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1 Introduction

For the past few years AdS/CFT duality [1]–[3] has received significant attention due to its

several remarkable applications in various areas of physics particularly towards the under-

standing of several strongly coupled phenomena in the usual condensed matter systems.

Among its various remarkable achievements, the gauge/gravity duality has successfully

explained various features of so called high Tc superconductivity in the usual condensed

matter physics. These are known as holographic superconductors [4]–[6]. The main idea be-

hind such theories lies in the fact that if the temperature of the black hole in the AdS space

falls below certain critical temperature (T < Tc) the black hole would become unstable to

develop a nontrivial hair profile through the mechanism of abelian symmetry breaking in

the bulk gravity theory. This essentially triggers superconductivity/super-fluidity in the

boundary CFT through the mechanism of spontaneous breaking of a global (or sometimes

weakly gauged) U(1) symmetry. For T > Tc the black hole possess no hair and the cor-

responding gravity theory stands for the dual of a conductor. Therefore these models

essentially describe conductor/superconductor transition in the boundary CFT [7]–[43].

Besides having the usual description of conductor/superconductor phase transition,

one may also generate so called insulator/superconductor phase transition in the boundary

CFT through the appropriate modifications of the bulk gravity theory, i.e.; considering the

gravitational theory in an AdS soliton back ground [44]. The AdS soliton that has been

first investigated in [45] could be obtained through a double wick rotation of the usual AdS

Schwarzschild solution. In the language of gauge/gravity duality the AdS soliton is dual

to a confined field theory with a mass gap that essentially corresponds to an insulating

phase [46]. In [44], for the first time, it had been argued that in the presence of a chemical

potential (µ) in the AdS soliton back ground, apart from having the usual first order

insulator/conductor phase transition between AdS soliton and AdS black hole [47], one

may have an additional (second order) phase structure through the appropriate tuning of

µ. It has been observed that for µ > µc, where µc is some critical value of the chemical
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potential, the AdS soliton back ground becomes unstable to develop a non trivial profile

of hair which could be interpreted as insulator/superconductor phase transition in the

language of boundary field theory. This is kind of quantum phase transition where the

chemical potential (µ) plays the role of doping (x) in the ordinary material, like cu-prates.

Since the discovery of such an exciting phase structure, till date a number of inves-

tigations have been performed in various directions. In [48, 49] the analysis was further

extended taking into account the back reaction of the matter fields. It was observed that

one may generate a completely new type of phase structure depending on the strength of

the back reaction. In order to back up the previous numerical results [50], full analytic

calculations were carried out in [20, 23] both for the Scwarzschild AdS and Gauss-Bonnet

AdS back grounds. In [51] the authors studied the insulator/superconductor phase tran-

sition via Stuckelberg mechanism and unveiled reach physics in various phase transitions.

Response to a Wilson line on the circle and to a magnetic field perpendicular to the

non compact directions have been explored in [52] where the authors discover Aharonov-

Bohm like effects during insulator/superconductor transition. A holographic model of SIS

Josephson junction have been successfully constructed in [53] and the dependence of the

maximal current on the width of the junction have been investigated. Based on the no-

tion of marginally stable modes of scalar/vector perturbations in the AdS Schwarzschild

background, the authors in [54, 55] find that these modes can actually indicate the onset

of insulator/superconductor transition which is also compatible with earlier observations

made by Gubser [9, 21]. Apart from these studies, very recently some research papers were

written on insulator/superconductor transition in the context of non linear electrodynam-

ics [56, 57].

From the above list of references, it is quite interesting to note that most of the

papers that are written so far are mostly based on holographic s-wave model. On the

other hand, a surprisingly lesser effort is given towards the study of non abelian model of

insulator/superconductor transition [58], particularly the magnetic response in non abelian

model of insulator/superconductor transition is still unexplored. The present paper aims to

fill up this gap along with addressing some other major issues from a different perspective.

