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1 Introduction

The finite temperature behavior of non-abelian gauge theories has been of interests to physi-

cists over the years (see [1–12] and references therein). Of particular interest is the behavior

at strong coupling where we have a powerful tool in the AdS/CFT correspondence [13–16].

This correspondence has been used in various areas ranging from Relativistic Heavy Ion

Collider (RHIC) to condensed matter physics. The study of non-local observables (e.g.

two-point function, Wilson loop, entanglement entropy) at finite temperature for strongly

coupled gauge theories using the AdS/CFT correspondence is an interesting problem in its

own right. One of the questions we focused on, is the regions in the bulk that contribute

most significantly to these observables of the ‘boundary’ gauge theory in the different limits.

This led us to construct analytic expansions both at high and low temperature.

In this paper, we will mainly consider strongly coupled large-N gauge theories in d-

dimensions that are dual to AdSd+1. As mentioned above, our goal is to understand

analytically the behavior of non-local observables like equal time two-point function, spatial

Wilson loop and entanglement entropy in the low and high temperature limits. We will

henceforth develop a systematic expansion using the AdS/CFT dictionary. All of these

observables of the boundary gauge theory, associated to a region A can be computed by

calculating the area of the bulk extremal surface anchored on the boundary of A (for the

two-point function the relevant quantity is the geodesic, for what follows we will use the

label ‘extremal surface’ for the sake of simplicity). As a consequence of conformal invariance

the dimensionless parameter of interest is T l, when we are computing some observable with

length scale l at temperature T .

We develop separate expansion techniques at low and high temperature. At low tem-

perature, i.e. T ≪ 1/l, the extremal surface is restricted to be near the boundary region

and thus the leading contribution to the area comes from the AdS-boundary. This contri-

bution is just the zero temperature result which has been thoroughly investigated and well

understood in the literature. Finite temperature corrections correspond to the deviation

of the bulk geometry from pure AdS. At low temperature, these corrections are small and

can be computed perturbatively. On the other hand, at high temperature, i.e. T ≫ 1/l, the

physics is completely different and more interesting. As the thermal fluctuations become

more and more significant, the extremal surface associated with the observable approaches

the horizon.1 At high temperature, the extremal surface tends to wrap a part of the horizon

and the leading contribution comes from the near horizon region of the surface. This has

following consequences: 1) the equal time two-point function decays exponentially; 2) the

leading contribution to the entanglement entropy (spatial Wilson loop) is proportional to

the volume (area) of the associated region. The sub-leading terms are more complicated

because they receive contributions from full bulk geometry. The sub-leading terms in var-

ious observables, in particular the entanglement entropy, may possibly contain important

information about these gauge theories.

1As recently discussed in [21], extremal surfaces of any dimensionality and anchored on arbitrary shaped

region on the boundary at constant time can not penetrate the horizon in any static spherically sym-

metric space times. At high temperature, we will show that the extremal surface approaches the horizon

exponentially fast but it always stays finite distance above the horizon.
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Fascinating question arises when one considers the high temperature regime of the

field theory. At weak coupling, it is known that the high temperature behavior of the

gauge invariant correlation functions (e.g. 〈trF 2
µν(l)trF

2
µν(0)〉, spatial Wilson loop) is given

by classical statistical mechanics [1], this obviously does not apply to thermodynamic

quantities like the specific heat. Indeed, one expects on the gauge theory side, that the

leading contributions to the gauge invariant correlation functions with dependence on one

length scale l come from modes with wavelength ∼ l. As the system is heated the modes

with wavelength ∼ l become more and more populated. Therefore, equal time two-point

functions and the spatial Wilson loops should behave classically at high temperature (T ≫
1/l). It is tempting to speculate that at strong coupling an analogous statement can be

made. This raises a puzzling question. On the one hand, the high temperature behavior

is given by the near horizon geometry and on the other hand we have speculated that it

is given by classical statistical mechanics. Can we then conclude that the near horizon

contribution corresponds to classical statistical mechanics on the boundary?

In contrast, we found that it is easier to understand the high temperature behavior

of entanglement entropy, which is a fully quantum mechanical concept and does not have

a classical analog. At high temperature (T ≫ 1/l), the leading finite contribution to the

entanglement entropy comes from the near horizon region and it is just the thermal en-

tropy. Whereas, contributions arising from deviations away from the near horizon region

are responsible for the sub-leading terms, which actually measure quantum entanglement

between the region and its surroundings. This connection between the near horizon region

of the bulk and no quantum entanglement in the boundary theory is possibly a manifesta-

tion of UV/IR duality [17].

The rest of the paper is organized as follows. We start with a brief review of how

the temperature of the boundary gauge theory is related to the horizon of the bulk theory

in section 2. In section 3, we develop a systematic expansion for the equal time two-

point function at finite temperature. Then using that expansion we examine the high

and low temperature behavior of the two-point function. In section 4 and 5, we go on to

develop similar systematic expansions for rectangular spatial Wilson loop and entanglement

entropy of a rectangular strip respectively at finite temperature. Consequently, we obtain

analytic expressions for the spatial Wilson loop and the entanglement entropy at high

and low temperature limits. In section 6 we will generalize these techniques for non-

relativistic theories with hyperscaling violation and show that the physics is exactly the

same. Finally, we summarize all the results in section 7 by considering the prototype case

of four-dimensional N = 4 Super Yang-Mills gauge theory. Then we conclude in section 8

with future directions. Several technical details have been relegated to two appendices.

2 Gauge theories at finite temperature: Schwarzschild-AdSd+1

In this paper, we will mainly consider strongly coupled large-N gauge theories in d−dimen-

sions that are dual to AdSd+1. At nonzero temperature, all the thermal effects can be ana-

lyzed simply by introducing a black hole in the bulk. In other words, at finite temperature
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AdSd+1 should be replaced by Schwarzschild-AdSd+1

ds2 = − r2

R2

(

1− rdH
rd

)

dt2 +
r2

R2
d~x2 +

R2

r2
(

1− rdH
rd

)dr2, (2.1)

where, R is the AdS radius. The temperature T is given by the Hawking temperature of

the black hole which can be determined by demanding that the Euclidean continuation of

the metric (2.1)

ds2 =
r2

R2

(

1− rdH
rd

)

dt2E +
r2

R2
d~x2 +

R2

r2
(

1− rdH
rd

)dr2, (2.2)

is regular at the horizon. Near the horizon r = rH , the Euclidean metric looks like

ds2near horizon = ρ2dφ2 + dρ2 +
r2H
R2

d~x2, (2.3)

where ρ and φ are defined as

ρ = 2

√

R2(r − rH)

rHd
, φ =

rHd

2R2
tE . (2.4)

Now φ must be periodic with period 2π in order to avoid a conical singularity at ρ = 0

(i.e. r = rH). From equation (2.4) it is clear that Euclidean time tE is also periodic and

the period can be identified with 1/T . Therefore, the temperature of the d-dimensional

boundary field theory (after restoring ~) is given by,

T =
~ rHd

4πR2
. (2.5)

3 Two-point function

We will compute the equal time two-point function of some gauge-invariant scalar operator

O(t, x) in the limit N ≫ 1, λ ≡ g2YMN ≫ 1. According to the AdS/CFT correspondence,

in this limit, the calculation of two-point function [14, 15] of gauge-invariant operator

O(t, x) simply reduces to solving classical equation of motion for some bulk field that

couples to O(t, x). This prescription has been successfully generalized [18, 19] for the finite

temperature case (for a nice review see [20]).

For our purpose it is more convenient to use the alternate prescription proposed in [22].

Following [23] the equal-time two-point function 〈O(t, x)O(t, y)〉 can be represented as a

path integral that sums over all the paths that join the boundary points (t, x) and (t, y)

〈O(t, x)O(t, y)〉 =
∫

DPe−∆L(P), (3.1)

where L(P) is the proper length of the path and ∆ is the conformal dimension of the

operator O. For operators with large conformal dimension, we can perform a saddle point

– 4 –



J
H
E
P
0
5
(
2
0
1
3
)
0
9
8

approximation2

〈O(t, x)O(t, y)〉 ≈
∑

geodesics

e−∆L, (3.2)

where L is the geodesic length of the geodesic between boundary points (t, x) and (t, y).

The geodesic length L has a divergence that comes from the boundary. This divergence can

be removed by introducing a cutoff rb and then defining renormalized geodesic length by

Lren = L − 2 ln rb. (3.3)

Note that the divergent piece is independent of both temperature and dimension. Finally,

the renormalized two point function is given by,

〈O(t, x)O(t, y)〉 ≈ e−∆Lren . (3.4)

3.1 Finite temperature expansion

The bulk-metric is given by3

ds2 = −r2
(

1− rdH
rd

)

dt2 + r2d~x2 +
1

r2
(

1− rdH
rd

)dr2. (3.5)

We can choose our coordinates so that the two points are (t, x = − l
2 , 0, . . .) and (t, x =

l
2 , 0, . . .) respectively. Therefore, the relevant part of the Schwarzschild-AdSd+1 metric is:

ds2 = r2dx2 +
1

r2
(

1− rdH
rd

)dr2. (3.6)

In the affine parametrization, the geodesic equations are given by,

ẋ =
rc
r2

, (3.7)

ṙ =± r

√

(

1− r2c
r2

)(

1− rdH
rd

)

, (3.8)

where, rc is an integral of motion associated with the Killing vector ∂x and r = rc represents

the point of closest approach of the geodesic. We also have taken the affine parameter to

represent the geodesic proper length s. It is clear from equation (3.8) that each geodesic has

two branches, which we will denote as x+(r) and x−(r), joined smoothly at (r = rc, x = 0).

