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Abstract: In this paper we study a simple gravity model dual to a 2+1-dimensional sys-

tem with a boundary at finite charge density and temperature. In our naive AdS/BCFT

extension of a well known AdS/CFT system a non-zero charge density must be supported

by a magnetic field. As a result, the Hall conductivity is a constant inversely proportional

to the coefficients of pertinent topological terms. Since the direct conductivity vanishes,

such behaviors resemble that of a quantum Hall system with Fermi energy in the gap be-

tween the Landau levels. We further analyze the properties stemming from our holographic

approach to a quantum Hall system. We find that at low temperatures the thermal and

electric conductivities are related through the Wiedemann-Franz law, so that every charge

conductance mode carries precisely one quantum of the heat conductance. From the com-

putation of the edge currents we learn that the naive holographic model is dual to a gapless

system if tensionless RS branes are used in the AdS/BCFT construction. To reconcile this

result with the expected quantum Hall behavior we conclude that gravity solutions with

tensionless RS branes must be unstable, calling for a search of more general solutions. We

briefly discuss the expected features of more realistic holographic setups.
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1 Introduction

In an elegant paper [1] Takayanagi has recently proposed an extension of the AdS/CFT

conjecture [2] to deal with the situation, when the CFT is defined on a space with a bound-

ary. These so called boundary CFT’s, or BCFT’s, naturally appear in various applications

to condensed matter phenomena. The main idea behind the Takayanagi’s construction is

to appropriately extend the boundary of the CFT inside the bulk of the AdS space in order

to cut out a physically relevant piece.

The AdS/BCFT conjecture finds its natural roots in the holographic derivation of

entanglement entropy [3] and in the Randall-Sundrum model [4]. Indeed, the extension of

the CFT’s boundary inside the bulk of the AdS-space may be regarded as a modification

of a “thin” Randall-Sundrum brane, intersecting the AdS boundary. For this brane to be

a dynamical object one must impose Neumann boundary conditions on the metric; then,

the discontinuity in the bulk extrinsic curvature across the “defect” will be compensated

by the brane’s tension. Thus, Neumann boundary conditions constitute the dynamical

principle defining the additional boundaries introduced by Takayanagi. In the following we

will often refer to these boundaries as to Randall-Sundrum (RS) branes.

From the point of view of the AdS/CFT applications it is interesting to see how the

addition of the boundaries affects physical behavior. In particular, it would be interest-

ing to construct a solution describing a physical system at finite temperature and charge

density. The most common playground is provided by the charged AdS4 black hole since

this background has been already shown to encode many interesting condensed-matter-like

phenomena such as superconductivity/superfluidity [5, 6] and strange metallic behavior [7].

Here, we shall analyze the charged AdS4 black hole in the presence of boundaries.

A model of gauge fields in the AdS4 background with boundary RS branes has been

already considered by Fujita, Kaminski and Karch in [8], who showed that the additional

boundary conditions impose relevant constraints on the gauge field parameters and that,

– 1 –



J
H
E
P
0
5
(
2
0
1
3
)
1
1
6

as a consequence of those constraints, there is the possibility of quantum-Hall-like behavior

of the conductivity in the dual field theory. However, their approach [8] does not account

for the backreaction of the gauge fields on the geometry, restricting to the geometry of the

empty AdS space. A natural generalization of their work would be to extend their analysis

to the case of a charged black hole. In this paper we make a first step in this direction.

The physical system analyzed in this paper is based on the model proposed by Fu-

jita et al. Indeed, we start from the same Lagrangian for an Einstein-Maxwell system

describing the gravity dual of a field theory on a half-plane. We find that, for the simple

plane-symmetric black hole ansatz, only tensionless RS branes are allowed and that the

background solution does not allow to model the situation with external electric fields as

in [8]. Furthermore, as a result of the Neumann boundary conditions for the gauge fields,

we find that the charge density ρ in the dual field theory must be supported by an external

magnetic field B. The ratio ρ/B, which is equal to the Hall conductivity, is a constant

inversely proportional to the sum of the coefficients of the topological terms present in

the gravity action: namely, a Θ-term in the bulk action and a Chern-Simons term in the

boundary action on the RS branes. In addition, we get zero longitudinal conductivity. All

these behaviors are expected for a quantum Hall system tuned to a quantized value of

the conductivity.

In the classical Hall effect ρ and B are independent quantities, e.g. their ratio is a

function of the density of conductance electrons ρ. In the quantum Hall Effect (QHE) the

transverse conductivity σH , exhibits plateaus independent of either ρ or B. The plateaus

are generally attributed to disorder [9], which is responsible for localization (i.e. existence

of localized electron states). The localized states fill the gaps between the Landau levels,

but do not participate in the Hall conductivity. In other words, even if one varies the

density of conductance electrons, so that the Fermi energy shifts in the gap between the

Landau levels, the conductivity does not change. For the same reason the longitudinal

components of the conductivity vanish.

An important aspect of the QHE is the quantization of the conductivity plateaus in

integer (integer QHE) or fractional (fractional QHE) numbers of flux quanta h2/e. The

mechanisms of the integer and fractional quantization are, however, different: while the

fractional quantization is due to the interaction between electrons [10], the integer QHE

(IQHE) exists even for a non-interacting electron gas with disorder and is a consequence

of gauge invariance [9]. In the widely accepted composite fermion model the fractional

QHE (FQHE) may be regarded as an IQHE for composite quasiparticles of fractional

charge [11, 12].

