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1 Introduction, motivation and summary

Theories of interacting spin-2 fields have been considered over many years with various

motivations, for example, in [1–6], or more recently in [7–15]. Often, these are formulated

in terms of two metrics, gµν and fµν , with non-derivative interactions. These theories
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generically contain Boulware-Deser ghost instabilities [16]. The bimetric theories that avoid

this problem were written down and proven to be ghost-free in [17, 18]. This was based

on [19–21] that further developed the massive gravity work in [22, 23], as will be briefly

reviewed below. More recently, this was extended to ghost-free theories of many spin-2 fields

in terms of N vielbeins [24], while a formulation in terms of N metrics is given in [25].1

In the ghost-free bimetric theory [17], a priori, the two spin-2 fields gµν and fµν appear

more or less on the same footing. For obvious reasons, eventually we would like to inter-

pret this as a theory of a “massive” spin-2 field interacting with gravity. Furthermore, the

gravity sector of the theory should not show observable deviations from tested aspects of

general relativity. In this paper we consider the issues that arise when using the bimetric

theory to describe a spin-2 field coupled to gravity. The considerations also apply to the

multivielbein/multimetric case.

To focus attention, the ghost-free bimetric theory that we will work with has the form,

S =

∫
d4x
[
m2
g

√−g R(g)+m2
f

√
−f R(f)−2m4√−g V (g−1f , βn)

]
+Sm(g, f, ψm) , (1.1)

with details to be specified later (2.1), (2.2). The particular combination of kinetic and

potential terms renders the theory ghost-free. The seven parameters of the theory are mp,

mf and five βn. The simplest possible “matter” interactions that are also known to be

ghost-free [17], are of the form,

√−gLg(g, ψ) +
√
−f Lf (f, ψ′) . (1.2)

Other forms of matter coupling should be explicitly checked for ghosts. Generic cosmo-

logical and localized solutions in this theory could show large deviations from solutions in

general relativity (GR) although there also exist classes of solutions that are close to GR

spacetimes [26–32].

Below, we will first describe the issues that arise out of interpreting (1.1) as a theory of

a spin-2 field coupled to gravity, and summarize our results. Then we will briefly review the

development of spin-2 theories with emphasis on the importance of the nonlinear methods.

1.1 Issues considered and summary of results

By construction, in (1.1) around flat backgrounds ḡµν = f̄µν = ηµν (that exist for a re-

stricted set of βn), the fluctuations δgµν and δfµν are linear combinations of a massless

spin-2 mode δGµν (2 polarizations) and a massive spin-2 mode δMµν (5 polarizations)

with a Fierz-Pauli mass term [33, 34]. At nonlinear level too, the theory has 7 propagat-

ing degrees of freedom, although in that case the analogue of the decomposition in terms

of mass is not known. An obvious problem is to specify the most general class of back-

grounds around which the theory has well defined massive and massless fluctuations, and

to compute the spectrum as a function of the unrestricted βn.

1In hindsight, it turns out that Chamseddine, Salam and Strathdee in 1978 [5] had a ghost-free bimetric

theory, written in terms of vielbeins and with supersymmetry, although the absence of the BD ghost could

not be demonstrated then.
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To regard (1.1) as a theory of a neutral spin-2 field interacting with gravity, one has

to first identify the gravitational metric, say gGR, in terms of g and f . An important re-

striction is that the standard minimal couplings of gGR to matter, demanded by the weak

equivalence principle, should also be ghost-free. A first guess for gGR, one suggested as far

back as [2], is the nonlinear extension of the massless mode δGµν . But to explicitly check

if this allows for ghost-free matter couplings, one needs an explicit nonlinear expression for

it in terms of g and f . The other obvious fall back options are g or f . While not mass

eigenstates, these have ghost-free matter couplings.

Having identified a gravitational metric, the next task is to verify that the theory has

parameter space regions where the solutions for gGR are close enough to GR solutions that

the bimetric theory is not immediately ruled out on observational grounds. For this, if

possible, one would like to have some criteria or quantity to parameterize deviations of

the bimetric theory from GR. In this paper we consider these issues and the results are

summarized below.

Proportional backgrounds and general mass eigenstates. To obtain the mass spec-

trum, we consider the most general class of bimetric backgrounds around which a massive

mode with a well defined Fierz-Pauli mass term exists. These are the proportional back-

grounds f̄µν = c2ḡµν , where c is determined by the parameters of the theory. They coincide

exactly with solutions in general relativity with a cosmological constant, and always exist

as bimetric vacuum solutions without fixing the parameters of the theory, as long as real so-

lutions for c exist. Flat space solutions require fixing one of the seven parameters by setting

the cosmological constant to zero. The solutions also exist in the presence of sources, as long

as the sources of the g and f equations of motion satisfy m2
gT̄

f
µν = m2

f T̄
g
µν . This constraint

is not natural, but shows that deviations from it drive bimetric solutions away from GR

solutions in a generic sense (although it is still possible to get isolated GR type solutions).

Considering fluctuations around f̄µν = c2ḡµν backgrounds, we obtain the most general

expression for the Fierz-Pauli mass, as well as the expressions for the massless mode δGµν
and the massive mode δMµν .

