involves a model-independent primary isotwistor superfield C
(−4)
R (vR) defined to be real

with respect to the smile-conjugation and obey the differential equation12

∆
(4)
R C

(−4)
R = 1 , (4.3)

with ∆
(4)
R the covariant right projection operator. In AdS superspace, ∆

(4)
R is given by

eq. (3.14).

To describe the dynamics of an Abelian left vector multiplet in a given N = 4 AdS

superspace, it suffices to make use of the right action only, such that SL = 0. We choose

L
(2)
R =

1

2
VRW

(2)
R = −

i

24
VRD

(2̄)ijWij = −
i

24
D(2̄)ij

(

VRWij

)

, (4.4)

where the composite right O(2) multiplet is given by (3.9). The action defined by eqs. (4.2)

and (4.4) is manifestly invariant under all the isometries of theN = 4 AdS superspace under

consideration.

By applying the relations (3.13) and (4.3), the action defined by eqs. (4.2) and (4.4)

may be rewritten in the form:

S[VR] =
1

8π2

∮

(vR, dvR)

∮

(v̂R, dv̂R)

∫

d3x d8θ E
1

(vR, v̂R)2
VR(vR)VR(v̂R) . (4.5)

This is similar to the action for the Abelian N = 2 vector multiplet in four dimensions

constructed first in the rigid supersymmetric case [18] (see also [19]) and later in super-

gravity [20].

The action defined by eqs. (4.2) and (4.4) is valid for all the N = 4 AdS superspaces.

It turns out that alternative forms for the supersymmetric action exist in two special cases:

(i) the (2,2) AdS superspace; and (ii) the critical (4,0) AdS superspace with 2S +X = 0.

In the case of (2,2) AdS superspace, the theory can be described using a left action

only, such that SR = 0. The left Lagrangian is

L
(2)
L =

1

2

W
(2)
L W

(2)
L

d
(2)
L

, d
(2)
L (vL) := dijvivj , Dkk̄

γ dij = 0 , (4.6)

12In conformal supergravity, the field C
(−4)
R (vR) has to be primary of weight −2 under the super-Weyl

transformations [6].
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for some background covariantly constant real symmetric spinor dij . The covariant con-

stancy of dij implies that dij ∝ lij , with lij one of the parameters of (2,2) AdS superspace,

see eq. (2.5c). Without loss of generality, dij and lij may be identified. The Lagrangian (4.6)

admits a trivial extension to the non-Abelian case:

L
(2)
L =

1

2d
(2)
L

tr
(

W
(2)
L W

(2)
L

)

. (4.7)

In the case of (4,0) AdS superspace with 2S +X = 0, the SU(2)L curvature vanishes,

according to eqs. (2.4) and (2.5a), and there exists a covariantly constant real symmetric

spinor dij such that Dkk̄
γ dij = 0. As a result, in this case we can again use Lagrangians (4.6)

or (4.7) to describe SYM theories.

In conclusion, we comment on two different schemes to extend our results to the non-

Abelian case for any N = 4 AdS superspace. Similar to the 5D discussion in [21], a SYM

action may be defined by its variation13

δSSYM[V ] =
1

2π

∮

(vR, dvR)

∫

d3x d8θ E C
(−4)
R tr

(

∆V ·W
(2̄)
+

)

, (4.8)

where we have defined

∆V := e−V δeV , W
(2̄)
+ := e−Ω+W (2̄)eΩ+ , W (2̄) = −

i

12
D

(2̄)
ij W

ij . (4.9)

Here Wij denotes the non-Abelian field strength, and δeV an arbitrary variation of the non-

Abelian tropical prepotential. For more details, including the definition of Ω+, the reader

should consult appendix A. The projective superfields ∆V and W
(2̄)
+ take their values in

the Lie algebra of the gauge group and transform only under the λ-group as follows:

∆V ′ = eiλ∆V e−iλ ,
(

W
(2̄)
+

)′
= eiλW

(2̄)
+ e−iλ . (4.10)

Now, making use of (A.33) and the expression for the analyticity projection operator (3.14),

we obtain

W
(2̄)
+ = −

i

12
D

(2̄)
ij W

ij
+ = −i∆

(4̄)
R

(

e−Ω+∂(−2̄)eΩ+

)

. (4.11)

As a result, the variation (4.8) can be rewritten in the form

δSSYM[V ] = −
i

2π

∮

(vR, dvR)

∫

d3x d8θ E tr
[

∆V e−Ω+∂(−2̄)eΩ+

]

. (4.12)

It may be shown that this variation (4.8) is integrable. The action SSYM[V ] is gauge

invariant, since an infinitesimal gauge transformation (A.14) corresponds to the choice14

∆V = i
(

λ̆− λ
)

, λ̆ := e−V λ̆eV , λ := λ , (4.13)

for which the variation (4.8) proves to vanish. However, we have not yet been able to

integrate it in a closed form in terms of N = 4 superfields. An alternative approach to

obtaining a closed-form expression for the SYM action is to make use of the superform

construction, see [16] and references therein. In appendix E, we explicitly integrate the

variation (4.8) upon its reduction to (2,0) AdS superspace.

13To avoid cluttering of the equations, here we use notation V for the right tropical prepotential VR.
14The transformations (4.10) and (4.13) are classical and quantum realizations of the gauge transformation

within the background-quantum splitting, see e.g. [22].
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5 Reduction to (2,0) AdS superspace

Suppose there is a rigid supersymmetric field theory formulated in a given N = 4 AdS

superspace. As shown in [7], such a dynamical system can always be reformulated as a

supersymmetric theory realized in (2, 0) AdS superspace, with two supersymmetries hidden.

In this section we give a brief review of the superspace reduction N = 4 AdS −→ (2,0)

AdS, concentrating mainly on the decomposition of the N = 4 AdS isometries into the (2,0)

AdS isometries and additional non-manifest symmetries. In the next section the reduction

procedure will be applied to reformulate the N = 4 theories in (2,0) AdS superspace.

We start by reminding the reader that the algebra of N = 4 AdS covariant derivatives,

eq. (2.4), involves a covariantly constant tensor Sijīj̄ = S(ij)(̄ij̄). Its explicit form is given

by (2.5). For all the N = 4 AdS superspaces, it may be seen that applying an R-symmetry

transformation allows us to choose several components of this tensor to vanish,

S111̄2̄ = S121̄1̄ = S111̄1̄ = S222̄2̄ = 0 , (5.1)

as well as to have the property

S + S121̄2̄ = S . (5.2)

The proof of these claims was given in [7], and it will be reiterated below. In this gauge,

the operators Da, D11̄
α and

(

−D22̄
α

)

form an algebra15 which is isomorphic to that of (2,0)

AdS superspace, eq. (C.2), provided the U(1)R generator is identified with

J := Ĵ +
X

2S
Ẑ , (5.3)

where we have defined the operators

Ĵ :=
(

L12 +R1̄2̄
)

, Ẑ :=
(

L12 −R1̄2̄
)

,
[

Ĵ , Ẑ
]

= 0 (5.4)

with the properties

[

Ĵ ,D11̄
α

]

= D11̄
α ,

[

Ĵ ,
(

−D22̄
α

)]

= −
(

−D22̄
α

)

, (5.5a)
[

Ẑ,D11̄
α

]

= 0 ,
[

Ẑ,
(

−D22̄
α

)]

= 0 . (5.5b)

The generator J defined by (5.3) coincides with Ĵ for all conformally flat N = 4 AdS

superspaces.

Given an N = 4 tensor superfield U(x, θı̄), we define its projection to (2,0) AdS

superspace by

U | := U(x, θı̄)|θ12̄=θ21̄=0 . (5.6)

By definition, U | depends on the Grassmann coordinates θµ := θµ
11̄

and their complex

conjugates, θ̄µ = θµ
22̄
. We will refer to U | as the bar-projection of U . For the N = 4 AdS

15Given a tensor superfield U of Grassmann parity ǫ(U), the operation of complex conjugation maps

D11̄
α U to D11̄

α U = −(−1)ǫ(U)Dα11̄Ū = −(−1)ǫ(U)D22̄
α Ū .
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covariant derivatives (2.2) the bar-projection is defined as16

DA| = EA
M |∂M +

1

2
ΩA

bc|Mbc +ΦA
kl|Lkl +ΦA

k̄l̄|Rk̄l̄ . (5.7)

Since the algebra of operators
(

Da, D
11̄
α , −D22̄

α

)

is isomorphic to that of the (2,0) AdS

superspace, eq. (C.2), the freedom to perform general coordinate, local Lorentz and R-

symmetry transformations may be used to choose a gauge in which

D11̄
α | = Dα , −D22̄

α | = D̄α , (5.8)

where Dα and D̄α are the spinor covariant derivatives of (2,0) AdS superspace (C.1).

In the coordinate system defined by (5.8), the operators D11̄
α | and D22̄

α | involve no

partial derivative with respect to θ12̄, θ21̄. Therefore, for any positive integer k, it holds

that
(

Dα̂1 · · · Dα̂k
U
)∣

∣ = Dα̂1 | · · · Dα̂k
|U |, where Dα̂ :=

(

D11̄
α ,−D22̄

α

)

and U is a tensor

superfield. This also implies that Da| coincides with the vector covariant derivative of (2,0)

AdS superspace. The latter will be denoted by the same symbol Da. We hope that no

notational confusion will occur for the reader.