It is by now well understood that the FQHE is effectively described by Chern-Simons

gauge theories [13]. Furthermore, as explicitly seen in computations of the gauge effective

action of planar electrodynamics [15–18], the Hall relation ρ = σHB can be derived from the

Chern-Simons Lagrangian with σH being a constant inversely proportional to the Chern-

Simons level k. If, for some reason, k is constrained to take integer values (for details,

see [19–21]), the conductivity would be also quantized.

The general philosophy of the AdS/BCFT correspondence leads naturally to a general-

ization of the Chern-Simons description of the QHE. Indeed, the Neumann boundary condi-
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tion for the gauge fields, derived by Fujita et. al., turns out to be a covariant “holographic”

form of the Hall relation. Furthermore, in the AdS/BCFT formulation, the Chern-Simons

theory lives on the RS branes cutting the bulk of the AdS space and the holographic Hall

relation potentially leads to a more interesting dependence of σH on various topological

coefficients [8].

An interesting question is to ascertain whether and how models using the AdS/BCFT

correspondence may be made consistent with the physics underlying the integer or the

fractional QHE. Since the classical gravity limits of the holographic correspondence enable

to describe strongly coupled gauge theories one may naively expect that the AdS/BCFT

correspondence may provide us with an appropriate description of the FQHE. This naive

expectation is supported by the study in [7], which revealed a non-Fermi liquid behavior of

the charged AdS4 black hole. In addition, the gravity solution describes a “clean” system,

where disorder has still to be introduced. In this paper we provide a further analysis of

the physical consequences stemming from the AdS black hole solution with the aim of

elucidating its relationship with realistic quantum Hall systems.

One way to test how fractional is the QHE is to look at the behavior of the heat

conductivities. For a non-interacting electron gas the heat conductivity is related to the

electric conductivity through the Wiedemann-Franz law. For interacting electrons, i.e. for

the FQHE, the Wiedemann-Franz law is violated [22] and the ratio of the transverse heat

and electric conductivities becomes a non-trivial function of the filling fraction, which may

yield zero, or negative, heat conductivities. Our analysis of the low temperature behavior of

the transverse thermal conductivities shows that the AdS4 black hole is perfectly consistent

with the Wiedemann-Franz law. In particular, the O(T ) coefficient of the ratio, the Lorenz

number, is precisely π2/3; a well known result for non-interacting electrons.

Another characteristic feature of quantum Hall systems is the emergence of current-

carrying edge states, extending along the perimeter of the sample [23]. Their existence is

due to the fact that, at the edges, there is a confining potential, preventing the electrons

from leaving the sample and locally raising the energy of the Landau levels. As a result,

while the system remains gapped (incompressible) far from the edges, there is no gap

at the edges. The edge states may then be regarded as the massless modes arising at the

intersection of the Fermi energy with the filled Landau levels. Below, we show that the edge

currents do not appear for a black hole solution with tensionless RS branes. In addition,

we argue that there is an edge current whenever the tension of the RS branes is different

from zero. This observation is consistent with the fact that a non-vanishing tension should

represent a system with a geometry-induced gap in the “bulk” of the sample. Our analysis

hints to the fact that a black hole solution with tensionless RS branes may only describe a

marginal situation where the difference between the Fermi energy and the nearest Landau

level equals to the temperature, i.e. zero gap.

Although the behavior found for the conductivities and the absence of a gap seem to be

in contrast with our expectations for a quantum Hall system, we believe that this only hints

to the instability of the gravity solution with tensionless RS branes. We feel that a more

appropriate solution would be the one with non-vanishing tension of the RS branes; unfor-

tunately, an explicit form of such a solution is still lacking. We expect that this solution
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will modify the result for conductivities and may lead to a violation of the Wiedemann-

Franz law; a preliminary analysis indicates, indeed, that RS branes with tension enable to

describe situations where the electric conductivity is quantized and the tension is related

to the Fermi energy, rather than being an independent parameter. Alternatively, it is in-

teresting to understand how disorder may be introduced in a AdS/BCFT model describing

the IQHE.

There already exists an extensive literature on the application of holographic corre-

spondence to quantum Hall physics. Here we will take advantage of the computation of the

transport coefficients carried by Hartnoll and Kovtun for the dyonic AdS4 black hole [24]

and further elaborated in [25]. We also stress that the AdS/BCFT model analyzed in

this paper is reminiscent of some recent top-down stringy constructions [26–28]. For more

details we refer the reader to these papers.

The presentation of our results is organized as follows. In section 2 we review the

AdS/BCFT construction in the particular setup studied in [8]. In section 3 we investigate

the black hole solution constrained by the additional boundary conditions required by the

AdS/BCFT construction. Section 4 is devoted to the discussion of the electric and thermal

conductivities. The computation of the edge currents is the main topic of section 5. Finally,

in section 6, we provide a critical summary of our results.