In principle, rc can be determined using the boundary conditions:

x−(∞) = − l

2
, x+(∞) =

l

2
. (3.9)

2It is important to note that for Lorentzian correlators this approximation should be used more care-

fully [24–26].
3For the sake of cleanliness, we will use AdS radius R = 1. We will restore R by dimensional analysis

whenever necessary.
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Now using equations (3.7), (3.8), for the positive branch of the geodesic, we obtain

dr

dx
=

r3

rc

√

(

1− r2c
r2

)(

1− rdH
rd

)

. (3.10)

Integration of the last equation leads to

l

2
=

∫ ∞

rc

rcdr

r3
√

(

1− r2c
r2

)

(

1− rdH
rd

)−1/2

=
1

rc

∫ 1

0

udu√
1− u2

(

1− rdH
rdc

ud
)−1/2

. (3.11)

Unfortunately this integration can be performed analytically only for Schwarzschild-AdS3
(i.e. d = 2). For a general d, we can do a systematic expansion.

l

2
=

1

rc

∫ 1

0

udu√
1− u2

∞
∑

n=0

Γ
[

1
2 + n

]

√
πΓ[1 + n]

(

rH
rc

)nd

und (3.12)

=
1

2rc

∞
∑

n=0

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

]

(

rH
rc

)nd

. (3.13)

We should be more careful about the convergence of the series (3.13) before we use it. For

large n, the series goes as ∼ 1
n (rH/rc)

nd and hence the series converges for rH/rc < 1. For

any finite temperature, it can be shown [21] that rc > rH . Therefore, the sum (3.13) is

well-defined.

Next we will calculate the regularized geodesic length by using equation (3.8)

L =2

∫ ∞

rc

dr

r

√

(

1− r2c
r2

)

(

1− rdH
rd

)−1/2

. (3.14)

Where, the factor of 2 comes because of the two branches of the geodesic. The equa-

tion (3.14) has a divergence that comes from the upper limit of the integration. This

divergence can be removed by introducing a cutoff rb and then using equation (3.3) to

define the renormalized geodesic length. Now we will proceed to develop a systematic

expansion for Lren

Lren = 2

∫ 1

rc/rb

du

u
√
1− u2

(

1− rdH
rdc

ud
)−1/2

− 2 ln rb (3.15)

= 2

∫ 1

rc/rb

du

u
√
1− u2

∞
∑

n=0

Γ
[

1
2 + n

]

√
πΓ[1 + n]

(

rH
rc

)nd

und − 2 ln rb (3.16)

= 2

∫ 1

rc/rb

du

u
√
1− u2

− 2 ln rb + 2

∫ 1

0

du

u
√
1− u2

∞
∑

n=1

Γ
[

1
2 + n

]

√
πΓ[1 + n]

(

rH
rc

)nd

und, (3.17)
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where, we have used the fact that only n = 0 term is divergent. Finally, we have

Lren =2 ln

(

2

rc

)

+

∞
∑

n=1

Γ
[

1
2 + n

]

Γ
[

nd
2

]

Γ[1 + n]Γ
[

1
2 + nd

2

]

(

rH
rc

)nd

. (3.18)

Again it can be shown that for large n, the infinite series in equation (3.18) goes as ∼
1
n (rH/rc)

nd and hence the series converges for rH/rc < 1. In principle, the rest of the

procedure is very simple; we have to solve equation (3.13) for rc and then use that rc
in equation (3.18) to get the renormalized geodesic length.4 The renormalized two-point

function is then given by equation (3.4). But in practice, this procedure can be performed

exactly only for d=2. For d 6= 2, it is not possible to solve equation (3.13) analytically to

find rc as a function of l. However at low temperature (i.e. rH l ≪ 1), we can compute Lren

perturbatively using equations (3.13), (3.18). And more interestingly, equation (3.18) can

also be used to determine the high temperature (i.e. rH l ≫ 1) behavior of the two-point

function.

3.2 Two-point function: CFT in (1 + 1) dimensions

A trivial example, as mentioned earlier, is Schwarzschild-AdS3 (i.e. d = 2). For d = 2,

equation (3.13) reduces to

l

2
=

1

rc

∞
∑

n=0

1

2n+ 1

(

rH
rc

)2n

=
tanh−1

(

rH
rc

)

rH
. (3.19)

Therefore,

rc =
rH

tanh
(

rH l
2

) . (3.20)

And equation (3.18) becomes

Lren = 2 ln

(

2

rc

)

+
∞
∑

n=1

1

n

(

rH
rc

)2n

= 2 ln

(

2

rc

)

− ln

(

1− r2H
r2c

)

= − ln

[

r2H
2 (cosh(rH l)− 1)

]

. (3.21)

Therefore,

〈O(t, x)O(t, y)〉 = r2∆H

[

1

2 (cosh(rH l)− 1)

]∆

(3.22)

where, l = |x− y|. Now using equation (2.5) we finally have

〈O(t, x)O(t, y)〉 = (πT )2∆
[

2

cosh (2πT |x− y|)− 1

]∆

. (3.23)

4We would like to stress that the equations (3.13), (3.18) are valid for any temperature.
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3.3 Low temperature two-point function

At low temperature, rc ≫ rH and hence the leading contribution to the geodesic length

comes from the boundary. The boundary is still AdS and we should get the zero tem-

perature two-point function as the leading term. Finite temperature corrections can be

computed by considering deviations from the boundary geometry. At low temperature

(T l ≪ 1), the corrections to zero temperature result are small and hence can be computed

perturbatively. From equation (3.13), keeping only few subleading terms, we get

l =
1

rc

[

2 +

√
πΓ
(

d
2 + 1

)

2Γ
(

d+3
2

)

(

rH
rc

)d

+
3
√
πΓ(d+ 1)

8Γ
(

d+ 3
2

)

(

rH
rc

)2d

+ . . .

]

. (3.24)

Solving the last equation perturbatively and then using that solution in equation (3.18),

we get a perturbative expression for Lren (details of the calculation are relegated to ap-

pendix A). Finally using (2.5), for the d-dimensional boundary theory at low temperature

we obtain

〈O(t, x)O(t, y)〉 = 1

|x− y|2∆

[

1 + C1
(

2πT |x− y|
d

)d

+C2
(

2πT |x− y|
d

)2d

+O
(

2πT |x− y|
d

)3d
]

, (3.25)

where

C1 = −
√
π∆Γ

(

d
2

)

4Γ
(

d+3
2

) , (3.26)

C2 =
1

64



π∆
(

d2 + 2∆
)

(

Γ
(

d
2

)

Γ
(

d+3
2

)

)2

− 12
√
π∆Γ(d)

Γ
(

d+ 3
2

)



 . (3.27)

Note that C1 is negative as expected indicating a decrease in two-point correlation because

of thermal fluctuations.

Particularly for d = 4, using equations (A.5)–(A.7), at low temperature limit (T |x −
y| ≪ 1) we have

〈O(t, x)O(t, y)〉 = 1

|x− y|2∆

[

1− 2∆

15

(

πT |x− y|
2

)4

+
2∆(7∆ + 26)

1575

(

πT |x− y|
2

)8

+O
(

πT |x− y|
2

)12
]

. (3.28)

3.4 High temperature two-point function

At high temperature (i.e. T l ≫ 1), it is more difficult to do a systematic expansion for the

two-point function. Nevertheless, we can find out the asymptotic behavior of the two-point

function easily. At high temperature, the leading contribution comes from the near horizon

– 8 –
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part of the geodesic and this piece is easy to compute. On the other hand, the full bulk

contributes to the subleading terms and hence they are more complicated.

At very high temperature, rc approaches rH . The obvious guess of taking the limit

rc → rH in equation (3.18) does not work because the infinite series in equation (3.18)

converges only when rc < rH . But we can rewrite equation (3.18) in a way that allows us

to take the limit rc → rH without encountering any divergence.

Lren = 2 ln

(

2

rc

)

+
∞
∑

n=1

Γ
[

1
2 + n

]

Γ
[

nd
2

]

Γ[1 + n]Γ
[

1
2 + nd

2

]

(

rH
rc

)nd

= 2 ln

(

2

rc

)

+

∞
∑

n=1

(

1 + nd

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

]

(

rH
rc

)nd

. (3.29)

Now, using equation (3.13), we obtain

Lren =2 ln

(

2

rc

)

+ (rcl − 2) +
∞
∑

n=1

(

1

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

]

(

rH
rc

)nd

. (3.30)

The term −2 in the last equation comes from n = 0 term of the series (3.13). The infinite

series in equation (3.30) converges even for rc = rH and hence the limit rc → rH exists.