Let us fix an N = 4 AdS superspace and consider its Killing vector field ξ specified by

eqs. (B.1)–(B.3). We introduce the bar-projections of the parameters involved:

τa := ξa| , τα := ξα11| , τ̄α = ξα22| , t := i
(

Λ12 + Λ1̄2̄
)

| = t , tab := Λab| ; (5.9a)

εα := −ξα12̄| , ε̄α = ξα21̄| , σ̂ := i
(

Λ12 − Λ1̄2̄
)

| = ¯̂σ ; (5.9b)

ε̄L := −
1

4S
Λ11| , εL = −

1

4S
Λ22| , ε̄R = −

1

4S
Λ1̄1̄| , εR = −

1

4S
Λ2̄2̄| . (5.9c)

The parameters
(

τa, τα, τ̄α, t, t
ab
)

describe the infinitesimal isometries of (2,0) AdS super-

space. This may be proved by computing the bar-projection of the equations (B.2a)–(B.2e).

The parameters (εα, ε̄α, σ̂, εL, ε̄L, εR, ε̄R) generate those N = 4 AdS isometries which

are not manifest in the (2,0) AdS setting. These include two rigid supersymmetries and the

residual R-symmetry transformations. Depending on the N = 4 AdS superspace chosen,

these parameters obey different constraints. Let us spell out these constraints for the

various cases.

5.1 AdS superspace reduction (4,0) → (2,0)

For the reduction from (4,0) to (2,0) AdS superspace, we find a set of differential relations

between εα, εL, εR and their complex conjugates:

Dαε̄β = 4Sεαβ ε̄L , D̄αεβ = −4Sεαβ εL , (5.10a)

Dαεβ = −4Sεαβ ε̄R , D̄αε̄β = 4Sεαβ εR , (5.10b)

D̄αεL = D̄αεR = 0 , DαεL = i εα

(

1 +
X

2S

)

, DαεR = −i ε̄α

(

1−
X

2S

)

. (5.10c)

16Depending on the choice of parameters S, Sijīj̄ and X, the R-symmetry connection may take its values

in a subgroup of SU(2)L×SU(2)R. This point was discussed earlier.
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The action of the U(1)R generator (5.3) on these parameters is

J εα = −
X

2S
εα , J εL = −

(

1 +
X

2S

)

εL , J εR = −
(

1−
X

2S

)

εR . (5.11)

The real parameter σ̂, corresponding to one of the residual R-symmetries, can be shown

to obey
(

σ̂ −
X

2S
t

)

= const . (5.12)

A finite U(1) transformation generated by the constant parameter (σ̂−tX/2S) does not act

on the (2,0) AdS superspace. It will be more convenient to parametrize this transformation

using the constant parameter

σ :=

(

σ̂ −
X

2S
t

)

, (5.13)

such that t+ σ̂ =
(

1 + X
2S

)

t+ σ.

In the critical cases, |X| = 2S, the parameters are further constrained as follows:

X = 2S : Λk̄l̄ = εR = 0 , Dαεβ = D̄αε̄β = 0 ; (5.14a)

X = −2S : Λkl = εL = 0 , D̄αεβ = Dαε̄β = 0 . (5.14b)

5.2 AdS superspace reduction (3,1) → (2,0)

In order to carry out reduction from (3,1) to (2,0) AdS superspace, a local R-symmetry

transformation can be applied to choose wīi of the form:

w11̄ = w22̄ = 0 , w12̄ = 1 , w21̄ = −(w12̄) = −1 . (5.15)

As a result, the conditions (5.1) and (5.2) hold. In the gauge chosen we have

Λk̄l̄ = δk̄kδ
l̄
lΛ

kl , εL = εR := ε . (5.16)

Computing the bar-projection of (B.2a)–(B.2e) gives

Dαε̄β = −Dαεβ = 4Sεαβ ε̄ , D̄αεβ = −D̄αε̄β = −4Sεαβ ε , (5.17a)

D̄αε = 0 , Dαε =
i

2

(

εα − ε̄α
)

. (5.17b)

These imply

Dα (εβ + ε̄β) = D̄α (εβ + ε̄β) = 0 . (5.18)

The real parameter σ̂ proves to vanish.

5.3 AdS superspace reduction (2,2) → (2,0)

In order to carry out reduction from (2,2) to (2,0) AdS superspace, a local R-symmetry

transformation can be applied to bring lij and rīj̄ to the form:

l11 = l22 = 0 , r1̄1̄ = r2̄2̄ = 0 , l12 = −i , r1̄2̄ = i . (5.19)
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As a result, the conditions (5.1) and (5.2) hold. We then have

εL = Λ22 = 0 , εR = Λ2̄2̄ = 0 . (5.20)

Computing the bar-projection of (B.2a)–(B.2e) gives

Dαεβ = D̄αεβ = 0 . (5.21)

The real parameter σ̂ is constant.

6 N = 4 vector multiplet theories in (2, 0) AdS superspace

In this section we reduce all results, which were obtained in sections 3 and 4 within the

manifestly N = 4 AdS supersymmetric setting, to (2,0) AdS superspace.

6.1 The field strength

We recall that the left vector multiplet is described by the gauged-invariant field strength

W ij , which is a left linear multiplet. It can equivalently be described by the left O(2)

multiplet W (2)(vL) := vivjW
ij , with vi the homogeneous complex coordinates for CP 1. It

is useful to introduce an inhomogeneous complex coordinate ζL for CP 1 by the rule

ζL :=
v2

v1
∈ C , (6.1)

which is defined in the north chart of CP 1. Then we can represent the (2,0) AdS projection

of W (2)(vL) as

W (2)(vL)| = iζL
(

v1
)2

W [2](ζL)| , W [2](ζL)| = −
i

ζL
Φ+G− iζLΦ̄ , (6.2)

where we have introduced the N = 2 superfields

Φ := W 22| , G := 2iW 12| , Φ̄ = W 11| . (6.3)

By projecting the analyticity constraint D
(īi
α W jk) = 0 to (2,0) AdS superspace, it is not

difficult to prove that Φ is chiral and G = Ḡ is a real linear superfield,

D̄αΦ = DαΦ̄ = 0 , D2G = D̄2G = 0 . (6.4)

The generators of the R-symmetry group SU(2)L × SU(2)R act on W ij by the rule

LijW kl = εk(iW j)l + εl(iW j)k , Rīj̄W kl = 0 . (6.5)

Bar-projecting the first relation to (2,0) superspace gives

L11Φ = iG , L12Φ = −Φ , L22Φ = 0 , (6.6a)

L11G = −2iΦ̄ , L12G = 0 , L22G = 2iΦ . (6.6b)
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The fields Φ andG are neutral under the right R-symmetry group SU(2)R. This observation

tells us that the U(1)R generator of (2,0) AdS superspace, eq. (5.3), acts on the superfields

introduced as follows:

JΦ = −qΦ , J Φ̄ = qΦ̄ , JG = 0 , (6.7)

where we have defined

q := 1 +
X

2S
. (6.8)

Given an isometry transformation of the N = 4 AdS superspace (see appendix B for

the details), the transformation laws of the field strength W ij is

δKW
ij = KW ij = ξaDaW

ij + ξα
kk̄
Dkk̄

α W ij + 2Λ(i
kW

j)k . (6.9)

We now project this transformation law to (2,0) superspace. Using the analyticity condition

D
(īi
α W jk) = 0 and the results of section 5, we obtain

δKΦ = (τ + itJ ) Φ + i
(

εαD̄α − 4SεL
)

G− iσΦ , (6.10a)

δKG = τG− i (ε̄αDα − 8Sε̄L) Φ− i
(

εαD̄α − 8SεL
)

Φ̄

= τG+ iDα (ε̄
αΦ) + iD̄α

(

εαΦ̄
)

. (6.10b)

We recall that the parameters τ = τaDa + ταDα + τ̄αD̄
α and t describe the isometry of

(2,0) AdS superspace. The relations (6.10) are universal in the sense that they hold for

all the N = 4 AdS superspaces. All information about a concrete N = 4 AdS superspace

is encoded in the Killing parameters εL, εα and σ, which satisfy different constraints as

described in the previous section.