Based on analytic calculations, the present work reveals the importance of marginally

stable modes of vector perturbations (both for the Schwarzschild AdS and Gauss-Bonnet

AdS soliton back grounds) in order to construct non abelian superconducting droplets

(solutions that are confined with in a finite region and decays rapidly at large distances)

during insulator/superconductor transition in presence of an external magnetic field. It is

noted that the size of the droplet gradually reduces to zero as the strength of the magnetic

field is increased. Furthermore, it is found that near the critical point of phase transition

there exists a simple algebraic relation between the chemical potential (µ) and the magnetic

field (B) which indeed reveals the fact that the increase in the strength of the magnetic

field makes the condensation harder to form. On top of it, for Gauss-Bonnet gravity we

find this simple relation to be dependent on the Gauss-Bonnet coupling (α) which is also

an interesting observation in itself.

It interesting to note that the droplet solutions that are obtained throughout this paper

is in line with the earlier observations during conductor/superconductor transitions where
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both the vortex and droplet solutions have been constructed for the s-wave model [34,

36, 37]. From the technical point of view the absence of vortex states in the non abelian

model could be explained as follows: in the non abelian holographic model the Maxwell

field enters as a U(1) subgroup of the full SU(2) symmetry group. Therefore it is not just

simply coupled with the condensed charged fields through gauge covariant couplings like

in the s or d-wave case. Thus technically speaking the nature of this difference lies in the

nature of the minimal coupling. For real life materials the high Tc type II superconductivity

is believed to be generated through a d-wave pairing mechanism which results into vortex

states when magnetic field is applied externally. There are also real world p + ip-wave

models that exhibit vortex solutions but that are clearly different from the holographic

p+ ip-wave model studied in this paper. On the other hand, one could interpret our model

as a holographic model of super-fluidity and try to find connections with real life super-fluid

droplets [59].

Before going further, let us briefly mention about the organization of the paper. In

section 2, we discuss the importance of marginally stable modes of vector perturbations

in order to study non abelian superconducting droplets. The calculations are carried out

both for the Schwarzschild AdS and Gauss Bonnet AdS solitonic back grounds. In section

3, the droplet solutions have been constructed for the p + ip-wave back ground. Finally,

the paper is concluded in section 4.

2 Droplet solution via marginally stable modes

By marginally stable modes in a (black hole) space time we mean perturbations in space

time that do not back react on other fields and depend only radial coordinates (r). In other

words, marginally stable modes are essentially the quasi normal modes whose frequencies

go to zero (ω = 0) near the critical point of the phase transition. The importance of

marginally stable perturbations in case of holographic model of conductor/superconductor

transition has been first discussed by S. S. Gubser in his pioneering papers [9, 21], where he

discussed both the abelian and the non abelian model of superconductors. Later on in [55]

the authors investigate the role of marginally stable modes in AdS soliton back grounds

and find that these modes indeed indicate the onset of so called insulator/superconductor

transition near the critical point.

Motivated from the above studies in the subsequent analysis we first investigate the role

of marginally stable modes of vector perturbations for the p-wave back ground (where we

consider perturbations only in one spatial direction τ1dx) in presence of an external mag-

netic field and in the next section we generalize our calculations considering perturbations

both in the τ1dx and τ2dy directions.

2.1 Schwarzschild AdS soliton

In this section we aim to construct holographic droplets for the non abelian case based on

the idea of marginally stable modes. In order to do that we first note that the five dimen-

sional SU(2) Einstein-Yang-Mills action in presence of a negative cosmological constant
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may be written as [58],

S =

∫
d5x
√
−g
[

1

2
(R− Λ)− 1

4
F aµνF

aµν

]
(2.1)

where Fµν is the field strength of the non abelian gauge field.

Before proceed further let us first note that through out this paper calculations are

performed in the probe limit and we treat marginally stable perturbations as a probe into

the neutral AdS soliton which may be expressed as1 [45],

ds2 =
dr2

r2g(r)
+ r2(−dt2 + dρ2 + ρ2dθ2) + r2g(r)dχ2 (2.2)

where, g(r) = 1− 1
r4

and L = 1.