At high temperature, rc ∼ rH and now the leading behavior can be determined by taking

the limit rc → rH in equation (3.30)

Lren ≈ 2 ln

(

2

rH

)

+ (rH l − 2) +
∞
∑

n=1

(

1

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] . (3.31)

Therefore, the high temperature two-point function is approximately given by,

〈O(t, x)O(t, y)〉 ≈ Ad,∆ r2∆H e−∆rH l. (3.32)

Where, the prefactor Ad,∆ is a constant that depends on the dimension d and the conformal

dimension ∆ of the operator O

Ad,∆ =

{

1

4
exp

[

2−
∞
∑

n=1

(

1

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

]

]}∆

. (3.33)

Finally, replacing rH by corresponding temperature, for the d−dimensional boundary the-

ory we obtain

〈O(t, x)O(t, y)〉 ≈ Ad,∆

(

4πT

d

)2∆

e−4π∆T |x−y|/d. (3.34)

The exponential decay of the two-point function at high temperature can be understood

easily by looking at the geodesic for rH l ≫ 1. The actual U-shaped geodesic can be

approximated by a curve that consists of x = −l/2, r = rH , x = l/2 (see figure 1). As rH l

is increased, the actual geodesic approaches the approximate one. But it can be shown

– 9 –
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 Boundary 

Horizon 

 

Figure 1. At high temperature (rH l ≫ 1), the actual geodesic (solid blue line) can be approximated

by the dashed red line curve that consists of x = −l/2, r = rH , x = l/2.

that the proper length of this approximate curve is always greater than the actual geodesic

and even in the limit rH l → ∞, two does not coincide. However in the high temperature

limit, the most dominant contribution to the geodesic length comes from the near horizon

part which can be reckoned from the approximate curve. The length of the near horizon

part of the approximate curve is S ∼ rH l. Therefore, it is expected that the two-point

function 〈O(t, x)O(t, y)〉 ∼ e−∆rH l.

We have computed the leading behavior of the high temperature (T l ≫ 1) two-point

function by utilizing the fact that at high temperature, rc ∼ rH . It is a good exercise to

figure out exactly how close to the horizon the geodesic can reach. As shown in appendix B,

rc approaches rH exponentially fast

rc = rH

(

1 + Ed e
−
√

d
2
lrH + . . .

)

, (3.35)

where Ed is a numerical constant given by,

Ed =
1

d
exp

[
√

d

2

{

2 +
∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] −
√
2√
dn

)}]

. (3.36)

The geodesic always stays finite distance above the horizon which is consistent with [21].

Using equation (3.35), we can calculate the next order correction to the two-point function

(for details see appendix B). However, the subleading term is exponentially suppressed

〈O(t, x)O(t, y)〉 = Ad,∆

(

4πT

d

)2∆

e−4π∆T |x−y|/d
[

1 +

√

2

d
∆Ed e

−2
√

2
d
πT |x−y|

+ . . .

]

,

(3.37)
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where the dots represent the higher order correction terms. Therefore, at high temperature,

the two-point function is well approximated by equation (3.34).

4 Spatial Wilson loop

Wilson loops are another set of important gauge-invariant non-local observables in any

gauge theory. In a gauge theory, the Wilson loop operator is a path ordered contour

integral of the gauge field

W (C) = 1

N
Tr
(

Pe
∮

C A
)

, (4.1)

where the trace is over the fundamental representation and C denotes a closed loop in

spacetime. Expectation values of the Wilson loops are useful to understand the non-

perturbative behavior of non-Abelian gauge theories and have important applications to

confinement/deconfinement transitions and quark screenings in QCD-like theories.

In the AdS/CFT correspondence, the expectation value of the Wilson loop5 is related

to the string partition function [27]

〈W (C)〉 =
∫

DΣ e−SNG(Σ), (4.2)

where we integrate over all the string worldsheets Σ with the boundary condition ∂Σ = C
at the AdS boundary and SNG(Σ) corresponds to the Nambu-Goto action for the string

worldsheet

SNG =
1

2πα′

∫

dτdσ
√

det (gµν∂αxµ∂βxν). (4.3)

Where gµν is the bulk metric and 1/2πα′ is the string tension; xµ(τ, σ) is the location of

the string worldsheet in this (d + 1)-dimensional spacetime. In the strong coupling limit,

α′ ≪ 1 and we can perform a saddle point approximation, yielding

〈W (C)〉 = e−SNG(Σ0), (4.4)

where Σ0 represents the minimal area surface with the boundary condition ∂Σ0 = C.

4.1 Rectangular Wilson loop: finite temperature expansion

In this section, we will consider spatial rectangular Wilson loops specified by x ≡ x1 ∈
[

− l
2 ,

l
2

]

, y ≡ x2 ∈
[

−L
2 ,

L
2

]

and t = xi = 0 for i > 2 (see figure 2(b) for a pictorial

representation). And we will assume that L ≫ l. The two dimensional worldsheet can be

parameterized by the coordinates σα ≡ (τ, σ). We will pick σ = r, τ = y as the worldsheet

coordinates. In the limit L → ∞, the extremal surface is translationally invariant along the

y-direction. Therefore, only coordinate x = x(r) has a nontrivial profile and the induced

metric on the worldsheet is given by

ds2ws = r2dy2 +



r2x′2 +
1

r2
(

1− rdH
rd

)



 dr2 (4.5)

5In these gauge theories the Wilson loop operators are typically given by some generalization of equa-

tion (4.1).
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and the action (4.3) becomes

SNG =
L

2πα′

∫

dr

√

√

√

√
r4x′2 +

1
(

1− rdH
rd

) . (4.6)

The minimal area surface Σ0 can be found by solving the equation of motion arising from

the above action

dx

dr
= ± r2c

r4
√

(

1− r4c
r4

)(

1− rdH
rd

)

, (4.7)

where, rc is an integral of motion and r = rc represents the point of closest approach of

the extremal surface.6 Each surface, just like the geodesic case, has two branches, joined

smoothly at (r = rc, x = 0) and rc can be determined using the boundary conditions:

x(∞) = ± l

2
. (4.8)

That leads to

l

2
=

∫ ∞

rc

r2cdr

r4
√

(

1− r4c
r4

)

(

1− rdH
rd

)−1/2

=
1

rc

∫ 1

0

u2du√
1− u4

(

1− rdH
rdc

ud
)−1/2

. (4.9)

Again, analogous to the two-point function case, we can develop a systematic expansion,

l =
1

2rc

∞
∑

n=0

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

]

(

rH
rc

)nd

. (4.10)

For large n the series goes as ∼ 1
n(rH/rc)

nd and the series converges as long as rH/rc < 1.

Again it can be shown [21] that at any finite temperature rc > rH and hence the sum (4.10)

is well-defined. Next we will calculate the on-shell action

SNG =
2L

2πα′

∫ ∞

rc

dr
√

(

1− r4c
r4

)

(

1− rdH
rd

)−1/2

. (4.11)

The factor of 2 appears because of the two branches of the extremal surface. The on-shell

SNG is divergent;7 however, it can be renormalized by introducing a UV-cutoff rb and then

subtracting the boundary term rbL/(πα
′)

SNG;ren = SNG − rbL

πα′ . (4.12)

6It should be noted that rc is an observable dependent quantity and hence rc for the spatial rectangular

Wilson loop is not the same as rc for equal-time two-point function.
7Note that the divergent piece is independent of both temperature and dimension.
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Now a series expansion for SNG;ren can be obtained

SNG;ren =
Lrc
πα′

[

−
√
2π3/2

Γ(14)
2

+
1

4

∞
∑

n=1

Γ
[

1
2 + n

]

Γ
[

1
4(−1 + nd)

]

Γ[1 + n]Γ
[

1
4(1 + nd)

]

(

rH
rc

)nd
]

. (4.13)

Again it can be shown that the series (4.13) converges for rH/rc < 1. In principle, the rest

of the calculation is straight forward. We have to solve equation (4.10) for rc and then

use that rc in equation (4.13) to get SNG;ren. The expectation value of the renormalized

Wilson loop is then given by,

〈W (C)〉 = e−SNG;ren . (4.14)

4.2 Rectangular Wilson loop: low temperature limit

At low temperature (in this context, low temperature means T l ≪ 1), the calculation is

similar to the two-point function case (see appendix A). The leading contributions come

from the boundary and hence we can solve equation (4.10) for rc order by order, leading to

finite temperature corrections to the expectation value of the Wilson loop. Solving (4.10),

at first order in (lrH)d, we obtain

rc =
1

l

(

2
√
2π3/2

Γ
(

1
4

)2

)[

1 +
2−

3d
2
− 7

2π− 3d
2
−1Γ

(

1
4

)2d+2
Γ
(

d+3
4

)

Γ
(

d+5
4

) (lrH) d +O(lrH)2d

]

. (4.15)

Equation (4.13) then tells us

SNG;ren = − 4π2

α′Γ(14)
4

(

L

l

)

[

1 +D1(rH l)d +O(rH l)2d
]

(4.16)

where D1 is a numerical constant given by

D1 = −2−
3d
2
− 9

2π− 3d
2
−1Γ

(

1
4

)2d+2
Γ
(

d
4 − 1

4

)

Γ
(

d
4 + 5

4

) . (4.17)

Expectation value of the renormalized Wilson loop is then given by 〈W (C)〉 = e−SNG;ren .