2 Setup of the AdS/BCFT holographic model

We aim at studying a gravity dual of a 2 + 1-dimensional system with finite temperature

and charge density living on a space M with a boundary which, for the sake of simplicity,

will be taken in the following sections as a half plane or a strip.1 Since systems at finite

temperature and charge density may be dually described by charged black holes, we can

describe the bulk using the abelian Einstein-Maxwell action. Namely, one may start with

SN =
1

2κ

∫

N
d4x

√−g (R− 2Λ)− 1

4e2

∫

N
d4x

√−gFµνF
µν +

Θ

8π2

∫

N
F ∧ F . (2.1)

Following [1] we denote withN the bulk space, with g the determinant of the bulk metric gµν
and with Λ = −3/L2 the cosmological constant. In the following we set the gravitational

constant κ = 2L2 and the U(1) coupling e = 1; the only role of e will be then to define the

probe limit e → ∞, in which the backreaction of the matter fields on the gravity solution

can be ignored. Since the last term in the bulk action is topological, it does not affect the

equations of motion; however, it is relevant for the analysis of the boundary conditions.

The bulk equations of motion may then be rewritten as

Rµν −
R

2
gµν −

3

L2
gµν = κFµρFν

ρ − κ

4
gµνFρσF

ρσ , (2.2)

∇µFµν = 0 . (2.3)

1At zero temperature and charge density the Takayangi’s model on a half plane is conformally equivalent

to a setup of [29], describing a holographic dual of a gauge theory in anti-de Sitter space.
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The dual theory lives on a 2 + 1 dimensional space M with a boundary which, follow-

ing [30], we denote with P . For a proper definition of the holographic model it is natural

to require that this 1 + 1 dimensional boundary is extended to the bulk to make a 2 + 1

dimensional hypersurface Q [1], so that ∂N = Q ∪M and ∂Q = ∂M = P . According to

Takayanagi, for this hypersurface Q to be dynamical, one needs to introduce the following

boundary action on Q

SQ =
1

κ

∫

Q
d3x

√
−h (K − Σ) + SQ[matter] , (2.4)

where h is the determinant of the induced metric hab on the boundary Q and K is the

extrinsic curvature on Q. We denote by Σ the corresponding cosmological constant, which

may also be regarded as the tension of the brane Q. In the following we shall use T only to

account for the temperature of the dual field theory. As pointed out in the introduction,

the boundary Q plays a role analogous to the cutoff branes in the Randall-Sundrum model;

in the following, we shall refer to the additional boundaries required by the AdS/BCFT

construction as RS branes.

To have a well-defined variational principle on a space with boundaries one needs to

specify the boundary conditions. Variation of the bulk (2.1) plus boundary (2.4) action in

response to a variation of the metric yields the following boundary term

δ(SN + SQ)[δgµν ] =
1

2κ

∫

Q
d3x

√
−h (Kab − (K − Σ)hab) δh

ab − 1

2

∫

Q
d3x

√
−hTab δh

ab ,

(2.5)

where Tab is the boundary stress-energy tensor:

Tab = − 2√
−h

δ

δhab
SQ[matter] . (2.6)

For the variation to vanish one could impose a Dirichlet boundary condition on the metric

δhab = 0. However, if Q has to be determined dynamically, one should employ Neumann

boundary conditions. Namely, one should require that

Kab − (K − Σ)hab = Tab . (2.7)

As a result the shape of Q and the induced metric arise as a solution of dynamical equa-

tion (2.7), rather than as an explicit boundary condition.2

To study quantum Hall systems we chose the boundary matter action as in [8]:

SQ[matter] =
k

4π

∫

Q
A ∧ F . (2.8)

Notice that, for this choice of the action, Tab = 0 and, as in equation (2.5), the variation

of the gauge fields induces a boundary term

δ(SN + SQ)[δAµ] = 2

∫

Q

(

1

2
∗ F +

(

Θ

8π2
+

k

4π

)

F

)

∧ δA ; (2.9)

2This is also a natural boundary condition from the point of view of the string theory orientifold con-

struction considered in [31].
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the Neumann boundary conditions then imply that

c1 ∗ F + c2 F
∣

∣

Q
= 0 , (2.10)

where, for simplicity, we have set3

c1 =
1

2
, c2 =

Θ

8π2
+

k

4π
. (2.11)

In the next section we shall analyze the solutions to the equations of motion (2.2)

and (2.3) constrained by the Neumann boundary conditions (2.7) and (2.10). Here, we

would like to complete the analysis of the gravity action needed by the AdS/BCFT con-

struction. Namely, the variation of the action gets contributions also from the boundary

M where, in accordance with the general lore of the AdS/CFT correspondence, one must

impose Dirichlet boundary conditions. Following the standard procedure [32] we introduce

the following counter terms to render the action finite,

SM =
1

κ

∫

M
d3x

√−γ

(

K − 1

L

)

. (2.12)

Here γ is the determinant of the induced metric on M , which is fixed by the Dirichlet

boundary conditions to be the Minkowski metric z2γµν |z→0 = ηµν of the dual gauge theory.

Finally, one needs to introduce additional boundary terms at the boundary P :

SP =
1

κ

∫

P
d2x

√
−σ(π − θ)− k

4π

∫

P
d2xAtAx . (2.13)

The first term was already introduced in [30]. It accounts for the singularity of the boundary

P . Indeed in (2.5) we omitted a term, which is a total derivative on Q, and thus lives only

on the boundary P . A similar term comes from the variation of the counter terms (2.12)

on M . In equation (2.13) π− θ (0 ≤ θ ≤ π) is the angle between the two outward pointing

unit normal vectors nM and nQ at the boundary P (e.g. [33]). When θ = π the two normal

vectors coincide and the boundary becomes smooth. The second term in (2.13) is required

by gauge invariance. To ensure that the Chern-Simons action on Q is gauge invariant we

choose the gauge condition as ∂tAx = 0. With this choice the boundary term protects the

residual gauge transformations. Notice that, in (2.13), x and t are generic (i.e. not yet

specified) coordinates parameterizing P .