6.2 The tropical prepotential

The left field strength W ij is constructed in terms of the right weight-zero tropical prepo-

tential VR(vR) according to eq. (3.5). We introduce an inhomogeneous complex coordinate

ζR for CP 1 by the rule

vī = v1̄(1, ζR) , ζR :=
v2̄

v1̄
∈ C . (6.11)

We also choose the isospinor uī in (3.5) to be

uī = (1, 0) . (6.12)

Then the relation (3.5) becomes

W ij =
i

4

∮

dζR
2π

(

Dij1̄1̄ − 4iSij1̄1̄
)

VR(ζR) . (6.13)

Here the right weight-zero tropical prepotential is described by the Laurent series

VR(vR) =
+∞
∑

k=−∞

(ζR)
kVk , V̄k = (−1)kV−k . (6.14)

– 14 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
8

The analyticity constraint (A.11) projected to (2,0) AdS implies

D12̄
α V (ζR)| = ζRDαV (ζR)| , D21̄

α V (ζR)| = −
1

ζR
D̄αV (ζR)| . (6.15)

The N = 4 AdS transformation law of the tropical prepotential [6] is

δKVR =
(

ξaDa + ξα
kk̄
Dkk̄

α + Λīj̄Rīj̄

)

VR , (6.16)

where

Λīj̄Rīj̄VR = −Λ(2̄)∂(−2̄)VR , Λ(2̄) = Λīj̄vīvj̄ , (6.17)

and the operator ∂(−2̄) is defined according to (A.26). Projecting the transformation

law (6.16) to (2,0) AdS superspace gives

δKVR(ζR)| =
(

τ + itJ
)

VR(ζR)| − ζRε
αDαVR(ζR)|+

1

ζR
ε̄αD̄

αVR(ζR)|

+ i

[

4iSεR
1

ζR
− σ + 4iSε̄RζR

]

ζR∂ζRVR(ζR)| . (6.18)

Note that the action of J on V (ζR) is

J VR(ζR) = (2− q)R1̄2̄VR(ζR) = (2− q)ζR∂ζRVR(ζR) . (6.19)

For the coefficients in the Laurent series expansion of VR|, eq. (6.14), the transformation

law (6.18) leads to

δKVk| =
(

τ + itJ
)

Vk| − iσkVk|

−
(

εαDα + 4(k − 1)Sε̄R

)

Vk−1|+
(

ε̄αD̄
α − 4(k + 1)SεR

)

Vk+1| . (6.20)

Evaluating the contour integral in (6.13) and making use of the analyticity

condition (6.15), it is possible to obtain the expression for Φ, Φ̄ and G in terms of Vk|. The

results are:

Φ =
1

4
D̄2V1| , Φ̄ = −

1

4
D2V−1 =

1

4
D2V̄1| , G =

i

2
DαD̄αV0| . (6.21)

These relations show that the components of the gauge-invariant field strength are con-

structed in terms of only three components of the tropical prepotential: V1, V̄1 and V0. It

is easy to see that the other components of the tropical prepotential, V2, V3, . . . , are purely

gauge degrees of freedom.

Let us first compute the isometry transformation of V1| by applying (6.20):

δKV1| =
(

τ + itJ
)

V1| − εαDαV0|+
(

ε̄αD̄
α − 8SεR

)

V2| − iσV1| . (6.22)

This is equivalent to

δKV1| =
(

τ + itJ
)

V1| − εαDαV0| − iσV1|+ D̄α

(

ε̄αV2|
)

. (6.23)
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The last term is a pure gauge transformation that does not contribute to Φ = 1
4D̄

2V1|.

From eq. (6.23) we deduce

δKΦ =
(

τ + itJ
)

Φ−
1

4
D̄2(εαDαV0|)− iσΦ . (6.24)

This may be seen to be equivalent to (6.10a).

Next we compute the isometry transformation of V0| using (6.20)

δKV0| = τV0|+
(

ε̄αD̄
α − 4SεR

)

V1|+
(

εαDα − 4Sε̄R
)

V̄1| . (6.25)

This can be rewritten, with the aid of the identities

εR = −
1

8S
D̄αε̄

α , ε̄R = −
1

8S
Dαεα , (6.26)

as follows

δKV0| = τV0|+

{

ε̄αD̄
αV1|+

1

2

(

D̄αε̄
α
)

V1|+ c.c.

}

. (6.27)

This transformation law is valid for all the N = 4 AdS superspaces.

6.2.1 (4,0) AdS supersymmetry

In the case of (4,0) AdS supersymmetry with q 6= 0, the following relations hold:

εα = −
i

q
DαεL , ε̄α =

i

q
D̄αε̄L . (6.28)

Then the transformation of V0, eq. (6.27), can be rewritten as

δKV0| = τV0| −
2i

q

(

ε̄LΦ− εLΦ̄
)

+
i

2q
D̄2 (ε̄LV1|)−

i

2q
D2

(

εLV̄1|
)

. (6.29)

The last two terms generate a pure gauge transformation and can be omitted.

In the case of critical (4,0) AdS supersymmetry, X + 2S = 2Sq = 0, we have εL = 0.

Here εα can be expressed in terms of a real parameter ρ such that

εα = −iDαρ , D2ρ = 8iSε̄R , ρ̄ = ρ . (6.30)

The parameter ρ is defined up to an arbitrary constant shift of the form

ρ → ρ+ ψ , Jψ = 0 , ψ = ψ = const . (6.31)

Using ρ, we can rewrite the transformation of V0|, eq. (6.27), as

δKV0| = τV0| − 2iρ
(

Φ− Φ̄
)

+
1

2

{

i
(

D̄2ρV1|
)

+ c.c.
}

. (6.32)

The last term generates a pure gauge transformation of V0|, and so does the shift (6.31).
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6.2.2 (3,1) AdS supersymmetry

In the case of (3,1) AdS supersymmetry, we can introduce a complex parameter ρ such that

Dαρ =
i

2

(

εα + ε̄α
)

, J ρ = −ρ , D2ρ = 0 . (6.33)

The existence of this representation follows from eqs. (5.17a) and (5.18). The parameter ρ

is defined modulo arbitrary shifts of the form

ρ → ρ+ ψ̄ , J ψ̄ = −ψ̄ , Dαψ̄ = 0 . (6.34)

Due to eqs. (5.17b) and (6.33), the spinor parameter εα can now be expressed in the form

εα = −iDα(ε+ ρ) = −iD̄α(ε̄− ρ̄) , ε̄α = iD̄α(ε̄+ ρ̄) = iDα(ε− ρ) . (6.35)

Using this representation allows us to rewrite the transformation law (6.27) as

δKV0| = τV0| − 2i(ε̄+ ρ̄)Φ + 2i(ε+ ρ)Φ̄

+

{

i

2
D̄2

(

(ε̄+ ρ̄)V1|
)

+ c.c.

}

. (6.36)

The expression in the second line generates a pure gauge transformation and can be omit-

ted. It should be pointed out that any shift of ρ defined by (6.34) leads to a pure gauge

transformation of V0|.

6.2.3 (2,2) AdS supersymmetry

It remains to consider the case of the (2,2) AdS supersymmetry. In accordance with (5.21),

we can introduce a complex parameter ρ such that

εα = −iDαρ , J ρ = −ρ , D2ρ = 0 . (6.37)

As in the (3,1) case, this parameter is defined modulo arbitrary antichiral shifts of the

form (6.34). Then the transformation law (6.27) can be rewritten as

δKV0| = τV0| − 2i
(

ρ̄Φ− ρΦ̄
)

+

{

i

2
D̄2

(

ρ̄V1|
)

+ c.c.

}

. (6.38)

Here the third term generates a pure gauge transformation and can be omitted.

6.3 The composite right linear multiplet

One of the main aims of the present section is to reduce the action for N = 4 SYM to (2,0)

AdS. It involves the composite right O(2) multiplet W
(2)
R , which is defined by (3.9) and

can be represented as

W
(2)
R = iζR

(

v1̄
)2

W [2̄] , W [2̄](ζR) = −
i

2ζR
W 2̄2̄ + 2iW 1̄2̄ − iζRW

1̄1̄ . (6.39)

– 17 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
8

Computing the bar-projection of the superfields on the right gives

W 1̄1̄| = −
i

4
D2Φ+ S221̄1̄Φ̄ , W 2̄2̄| =

i

4
D̄2Φ̄ + S112̄2̄Φ , (6.40a)

W 1̄2̄| = −
1

4

(

DαD̄α + 4iqS
)

G . (6.40b)

The values of S221̄1̄ and S112̄2̄ corresponding to the various types of N = 4 AdS supersym-

metry are:

(4,0) AdS: S221̄1̄ = S112̄2̄ = 0 ; (6.41a)

(3,1) AdS: S221̄1̄ = S112̄2̄ = −S ; (6.41b)

(2,2) AdS: S221̄1̄ = S112̄2̄ = 0 . (6.41c)

6.4 The N = 4 vector multiplet actions

It was proven in [7] that the reduction of the right action, eq. (4.2), to (2,0) AdS superspace

is given by

SR =

∫

d3x d2θd2θ̄ E

∮

C

dζR
2πiζR

L
[2]
R (ζR)| , E−1 := Ber

(

EA
M
)

, (6.42)

where L
[2]
R is related to the original Lagrangian by the rule L

(2)
R (vR) = iζR

(

v1̄
)2

L
[2]
R (ζR).