Constant D1 is negative indicating a decrease in the expectation value as the system is

heated. Replacing rH by corresponding temperature (2.5), for the d-dimensional boundary

theory we obtain

SNG;ren = − 4π2

Γ(14)
4

(

R2

α′

)(

L

l

)

[

1 +D1

(

4πT l

d

)d

+O
(

4πT l

d

)2d
]

, (4.18)

where, we have restored AdS radius R by dimensional analysis. Particularly, for d = 4 at

low temperature limit, we get

SNG;ren = − 4π2

Γ(14)
4

(

R2

α′

)(

L

l

)[

1− Γ(1/4)8

320π6
(πT l)4 +O(πT l)8

]

. (4.19)
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4.3 Rectangular Wilson loop: high temperature limit

At high temperature (rH l ≫ 1), just like the geodesic case, rc approaches rH and the

leading contribution comes from the near horizon region. We can rewrite equation (4.13)

in a way so that we can take the limit rc → rH

SNG;ren =
Lrc
πα′






−2

√
2π3/2

Γ
(

1
4

)2 +
lrc
2

+
1

2

∞
∑

n=1

1

nd− 1

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

]

(

rH
rc

)nd






.

(4.20)

It is easy to check that the infinite series in the last equation converges for rc ≥ rH and we

can safely take the limit rc → rH

SNG;ren ≈ LrH
πα′






−2

√
2π3/2

Γ
(

1
4

)2 +
lrH
2

+
1

2

∞
∑

n=1

1

nd− 1

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

]






. (4.21)

Therefore, at high temperature the expectation value of the Wilson loop is approximately

given by

〈W (C)〉 ≈ e−
WdLrH

πα′ e−
Ar2H
2πα′ (4.22)

where, A = lL is the area of the Wilson loop and

Wd = −2
√
2π3/2

Γ
(

1
4

)2 +
1

2

∞
∑

n=1

1

nd− 1

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] . (4.23)

In terms of temperature T , the asymptotic behavior of the expectation value of the Wilson

loop in d−dimensions is given by (after restoring AdS radius R)

〈W (C)〉 ≈ exp

[

−
(

R2

α′

)(

8πAT 2

d2
+

4WdLT

d

)]

. (4.24)

At large temperature, the term proportional to the area in SNG;ren dominates indicating

an area law which is consistent with [29]. The area term comes from the near horizon part

of the extremal surface and could be understood easily by making an argument similar to

the geodesic case (figure (1) could be think of as a section of the extremal surface). The

term independent of l receives contributions from the full bulk geometry.

At high temperature (T l ≫ 1), similar to the two-point function case, rc approaches

rH exponentially fast (see appendix B)

rc = rH

(

1 + Ewl e
−
√
d lrH + . . .

)

, (4.25)

where Ewl is a numerical constant given by,

Ewl =
1

d
exp







√
d











2
√
2π3/2

Γ
(

1
4

)2 +
1

2

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] − 2√
dn

)
















. (4.26)
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(a)

 

 

 
L 

l 

A 
BOUNDARY 

(b)

Figure 2. (a) The total system can be divided into two subsystems A and B; the entanglement

entropy SA measures the amount of information loss because of smearing out in region B. (b) A

schematic diagram of the rectangular geometry and the corresponding extremal surface used for

the calculations of spatial Wilson loops and the entanglement entropy.

Using this expression for rc, it has been shown in appendix B that the correction to the

high temperature result (4.24) is very small

SNG;ren =

(

R2

α′

)(

8πAT 2

d2
+

4LTWd

d
− 4LT

d3/2
Ewl e

− 4√
d
πlT

+ . . .

)

(4.27)

where the dots represent the higher order correction terms.

5 Entanglement entropy

The entanglement entropy in quantum field theories or quantum many body systems is

another important non-local quantity that can be employed to probe quantum properties

of the system. Consider a quantum field theory with many degrees of freedom at zero

temperature. Let us assume that the system is described by the pure ground state |Ψ〉,
which does not have any degeneracy. The density matrix of the state is

ρtot = |Ψ〉〈Ψ| (5.1)

and hence the von Neumann entropy of the total system, defined as Stot = −tr(ρtot ln ρtot) =

0, does not contain any useful information. On the other hand, the entanglement entropy

is non-vanishing even at zero temperature and several aspects of quantum many body

physics can be understood by studying the entanglement entropy associated with volumes

of different shapes and sizes.

Now consider dividing the total system into two subsystems A and B and imagine an

observer who has access only to the subsystem A (see figure 2(a)). The total Hilbert space

is a direct product of two spaces Htot = HA ⊗ HB. The observer who is restricted to A

will describe the total system by the reduced density matrix

ρA = trBρtot, (5.2)
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where, degrees of freedom inside the subsystem B have been traced out. The entanglement

entropy of the subsystem A is now defined as the von Neumann entropy of the reduced

density matrix ρA
SA = −trA(ρA ln ρA). (5.3)

The entanglement entropy SA describes the amount of information loss because of smearing

out in region B and provides us with a convenient way to measure how the subsystems A

and B are correlated with each other. At finite temperature, the entanglement entropy is

defined in the same way but with the thermal density matrix ρ = e−H/T , where H is the

total Hamiltonian.

A precise prescription for computing entanglement entropy for strongly coupled field

theories with AdS duals was proposed in [31] and later generalized in [32] (for a good review

see [33]). According to the proposal, the entanglement entropy SA is given by

SA =
Area (γA)

4G
(d+1)
N

, (5.4)

where, G
(d+1)
N is the (d+ 1)-dimensional Newton’s constant. γA is the (d− 1)-dimensional

minimal area surface in the bulk whose boundary is given by the boundary of the region

A: ∂γA = ∂A. The area of the surface γA is denoted by Area (γA).

From this prescription it is very clear that for d = 2 and 3, the entanglement entropy

calculation is the same as the equal time two-point function calculation and the spatial

Wilson loop calculation respectively. Therefore, only for d ≥ 4, the entanglement entropy

contains non-trivial information.

5.1 Entanglement entropy: finite temperature expansion

In this section we will compute the entanglement entropy for a strip (see figure 2(b) for a

schematic diagram) specified by

x ≡ x1 ∈
[

− l

2
,
l

2

]

, xi ∈
[

−L

2
,
L

2

]

, i = 2, . . . , d− 1 (5.5)

with L → ∞. Extremal surface is translationally invariant along xi, i = 2, . . . , d − 1 and

the profile of the surface in the bulk is x(r). Area of this surface is given by

A = Ld−2

∫

drrd−2

√

√

√

√
r2x′2 +

1

r2
(

1− rdH
rd

) . (5.6)

This action leads to the equation of motion

dx

dr
= ± rd−1

c

rd+1

√

(

1− r2d−2
c

r2d−2

)(

1− rd
H

rd

)

, (5.7)

where, rc is an integral of motion and r = rc represents the point of closest approach of the

extremal surface (again it should be noted that rc is an observable dependent quantity).
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Similar to the previous cases, each surface has two branches, joined smoothly at (r =

rc, x = 0) and rc can be determined using the boundary conditions:

x(∞) = ± l

2
. (5.8)

That leads to

l

2
=

∫ ∞

rc

rd−1
c dr

rd+1

√

(

1− r2d−2
c

r2d−2

)

(

1− rdH
rd

)−1/2

=
1

rc

∫ 1

0

ud−1du√
1− u2d−2

(

1− rdH
rdc

ud
)−1/2

. (5.9)

By now it is obvious that we will do an expansion

l =
2

rc

∞
∑

n=0

(

1

1 + nd

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2(d−1)

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

]

(

rH
rc

)nd

. (5.10)

Again it can be shown that the series converges for rc > rH . The area of the extremal

surface is given by,

A = 2Ld−2

∫ ∞

rc

rd−3dr
√

(

1− r2d−2
c

r2d−2

)

(

1− rdH
rd

)−1/2

(5.11)

This area is infinite indicating that the entanglement entropy has a divergence. In a field

theory the entanglement entropy is always divergent because there are too many degrees

of freedom. Therefore, we can write

A = Adiv +Afinite. (5.12)

The divergent piece is temperature independent and hence easy to compute. We will

introduce an infrared cut off rb which corresponds to the ultraviolet cut off a = 1/rb (or a

lattice spacing) of the boundary theory8

Adiv =
2

d− 2
Ld−2rb

d−2 =
2

d− 2

(

L

a

)d−2

d 6= 2. (5.13)

The divergence is proportional to the area of the boundary of A which is expected since the

entanglement between A and B is strongest at the boundary ∂A. This area law behavior

of the divergent piece is well understood from field theory computations [34–39].

8We are working with AdS radius R = 1. Restoring R, the lattice spacing is given by a = R2

rb
.
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Analogous to the previous cases, we can do an expansion (d 6= 2) for the finite part of

the area9

Afinite = 2Ld−2rd−2
c

∫ 1

rc/rb

du

ud−1
√
1− u2d−2

(

1− rdH
rdc

ud
)−1/2

− 2

d− 2
Ld−2rb

d−2

= 2Ld−2rd−2
c





√
πΓ
(

− d−2
2(d−1)

)

2(d− 1)Γ
(

1
2(d−1)

) +
∞
∑

n=1

(

1

2(d− 1)

) Γ
[

1
2 + n

]

Γ
[

d(n−1)+2
2d−2

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

]

(

rH
rc

)nd


 .