Collecting all the pieces together the total action proposed to describe the AdS/BCFT

holographic model of a quantum Hall system is given by

S = SN + SQ + SM + SP . (2.14)

3In the following we will set the value of the θ-angle Θ to zero. Although it seems to merely renormalize

the Chern-Simons coefficient, it may give an independent contribution to the transport coefficients, as can

be seen from [8].
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Figure 1. (a) AdS/BCFT geometry of the half-plane M . N denotes the part of the bulk space

bounded by M , horizon of the black hole at zh and RS brane Q. (b) Dyonic black hole solution

(θ = π/2).

3 The model of a half-plane with a finite charge density

In this section we describe a solution to the equations (2.2) and (2.3), satisfying the ad-

ditional boundary conditions imposed by the AdS/BCFT construction. For simplicity, we

take the 2 + 1-dimensional manifold M to be half of an infinite plane; our subsequent

analysis may, however, be readily generalized to include the case of an infinite strip. We

make the following simple black hole ansatz for the metric

ds2 =
L2

z2

(

−f(z) dt2 + dx2 + dy2 +
dz2

f(z)

)

, (3.1)

and for the gauge fields

At = µ− ρz , Ax = −By + cz , Ay,z = 0 . (3.2)

Here x, y and t are coordinates on M such that y < 0 (see figure 1).

A general solution to the equations (2.2)–(2.3) with the ansatz (3.1)–(3.2) is given by

c = 0, f(z) = 1 + (ρ2 +B2)z4 − C z3 , (3.3)

where C is an integration constant related to the mass of the black hole. The other

parameters of the solution have the following interpretation in terms of the dual theory:

µ is the chemical potential, ρ is the charge density and B is the external magnetic field,

normal to the plane M . The largest of the positive roots zh of the function f(z) — the so

called blackening factor — determines the horizon of the black hole.

It is sometimes convenient to switch from a description in terms of the mass of the

black hole to a description in terms of zh. Upon defining

Q2 = (ρ2 +B2)z4h , (3.4)
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f(z) takes the form

f(z) = 1− (1 +Q2)

(

z

zh

)3

+Q2

(

z

zh

)4

, (3.5)

where both Q and zh are now functions of the mass and the charge of the black hole. In

terms of Q and zh the black hole temperature reads

T =
3−Q2

4πzh
. (3.6)

To have a finite energy density in the dual theory one must require that At(zh) = 0;

as a result, ρ and µ are related as:

µ = ρ zh . (3.7)

The thermodynamics of this black hole was already discussed in [24] and [25]. One can

describe the dual system by four thermodynamic variables: volume, temperature T (or

entropy S), charge density ρ and magnetic field B. The entropy density is given by

s =
π

z2h
. (3.8)

From [24] the energy density ε in the dual system may be written as a function of ρ, B

and the entropy density s as

ε(s, ρ) =
1

2

( s

π

)3/2
(

1 +
π2ρ2

s2
+

4π2B2

s2

)

. (3.9)

In the AdS/BCFT correspondence the parameters ρ, s and B will not be independent

due to the boundary conditions at the RS brane Q. Let us start with the boundary

condition (2.7). We assume that Q is parameterized by the equation y = y(z) and, to find

the extrinsic curvature, we define an outward unit vector normal to Q

(nt, nx, ny, nz) =

(

0, 0,
z

L
√

1 + f(z)y′(z)2
,− zf(z)y′(z)

L
√

1 + f(z)y′(z)2

)

; (3.10)

then, the pullback of equation (2.7) to N reads:

Kµν − (K − Σ)hµν = 0 , (3.11)

where the extrinsic curvature is given by

K = gµνKµν , Kµν = hµ
ρhν

σ∇ρnσ , (3.12)

and hµ
ν is the projector onto Q:

hµ
ν = δµ

ν − nµn
ν . (3.13)

The simplest path to solve equation (3.11) is to set ρ = B = C = 0; this enables to

recover the result of [1]. The metric is pure AdS4 and Q is given by the solution to

y′(z) =
LΣ√

4− L2Σ2
. (3.14)
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Setting LΣ = −2 cos θ one gets

y = −z cot θ , (3.15)

i.e. Q can be described as a plane intersecting the boundary M at an angle θ, as shown in

figure 1(a).

More generally, the only possibility to get an RS brane with non-zero tension from (3.1)

is to set f ′(z) = 0; this means that no black hole with finite tension of Q can be constructed

from our simple ansatz for the black hole. For Σ = 0, however, a black hole (3.3) solution

is allowed. In the latter case the RS brane Q is just perpendicular to the boundary M

(figure 1(b)):

Q : y = const , θ =
π

2
. (3.16)

The existence of non-trivial gravity solutions with non-zero tension of the RS branes was

recently addressed in [30]. It was shown that such solutions do exist; it is very interesting,

indeed, to ascertain whether such solutions may be adapted to describe charged black holes.

Let us now turn to the discussion of the restrictions imposed by the boundary condi-

tion (2.10) for the gauge fields. Although we already know that, in our simple setup, the

background gauge fields are only allowed for zero tension, it will be instructive to keep the

discussion more general using (3.15) and setting θ = π/2 only at the end of our derivation.