This solution can be obtained from a five dimensional AdS black hole solution followed

by two successive wick rotations. The boundary CFT that we are studying actually lies in

a space which has the topology R1,2 × S1.

In order to proceed further we choose the following ansatz for the gauge sector close

to the critical point of the phase transition line (i.e.; µ ∼ µc and ψ ∼ 0),

A = τ3(µcdt+
1

2
Bρ2dθ) + ψ(t, r, χ, ρ)τ1dρ (2.3)

where τ3 could be identified as the generator of the electromagnetic U(1) subgroup of

the full SU(2) gauge group. Here B is a constant magnetic field which is related to the

electromagnetic vector potential.

With the above choice, the equation of motion for ψ turns out to be,

∂r(r
3g(r)∂rψ)− 1

r
∂2
t ψ +

1

rg(r)
∂2
χψ +

µ2
c

r
ψ − B2ρ2

4r
ψ = 0. (2.4)

In order to solve the above equation (2.4), we choose the ansatz of the following form,

ψ = F (r, t)H(χ)U(ρ) = F (r, t)H(χ)
2√
B

(2.5)

where we have actually set,

U(ρ) = ρ =
2√
B
. (2.6)

From the above analysis it is indeed clear that the solutions we are looking for is

actually confined with in a finite circular region whose radius ρ ∝ 1√
B

. Thus for sufficiently

large magnetic field the model essentially describes a superconducting droplet for which the

condensate is non zero only at the origin where the core of the droplet is located [34, 36, 37].

Substituting the above ansatz (2.5) into (2.4) we find the following set of equations,

rg(r)

F (r, t)
∂r(r

3g(r)∂rF (r, t))− g(r)

F (r, t)
∂2
t F (r, t) + g(r)(µ2

c −B) = κ2 (2.7)

1We are working in the polar coordinates (ρ, θ).
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and,

∂2
χH = −κ2H. (2.8)

The solution of (2.8) may be noted as,

H(χ) = exp(iκχ) (2.9)

where, we identify2 κ = 2n from the periodicity property3 of H(χ).

Finally, equation (2.7) turns out to be,

∂2
rF (r, t) +

(
3

r
+
g
′
(r)

g(r)

)
∂rF (r, t)− 1

r4g(r)
∂2
t F (r, t) +

1

r4g

(
µ2
c −B −

4n2

g(r)

)
F (r, t) = 0.

(2.10)

As a next step, we substitute F (r, t) = exp(−iwt)R(r), which essentially reduces (2.10)

into a radial equation in the variable R(r),

∂2
rR(r) +

(
3

r
+
g
′
(r)

g(r)

)
∂rR(r) +

(
ω2 + µ2

c −B −
4n2

g(r)

)
R(r)

r4g(r)
= 0. (2.11)

Since in the present analysis we are interested in perturbations that are marginally

stable, therefore we set ω = 0. Also we redefine our variable as z = 1/r. With this

redefinition equation (2.11) turns out to be,

∂2
zR(z) +

(
g
′
(z)

g(z)
− 1

z

)
∂zR(z) +

(
µ2
c −B −

4n2

g(z)

)
R(z)

g(z)
= 0. (2.12)

As a next step, we introduce a trial function Ω(z) as,

R(z)|z→0 ∼ 〈O2〉z2Ω(z) (2.13)

with the boundary conditions for Ω(z) as Ω(0) = 1 and Ω
′
(0) = 0.

Substituting (2.13) into (2.12) the equation of motion for Ω(z) turns out to be

∂2
zΩ(z) + p(z)∂zΩ(z) + q(z)Ω(z) + λ2w(z)Ω(z) = 0 (2.14)

where we have set λ2 = µ2
c −B along with,

p(z) =
3− 7z4

z(1− z4)

q(z) =
−8z2

1− z4
− 4n2

g2(z)

w(z) =
1

1− z4
. (2.15)