(5.14)

It can be shown that this series converges for rc > rH . Now, the rest of the procedure is

simple and familiar. We have to solve equation (5.10) for rc and then we can calculate area

by using equation (5.14). Entanglement entropy of the rectangular strip can be computed

using the relation (5.4). In practice, this procedure can not be performed analytically at

finite temperature. However, we can extract low and high temperature behavior of the

entanglement entropy from equations (5.10), (5.14).

5.2 Entanglement entropy: low temperature limit

The temperature now should be measured with respect to ∼ 1/l; therefore, low temperature

means T l ≪ 1. At low temperature, rc ≫ rH and the leading contributions to the area come

from the boundary which is still AdS. Therefore we should expect the zero temperature

entanglement entropy as the leading term. Finite temperature corrections correspond to

the deviation of the bulk geometry from pure AdS. At low temperature, the extremal

surface is restricted to be near the boundary region and hence the deviation is small and

can be computed perturbatively. At low temperature limit (rH l ≪ 1), equation (5.10) can

be solved for rc and at first order in (rH l)d, we obtain

rc =
2
√
πΓ
[

d
2(d−1)

]

l Γ
[

1
2(d−1)

]






1 +

1

2(d+ 1)

2
1

d−1
−dΓ

(

1 + 1
2(d−1)

)

Γ
(

1
2(d−1)

)d+1

π
d+1
2 Γ

(

1
2 + 1

d−1

)

Γ
(

d
2(d−1)

)d
(rH l)d +O (rH l)2d







(5.15)

Now using equation (5.14), at first order in (rH l)d, we get (the calculation is similar to the

two-point function calculation explained in appendix A)

Afinite = S0

(

L

l

)d−2
[

1 + S1(rH l)d +O(rH l)2d
]

(5.16)

9We will not consider the entanglement entropy for d = 2 case because the calculations are exactly the

same as the two-point function case and hence has been studied analytically. In d = 2, the entanglement

entropy has a logarithmic divergence [40, 41], indicating a violation of the simple area law.
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where, numerical constants S0,S1 are given by

S0 =
2d−2π

d−1
2 Γ

(

− d−2
2(d−1)

)

(d− 1)Γ
(

1
2(d−1)

)





Γ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

)





d−2

(5.17)

S1 =
Γ
(

1
2(d−1)

)d+1

Γ
(

d
2(d−1)

)d
Γ
(

1
2 + 1

d−1

)

2−d−1π− d
2





Γ
(

1
d−1

)

Γ
(

− d−2
2(d−1)

) +
2

1
d−1 (d− 2)Γ

(

1 + 1
2(d−1)

)

√
π(d+ 1)





(5.18)

Therefore, following equation (5.4), after restoring AdS radius R, the entanglement entropy

of the rectangular strip for the d-dimensional boundary theory at low temperature (T l ≪ 1)

is given by,

SA =
Rd−1

4G
(d+1)
N

[

2

d− 2

(

L

a

)d−2

+ S0

(

L

l

)d−2
{

1 + S1

(

4πT l

d

)d

+O
(

4πT l

d

)2d
}]

.

(5.19)

Note that in the limit T → 0, we recover the well known results of [48]. Particularly for

d = 4 we have,

SA =
Rd−1

4G
(d+1)
N

[

(

L

a

)2

− 0.32

(

L

l

)2
{

1− (1.764)(πT l)4 +O(πT l)8
}

]

. (5.20)

5.3 Entanglement entropy: high temperature limit

At high temperature (i.e. T l ≫ 1), it is not very difficult to find out the asymptotic behavior

of the entanglement entropy. However, it is more difficult to do a systematic expansion.

At high temperature, the extremal surface tends to wrap a part of the horizon and the

leading contribution comes from this near horizon part of the surface. For the subleading

terms, the full bulk geometry contributes and they are more interesting.

At very high temperature (rH l ≫ 1), rc approaches rH . By now we know how to

determine the high temperature asymptotic behavior; we will rewrite equation (5.14) in a
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way that allows us to take the limit rc → rH without encountering any divergence.

Afinite = 2Ld−2rd−2
c





√
πΓ
(

− d−2
2(d−1)

)

2(d− 1)Γ
(

1
2(d−1)

)

+
∞
∑

n=1

1

1 + nd

(

1 +
d− 1

d(n− 1) + 2

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2d−2

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

]

(

rH
rc

)nd




= 2Ld−2rd−2
c





lrc
2

−
√
π(d− 1)Γ

(

d
2(d−1)

)

(d− 2)Γ
(

1
2(d−1)

)

+
∞
∑

n=1

(

1

1 + nd

)(

d− 1

d(n− 1) + 2

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2d−2

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

]

(

rH
rc

)nd


 .

(5.21)

The infinite series in the last equation for large n goes as ∼ 1
n2 (rH/rc)

nd and thus the limit

rc → rH exists. At high temperature rc ∼ rH and the leading behavior can be determined

by taking the limit rc → rH in the last equation

Afinite ≈ lLd−2rd−1
H

[

1 +

(

1

lrH

)

Shigh

]

(5.22)

where, Shigh is another numerical constant given by

Shigh =2



−
√
π(d− 1)Γ

(

d
2(d−1)

)

(d− 2)Γ
(

1
2(d−1)

) +
∞
∑

n=1

(

1

1 + nd

)(

d− 1

d(n− 1) + 2

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2d−2

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

]



 .

(5.23)

Hence, the entanglement entropy of the rectangular strip for the d-dimensional boundary

theory at high temperature is given by,

SA ≈ Rd−1

4G
(d+1)
N

[

2

d− 2

(

L

a

)d−2

+ V

(

4πT

d

)d−1{

1 +

(

d

4πT l

)

Shigh

}

]

(5.24)

where V = lLd−2 is the volume of the rectangular strip and R is the AdS radius.

The divergent part of the entanglement entropy is temperature independent and thus

it does not contain any new information. The leading finite piece in equation (5.24) is

proportional to the volume of the rectangular strip and it is just the thermal entropy

of the region A. The extrinsic nature of the leading term at high temperature can be

understood very easily by looking at the extremal surface for rH l ≫ 1. In this limit, the

extremal surface tends to wrap a part of the horizon and the actual U-shaped surface can

be approximated by a surface that consists of x = −l/2, r = rH , x = l/2 (one can think

of figure (1) as a section of the extremal surface). At high temperature limit, the most

dominant contribution to the area of the extremal surface comes from the near horizon part
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which can be guessed from this approximate surface. The area of the near horizon part

of the approximate surface is A ∼ rd−1
H V . Therefore, it is expected that the leading term

goes as SA ∼ V T d−1. On the other hand, the other term ∼ (LT )d−2 is more interesting.

This term corresponds to the entanglement between the region A and the outside and it is

proportional to the area of the boundary ∂A of A because the entanglement is strongest

at the boundary. One can guess the functional form of this term from the approximate

surface. However, the value of the numerical constant Shigh obtained from the approximate

surface is inaccurate. Although the actual extremal surface approaches the approximate

one as rH l is increased, it can be shown that the area of this approximate surface is always

greater than the actual extremal surface [42] and even in the limit rH l → ∞, two do not

coincide.

So far we have used the fact that at high temperature, rc ∼ rH . [21] shows that

the extremal surface approaches the horizon but it always stays finite distance above the

horizon. It is an interesting exercise to see exactly how fast rc approaches rH . As shown

in appendix (B), in the limit rH l ≫ 1

rc = rH

(

1 + Eent e−
√

d(d−1)
2

lrH + . . .

)

, (5.25)

where Eent is a constant given by,

Eent =
1

d
exp





√

d(d− 1)

2







2
√
πΓ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

)

+2
∞
∑

n=1







(

1

1 + nd

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2(d−1)

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

] − 1√
2
√

(d− 1)d n















 . (5.26)

Using equation (5.25), we can calculate the next order correction to the high temperature

entanglement entropy (for details see appendix (B)). The subleading term is exponentially

suppressed

SA = Sdiv+
Rd−1

4G
(d+1)
N

(

4π

d

)d−1 [

V T d−1 +

(Shighd

8π

)

A T d−2

−
(Eent

8π

)

√

2d(d− 1) A T d−2 exp
{

−
√

(d− 1)/(2d) 4πT l
}

+ . . .

]

(5.27)

where A is the area A = 2Ld−2 and the dots represent the higher order correction terms.

5.4 Entanglement entropy of a generic region at high temperature

The calculation of the entanglement entropy of an infinite rectangular strip suggests that

the general form of the finite part of the high temperature answer does not particularly

depend on the shape. One expects that the finite part of the entanglement entropy of a

region A for a d−dimensional (d > 2) boundary theory with AdS-dual should be given by

SA;finite = c0

[

T d−1Volume(A) + c1 T d−2Area(∂A)
]

+ sub-leading terms, (5.28)
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provided the temperature T ≫ 1/l, where l is the smallest length scale of the region A.10

c0 is a constant that depends on the actual theory and c1 is a constant that depends on

the shape of the region A. The first term represents the thermal entropy of the region A.

The second term is proportional to the area of the boundary of A and corresponds to the

entanglement between region A and the outside.