In component notation, the Neumann boundary condition (2.10) may be written as

c1
2

√
g ǫµνρσF

ρσ + c2 Fµν

∣

∣

∣

Q
= 0 . (3.17)

To restrict the bulk equation on Q one may project it on a 3-form orthogonal to the normal

vector nµ so that

−c1
√
g nνF

νµ +
c2
2
nνǫ

νµρσFρσ = 0 . (3.18)

Equation (3.18) then leads to

0 = c1ρ cos θ − c2(c sin θ +B cos θ) ,

0 = c1(B sin θ − c cos θ) + c2ρ sin θ .
(3.19)

For c = 0 and tensionless Q, θ = π/2, one gets

ρ

B
= − c1

c2
. (3.20)

We see that the density and the magnetic field are no longer two independent parameters.

Since their ratio is just the Hall conductivity this is very reminiscent of the quantum Hall

effect, where this ratio is independent of both ρ and B and is inversely proportional to the

topological coefficients. Notice however that the θ dependence of equation (3.19) shows

that, in the limit of maximal tension of the RS brane, (θ = 0), the ratio ρ/B becomes

proportional to c2/c1.

These results are particular cases of a more general one obtained by Fujita et al. But

unlike in [8], here we consider a full backreacted black hole solution, which further reduces

the freedom in the choice of the parameters. In particular, the black hole ansatz (3.1) does
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not allow to include additional background fields such as the electric field Ey in [8]. Thus,

it would be interesting to look for generalizations of the simple gravity solution analyzed

in this paper.

Equations (3.19) are invariant under the shift θ → π + θ, which makes explicit the

invariance of (3.18) under the change of sign of nµ. As a result, the same solution may

live on an infinite strip of finite width −l < y < 0. In fact, since the background fields

(the charge density and the magnetic field) do not depend on the spatial coordinates, i.e.

they do not fall off at infinity, one must worry about boundary conditions at the boundary

l → ∞ even when dealing with a model living on the half-infinite plane. For an infinite

plane one can always assume periodicity. Thus, M is always topologically equivalent to a

compact space; as a result it is more appropriate to picture the spatial part of M as being

a closed strip rather than an infinite plane.

4 Electric and thermal conductivities

To further test the AdS/BCFT construction against the behavior of a realistic quantum Hall

system we compute, in this section, the transport properties emerging from the AdS/BCFT

construction: for this purpose, one has to analyze the linear response of the system to a

small perturbation of the external sources. In particular, one has to compute the electric

and heat conductivities as a response to a small applied electric field or to a temperature

gradient. One cannot consider the two kinds of conductivities separately, since the dual

fluctuations of the gravity fields couple them to each other.

The transport properties of the dyonic black hole were originally studied in [24]. In

our AdS/BCFT model the action used in [24] is modified by various boundary terms

and one can, in principle, expect that the boundary terms may lead to a modification of

previously known holographic results for conductivities. In the following we shall show

that, for a gravity solution with tensionless RS branes, the Kubo formulae for electrical

and thermal conductivities do not get contributions from these additional boundary terms.

The derivation goes as follows.

The transport coefficients are encoded in the 2-point correlation functions. The holo-

graphic prescription [34–37] relates the 2-point functions to the second derivatives of the

total renormalized on-shell action (2.14) with respect to the sources — the z → 0 asymp-

totic values of the gravity fields. Since, in the linear response theory, only linearized

equations are relevant one should consider only the quadratic part of the action. To com-

pute the charge transport one has, then, to turn on small electric fields δAx and δAy on

the boundary and derive the linearized equations for the corresponding fluctuations of the

bulk gauge fields; at finite temperature, the electric currents will be accompanied by the

heat currents and one needs to turn on the bulk fluctuations of the metric as well:

δAx,y = Ax,y(z)e
−iωt , δgtx,ty = gtx,ty(z)e

−iωt . (4.1)

The linearization of the system of equations (2.2)–(2.3) with respect to the fluctuations

over the black hole solution may be reduced to the following pair of complex equations
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written in terms of complex fluctuations A = Ax + iAy and G = gtx + igty:

A′′ +
f ′

f
A′ +

ω2

f2
A− ρz2

fL2
G′ − 2

ρz

fL2
G+ ω

Bz2

f2L2
G = 0 , (4.2)

ω

(

G′ +
2

z
G− 4L2ρA

)

− 4z2ρBG+ 4L2BfA′ = 0 , (4.3)

where f is the blackening factor given in equation (3.3). The general solutions for the

metric and the gauge field fluctuations in the background (3.1)–(3.3) take the following

asymptotic form at the boundary z → 0. Namely, one has that

δgtj =
g
(0)
tj

z2
+ g

(1)
tj z +O(z2) , (4.4)

δAj = A
(0)
j +A

(1)
j z +O(z2) . (4.5)

Holography then prescribes to identify the coefficients of the leading terms with the sources

in the dual field theory, that is with the electric field and the temperature gradient,

A
(0)
j = −Ej

iω
, g

(0)
tj = −∇jT

iωT
, (4.6)

while the subleading coefficients should be proportional to the expectation values of the

dual operators, i.e. to the charge and to the momentum density currents Ji and Tti, re-

spectively. Notice that the second derivative of the metric fluctuation is absent from the

equations (4.2), (4.3). Therefore, g
(1)
tj may be written in terms of A

(1)
j and the sources as:

g
(1)
tj = − 4L2B

3ω
A

(1)
j +

4Bρ

3ω
g
(0)
tj +

4

3
ρL2A

(0)
j . (4.7)