In the N = 4 SYM case, the Lagrangian is given by (4.4). Its reduction to (2,0) AdS

superspace is

L
[2]
R | =

1

2

(

V (ζR)W
[2]
R (ζR)

)

∣

∣ . (6.43)

It is now a simple exercise to compute the contour integral in the action defined

by (6.42) and (6.43). We obtain

S =

∫

d3x d2θd2θ̄ E

[

1

8
V1

(

D̄2Φ̄− 4iS112̄2̄|Φ
)

−
1

4
V0

(

iDαD̄α − 4Sq
)

G

+
1

8
V̄1

(

D2Φ+ 4iS221̄1̄|Φ̄
)

]

. (6.44)

This is equivalent to

S =

∫

d3x d2θd2θ̄ E

[

Φ̄Φ−
1

2
G2 + SqV0G

]

+
i

2

∫

d3x d2θ E S112̄2̄Φ2 −
i

2

∫

d3x d2θ̄ Ē S221̄1̄Φ̄2 . (6.45)

We see that the action involves a Chern-Simons term for q 6= 0 and a mass-like chiral term

for S112̄2̄ 6= 0.

In the (2,2) AdS case, the SYM theory can equivalently be described by the left

Lagrangian (4.7). Let us prove this claim in the Abelian case by comparing the two

– 18 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
8

different actions upon their reduction to (2,0) AdS superspace. Upon this reduction, the

action associated with (4.7) becomes

S(2,2) =

∫

d3x d2θd2θ̄ E

∮

C

dζL
2πiζL

1

2d
[2]
L

(

W
[2]
L W

[2]
L

)

∣

∣ . (6.46)

Here W
[2]
L (ζL)| is given by eq. (6.2). We remind the reader that dij is proportional to lij

and the latter has the only non-zero component l12 = −i. By choosing

dij = −
1

2
lij , d[2] = −1 , (6.47)

it is trivial to compute the contour integral in (6.46). The resulting action is

S(2,2) =

∫

d3xd2θd2θ̄ E

[

Φ̄Φ−
1

2
G2

]

. (6.48)

This coincides with the action (6.45) in the (2,2) AdS case.

7 Concluding comments

In this paper we have constructed the pure N = 4 SYM theories in three dimensions for all

types of N = 4 AdS supersymmetry.17 In the Abelian case, these theories were described

within the manifestly N = 4 supersymmetric setting as well as in (2,0) AdS superspace

where onlyN = 2 supersymmetry is manifest. In all theN = 4 AdS superspaces, the vector

multiplet action has the universal form given by eqs. (4.2) and (4.4). This is an example of

the right linear multiplet action involving a special composite linear multiplet, eq. (3.9).18

All specific details of the theory are encoded in the type of N = 4 AdS supersymmetry

chosen. These differences become explicit when the theory is reformulated in (2,0) AdS

superspace in which theN = 4 vector multiplet decomposes into theN = 2 vector multiplet

described by a real linear superfield G and the chiral scalar Φ and its conjugate Φ̄. The

latter multiplets are equivalently described by unconstrained gauge prepotentials X := V1|

and V := V0| = V̄ such that Φ = 1
4D̄

2X and G = i
2D

αD̄αV . Let us now summarize the key

properties of the theory for all types of N = 4 AdS supersymmetry.

In the case of (4,0) AdS supersymmetry with q = 1 + X/2S 6= 0, the non-manifest

supersymmetry transformations are19

δεΦ = i
(

εαD̄α − 4SεL
)

G = −
1

4
D̄2(εαDαV) = −

1

2(2− q)
D̄2 (ε̄RG) , (7.1a)

δεV = −
2i

q

(

ε̄LΦ− εLΦ̄
)

, (7.1b)

17A brief discussion of off-shell N = 4 hypermultiplets coupled to the vector multiplet is given in

appendix A.
18The left and right linear multiplet actions [6] are known to be universal in the sense that the action of

any off-shell N = 4 supergravity-matter system may be realized as a sum of left and right linear multiplet

actions [16].
19In the critical case with X = 2S and q = 2, the last expression in (7.1a) is not defined. In this case

δεΦ can be represented as δεΦ = 1
2
D̄2(ωG). Here the real parameter ω is such that εα = −iD̄αω and

D̄2ω = −8iSεL.
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and therefore

δεG = −i
(

ε̄αDα − 8Sε̄L
)

Φ+ c.c. = iDα (ε̄
αΦ) + c.c. =

i

2
DαD̄α δεV . (7.1c)

The parameters εL and εα are defined in section 5.1. The invariant action is

S(4,0) =

∫

d3x d2θd2θ̄ E

[

Φ̄Φ−
1

2
G2 + SqVG

]

. (7.2)

This is exactly the AdS analogue of the Abelian N = 4 SYM theory on S3 recently

constructed in [1]. The Chern-Simons term in (7.2) is generated due to the non-zero

curvature of AdS3. It disappears in the flat-superspace limit. Thus our results explain the

mysterious structure of N = 4 supersymmetric Yang-Mills theories on S3 discovered in [1].

In the case of critical (4,0) AdS supersymmetry with X + 2S = 2Sq = 0, we have

εL = 0 and the non-manifest supersymmetry transformations are

δεΦ = iεαD̄αG = −
1

4
D̄2(εαDαV) , (7.3a)

δεV = −2iρ
(

Φ− Φ̄
)

, (7.3b)

and therefore

δεG = −iε̄αDαΦ+ c.c. = iDα(ε̄
αΦ) + c.c. =

i

2
DαD̄αδεV . (7.3c)

The action is given by (7.2) with q = 0.

In the case of (3,1) AdS supersymmetry, the non-manifest supersymmetry transforma-

tions are

δεΦ = i
(

εαD̄α − 4Sε
)

G = −
1

4
D̄2(εαDαV) = −

1

2
D̄2

(

(ε̄− ρ̄)G
)

, (7.4a)

δεV = −2i(ε̄+ ρ̄)Φ + 2i(ε+ ρ)Φ̄ , (7.4b)

and therefore

δεG = −i
(

ε̄αDα − 8Sε̄
)

Φ+ c.c. = iDα(ε̄
αΦ) + c.c. =

i

2
DαD̄α δεV . (7.4c)

The invariant action is

S(3,1) =

∫

d3x d2θd2θ̄ E

[

Φ̄Φ−
1

2
G2 +

1

2
SVG

]

−
1

2
S

{

i

∫

d3x d2θ E Φ2 + c.c.

}

. (7.5)

This theory possesses a chiral mass-like term, which is a new feature as compared with the

N = 4 SYM on S3 [1].

In the case of (2,2) AdS supersymmetry, the non-manifest supersymmetry transforma-

tions are20

δεΦ = iεαD̄αG =
1

2
D̄2

(

ρ̄G
)

, (7.6a)

δεG = −iε̄αDαΦ+ c.c. = DαD̄α

(

ρ̄Φ− ρ Φ̄
)

. (7.6b)

20In this case we do not need to consider the transformation of V since it does not appear in the action.
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Here the parameter ρ is defined by (6.37). The invariant action is

S(2,2) =

∫

d3x d2θd2θ̄ E

[

Φ̄Φ−
1

2
G2

]

. (7.7)

No Chern-Simons term shows up because the theory is formulated entirely in term of the

field strength W ij in N = 4 AdS superspace, see eq. (4.7).

The chiral mass-like term appears only in the (3,1) AdS case. In all other cases it is

prohibited by the rigid U(1) symmetry

δΦ = −iσΦ . (7.8)

In the non-Abelian case, we defined the N = 4 SYM action by its variation, eqs. (4.8)

and (4.9), induced by an arbitrary variation of the tropical prepotential.21 So far we have

not yet been able to integrate this variation in a closed form in terms of N = 4 superfields.

However, there are three obvious ways to obtain closed-form expressions for the N = 4

SYM action for all types of N = 4 AdS supersymmetry. Firstly, it may be achieved us-

ing the superform construction in complete analogy with the Chern-Simons results of [16].

Secondly, we may start with the N = 4 tropical prepotential VR(vR) and the gauge co-

variant field strength W
ij and then reduce their N = 4 isometry transformations to (2,0)

AdS superspace. Using the explicit structure of the non-manifest supersymmetry transfor-

mations derived, there is a standard procedure to reconstruct a closed-form expression for

the N = 4 SYM action in N = 2 superspace.22 This procedure is explicitly implemented

in appendix D in which we present complete N = 4 SYM actions in (2,0) AdS superspace

for all types of N = 4 AdS supersymmetry. Thirdly, we may reduce the variation of the

SYM action, eqs. (4.8) and (4.9), to (2,0) AdS superspace, in which the variation may be

readily integrated. This is explicitly done in appendix E.

In this paper we have focused our attention on the N = 4 left vector multiplet.

Analogous results for the right vector multiplet can be obtained by applying the mirror

map [6, 15].

In this paper we have studied the N = 4 SYM theories. In [3, 7] the off-shell formalism,

which was developed for general 3D N = 3 supergravity-matter systems [6], was applied

to the (3,0) and (2,1) AdS cases. Using these techniques allows one to construct N = 3

SYM theories for both types of N = 3 AdS supersymmetry, along the same lines as in the

present paper.

Acknowledgments

SMK is grateful to Igor Samsonov and Dima Sorokin for showing him a preliminary draft of

their paper [1] and for asking questions that stimulated the research presented in this note.

We thank Joseph Novak for reading the manuscript. The work of SMK was supported in

part by the ARC Discovery projects DP1096372 and DP140103925. The work of GT-M was

supported by the Australian Research Council’s Discovery Early Career Award (DECRA)

No. DE120101498 and by the ARC Discovery project DP140103925.