6 Non-relativistic theories with hyperscaling violation

We can generalize the techniques that we have developed in the previous sections to study

a broader class of strongly coupled large-N field theories that have the following properties

t → λzt , r → λr , x → λx , ds2 → λ2θ/(d−1)ds2 (6.1)

and are dual to

ds2 =
1

r2

(

− dt2

r2(d−1)(z−1)/(d−θ−1)
+ r2θ/(d−θ−1)dr2 + d~x2

)

, (6.2)

where, z is the dynamical critical exponent and θ is known as the hyperscaling violation

exponent of the d-dimensional boundary theory.11 This background which can be obtained

from an Einstein-Maxwell-Dilaton system was proposed in [44] as a gravity toy model of a

large class of condensed matter systems. Finite temperature behavior of these systems can

be studied by introducing a black hole in the bulk. There is a simpler way to write down

a hyperscaling violating background with a black hole inside it [45]

ds2 = r2θ/(d−1)

(

−f(r)
dt2

r2z
+

dr2

r2f(r)
+

d~x2

r2

)

,

f(r) = 1−
(

r

rH

)γ

, (6.3)

where γ is a real constant that we will keep unspecified, rH is the location of the horizon;

the boundary here is located at r → 0. For θ = 0, the above metric reduces to finite

temperature Lifshitz background [43] and θ = 0, z = 1 is our good old AdS-Schwarzschild.

Temperature of the d-dimensional boundary theory is given by

T =
γ

4πrzH
. (6.4)

In this section, we will show how the techniques developed in the previous sections can

easily be generalized by sketching the calculation of entanglement entropy of an infinite

rectangular strip (see figure 2(b) for a schematic diagram) specified by

x ≡ x1 ∈
[

− l

2
,
l

2

]

, xi ∈
[

−L

2
,
L

2

]

, i = 2, . . . , d− 1 (6.5)

10One can make a similar argument for the spatial Wilson loop.
11We have set curvature of space R = 1 for simplicity.

– 22 –



J
H
E
P
0
5
(
2
0
1
3
)
0
9
8

with L → ∞. We will consider the case d − θ − 2 ≥ 0; our goal is to demonstrate

that the physics is exactly the same as the relativistic case. We will assume that the Rye-

Takayanagi prescription for the entanglement entropy holds for these hyperscaling violating

backgrounds.

Here we want to note that the results obtained in this section can be used to understand

the properties of mutual information which contains rich physics.12

6.1 Entanglement entropy: θ 6= d− 2

In this case the divergent part of the entanglement entropy follows an area law [46]:

Sdiv =
c

d− θ − 2

(

Ld−2

ǫd−θ−2

)

, (6.6)

where

c =
1

4G
(d+1)
N

. (6.7)

and ǫ is the short distance cut-off. Similar to the previous cases, we can formally write down

infinite series expansions for l and SA;finite in terms of the closest approach parameter rc

l = rc

n=∞
∑

n=0

pn

(

rc
rH

)nγ

, (6.8)

SA;finite =
2c Ld−2

rd−θ−2
c

[

q0 +

n=∞
∑

n=1

qn

(

rc
rH

)nγ
]

, (6.9)

where, pn, qn are constants that depend only on d and θ.

Zero temperature. At zero temperature, the entanglement entropy is given by,

SA = Sdiv +
c C(θ, d)Ld−2

ld−θ−2
(6.10)

where,

C(θ, d) = 2pd−θ−2
0 q0 . (6.11)

Low temperature limit. At low temperature, similar to the relativistic case, the ex-

tremal surface is restricted to be near the boundary region (rc ≪ rH) and hence the

leading contribution to the entanglement entropy comes from the boundary. Subleading

contributions are small and can be calculated perturbatively

SA = Sdiv +
c C(θ, d)Ld−2

ld−θ−2

[

1 + h1 lγ T
γ
z + . . .

]

, (6.12)

where, h1 is a numerical constant.

12We will investigate this in detail in our future paper [47].
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High temperature limit. At high temperature, rc ∼ rH and the extremal surface tends

to wrap a part of the horizon. Our previous calculations suggest that in the limit rc → rH
we can write

SA;finite =
2c Ld−2

rd−θ−2
H

[

q0 − p0 +
l

rH
+

n=∞
∑

n=1

(qn − pn)

]

(6.13)

and the infinite sum now converges. Finally, we obtain

SA = Sdiv + c Ld−2 T
d−θ−1

z

[

h2l + h3 T− 1
z + . . .

]

, (6.14)

where, h2, h3 are numerical constants. Similar to the relativistic case, the leading finite

part comes from the near horizon part of the geometry and it corresponds to the thermal

entropy of region A. Full bulk geometry contributes to the finite subleading term and it

measures actual quantum entanglement between region A and the surroundings.

6.2 Entanglement entropy: θ = d− 2

Zero temperature. In this case there is a violation of the area law for the divergent

part of the entanglement entropy and at zero temperature, the entanglement entropy is

given by [46],

SA = 2cLd−2 ln

(

l

ǫ

)

. (6.15)

The physics at finite temperature is exactly the same as the previous case.

Low temperature limit. At low temperature, rc ≪ rH and we obtain

SA = 2cLd−2
[

ln(l/ǫ) + k1l
γ T γ/z + . . .

]

, (6.16)

where k1 ≥ 0 is a numerical constant.

High temperature limit. At high temperature, rc ∼ rH and we get

SA = c Ld−2
[

−2 ln(T 1/zǫ) + k3lT
1/z + k2 + . . .

]

, (6.17)

where, k2 and k3 are numerical constants.

7 N = 4 super-Yang-Mills in (3 + 1) dimensions at finite temperature

In this section, we will use all the tools we have developed in the previous sections to

study the prototype case of N = 4 super-Yang-Mills with gauge group U(N) at finite

temperature. The AdS/CFT correspondence relates this theory to type IIB string theory

on asymptotically AdS5 × S5 spacetime. And as a consequence, in the limit N ≫ 1, λ =

g2YMN ≫ 1, the theory can be well approximated by the classical supergravity.

N = 4 super-Yang-Mills theory is the unique maximally supersymmetric gauge theory

in (3+1) dimensions and it consists of gauge field Aµ, six scalar fields φi, i = 1, . . . , 6 and
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four Weyl fermions χα, all in the adjoint representation of U(N). The Euclidean action for

the theory has the schematic form

S = − 1

4g2

∫

d4x tr



F 2 + 2DµφiD
µφi + χ /D χ+ χ [φ, χ]−

∑

i,j

[φi, φj ]
2





+
θ

8π2

∫

d4x tr
(

FF̄
)

. (7.1)

Now at finite temperature, in the Euclidean description, the system lives on R3 × S1,

the circle direction corresponds to the Euclidean time with period T−1. At length scale

l ≫ 1/T , at least for weak coupling, one can perform a Kaluza-Kline reduction along the

circle. All the fermions of the theory get a mass of order T at tree level because of the

antiperiodic boundary conditions around the circle. The scalars get a mass of the order g2T

at one loop level through their couplings to fermions. Therefore, at least for weak coupling,

at large distance l ≫ 1/T , the theory reduces to non-supersymmetric Yang-Mills theory in

three dimensions. Because the theory has a mass gap, at large temperature (T l ≫ 1), it is

expected that correlation function 〈O(x, t)O(y, t)〉 ∼ e−|x−y|T .
Things are more complicated at strong coupling. Fortunately, thanks to AdS/CFT,

at strong coupling, we can use the supergravity solution to study the system. The mass

of the excitations of the QCD strings [29] is Ms = λ1/4T and the mass associated with

the compactification is Mc = T . In the strong coupling region (λ ≫ 1), Ms ≫ Mc and

as a result QCD strings can “see” the compactified circle. Therefore at high temperature

(T l ≫ 1), the theory does not reduce to pure Yang-Mills in three dimensions but N = 4

super-Yang-Mills in four dimensions compactified on a circle.

Let us now put ~ back in the picture for clarity. The action (7.1) has a dimension

ML. The equal time two-point function of the gauge invariant variable O = 1
4TrF

2 is a

useful non-local observable to understand the low and high temperature behavior of the

theory. The operator O has conformal dimension ∆ = 4 with a unit ML−3.13 Now using

equation (3.28) and the relation

T =
rH~

πR2
(7.2)

at low temperature (T |x− y| ≪ ~) we obtain

〈O(x, t)O(y, t)〉 = ~
2λ2

|x− y|8

[

1− 8

15

(

πT |x− y|
2~

)4

+
48

175

(

πT |x− y|
2~

)8

+ . . .

]

. (7.3)

The factor of ~2 is there because 〈O(x, t)O(y, t)〉 has dimension M2L−6. The factor of λ2

comes from comparing the result with standard zero temperature result. Similarly, at high

temperature (T |x− y| ≫ ~), using equation (3.37), we obtain

〈O(x, t)O(y, t)〉 = A0λ
2π8T 8

~6
e−4πT |x−y|/~

[

1 + 2
√
2E4 e−

√
2πT |x−y|/~ + . . .

]

. (7.4)

13The saddle point approximation that we have used to obtain the two-point function is a good approxi-

mation only for large ∆. For definiteness we will use O = 1
4
TrF

2 just as an example and consider only the

geodesic contributions and ignore the sub-leading corrections.
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0.5 1.0 1.5
TÈx-yÈ

-4

-2

2

fHx,yL

Figure 3. Variation of f(x, y) ≡ 1
∆
ln〈O∆(t, x)O∆(t, y)〉 with T |x−y| for the 4-dimensional N = 4

SYM theory. The solid black line represents the exact numerical result. Blue and red lines represent

the two-point functions computed using low and high temperature approximations, respectively.