Computing the on-shell quadratic action yields

S
(2)
o/s =

∫

dx dy dt

[

3

8L4
g
(0)
tj g

(1)
tj −

(

1 +Q2
)

4z3HL4
g
(0)
tj g

(0)
tj − ρ

2L2
g
(0)
tj A

(0)
j +

1

2
A

(0)
j A

(1)
j

]

=

∫

dx dy dt

[

− B

2ωL2
g
(0)
tj A

(1)
j −

(

1 +Q2
)

ω − 2z3hBρ

4ωz3hL
4

g
(0)
tj g

(0)
tj +

1

2
A

(0)
j A

(1)
j

]

. (4.8)

The boundary terms in the action (2.14) do not give any finite contribution to equation (4.8)

for the gravity solution with tensionless RS branes. (Yet one can easily convince himself

that there is an extra contribution, when the tension is non-zero.) As a result the quadratic

action is the same as the one considered by Hartnoll and Kovtun [24], who computed the

retarded Green’s functions needed for the evaluation of Ji and Tti and derived the electric

conductivity. The thermal conductivity was later derived by Hartnoll et al. in [25]. In the

following we simply adapt their results to our AdS/BCFT model.

The electric conductivity is found from the retarded Green’s function GR
JjJk

(ω) of 2

electric currents, through the Kubo formula

σjk = − lim
ω→0

ImGR
JjJk

(ω)

ω
. (4.9)
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From [24] one then finds

σxx = σyy = 0 , σxy = −σyx =
ρ

B
= − c1

c2
. (4.10)

That is, the Hall conductivity is inversely proportional to the sum of the coefficients in

front of the topological terms appearing in the AdS/BCFT gravity action.

The computation of the thermal conductivity must be done with a greater care. As

we learn from [38], in the presence of a magnetic field, the Kubo formula must be modified

in order to subtract the “magnetization currents”. The modified Kubo formula reads

αjk = − 1

T
lim
ω→0

ImGR
JjQk

(ω)

ω
+

M
T

ǫjk , for thermo-electric conductivity,

κjk = − 1

T
lim
ω→0

ImGR
QjQk

(ω)

ω
+ 2

(ME −M)

T
ǫjk , for heat conductivity, (4.11)

where GR
JjQk

(ω) and GR
QjQk

(ω) are retarded Green’s functions of the electric and heat

Qj = Ttj − µJj currents. The magnetization density M and energy magnetization density

ME were computed in [25] as:

M = −Bzh , ME =
µM
2

. (4.12)

A low temperature expansion of the result obtained in [25] for αjk and κjk yields the

thermoelectric conductivity

αxx = αyy = 0 , αxy = −αyx =
s

B
=

π√
3

√

1 + σ2
H +O(T ) , (4.13)

where we used σH = σxy = ρ/B. For the longitudinal thermal conductivity one gets

κxx = κyy =
s2T

ρ2 +B2
=

π2

3
T +O(T 2) . (4.14)

As expected, the conductivity is linear with temperature. The transverse conductivity

behaves as

κxy = −κyx =
ρs2T

B(ρ2 +B2)
=

π2

3
σHT +O(T 2) . (4.15)

The last equation shows that the Wiedemann-Franz law is satisfied for the transverse

conductivities. In fact,

κH
σH

= LT , L =
π2

3

(

kB
e

)2

. (4.16)

Remarkably, at low temperature, the AdS4 black hole yields for the Lorenz number L
the well known result valid for non-interacting electrons. It would be interesting to see

whether this has anything to do with the AdS2×R2 near-horizon structure of the extremal

AdS4 black hole; indeed, the latter feature is believed to underly the non-Fermi-liquid-like

behavior found in [39].
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5 Edge modes and geometric gap

A quantum Hall system is characterized by the presence of edge currents [23]. In this

section we determine the conditions under which the existence of edge currents may be

accounted for by the AdS/BCFT construction analyzed in this paper. Our analysis shows

that no edge current can emerge from geometries with tensionless RS branes since they

may be associated only to a system with no gap in the bulk. We then argue that, for

geometries with tensionful RS branes, one may induce a gap in the bulk of the sample by

relating the brane tension to the Fermi energy and to the scale of the closest approach of

the brane Q to the horizon; in this setting edge currents may emerge.

To see how edge currents may be accounted for in the AdS/BCFT construction devel-

oped in the previous sections we look at the gauge part of the action on the RS brane Q:

Sk =
k

4π

∫

Q
A ∧ F − k

4π

∫

P
d2xAxAt . (5.1)

The x component of the current density can be found as the variation of the on-shell action

with respect to the asymptotic value of the gauge field component Ax,

Jx(xi) =
δSk

δAx(xi)
. (5.2)

On shell, the action Sk becomes

Sk =
k

2π

∫

Q
d3xAx∂yAt −

k

2π

∫

P
d2xAxAt . (5.3)

Choosing the background geometry (3.15) with non-zero tension (Σ 6= 0) of the RS brane

yields for the current the following expression:

Jx(xi) =
k

2π
∂yAt

∣

∣

∣

∣

Q

Θ(y + zh cot θ)−
k

2π
At

∣

∣

∣

∣

P

δ(y) = − k

2π
µ

(

δ(y)− Θ(y + zh cot θ)

zh cot θ

)

.