21We constructed the manifestly N = 4 SYM actions in the cases of (2,2) and critical (4,0) AdS super-

symmetries.
22Unlike [1], here we do not have to guess the structure of two non-manifest supersymmetry transforma-

tions, we derive them from first principles.

– 21 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
8

A N = 4 SYM and projective superspace

In this appendix we consider a left N = 4 Yang-Mills supermultiplet in a conformal su-

pergravity background [6] and uncover the origin of a tropical prepotential VR(vR). Our

consideration is similar to that given by Lindström and Roček in the case of 4D N = 2

SYM theory [10]. Only right projective supermultiplets appear in this section. For this

reason we consistently avoid using a subscript ‘R’ and simply denote VR by V etc.

A.1 Tropical prepotential

To describe a left Yang-Mills supermultiplet, we introduce gauge covariant derivatives

DA = DA + iAA , (A.1)

where DA denotes the N = 4 supergravity covariant derivatives [6], and the connection

AA(z) takes values in the Lie algebra of the gauge group. The fact that we are dealing

with the left vector multiplet, is encoded in the anti-commutation relation:
{

D
īi
α,D

jj̄
β

}

= · · ·+ 2εαβε
īj̄
W

ij , (A.2)

where the ellipsis denotes the purely supergravity terms. The SYM field strength Wij =

Wji is Hermitian, (Wij)† = Wij , and obeys the Bianchi identity

D
(īi
γ W

jk) = 0 . (A.3)

Under the gauge group (to be referred to as the τ -group), the covariant derivatives and

any covariant matter superfield multiplet U(z) transform as follows

D
′
A = eiτDAe

−iτ , U ′ = eiτU , τ = τ † , (A.4)

with the Lie-algebra-valued gauge parameters τ(z) being Hermitian and otherwise uncon-

strained. In particular, the field strength transforms as

W
ij ′ = eiτWije−iτ . (A.5)

Using an isospinor v := vī ∈ C
2 \ {0}, which provides homogeneous coordinates for

CP 1, we introduce gauge covariant operators

D
(1̄)i
α := vīD

īi
α , (A.6)

in complete analogy with (3.2). It is easy to see that the anti-commutator
{

D
(1̄)i
α ,D

(1̄)j
β

}

coincides with the right-hand side of (3.10a), i.e. it does not involve the gauge field. This

means that we may represent D
(1̄)i
α in the form:

D
(1̄)i
α = eΩ+D(1̄)i

α e−Ω+ , (A.7)

where we have introduced a Lie-algebra-valued bridge superfield

Ω+(ζ) =
∞
∑

n=0

Ωnζ
n , ζ :=

v2̄

v1̄
. (A.8)
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Another representation for D
(1̄)i
α follows by applying the smile-conjugation to (A.7) (see,

e.g., [6] for the definition of the smile-conjugation). The result is

D
(1̄)i
α = e−Ω−D(1̄)i

α eΩ− , Ω−(ζ) =
∞
∑

n=0

(−1)nΩ†n
1

ζn
. (A.9)

Introduce a Lie-algebra-valued superfield V (ζ) defined by

eV := eΩ−eΩ+ , V (ζ) =
∞
∑

n=−∞

Vnζ
n , V †n = (−1)nV−n . (A.10)

It may be seen from (A.7) and (A.9) that V is a covariant projective multiplet,

D(1̄)i
α V = 0 . (A.11)

It follows from (A.4) and (A.7) that the gauge transformation law of Ω+ is

eΩ
′
+(ζ) = eiτeΩ+(ζ)e−iλ(ζ) , (A.12)

where the new gauge parameter λ(ζ) is a covariant weight-zero arctic multiplet

D(1̄)i
α λ = 0 , λ(ζ) =

∞
∑

n=0

λnζ
n . (A.13)

The gauge transformation law of the tropical prepotential is

eV
′

= eiλ̆eV e−iλ . (A.14)

We see that V transforms under the λ-group only.

A.2 Polar hypermultiplets

N = 4 supersymmetric matter may be described in terms of gauge-covariantly arctic

multiplets and their smile-conjugate antarctic multiplets.

A gauge-covariantly arctic multiplet of weight n, Υ(n̄)(v), is defined by

D
(1̄)i
α Υ(n̄) = 0 , Υ(n̄)(v) =

(

v1̄
)n

∞
∑

k=0

Υkζ
k . (A.15)

It can be represented in the form

Υ(n)(v) = eΩ+(ζ)Υ(n)(v) , (A.16)

where Υ(n)(v) is an ordinary covariant arctic multiplet of weight n (see [6] for more details),

D(1̄)i
α Υ(n̄) = 0 , Υ(n̄)(v) =

(

v1̄
)n

∞
∑

k=0

Υkζ
k . (A.17)

– 23 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
8

A gauge-covariantly antarctic multiplet of weight n, Ῠ(n̄)(v), is defined by

Ῠ
(n̄)

←−

D
(1̄)i
α = 0 , Ῠ(n̄)(v) =

(

v2̄
)n

∞
∑

k=0

(−1)kΥ†k
1

ζk
. (A.18)

It can be represented in the form

Ῠ
(n̄)

(v) = Ῠ(n̄)(v)eΩ−(ζ) , (A.19)

where Ῠ(n̄)(v) is an ordinary antarctic multiplet

D(1̄)i
α Ῠ(n̄) = 0 , Ῠ(n̄)(v) =

(

v2̄
)n

∞
∑

n=0

(−1)nΥ†n
1

ζn
. (A.20)

The gauge-covariantly arctic multiplet of weight n, Υ(n̄)(v), and its smile-conjugate

antarctic one, Ῠ
(n̄)

(v), constitute the gauge-covariantly polar multiplet of weight n. The

gauge transformation laws of Υ(n̄)(v) and Ῠ(n̄)(v) are

Υ(n̄)′(v) = eiτΥ(n̄)(v) , Ῠ(n̄)′(v) = Ῠ(n̄)(v)e−iτ . (A.21)

The gauge transformation laws of Υ(n̄)(v) and Ῠ(n̄)(v) are

Υ(n̄)(v) = eiλ(ζ)Υ(n̄)(v) , Ῠ(n̄)′(v) = Ῠ(n̄)(v)e−iλ(ζ) . (A.22)

In the case of weight n = 1, a gauge invariant hypermultiplet Lagrangian can be con-

structed. It is

L(2̄) = iῨ(1̄)Υ(1̄) = iῨ(1̄)eV Υ(1̄) . (A.23)

A.3 Arctic and antarctic representations

Here we show that the SYM gauge connection AA may be expressed in terms of the tropical

prepotential V (ζ), modulo the τ -gauge freedom. Our analysis in this subsection is inspired

by the famous paper by Zupnik [23].

Let us introduce a new isospinor uī ∈ C
2 \ {0}, which is only required to obey the

inequality (v, u) := vīuī 6= 0. Since vī and uī are linearly independent vectors, we can

construct a new basis for the gauge covariant spinor derivatives that includes D
(1̄)i
α and the

following operators:

D
(−1̄)i
α :=

1

(v, u)
uīD

īi
α . (A.24)

It can be seen that
{

D
(1̄)i
α ,D

(−1̄)j
β

}

= · · · − 2εαβW
ij , (A.25)

where the ellipsis denotes the purely supergravity terms.

We introduce the first-order differential operators

∂(2̄) := (v, u) vī
∂

∂uī
, ∂(−2̄) :=

1

(v, u)
uī

∂

∂vī
(A.26)
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such that
[

∂(2̄), ∂(−2̄)
]

= vī
∂

∂vī
− uī

∂

∂uī
≡ ∂(0̄) . (A.27)

These operators are invariant under the τ -group. It is easy to see that
[

∂(−2̄),D(1̄)i
α

]

= D
(−1̄)i
α . (A.28)

When dealing with polar hypermultiplets, it is useful to introduce an arctic represen-

tation defined by the transformation

Ô → Ô+ := e−Ω+Ô eΩ+ , U → U+ := e−Ω+U (A.29)

applied to any operator Ô and covariant superfield U . In the arctic representation, any

gauge-covariantly arctic multiplet Υ(n̄)(v) becomes the ordinary arctic one, Υ(n̄)(v),

Υ(n̄)(v) → Υ(n̄)(v) , Ῠ
(n̄)

(v) → Ῠ(n̄)(v)eV (ζ) . (A.30)

The gauge covariant derivatives D
(1̄)i
α turn into the AdS spinor covariant derivatives,

D
(1̄)i
α → D(1̄)i

α . (A.31)

The important point is that the projective derivative ∂(−2̄) turns into the operator

∂(−2̄) → D
(−2̄) := ∂(−2̄) + e−Ω+

(

∂(−2̄)eΩ+

)

, (A.32)

which transforms as a covariant derivative under the λ-group. Then making use of (A.25)

in conjunction with
[

D
(−2̄),D

(1̄)i
α

]

= D
(−1̄)i
α , we read off

W
ij
+ =

1

4

(

D(2̄)ij − 4iS(2̄)ij
)(

e−Ω+∂(−2̄)eΩ+

)