Where A0 = 4.51 and E4 = 2.75. In the last equation, again we have used dimensional

analysis to recover ~. Indeed, at high temperature, the two-point function decays expo-

nentially.

Expectation values of the Wilson loops are another set of gauge-invariant non-local ob-

servables that are useful to understand the non-perturbative behavior of non-Abelian gauge

theories. In this N = 4 SYM theory, one should generalize the Wilson loop expression (4.1)

in the following way

W (C) = 1

N
Tr
(

Pe
∮

C ds(Aµẋµ+~n.~φ
√
ẋ2)
)

, (7.5)

where, xµ(s) parametrizes the path C and ~n is a unit vector in the {φi} space. Expectation

value of a rectangular infinite Wilson loop with long side of the loop extends along the

time direction gives potential energy between a static quark-antiquark pair. Unlike the

spatial Wilson loop case a sharp transition takes place at T ∼ 1/l for this case [28]. At low

temperature, the U-shaped solutions exist but at high temperature no nontrivial solutions

exist. At high temperature, the extremal surface consists of two disjoint vertical surfaces

ending at the horizon. Therefore, at high temperature the Wilson loop is independent of

separation l. In contrast, the transition is more gradual in the case of spatial rectangular

(infinite) Wilson loops. InN = 4 SYM theory, the expectation value of a spatial rectangular

(infinite) Wilson loop is given by,

〈W (C)〉 = e−SNG;ren (7.6)

and using equation (4.18) at low temperature (T l ≪ ~), we obtain

SNG;ren = −4π2L
√
λ

lΓ(14)
4

[

1− Γ
(

1
4

)8

320π2

(

T l

~

)4

+O
(

T l

~

)8
]

. (7.7)
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0.5 1.0 1.5 2.0
T l

-6
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-2

2

4

SNG;ren

Figure 4. Variation of SNG;ren (in the units of
√

λL

2π
) of the spatial rectangular (infinite) Wilson

loop with T l for the 4-dimensional N = 4 SYM theory. The expectation value of the Wilson

loop is given by 〈W (C)〉 = e−SNG;ren . The solid black line represents the exact numerical result.

Blue and red lines represent the two-point functions computed using low and high temperature

approximations, respectively.

At high temperature (T l ≫ ~), equation (4.27) leads to

SNG;ren =
πAT 2

√
λ

2~2

[

1− 2~

πT l

(

1 +
Ewl

2
e−2πlT/~

)]

(7.8)

where, A = lL is the area of the loop and Ewl = 1.66. We have used the fact that for this

theory R2/α′ =
√
λ.

In a field theory the entanglement entropy is always divergent because there are too

many degrees of freedom and we can write

SA = Sdiv + Sfinite. (7.9)

We will consider the entanglement entropy of an infinite rectangular strip (see section 5).

For the case in hand the divergent piece is temperature independent

Sdiv =
1

2π
N2

(

L

a

)2

. (7.10)

Where we have used the AdS/CFT dictionary to write R3/4G
(1+4)
N = N2/2π. At low

temperature (T l ≪ ~), the finite part is given by (see equation (5.19))

Sfinite = −N2(0.051)

(

L

l

)2
[

1− (1.764)

(

πT l

~

)4

+O
(

πT l

~

)8
]

. (7.11)

And at high temperature (T l ≫ ~), following equation (5.27) we obtain

Sfinite =
π2N2

2~3

[

V T 3 − (0.106)~AT 2 − Eent
2π

√

3

2
~AT 2e−

√
6πT l/~ + . . .

]

(7.12)
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Figure 5. Variation of Sfinite, the finite part of the entanglement entropy (in the units of N
2
L

2

2π
)

of an infinite rectangular strip with T l for the 4-dimensional N = 4 SYM theory. The solid black

line represents the exact numerical result. Blue and red lines represent the two-point functions

computed using low and high temperature approximations, respectively.

where, Eent = 1.174, V = lL2 is the volume of the rectangular strip and A = 2L2 is the

area. Note that the leading behavior is consistent with the observation of [48].

8 Conclusions

In this article, we have studied the high and low temperature behavior of some non-local

observables in strongly coupled large-N gauge theories. At low temperature, the leading

term is obviously the zero temperature contribution and the sub-leading terms indicate a

decrease in correlations as the system is heated. At high temperature, the leading contri-

butions come from the near horizon part of the bulk. The full bulk geometry contributes

significantly to the sub-leading terms. We have investigated the contributions from differ-

ent regions of the bulk for the equal time two-point function, rectangular (infinite) spatial

Wilson loop and entanglement entropy of an infinite rectangular strip. In the case of spa-

tial Wilson loops and the entanglement entropy, our calculations suggest that the general

form of the high temperature answer does not particularly depend on the shape. In par-

ticular, it is interesting that at high temperature we observe an area law behavior of the

finite subleading term of the entanglement entropy for both relativistic and non-relativistic

theories. This is consistent with what is expected from Quantum Information Theory

when the two-point function decays [49]; however, the Quantum Information Theory argu-

ment is qualitative and can not be extended easily to non-zero temperature. On the other

hand, mutual information [49] is another important concept in information theory which

is well understood. Techniques developed in this paper can be used to study the behavior
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of mutual information at nonzero temperature [47] for a large class of field theories with

holographic duals.

In forthcoming work we are generalizing this approach to include finite densities. We

also plan to extend our techniques to the analysis of holographic thermalization which

has attracted much attention in recent years [50–56]. An analytic understanding of ther-

malization at different limits can possibly provide new insight into the non-equilibrium

physics.
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A Two-point function: low temperature expansion

At low temperature, rH/rc ≪ 1. From equation (3.13), keeping only few subleading terms,

we get

l =
1

rc

[

2 +

√
πΓ
(

d
2 + 1

)

2Γ
(

d+3
2

)

(

rH
rc

)d

+
3
√
πΓ(d+ 1)

8Γ
(

d+ 3
2

)

(

rH
rc

)2d

+ . . .

]

. (A.1)

Solving this perturbatively we obtain

rc =
1

l

[

2 +

√
πΓ
(

d
2 + 1

)

2Γ
(

d+3
2

)

(

rH l

2

)d

+





3
√
πΓ(d+ 1)

8Γ
(

d+ 3
2

) − πd

8

(

Γ
(

d
2 + 1

)

Γ
(

d+3
2

)

)2




(

rH l

2

)2d

+O
(

rH l

2

)3d


 . (A.2)

In this low temperature limit, equation (3.18) becomes

Lren =2 ln

(

2

rc

)

+

√
πΓ
(

d
2

)

2Γ
(

d+1
2

)

(

rH
rc

)d

+
3
√
πΓ(d)

8Γ
(

d+ 1
2

)

(

rH
rc

)2d

+O
(

rH
rc

)3d

. (A.3)

Now using equation (A.2), we get

Lren = 2 ln (l) +

√
πΓ
(

d
2

)

4Γ
(

d+3
2

)

(

rH l

2

)d

+

(

3
√
πΓ(d)

16Γ
(

d+ 3
2

) − πΓ
(

d
2 + 1

)2

16Γ
(

d+3
2

)2

)

(

rH l

2

)2d

+O
(

rH l

2

)3d

. (A.4)
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Therefore, the two-point function is

〈O(t, x)O(t, y)〉 = 1

l2∆

[

1 + C1
(

rH l

2

)d

+ C2
(

rH l

2

)2d

+O
(

rH l

2

)3d
]

(A.5)

where again l = |x− y| and

C1 = −
√
π∆Γ

(

d
2

)

4Γ
(

d+3
2

) , (A.6)

C2 =
1

64



π∆
(

d2 + 2∆
)

(

Γ
(

d
2

)

Γ
(

d+3
2

)

)2

− 12
√
π∆Γ(d)

Γ
(

d+ 3
2

)



 . (A.7)

B High temperature subleading term

B.1 Two-point function

We have mentioned that at high temperature rc ∼ rH . Now we will try to figure out how

fast rc approaches rH . For large n, the series (3.13) goes as ∼ 1
n (rH/rc)

nd and hence it

diverges for rc = rH . We can isolate the divergent piece from the infinite series (3.13) ,

yielding

l =
1

rc

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] −
√
2√
dn

)

(

rH
rc

)nd

+
2

rc
−

√
2√
drc

ln

[

1−
(

rH
rc

)d
]

.

(B.1)

The infinite series in the last equation now converges even for rc = rH . It is convenient

to write rc = rH(1 + ǫ) for the purpose of solving the last equation. It is very clear from

previous discussions that at high temperature ǫ ≪ 1. Therefore, from the last expression,

we obtain
√
2√
d
ln [ǫd] = −lrH + 2 +

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] −
√
2√
dn

)

+O(ǫ). (B.2)

Solving the last equation for ǫ, at the leading order we get

ǫ = Ed e
−
√

d
2
lrH , (B.3)

where Ed is given by,

Ed =
1

d
exp

[
√

d

2

{

2 +
∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] −
√
2√
dn

)}]

. (B.4)

Now we will compute the next order correction to the high temperature result (3.32).