(5.4)

Here Θ(y) is the step function with the support y ∈ [−zh cot θ, 0]. Its appearance is not

surprising since one may expect that the RS brane will be cut by the horizon of the black

hole as it happens for the geometry with zero tension of the RS brane analyzed in the

previous sections. In the above derivation we have also used the relation between the

charge density and the chemical potential.4

Let us now analyze the dependence of the current on θ or, equivalently, on the tension

Σ. Although we did not find a charged black hole solution with non-zero tension, we can

address its expected features in the probe limit e → ∞ in (2.1), in which the backreaction

of the gauge field on the metric can be neglected. When LΣ → −2, the RS brane may be

regarded as an IR cutoff, just as the original RS branes (figure 2(c)). In this limit θ → 0

and the last term in (5.4) vanishes; it is safe, then, to associate the cutoff scale with a

geometry-induced gap in the dual Hall system. In a realistic quantum Hall system the gap

is the difference between the Fermi energy and the energy of the closest upper Landau level

4The same current will flow on the other boundary y = −ℓ albeit in the opposite direction.
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z

y

N
Q

zh

z

yθ

N

Qzh

(a) (b)

z

y

N

Q

zh

zQ

z

y

N

Qzh

zQ

(c) (d)

Figure 2. AdS/BCFT geometry in the case of zero, (θ = π/2) (a), finite negative, 0 < θ < π/2

(b) and minimal tension, θ = 0 (c). (b) and (c) can be interpreted as a position dependent and

constant gap in the dual theory respectively. More realistic configurations are expected to have

shape (d).

— i.e. just the amount of energy needed to excite a charge current. Due to the potential

barrier confining the electrons to the interior of the sample the Landau levels shift in the

vicinity of the edge and the Fermi energy level is crossed by the lower Landau levels. “Edge

modes” at the intersection carry then the edge current along the perimeter of the system.

The edge current is given as

σH = e
∂J

∂µ
, (5.5)

which is consistent with our previous results if one sets

σH =
ρ

B
=

c2
c1

. (5.6)

Indeed this is the solution to equations (3.19) with θ = 0. Our conventions for c1 and c2
yield the proper quantization of the filling fraction.

When θ = π/2, i.e. for the gravity solution with zero tension of the RS brane analyzed

in this paper (figure 2(a)), there is no geometric gap in the “bulk” of the conductor, but
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rather an infinite gap at the edges; of course, the edge current is zero in this situation.

When 0 < θ < π/2, the gap is position dependent and the total edge current diffuses over

a characteristic region ∆y = zh cot θ (figure 2(b)) set by the cutoff scale zh.

The absence of edge currents when the RS brane is tensionless indicates that the

AdS/BCFT black hole solution analyzed in this paper does not give a full description of a

realistic quantum Hall system since there is no scale in the geometric description that can

be associated with the energy gap needed to describe the bulk of a quantum Hall system.

However, even when the RS brane is tensionless, the Hall conductivity still exhibits a

plateau. The “unphysical” behavior the AdS/BCFT model with tensionless RS brane is

likely to indicate its instability. Indeed a more general profile of the RS brane should have

the shape illustrated by figure 2(d). It would be interesting to find such tensionful solutions

and analyze their stability.

Since the configuration that we consider breaks the translational invariance in the

y-direction it seems natural to look for the solutions for the RS-brane profile and the

background metric that are y-dependent. An instability, which drives the system into a

y-modulated configuration was observed in the top-down D3-D7 brane construction used to

model the quantum Hall Effect [40]. Since our model is a bottom-up analog of the D-brane

construction it is natural to expect that a similar instability is inherent here. The stable

phases are yet unknown in both the top-down and bottom-up approaches, but the general

expectation is that it is a “striped” phase, which has stripes of different filling fraction

extending along the edges [41–43].

For the stable solutions, e.g. of the type depicted on figure 2(d), we expect that the

tension is not a free parameter, but is dynamically related to the Fermi energy and to the

scale zQ (position of the closest approach of the brane Q to the horizon). The variation

of the chemical potential will then correspond to the variation of zQ, with zQ → zh as µ

increases. At some value of the chemical potential one should have zQ = zh and the gap

will close. In this respect the solution in figure 2(a) looks like a metastable branch of the

profile in figure 2(d) for zQ > zh.

Since the “bulk” of the sample in the configuration depicted in figure 2(d) is gapped

just as it happens for the background geometry (3.15) with non-zero tension (Σ 6= 0) of the

RS brane, we expect to observe currents at the edges. It would be interesting to further

understand the edge effects in such a configuration. Naively, one should expect that the

conductivity is a function of θ near the edges, varying between the θ = 0 value (∝ k)

and θ = π/2 value (∝ 1/k). One can think of this as a naive realization of the stripes of

different conductivity.