2We have actually an infinite tower of marginally stable modes corresponding to different values of n. It

is generally expected that the lowest mode of excitation (n = 0) will be the first to condense and all other

modes do not matter to the phase transition.
3H(χ) = H(χ+ π).
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It is now easy to convert (2.14) into the standard Strum-Liouville (SL) eigen value

equation [14],

∂z(T (z)Ω
′
(z))−Q(z)Ω(z) + λ2P (z)Ω(z) = 0 (2.16)

with the following identifications,

T (z) = z3(1− z4)

Q(z) =
z3(8z2(1− z4) + 4n2)

1− z4

P (z) = z3. (2.17)

The corresponding eigenvalue (λ2) is obtained through minimizing the following func-

tional,

λ2[Ω(z)] = µ2
c −B =

∫ 1
0 dz(T (z)(Ω

′
(z))2 +Q(z)Ω2(z))∫ 1

0 dzP (z)Ω2(z)
(2.18)

In order to estimate the R.H.S. of (2.18) we take Ω(z) = 1− az2, which finally yields,

µ2
c −B = 5.13933 (2.19)

with a = 0.338114.

This is an important result which states that the chemical potential (µ ∼ µc) and the

magnetic field (B ∼ Bc) may be connected to each other via a simple algebraic relation

near the critical point of the p-wave insulator/superconductor phase transition. Because

of the presence of the negative sign it is easy to note that the increase in the value of the

external magnetic field essentially increases µc which results in a harder condensation.

In the next section we wish to verify this relation for the Gauss-Bonnet AdS soliton

back ground and we will try to examine the effect of so called higher derivative coupling

on the non abelian condensate in presence of external magnetic field.

2.2 Gauss-Bonnet AdS soliton

It has been noted earlier in [23], that the Gauss-Bonnet coupling (α) indeed affects the in-

sulator/superconductor transition. Increase in the value of α essentially increases µc which

results in a harder condensation. In the present section we aim to investigate the situation

in presence of an external magnetic field. The motivation of the present calculation is to

see how the simple algebraic relation that is obtained in the previous section now depends

on the value of the coupling α.

We start with the five dimensional AdS soliton in the Gauss-Bonnet gravity which (in

polar coordinates) takes the following form [23],

ds2 =
dz2

z2g(z)
+

1

z2
(−dt2 + dρ2 + ρ2dθ2) +

g(z)

z2
dχ2 (2.20)

where, g(z) = 1
2α

[
1−

√
1− 4α(1− z4)

]
with α as Gauss-Bonnet coupling.
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The asymptotic form of the metric is given by,

g(z)|z→0 ∼
1

2α

[
1−
√

1− 4α
]

(2.21)

from which we identify the effective AdS length to be,

L2
eff =

2α

1−
√

1− 4α
. (2.22)

We take the same ansatz (2.3) for the gauge field (Aµ) and set,

ψ(t, z, χ, ρ) = R(z)S(χ, ρ) exp(−iωt). (2.23)

We proceed in the same way as we did in the previous section. Since we are interested

in marginally stable modes therefore we will be interested in the equation of motion for

R(z). Finally we set w = 0, which yields,

∂2
zR(z) + ξ(z)∂zR(z) +

[
µ2
c −B −

4n2

g(z)

]
R(z)

g(z)
= 0 (2.24)

where, ξ(z) =
1−4α−4αz4−

√
1−4α(1−z4)

z
[√

1−4α(1−z4)−1+4α(1−z4)
] .

Our next step would be to convert (2.24) into the standard SL eigen value equation.

In order to do that we first set

R(z)|z→0 ∼ 〈O2〉z2Ω(z) (2.25)

which yields,

∂2
zΩ(z) + p(z)∂zΩ(z) + q(z)Ω(z) + λ2w(z)Ω(z) = 0 (2.26)

where we note,

p(z) =
3
√

1− 4α(1− z4)− 3 + 12α− 20αz4

z
[√

1− 4α(1− z4)− 1 + 4α(1− z4)
]

q(z) =
−16αz2

z
[√

1− 4α(1− z4)− 1 + 4α(1− z4)
] − 4n2

g2(z)

w(z) = g−1(z) (2.27)

with, λ2 = µ2
c −B.