. (A.33)

It may be seen that Wij
+ is independent of uī, ∂(2̄)W

ij
+ = 0. It also satisfies the property

D
(−2̄)

W
ij
+ = 0 , (A.34)

since in the original representation W
ij is independent of vī. The field strength obeys the

Bianchi identity

D
α(īi
+ W

jk)
+ = 0 . (A.35)

If the gauge group is Abelian, then W
ij = W

ij
+ and (A.33) turns into

W
ij =

1

4

(

D(2̄)ij − 4iS(2̄)ij
)

∂(−2̄)Ω+ . (A.36)

Since Ω+ is a homogeneous function of vR of degree zero, we have Ω+(vR) = Ω+(ζ) and

∂(−2̄)Ω+(vR) = −
1

(v1̄)2
∂ζΩ+(ζ) . (A.37)

Taking into account the fact that Wij is independent of ζ, we end up with the expression

W
ij = −

1

4

(

Dij2̄2̄ − 4iSij 2̄2̄
)

Ω1 =
1

4

(

Dij1̄1̄ − 4iSij1̄1̄
)

Ω−1 . (A.38)

This expression may be shown to be equivalent to (6.13).
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In complete analogy with the arctic representation, eq. (A.29), one can introduce the

antarctic representation defined by

Ô → Ô− := eΩ−Ô e−Ω− , U → U− := eΩ−U . (A.39)

In this representation, the SYM field strength takes the form

W
ij
− =

1

4

(

D(2̄)ij − 4iS(2̄)ij
)(

eΩ−∂(−2̄)e−Ω−

)

. (A.40)

Comparing the above with (A.33) gives

W
ij
− = eV Wij

+e
−V . (A.41)

B Isometries of N = 4 AdS superspaces

In this appendix we review the structure of the Killing vector fields of a given N = 4 AdS

superspace following [7].

Given a particular N = 4 AdS superspace, its isometry group is generated by Killing

vector fields, ξ = ξaDa + ξα
īi
Dīi

α , obeying the Killing equation

0 = [K,DA] , K := ξ +
1

2
ΛγδMγδ + ΛklLkl + Λk̄l̄Rk̄l̄ . (B.1)

This equation is equivalent to

Dīi
αξβγ = 4iεα(βξ

īi
γ) , (B.2a)

Dīi
αξ

jj̄
β = ξαβ

(

εijεīj̄S + Sij īj̄
)

+
1

2
Λαβε

ijεīj̄ + Λijεīj̄εαβ + Λīj̄εijεαβ , (B.2b)

Dīi
αΛβγ = 8iεα(βξγ)jj̄

(

Sij īj̄ + εijεīj̄S
)

, (B.2c)

Dīi
αΛ

kl = −2iεi(kξα
l)̄i(2S +X)− 2iξα

i
j̄S

klīj̄ , (B.2d)

Dīi
αΛ

k̄l̄ = −2iεī(k̄ξα
il̄)(2S −X)− 2iξαj

īSij k̄l̄ , (B.2e)

and

Daξb = Λab , (B.3a)

Daξ
β

jj̄
= −

(

Sξγ
jj̄
+ Sjkj̄k̄ξ

γkk̄
)

(γa)γ
β , (B.3b)

DaΛ
bc = 4S2

(

δbaξ
c − δcaξ

b
)

, (B.3c)

DaΛ
kl = DaΛ

k̄l̄ = 0 . (B.3d)

Some useful implications of the above equations are

Dīi
(αξβγ) = Dīi

(αΛβγ) = 0 , (B.4a)

Dβīiξαβ = 6iξ īiα , DβīiΛαβ = 12iξαjj̄

(

Sij īj̄ + εijεīj̄S
)

, (B.4b)

D
(īi
(αξ

j)
β) ī = D

i(̄i
(αξβ)i

j̄) = 0 , D
(i(̄i
(α ξ

j)j̄)
β) = ξαβS

ij īj̄ , Dīi
(αξβ) īi = 4ξαβS + 2Λαβ , (B.4c)

Dαīiξαīi = Dα(i(̄iξj)j̄)α = 0 , Dα(īiξj)α ī = −4Λij , Dαi(̄iξαi
j̄) = −4Λīj̄ . (B.4d)
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Here we have written the results in a form valid for the (4,0), (3,1) and (2,2) cases. De-

pending on the N = 4 AdS superspace under consideration, S, X and Sijīj̄ are constrained

by (2.5a)–(2.5c), while the SU(2)L and SU(2)R parameters Λkl and Λk̄l̄ are restricted by

(4, 0) with X = 2S : Λk̄l̄ = 0 ; (B.5a)

(4, 0) with X = −2S : Λkl = 0 ; (B.5b)

(3, 1) : Λk̄l̄ = wk
k̄wl

l̄Λkl ; (B.5c)

(2, 2) : Λkl = lklΛL , (ΛL) = ΛL , Λk̄l̄ = rk̄l̄ΛR , (ΛR) = ΛR . (B.5d)

C Geometry of (2,0) AdS superspace

In this appendix we collect the main results concerning the (2,0) AdS superspace

following [7, 11].

The geometry of (2,0) AdS superspace is encoded in its covariant derivatives

DA =
(

Da,Dα, D̄
α
)

= EA
M∂M +

1

2
ΩA

cdMcd + iΦAJ (C.1)

obeying the following (anti-)commutation relations:

{Dα,Dβ} = 0 ,
{

D̄α, D̄β

}

= 0 , (C.2a)
{

Dα, D̄β

}

= −2iDαβ − 4iS εαβJ + 4iSMαβ , (C.2b)

[Da,Dβ ] = S (γa)β
γDγ ,

[

Da, D̄β

]

= S (γa)β
γD̄γ , (C.2c)

[Da,Db] = −4S2Mab . (C.2d)

The generator J in (C.2) corresponds to the gauged R-symmetry group, U(1)R, and acts

on the covariant derivatives as

[J ,Dα] = Dα ,
[

J , D̄α

]

= −D̄α . (C.3)

The isometries of the (2,0) AdS superspace are described by Killing vector fields,

τ = τaDa + ταDα + τ̄αD̄
α, obeying the equation

[

τ + itJ +
1

2
tbcMbc,DA

]

= 0 , (C.4)

for some parameters t and tab. Choosing DA = Da in (C.4) gives

Dat = 0 , (C.5a)

Daτb = tab , (C.5b)

Daτ
β = −Sτγ(γa)γ

β , (C.5c)

Dat
bc = 4S2

(

δa
bτ c − δa

cτ b
)

. (C.5d)

Eq. (C.5b) implies the standard Killing equation

Daτb +Dbτa = 0 , (C.6)
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while (C.5c) is a Killing spinor equation. From (C.5b) and (C.5d) it follows that

DaDbτc = 4S2(ηabτc − ηacτb) . (C.7)

Next, choosing DA = Dα in (C.4) gives

Dατ̄β = 0 , (C.8a)

Dαt = 4Sτ̄α , (C.8b)

Dαt
βγ = −4iS

(

δα
β τ̄γ + δα

γ τ̄β
)

, (C.8c)

Dατ
βγ = −2i

(

δα
β τ̄γ + δα

γ τ̄β
)

, (C.8d)

Dατ
β =

1

2
tα

β + Sτα
β + iδα

βt . (C.8e)

These equations have a number of nontrivial implications including the following:

D(ατβγ) = D(αtβγ) = 0 , (C.9a)

D(ατβ) = −D̄(ατ̄β) =
1

2
tαβ + Sταβ , (C.9b)

τα =
i

6
D̄βταβ =

i

12S
D̄βtαβ , (C.9c)

Dγτ
γ = −D̄γ τ̄γ = 2it . (C.9d)

It follows from the above equations that the Killing superfields τα, t and tab are given

in terms of the vector parameter τa. Its components defined by τa|θ=0 and
(

−Dbτa
)

|θ=0

describe the isometries of AdS3. The other isometry transformations of the (2,0) AdS

superspace are contained not only in τa but also in, e.g., the real scalar t subject to the

following equations:

D2t = D̄2t = 0 ,
(

iDαD̄α − 8S
)

t = 0 , Dat = 0 . (C.10)

At the component level, t contains the real constant parameter t|θ=0 and the complex

Killing spinor Dαt|θ=0, which generate the R-symmetry and supersymmetry transforma-

tions of the (2,0) AdS superspace respectively.

D N = 4 SYM theories in (2,0) AdS superspace

In this appendix we provide complete N = 4 SYM actions in (2,0) AdS superspace for all

types of N = 4 AdS supersymmetry. These actions are natural extensions of the N = 4

vector multiplet models derived in section 6. We start by recalling the structure of the

N = 2 Yang-Mills supermultiplet [24, 25] as formulated in (2,0) AdS superspace.