Transport at the edges may exhibit other very interesting phenomena. In particular,

the existence of “upstream” modes was conjectured in [44–48]; these modes should carry

charge in the direction opposite to the classical skipping orbits typical of electrons in a

magnetic field. Although no charge-carrying upstream modes has been detected experi-

mentally, the heat transport in the upstream direction has been already observed [49]. This

effect leads to a violation of the Wiedemann-Franz law (4.16). The violation is a result of

the electron interaction: in a state with a fractional value of the filling fraction ν (FQHE)
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the modified Wiedemann-Franz law can be written as

κH
σH

= νQLT , (5.7)

where νQ is a function of ν, which equals unity on integer values. For fractional values of ν

the function νQ(ν) 6= 1 and may vanish or become negative [22]. In the previous section we

obtained νQ = 1 for a background geometry with zero tension of the RS brane; this points

to the fact that this geometry may enable to describe a non-interacting system (IQHE)

once disorder is included in the AdS/BCFT construction. Nevertheless, since we expect

that solutions with non-vanishing tension of the RS brane will modify the computations of

the conductivities (in the most naive form we can expect that the ratio in (4.16) will be

θ-dependent,) our AdS/BCFT approach may yield other solutions violating the Wiedmann-

Franz law.

6 Summary and concluding remarks

We analyzed an AdS/BCFT model of a condensed matter system at finite temperature

and charge density living on a 2+1-dimensional space with a boundary. It turns out that a

straightforward generalization of a known AdS/CFT solution, such as the plane-symmetric

charged AdS4 black hole, only allows for tensionless RS branes in the AdS/BCFT con-

struction and requires that the static uniform charge density is supported by a magnetic

field. Specifically, we found that ρ/B is a constant proportional to a ratio of the coefficients

appearing in the gravity action. Such a property indicates that a pertinent generalization

of the AdS4 black hole may describe a quantum Hall system at a plateau of the trans-

verse conductivity.

We provided further tests of the AdS/BCFT holographic model to see how accu-

rately it can account for the physical behaviors expected in a quantum Hall system. The

AdS/BCFT construction yields that the Hall conductivity is inversely proportional to a sum

of the coefficients of the topological terms appearing in the gravity Lagrangian. Namely,

we got that

σH =
ρ

B
= −c1

c2
, where c2 =

k

4π
+

Θ

8π2
. (6.1)

Here k is the level of the Chern-Simons term on the boundary and Θ is the bulk θ-angle. In

the QHE the conductivity is related to the number of filled Landau levels (filling fraction) by

ν =
h

e2
σH = −2π

c1
c2

, (6.2)

where e2/h is the magnetic flux quantum. Thus, the holographic description seems to

provide results similar to the Chern-Simons description of the QHE.

As in the Chern-Simons description [13, 15–18], in the AdS/BCFT model the filling

is inversely proportional to the level of the Chern-Simons theory. Indeed equation (2.10)

comes from the variation of the Chern-Simons Lagrangian, which lives on the RS brane

Q. It can be seen as an extension of the covariant form of the Hall relation ρ = σHB.

However, in the holographic AdS/BCFT model, the conductivity receives a contribution
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also from the bulk θ-term, resulting in a renormalization of the Chern-Simons coefficient

and conductivity.

In the QHE, the filling fraction is quantized. It may take either integer (IQHE) or

special fractional (FQHE) values. From the point of view of the Chern-Simons description,

quantization of the filling fraction signifies quantization of the Chern-Simons coefficient.

Unlike the non-abelian case, there is no a priori quantization of the abelian Chern-Simons

coefficient. Nevertheless, in some cases, like compact manifolds, or finite temperature, it

can be argued to take integer or rational values, e.g. see [19–21]. As pointed out in section 3

the boundary conditions effectively make the manifold M topologically equivalent to a

compact one. Thus, the AdS/BCFT holographic model rather easily yields the integer

quantization of the Chern-Simons level k which, in turn, leads to fractional values of the

filling fraction and conductivity in the appropriate units.

The computation of the electrical and thermal conductivities in the AdS/BCFT model

with tensionless RS branes goes along the same lines as in [25]. Equipped with the result

of [25] we observed here that, at low temperatures, the coefficient of the leading O(T )

term yields precisely one quantum of the transverse heat conductance per quantum of the

transverse electric conductance. That is the conductances satisfy the Wiedemann-Franz

law for a non-interacting electron gas (4.16).

Quantum Hall systems also exhibit currents running along the edges of the sample. ln

section 5 we derived an expression for the edge current, which is consistent with conven-

tional wisdom: namely, the current is proportional to the chemical potential and to the

conductivity, while its existence is associated to the existence of a gap in the “bulk” of the

sample. Since the charged black hole solution with a tensionless RS brane analyzed in this

paper cannot describe a gapped system, we find no edge current. We conclude that such

a black hole does not describe completely a realistic quantum Hall system; we conjecture

indeed that such black hole is much likely to be an unstable solution of the AdS/BCFT

holographic model. The necessary analysis of the stability will be performed elsewhere [50].

Our analysis points to the fact that, from a charged black hole with tensionless RS

brane, it cannot emerge a complete picture of a quantum Hall system. To find a more realis-

tic AdS/BCFT description of the QHE one needs to construct solutions with non-vanishing

tension of the RS brane. Such solutions should enable us to describe the configurations

shown in figure 2(d). We expect that the new solutions should have the following proper-

ties: namely, we expect that the dual system exhibits a gap in the “bulk”, an edge current

running along its perimeter and that the tension of the RS branes should be somewhat

related to the Fermi energy of the dual system. As a result the conductivities will be

modified; in particular, the transverse electric conductivity in the “bulk” and near the

edges may differ, the ratio of the transverse heat and electric conductivities may satisfy a

Wiedemann-Franz law (5.7) modified by the interaction of the charge carriers.
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