This equation (2.26) may be converted into a standard SL eigen value equation,

∂z(T (z)Ω
′
(z))−Q(z)Ω(z) + λ2P (z)Ω(z) = 0 (2.28)

with the following identifications,

T (z) =
z3

2α

[
1−

√
1− 4α(1− z4)

]
= z3(1− z4)(1 + α(1− z4)) +O(α2)

Q(z) = −T (z)q(z) = 8z5(1 + 2α(1− z4)) +O(α2)

P (z) = T (z)w(z) = z3. (2.29)
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α a ζSL
(
= µ2

c −B
)

0.0001 0.33809 5.13978

0.1 0.314773 5.59003

0.2 0.29277 6.03793

Table 1. Values of ζ for different choices of α.

Since the value of the higher derivative coupling (α) is very small therefore for the present

analysis it will be sufficient to consider the leading possible effect of the higher derivative

correction to the onset of p-wave insulator/superconductor transition.

The eigen value could be obtained by varying the following functional,

λ2[Ω(z)] = µ2
c −B =

∫ 1
0 dz(T (z)(Ω

′
(z))2 +Q(z)Ω2(z))∫ 1

0 dzP (z)Ω2(z)
= ζ(α, n) (2.30)

In order to estimate the above functional integral we consider the trial function to be

of the form Ω(z) = 1−az2, where a is determined through the minima of the functional. In

the following (table 1) we tabulate various values of ζ(α, n = 0) corresponding to different

choice of the coupling parameter (α).

From the above table 1 it is indeed clear that in the presence of higher derivative cor-

rections to the bulk action, the simple algebraic connection between the chemical potential

(µc) and the magnetic field (B) is now dependent on α. Furthermore we note that given

a fixed value of B, the corresponding value of µc increases as we increase the value of the

Gauss-Bonnet coupling (α). This indeed suggests the onset of a harder condensation and

which is expected from the earlier observations [23, 50].

3 Droplet solutions in p + ip-wave back ground

In the present section, we would like to investigate the magnetic response in holographic

p + ip-wave superconductors considering the probe limit. In the new coordinate z = 1/r,

the metric of the space time may be written as,

ds2 =
dz2

z2g(z)
+

1

z2
(−dt2 + dx2 + dy2) +

g(z)

z2
dχ2 (3.1)

where, the explicit form of g(z) depends on the particular choice of space time.

In this fixed back ground, the corresponding equation of motion for the gauge field

turns out to be,
1√
−g

∂µ(
√
−gF aµν) + εabcAbµF

cµν = 0 (3.2)

with the choice ε123 = 1.

In order to proceed further we choose the following ansatz for the gauge field in the

p+ ip-wave back ground as,

A = (φ(x, y, z)dt+A3
y(x, y, z)dy)τ3 + w(x, y, z)(τ1dx+ τ2dy) (3.3)
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where the condensate of w bosons essentially breaks the original rotational invariance of

the system and thereby triggering superconductivity in the boundary theory.

Substituting the ansatz (3.3) into (3.2) the following set of equations for φ, A3
y and w

may be respectively obtained as,

∂zφ
2 +

(
g
′
(z)

g(z)
− 1

z

)
∂zφ+

1

g(z)
(∂2
x + ∂2

y)φ− 2w2φ

g(z)
= 0 (3.4)

∂z

(
g(z)

z
∂zA

3
y

)
+

1

z
∂2
xA

3
y +

3w

z
∂xw −

1

z
w2A3

y = 0 (3.5)

and,

∂z

(
g(z)

z
∂zw

)
+

1

2z
(∂2
x + ∂2

y)w − 3w

2z
∂xA

3
y −

w3

z
+
φ2w

z
− w

2z
(A3

y)
2 = 0. (3.6)

From the structure of these equations it seems to be quite difficult to have exact analytic

solutions for these equations. However, one can always make perturbative expansion of the

fields near the critical value of the magnetic field strength (B ∼ Bc) where there is no

condensation (w = 0),

φ = φ(0) + εφ(1) + . . .