First we will start with equation (3.30)

Lren =2 ln

(

2

rc

)

+ (rcl − 2) +
∞
∑

n=1

(

1

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

]

(

rH
rc

)nd

.
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We can not yet write rc = rH(1 + ǫ) and do an expansion for small ǫ. The term linear in

ǫ contains an infinite series that does not converge. Therefore, in order to obtain a finite

first order expression in ǫ, we will write the last equation in the following way

Lren = 2 ln

(

2

rc

)

+ (rcl − 2) +
∞
∑

n=1

[

(

1

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] −
√
2

d3/2n2

]

(

rH
rc

)nd

+

√
2

d3/2
Li2

[

(

rH
rc

)d
]

, (B.5)

where, Li is the PolyLog function. We have summed the part of the infinite series that

could diverge in the first oder in ǫ. Now, we can write rc = rH(1+ ǫ) and do an expansion.

In the first order in ǫ we obtain,

Lren = 2 ln

(

2

rH

)

+ (rH l − 2) +

∞
∑

n=1

(

1

nd

)

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

]

− 2ǫ+ rH lǫ− ǫ
∞
∑

n=1

[

Γ
[

1
2 + n

]

Γ
[

1 + nd
2

]

Γ[1 + n]Γ
[

3
2 + nd

2

] −
√
2√
dn

]

+

√
2√
d
(−1 + log(ǫd)) ǫ

+O(ǫ2). (B.6)

In the first line, we have all the terms that contribute in the leading order at high temper-

ature (we will call it Lleading) and in the second line we have all the subleading terms. We

can simplify the second line farther by using equation (B.3)

Lren = Lleading −
√

2

d
ǫ+O(ǫ2). (B.7)

Therefore, using (3.4) we finally obtain

〈O(t, x)O(t, y)〉 = Ad,∆ r2∆H e−∆rH l

[

1 +

√

2

d
∆Ed e

−
√

d
2
lrH + . . .

]

, (B.8)

where Ed is given by equation (B.4) and the dots represent the higher order correction

terms.

B.2 Rectangular Wilson loop

Again we will isolate the divergent part of the series (4.10)

l =
1

2rc

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] − 2√
dn

)

(

rH
rc

)nd

+
2
√
2π3/2

rcΓ(
1
4)

2
− 1√

drc
ln

[

1−
(

rH
rc

)d
]

. (B.9)

It is again convenient to write rc = rH(1 + ǫ) and at high temperature ǫ ≪ 1. Therefore,

from the last expression, we obtain

1√
d
ln [ǫd] = −lrH +

2
√
2π3/2

Γ(14)
2

+
1

2

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] − 2√
dn

)

+O(ǫ). (B.10)
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Solving the last equation for ǫ, at the leading order we get

ǫ = Ewl e
−
√
d lrH , (B.11)

where Ewl is a constant given by,

Ewl =
1

d
exp

[

√
d

{

2
√
2π3/2

Γ(14)
2

+
1

2

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] − 2√
dn

)}]

. (B.12)

Now we will compute the next order correction to high temperature result (4.24). First

we will start with

SNG;ren =
Lrc
πα′

[

−2
√
2π3/2

Γ(14)
2

+
lrc
2

+
1

2

∞
∑

n=1

1

nd− 1

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

]

(

rH
rc

)nd
]

.

(B.13)

Before, we write rc = rH(1+ ǫ) and do an expansion for small ǫ, in order to obtain a finite

first order expression in ǫ, we will write the last equation in the following way

SNG;ren =
Lrc
πα′

[

−2
√
2π3/2

Γ(14)
2

+
lrc
2

+
1

d3/2
Li2

{

(

rH
rc

)d
}

+
1

2

∞
∑

n=1

(

1

nd− 1

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] − 2

d3/2n2

)

(

rH
rc

)nd
]

. (B.14)

Where, Li is the PolyLog function. We have again summed the part of the infinite series

that could diverge at first order in ǫ. Now, we will write rc = rH(1+ǫ) and do an expansion.

At first order in ǫ we obtain,

SNG;ren =
LrH
πα′

[

−2
√
2π3/2

Γ(14)
2

+
lrH
2

+
1

2

∞
∑

n=1

1

nd− 1

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

]

]

+
ǫLrH
πα′

[

−2
√
2π3/2

Γ(14)
2

+ lrH +
1√
d
(−1 + log(ǫd))

−1

2

∞
∑

n=1

(

Γ
[

1
2 + n

]

Γ
[

1
4(3 + nd)

]

Γ[1 + n]Γ
[

1
4(5 + nd)

] − 2

d1/2n

)]

+O(ǫ2). (B.15)

In the first line, we have all the terms that contribute in the leading order at high temper-

ature (we will call it SNG;leading). We can simplify the subleading terms farther by using

equation (B.11)

SNG;ren = SNG;leading −
ǫLrH

πα′
√
d
+O(ǫ2). (B.16)

Therefore, finally we have

SNG;ren =
LrH
πα′

[

Wd +
lrH
2

− 1√
d
Ewl e

−
√
d lrH + . . .

]

. (B.17)
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B.3 Entanglement entropy

We know that at high temperature rc ∼ rH . Now again we will try to figure out how fast

rc approaches rH . For large n, the series (5.10) goes as ∼ 1
n (rH/rc)

nd and hence it diverges

for rc = rH . We can isolate the divergent piece from the infinite series (5.10), obtaining

l =
2

rc

∞
∑

n=1







(

1

1 + nd

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2(d−1)

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

] − 1√
2
√

(d− 1)d n







(

rH
rc

)nd

+
2

rc

√
πΓ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

) −
√
2

rc
√

(d− 1)d
ln

[

1−
(

rH
rc

)d
]

. (B.18)

The infinite series in the last equation now converges even for rc = rH . Analogous to the

last two cases, now it is convenient to write rc = rH(1 + ǫ). It is very clear from previous

discussions that at high temperature ǫ ≪ 1. Therefore, from the last expression, we obtain

√
2

√

(d− 1)d
ln [ǫd] = −lrH +

2
√
πΓ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

)

+ 2
∞
∑

n=1







(

1

1 + nd

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2(d−1)

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

] − 1√
2
√

(d− 1)d n







+O(ǫ).

(B.19)

Solving the last equation for ǫ, at the leading order we get

ǫ = Eent e−
√

d(d−1)/2 lrH , (B.20)

where Eent is a constant given by,

Eent =
1

d
exp





√

d(d− 1)

2







2
√
πΓ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

)

+2
∞
∑

n=1







(

1

1 + nd

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2(d−1)

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

] − 1√
2
√

(d− 1)d n















 .

(B.21)

Now we will compute the next order correction to the high temperature result (5.22).

First we will start with equation (5.21)

Afinite = 2Ld−2rd−2
c





√
πΓ
(

− d−2
2(d−1)

)

2(d− 1)Γ
(

1
2(d−1)

) +
lrc
2

−
√
πΓ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

)

+
∞
∑

n=1

(

1

1 + nd

)(

d− 1

d(n− 1) + 2

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2d−2

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

]

(

rH
rc

)nd


 .

(B.22)
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We will write rc = rH(1 + ǫ) and do an expansion for small ǫ and then we will use equa-

tion (B.20). But before that we should note that the term linear in ǫ contains an infinite

series that does not converge. We will isolate and resum part of the last equation that

could diverge at first order in ǫ, in the following way

Afinite = 2Ld−2rd−2
c





√
πΓ
(

− d−2
2(d−1)

)

2(d− 1)Γ
(

1
2(d−1)

) +
lrc
2

−
√
πΓ
(

d
2(d−1)

)

Γ
(

1
2(d−1)

) +

√

d− 1

2d3
Li2

[

(

rH
rc

)d
]

+

∞
∑

n=1







(

1

1 + nd

)(

d− 1

d(n− 1) + 2

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2d−2

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

] −
√

d− 1

2d3
1

n2







(

rH
rc

)nd


 .

(B.23)

Where, Li is the PolyLog function. Now, we will write rc = rH(1+ ǫ) and do an expansion.

In the first order in ǫ we obtain,

Afinite = lLd−2rd−1
H

[

1 +

(

1

lrH

)

Shigh

]

+ 2Ld−2rd−2
H ǫ



−
√
π(d− 1)Γ

(

d
2(d−1)

)

Γ
(

1
2(d−1)

) +
d− 1

2
lrH +

√

d− 1

2d
(−1 + log(ǫd))

−(d− 1)
∞
∑

n=1







(

1

1 + nd

) Γ
[

1
2 + n

]

Γ
[

d(n+1)
2(d−1)

]

Γ[1 + n]Γ
[

dn+1
2(d−1)

] − 1√
2
√

(d− 1)d n









+O(ǫ2).

(B.24)

In the first line, we have all the terms that contribute in the leading order at high temper-

ature and Shigh is given by equation (5.23). We can simplify the subleading terms farther

by using equation (B.20)

Afinite = lLd−2rd−1
H

[

1 +

(

1

lrH

)

Shigh

]

− Ld−2rd−2
H

√

2(d− 1)

d
ǫ+O(ǫ2). (B.25)

Therefore, finally we have

Afinite = V rd−1
H

[

1 +

(

1

lrH

)

(

Shigh −
√

2(d− 1)

d
Eent e−

√
d(d−1)/2 lrH

)

+ . . .

]

. (B.26)
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