D.1 N = 2 SYM multiplet

To describe a Yang-Mills supermultiplet in (2,0) AdS superspace, we introduce gauge co-

variant derivatives23

DA = DA + iAA , (D.1)

23We use one and the same symbol, DA, to denote N = 2 and N = 4 gauge covariant derivatives,

the latter have been introduced in appendix A. We hope no confusion may occur, since only the N = 2

operators are used in the present appendix.
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where DA stands for the covariant derivatives of (2,0) AdS superspace, and the gauge

connection AA(z) takes values in the Lie algebra of the gauge group. The anti-commutators

of two spinor gauge covariant derivatives are constrained [24, 25] by

{Dα,Dβ} = 0 ,
{

D̄α, D̄β

}

= 0 , (D.2a)
{

Dα, D̄β

}

= · · ·+ iεαβG , (D.2b)

where the ellipsis denotes the right-hand side of (C.2b). The SYM field strength G is

Hermitian, G† = G, and obeys the Bianchi identity

0 = D
2
G = D̄

2
G . (D.3)

The gauge group is defined to act on the covariant derivatives and any matter multiplet

U(z) as follows

D
′
A = eiτDAe

−iτ , U ′ = eiτU , τ = τ † , (D.4)

where the Lie-algebra-valued gauge parameters τ(z) is only constrained to be Hermitian.

The field strength transforms in the adjoint representation,

G
′ = eiτGe−iτ . (D.5)

The gauge group will be referred to as the τ -group.

The constraints (D.2a) are solved in complete analogy with the 4D N = 1 case (see,

e.g., [22]) as follows:

D̄α = eΩD̄αe
−Ω , Dα = e−Ω

†

Dαe
Ω†

. (D.6)

Here Ω(z) is an unconstrained complex Lie-algebra-valued bridge superfield. Its gauge

freedom is larger than the τ -group:

eΩ
′

= eiτeΩe−iλ , D̄αλ = 0 . (D.7)

Under the λ-transformation introduced, the gauge covariant derivatives (D.6) remain

unchanged.

Let Φ be a gauge-covariantly chiral scalar superfield, D̄αΦ = 0, transforming in the

adjoint representation of the gauge group. It may be represented in the form

Φ = eΩΦe−Ω , D̄αΦ = 0 . (D.8)

Here the chiral scalar Φ is independent of the gauge field. It is inert under the

τ -transformations and changes under the λ-transformations by the rule

Φ′ = eiλΦe−iλ . (D.9)

The Hermitian conjugate of Φ is a gauge-covariantly antichiral superfield Φ̄ constrained

by DαΦ̄ = 0. Its explicit form is

Φ̄ := Φ† = e−Ω
†

Φ†eΩ
†

, DαΦ
† = 0 . (D.10)
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It is often advantageous to use a chiral representation defined by the transformation

Ô → e−ΩÔeΩ , U → e−ΩU , (D.11)

which has to be applied to any operator Ô and covariant superfield U . In this representa-

tion, the gauge covariant spinor derivatives look like

Dα = e−VDαe
V , D̄α = D̄α , (D.12)

and the adjoint multiplets Φ and Φ̄ turn into

Φ = Φ , Φ̄ = e−VΦ†eV . (D.13)

Here we have introduced the Hermitian Lie-algebra-valued prepotential V defined by

eV := eΩ
†

eΩ , V† = V . (D.14)

The virtue of the chiral representation is that the gauge field is described in terms of a

single prepotential, V , with the gauge transformation law

eV
′

= eiλ
†

eVe−iλ . (D.15)

The τ -group is completely gauged away in this representation.

In the chiral representation, the constraint (D.2b) is solved as follows:

G =
i

2
D̄α

(

e−VDαe
V
)

. (D.16)

The field strength G is no longer Hermitian. It obeys the modified reality condition

G† = eVGe−V .

In the remainder of this section, we will work in the chiral representation.

D.2 N = 2 Chern-Simons and SYM actions

When dealing with the non-Abelian N = 2 vector supermultiplet, it is useful to introduce

a covariant variation, ∆V , of the prepotential V following [22]. It is defined by

∆V := e−VδeV , (D.17)

and hence δeV = eV∆V and δe−V = −∆Ve−V . Varying the field strength gives

δG = [G,∆V ] +
i

2
D̄αDα∆V −

i

2

{

D̄α∆V , e−VDαe
V
}

, (D.18a)

which is equivalent to

δG =
i

2
D̄

α
Dα∆V =

i

2
D

α
D̄α∆V . (D.18b)

The N = 2 SYM action in (2,0) AdS superspace is a minimal extension of the one in

Minkowski space [25],

S
(2,0)
SYM = −

1

2g2

∫

d3x d2θd2θ̄ E tr
[

G
2
]

, (D.19)
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with g the coupling constant. Its variation is given by

δS
(2,0)
SYM = −

i

2g2

∫

d3x d2θd2θ̄ E tr
[

∆V D̄
α
DαG

]

. (D.20)

We now turn to introducing a supersymmetric Chern-Simons (SCS) action in (2,0) AdS

superspace. In the case of Poincaré supersymmetry, the N = 2 SCS action was constructed

by Zupnik and Pak [25], and a few years later by Ivanov [26] in a more general form. Here

we follow Ivanov’s construction. Let us consider a one-parameter family of superfields V(t),

with t ∈ [0, 1], such that V(0)=0 and V(1)=V . Up to an overall constant, the SCS action is

S
(2,0)
SCS =

∫ 1

0
dt

∫

d3x d2θd2θ̄ E tr
[

G(t)e−V(t)∂te
V(t)

]

. (D.21)

In the Abelian case this reduces to

S
(2,0)
SCS-Abelian =

1

2

∫

d3x d2θd2θ̄ E tr
[

VG
]

. (D.22)

Zupnik and Pak [25] used the specific parametrization, V(t) = tV .

It follows from the definition (D.17) that

δ(e−V(t)∂te
V(t)) =

[

e−V(t)∂te
V(t),∆V(t)

]

+ ∂t∆V(t) . (D.23)

Making also use of (D.18a), we compute the variation of the SCS action (D.21) to be

δS
(2,0)
SCS =

∫

d3x d2θd2θ̄ E tr
[

∆V G
]

. (D.24)

D.3 N = 4 SYM theory with (4,0) AdS supersymmetry

We are now in a position to present N = 2 superspace formulations for all N = 4 SYM ac-

tions which correspond to the different types of N = 4 AdS supersymmetry. The R-charge

of Φ is universally defined by JΦ = −qΦ, where q = 1 + X
2S . In the cases of (3,1) and

(2,2) AdS supersymmetries, X is equal to zero and q = 1.

In the case of (4,0) AdS supersymmetry with q 6= 0, the non-manifest supersymmetry

transformations are

δεΦ = i
(

εαD̄α − 4SεL
)

G = −
1

2(2− q)
D̄

2(ε̄RG) , (D.25a)

∆εV = −
2i

q

(

ε̄LΦ− εLΦ̄
)

, (D.25b)

δεG = −i
(

ε̄αDα − 8Sε̄L
)

Φ+ h.c. = iDα(ε̄
αΦ) + h.c. =

i

2
D

α
D̄α∆εV . (D.25c)

These transformation laws are non-Abelian extensions of (7.1).

The N = 4 SYM action is

S
(4,0)
SYM =

1

g2

∫

d3x d2θd2θ̄ E tr

[

Φ̄Φ−
1

2
G

2 + 2Sq

∫ 1

0
dtG(t)e−V(t)∂te

V(t)

]

. (D.26)

It is invariant under the transformations (D.25). The action reduces to (7.2) in the

Abelian limit.
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Our N = 4 SYM action (D.26) is analogous to the one given in the Euclidean case

in [1]. There is, however, a minor technical difference. The point is that V(t) was chosen

in [1] to be of the form V(t) = tV . In our approach V(t) is an arbitrary function modulo

the boundary conditions V(0) = 0 and V(1) = V .

In the case of critical (4,0) AdS supersymmetry with X + 2S = 2Sq = 0, we have

εL = 0 and the non-manifest supersymmetry transformations are

δεΦ = iεαD̄αG = −
1

4
D̄

2(ε̄RG) , (D.27a)

∆εV = −2iρ
(

Φ− Φ̄
)

, (D.27b)

δεG = −iε̄αDαΦ+ h.c. = iDα(ε̄
αΦ) + h.c. =

i

2
D

α
D̄α∆εV . (D.27c)

These transformation laws are non-Abelian extensions of (7.3). The corresponding N = 4

SYM action is given by (D.26) with q = 0. It is an instructive exercise to show that the

action is invariant under (D.27).

D.4 N = 4 SYM theory with (3,1) AdS supersymmetry

In the case of (3,1) AdS supersymmetry, the non-manifest supersymmetry transformations

are

δεΦ = i
(

εαD̄α − 4Sε
)

G = −
1

2
D̄

2
(

(ε̄− ρ̄)G
)

, (D.28a)

∆εV = −2i(ε̄+ ρ̄)Φ+ 2i(ε+ ρ)Φ̄ , (D.28b)

δεG = iDα(ε̄
αΦ) + h.c. =

i

2
D

α
D̄α∆εV . (D.28c)

These transformation laws are non-Abelian extensions of (7.4)

The N = 4 SYM action is

S
(3,1)
SYM =

1

g2

∫

d3x d2θd2θ̄ E tr

[

Φ̄Φ−
1

2
G

2 + S

∫ 1

0
dtG(t)e−V(t)∂te

V(t)

]

−
S

g2

{

i

2

∫

d3x d2θE tr
[

Φ2
]

+ c.c.