A3
y = A3(0)

y + εA3(1)
y + . . .

w =
√
εw1 + ε3/2w2 + . . . (3.7)

where the perturbation expansion is carried out on the parameter ε = Bc−B
Bc

, when B is

slightly below Bc. Here φ(0) and A
3(0)
y are zeroth order solutions which we set,

φ(0) = µc and, A3(0)
y = Bcx (3.8)

in order to make the solutions consistent with the Newmann type boundary conditions for

the fields [20].

Substituting (3.7) into (3.6), and neglecting terms4 ∼ O(εw) we obtain,

2z∂z

(
g(z)

z
∂zw1

)
+ (∂2

x −B2
cx

2 − 3Bc)w1 + ∂2
yw1 + 2µ2

cw1 = 0 (3.9)

In order to solve (3.9), we choose the following ansatz,

w1(x, y, z) = X(x)Y (y)Z(z). (3.10)

Finally, substituting (3.10) into (3.9), we arrive at the following set of equations,

∂2
ỹY = −p2 (3.11)

(−∂2
x̃ + x̃2 + 3− k2)X(x̃) = 0 (3.12)

4Near the critical point, w ∼ 0, therefore we may ignore the quadratic terms.
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and,

∂2
zZ(z) +

(
g
′
(z)

g(z)
− 1

z

)
∂zZ(z) +

(
µ2
c −Bc

) Z(z)

g(z)
= 0 (3.13)

where,5 we set x̃ =
√
Bcx and ỹ =

√
Bcy.

Solutions for (3.11) and (3.12) may be expressed as,

Y ∼ exp(ipỹ) (3.14)

and,

X(x̃) = e−
x̃2

2 Hn(x̃) (3.15)

respectively, where Hn(x̃) are standard Hermite functions.

Before we proceed further, let us pause for some time and try to extract physics from

the above results. First of all, and most importantly, from (3.15) we note that the solution

in the x direction does not depend on p. This situation is completely different from the

s-wave case, where the solutions obtained for x directions essentially depend on p, which

results in a vortex lattice solutions with a periodicity in the x direction [34]. Thus we

see that for the non abelian insulator/superconductor transition we can not have vortex

lattice solutions like we have in the abelian case [52]. The reason for this is that in the

non abelian case we have a different scenario where the the Maxwell sector appears as a

U(1) subgroup of the full SU(2) symmetry group and essentially is not minimally coupled

with the condensed charged fields like in the abelian case. On top of it, we see that for

large values of the magnetic field, or at large distances the solution (3.15) rapidly dies out.

This on the other hand suggests that these are droplet solutions. Finally, from (3.13) we

note that, we may easily convert it into a standard SL form that we did earlier and as a

consequence of that one can easily show µ2
c −Bc = constant.

4 Summary and final remarks

In the present paper, based on the notion of marginally stable modes of vector perturba-

tions in an AdS soliton back ground, several properties of non abelian model holographic

insulator/superconductor transition have been investigated in presence of an external mag-

netic field in the probe limit. A number of interesting results have been obtained in this

regard. First of all we have found that the non abelian model exhibit only droplet solutions.

One of the (technical) reason for this is that in the non abelian case we do not encounter

a minimal coupling between the Maxwell field and the charged condensed field like in the

abelian model. As a result of this, the superposition of droplet solutions do not give rise

to any vortex lattice solution. Similar situations were also encountered earlier in [41].

On top of it, we have found a simple mathematical relation between the chemical

potential and the external magnetic field near the critical temperature. This relation in

itself is very interesting since it implies that an increase in the magnetic field will always be

accompanied by a corresponding increase in the (critical) chemical potential, which in fact

5We choose the constants k2 and p2 such that k2 + p2 = 2.

– 10 –
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suggests the onset of a harder condensation. Moreover, for the Gauss-Bonnet gravity we

find this relation to be dependent on the Gauss-Bonnet coupling itself. In the future one

can make further probe into the non abelian model of insulator/superconductor transition

by studying this model in presence of back reaction and particularly one should try to see

the effect of back reaction on the holographic condensate in presence of external magnetic

field.
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