}

. (D.29)

It is invariant under (D.28) and reduces to (7.5) in the Abelian limit.

D.5 N = 4 SYM theory with (2,2) AdS supersymmetry

In the case of (2,2) AdS supersymmetry, the non-manifest supersymmetry transformations

of Φ and G are

δεΦ = iεαD̄αG =
1

2
D̄

2 (ρ̄G) , (D.30a)

δεG = −iε̄αDαΦ+ h.c. = D
α
D̄α

(

ρ̄Φ− ρ Φ̄
)

, (D.30b)

where the parameter ρ is defined by (6.37). These transformation laws are non-Abelian

extensions of (7.6).

The N = 4 SYM action is

S
(2,2)
SYM =

1

g2

∫

d3x d2θd2θ̄ E tr

[

Φ̄Φ−
1

2
G

2

]

. (D.31)

It is invariant under the transformations (D.30).
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E Relating the N = 4 and N = 2 superspace formulations for N = 4

SYM theories in AdS3

In appendix A, we described the projective-superspace formulation for the N = 4 SYM

multiplet in a curved superspace of N = 4 supergravity. Here we will specify the back-

ground superspace to be one of the N = 4 AdS superspaces and show how to reduce the

formulation of appendix A to (2,0) AdS superspace. Using the results obtained, we will

integrate the variation (4.8) in (2,0) AdS superspace.

E.1 Relating the bridge superfields

In the N = 4 SYM formulation given in appendix A, the fundamental role is played by

the bridge Ω+, eqs. (A.7) and (A.8), and its smile-conjugate Ω− defined by (A.9). It is

possible to represent

eΩ+(ζR) = eΩ0eΩ̂+(ζR) , eΩ−(ζR) = eΩ̂−(ζR)eΩ
†
0 , (E.1)

where

Ω̂+(ζR) =
∞
∑

n=1

(ζR)
nΩ̂n , Ω̂−(ζR) =

∞
∑

n=1

(−1)n
1

(ζR)n
Ω̂†n . (E.2)

It may be shown that Ω̂1, the leading coefficient in the Taylor series for Ω̂+(ζR), is related

to Ω1, the next-to-leading in the Taylor series for Ω+(ζR), as follows:

Ω̂1 =

∫ 1

0
dτe−τΩ0Ω1e

τΩ0 . (E.3)

The gauge covariant spinor derivative D
(1̄)i
α defined by eq. (A.6) may be represented as

D
(1̄)i
α = v1̄D

[1̄]i
α , where D

[1̄]i
α = eΩ0eΩ̂+D

[1̄]i
α e−Ω̂+e−Ω0 is such that

D
[1̄]i
α = D

i2̄
α − ζRD

i1̄
α = eΩ0eΩ̂+(ζR)Di2̄

α e−Ω̂+(ζR)e−Ω0 − ζRe
Ω0eΩ̂+(ζR)Di1̄

α e−Ω̂+(ζR)e−Ω0 . (E.4)

We see that the ζR-independent part of D
[1̄]i
α is

D
i2̄
α = eΩ0Di2̄

α e−Ω0 . (E.5)

Choosing here i = 2 and projecting to (2,0) AdS superspace gives

−D
22̄
α | = −eΩ0|D22̄

α |e−Ω0| = eΩD̄αe
−Ω = D̄α , Ω := Ω0| . (E.6)

Here D̄α denotes one of the N = 2 gauge covariant derivative, eq. (D.6). Taking the

Hermitian conjugate of (E.6) leads to

D
11̄
α | = Dα = e−Ω

†

Dαe
Ω†

. (E.7)
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E.2 Relating the SYM field strengths

Our next task is to reduce the N = 4 SYM field strength to (2,0) AdS superspace. Making

use of (A.33), it may be shown that

W
ij = eΩ0 W

ij
+(ζR = 0) e−Ω0 = −

1

4
eΩ0

[(

Dij2̄2̄ − 4iSij 2̄2̄
)

Ω̂1

]

e−Ω0 . (E.8)

It is convenient to represent the bar-projection of Wij in terms of the left projective su-

perfield W
(2)(vL) = W

ijvivj , where vi = v1(1, ζL). It follows that

W
(2)(vL)| = iζL(v

1)2W[2](ζL)| , W
[2](ζL)| = −

i

ζL
Φ+G− iζLΦ̄ , (E.9)

where we have introduced the following N = 2 superfields:

Φ := W
22| , D̄αΦ = 0 , (E.10a)

G := 2iW12| , D
2
G = 0 , D̄

2
G = 0 , (E.10b)

Φ̄ = W
11| , DαΦ̄ = 0 . (E.10c)

The constraints on Φ and G are direct consequences of the Bianchi identity obeyed by

W
ij . Since the reduction to (2,0) AdS superspace is characterized by the conditions (5.1),

from (E.8) we deduce that

Φ =
1

4
eΩ

(

D̄2Ω̂1|
)

e−Ω =
1

4
D̄

2X , X := eΩΩ̂1|e
−Ω . (E.11)

This is the non-Abelian extension of the first expression in (6.21).

Let us now express the covariantly real linear superfield G := 2iW12| in terms of

prepotentials. In this case it is simpler to work in the N = 2 chiral representation defined

by eqs. (D.11)–(D.14). Using (E.8), a short calculation gives

e−ΩGeΩ =
i

2
D̄γD12̄

γ Ω̂1| . (E.12)

Note that the N = 4 analyticity condition 0 = D
[1]i
α eV (ζR) =

(

−ζRD
i1̄
α +Di2̄

α

)

eV (ζR) implies

the following constraint on Ω+ and Ω−:

e−Ω−

(

D12̄
α eΩ−

)

− ζRe
−Ω−

(

D11̄
α eΩ−

)

= eΩ+

(

D12̄
α e−Ω+

)

− ζRe
Ω+

(

D11̄
α e−Ω+

)

. (E.13)

Picking the linear in ζR term in the Laurent expansion of (E.13) and then bar-projecting

to (2,0) AdS superspace, we obtain the constraint

D12̄
α Ω̂1| = e−VDαe

V . (E.14)

Here the right-hand side is expressed in terms of the N = 2 SYM prepotential V defined

by eV = eΩ
†
eΩ. Now we can make use of (E.14) in (E.12) to obtain

e−ΩGeΩ =
i

2
D̄γ

(

e−VDγe
V
)

, (E.15)

which is the N = 2 SYM field strength in the chiral representation.
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E.3 Integrating the variation of the SYM action

To conclude this appendix, let us consider the (2,0) AdS reduction of the variation of the

N = 4 SYM action, eq. (4.8). The bar-projection of (4.8) turns out to be

δSSYM =

∫

d3x d2θd2θ̄ E

∮

C

dζR
2πiζR

tr
{[

eΩ0eΩ̂+∆Ω̂+e
−Ω̂+e−Ω0 + e−Ω

†
0e−Ω̂−∆Ω̂−e

Ω̂−eΩ
†
0

+ eΩ0∆Ve−Ω0

]

W [2̄]
}

∣

∣ , (E.16)

where we have defined

∆Ω̂+ := e−Ω̂+δeΩ̂+ , (E.17a)

∆Ω̂− :=
(

δeΩ̂−

)

e−Ω̂− , (E.17b)

∆V =: e−VδeV = e−ΩδeΩ + e−V
(

δeΩ
†
)

e−Ω
†

eV . (E.17c)

We recall that the non-Abelian composite superfield W (2̄) is defined by (4.9). The super-

field W [2̄] in (E.16) is

W [2̄](ζR) = −
i

2ζR
W 2̄2̄ + 2iW 1̄2̄ − iζRW

1̄1̄ . (E.18)

Computing the bar-projection of the superfields on the right gives

W 1̄1̄| = −
i

4
D

2Φ+ S221̄1̄Φ̄ , W 2̄2̄| =
i

4
D̄

2Φ̄+ S112̄2̄Φ , (E.19a)

W 1̄2̄| = −
1

4

(

D
α
D̄α + 4iqS

)

G . (E.19b)

Upon evaluation of the contour integral in (E.16) we derive

δSSYM =

∫

d3x d2θd2θ̄ E tr

{

1

4
δX D̄

2Φ̄+
1

4
δX †D2Φ− eΩ∆Ve−Ω

(

i

2
D

α
D̄αG

)

+ 2SqeΩ∆Ve−ΩG− iS112̄2̄δXΦ+ iS221̄1̄δX †Φ̄

}

. (E.20)

It may be seen that this variation is generated by the action

SSYM =

∫

d3x d2θd2θ̄ E tr

[

Φ̄Φ−
1

2
G

2 + 2Sq

∫ 1

0
dtG(t)e−V(t)∂te

V(t)

]

+

{

i

2
S112̄2̄

∫

d3x d2θE tr
[

Φ2
]

+ c.c.

}

. (E.21)

This is indeed the correct action for all the types ofN = 4 AdS supersymmetry, as discussed

in the previous appendix. Action (E.21) is the non-Abelian extension of (6.45).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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