Nonlinear modes. We give a procedure to systematically obtain nonlinear combinations

of f and g that reduce to δG and δM at the linear level. Although there are infinitely many

such combinations we identify one, Gµν , as the nonlinear extension of the massless mode

and two possible candidates, Mµν and MG
µν , for the nonlinear extension of the massive

mode, based on reasonable criteria. These seem natural and are simple enough that the

expressions relating them to g and f are invertible. The vanishing of the nonlinear massive

mode,M = 0, is in one-to-one correspondence with occurrence of proportional backgrounds

f̄µν = c2ḡµν . Hence deviations of the VEV of M from 0 are driven by the matter couplings

of the spin-2 fields and parameterize generic deviations of the bimetric theory from GR. If

these nonlinear modes have a relevance directly at the nonlinear level is not yet answered.

Identification of gravity. Having a nonlinear massless mode G in hand, we can test

the conjecture that it should be identified as the gravitational metric. Through an ADM

analysis we show that within the bimetric framework, the standard minimal coupling of
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Gµν to matter is not ghost-free. This rules out that particular Gµν as a candidate for the

gravitational metric.

Another option is gµν (or equivalently fµν since the formulation is symmetric) which

has a ghost-free matter coupling. In particular, in the limit mg ≫ cmf , we have δG→ δg

and δM → δf . For the nonlinear fields too, in the limit, mg ≫ mf , G → g, although in

this case M has no particular limit. Hence, if one identifies gµν as the gravitational metric,

then in the weak gravity limit, gµν will mostly consist of the massless mode. An obvious

consequence is that in the presence of massive spin-2 fields, metric perturbations created

by a matter source will also have a small massive component.

Now one can regard the pair g,M as the basic variables and express the bimetric action

in terms of them. Although the kinetic part in terms ofM is more involved than the original

form in terms of f , the potential is now a finite polynomial in M and does not involve a

square-root matrix. Also as pointed out earlier, couplings that drive M away from M̄ = 0,

also drive the solutions for the metric g away from GR. Subsequently, from the ghost-free

couplings of fµν to matter, we obtain couplings between the massive field M and matter.

Multi spin-2 fields coupled to gravity. Finally we extend the above considerations

to multi spin-2 theories, as theories of N − 1 massive spin-2 fields coupled to gravity.

1.2 Background to bimetric theories

The BD ghost was first observed in massive gravity [16] which corresponds to the bimetric

theory with one metric held fixed, say, fµν = ηµν . It led to the speculation that such

ghost-free theories may not exist. The major breakthrough came with the work of de

Rham, Gabadadze and Tolley [22, 23], who obtained a potentially ghost-free nonlinear

massive gravity action for fµν = ηµν , the dRGT model, on which subsequent developments

are based. The construction was based on a “decoupling limit” analysis (developed for

the purpose [12, 35]) which guaranteed the absence of ghost in that limit. In the pertur-

bative approach, it becomes difficult to extend the analysis beyond the decoupling limit,

although [23] outlined an argument to show the absence of ghost in the Hamiltonian [36]

formalism to quartic order in hµν = gµν − ηµν .

To proceed any further, one had to first insure that the BD ghost is indeed absent in

the dRGT model for a nonlinear gµν . One also needs to find out if the more natural case

of massive gravity with a non-flat reference metric, fµν 6= ηµν , is ghost-free. It turns out

that the “decoupling limit”, wielded powerfully in [22, 35], is not adequate to address these

situations, despite some claims to the contrary in [37] and some of its citations.2

2The decoupling limit analysis does not extend beyond the decoupling limit for two obvious reasons:

(1) It involves working with Stückelberg fields φa, introduced via fµν = ∂µφ
a∂νφ

bηab, rather than with

the metric gµν . The φa mix only with the 4 “gauge” modes of gµν under coordinate transformations and

learn about the potential BD ghost through them. But the BD ghost mostly resides in the remaining 6

components of the metric and cannot be completely transferred to the Stückelberg fields by coordinate

transformations (otherwise, ghost fluctuations would be expressible as ∇(µξν) and would not contribute to

interactions between conserved sources). Similarly, it is incorrect to argue that the number of independent

modes in gµν can be reduced to 2 simply by coordinate transformations, by citing the analogy with GR. In

GR this counting is done on-shell and holds only for the solutions of the massless Einstein’s equations. Such
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The nonlinear analysis that can answer the above questions was developed in [20, 21]

based on the formalism of [19]. In [20], for the case fµν = ηµν , it was proven that the dRGT

model was ghost-free at the nonlinear level. This conclusively established the absence of the

BD ghost for the first time. The theory with generic non-flat fµν was considered first in [21]

and also proven to be ghost-free nonlinearly. This generic fµν theory provides the most

natural setup for discussing massive gravity. But from the point of view of this paper, it

describes rather a massive spin-2 field gµν in a non-dynamical gravitational background fµν .

Finally, [17] obtained the ghost-free bimetric theory for two interacting spin-2 fields gµν
and fµν with the correct kinetic structure, by exploiting the symmetries of the interactions.

An issue raised in [39] about the existence of a secondary constraint that was needed for

the consistency of the formalism was cleared up in [18]. In this paper we will work mostly

with this Hassan-Rosen bimetric theory. For related work, see [40–52].

The rest of the paper is organized as follows. In section 2, we review the ghost-free

bimetric theory and discuss the proportional background solutions. In section 3, we obtain

the linear mass eigenstates and compute the general expression for the FP mass. We also

discuss the weak gravity limit. In section 4, we obtain the nonlinear massless and massive

spin-2 modes and show that the massless mode does not have ghost-free minimal matter

couplings. In section 5, we express the bimetric action in terms of g and the massive mode

M and discuss some of its features. We also discuss the coupling of the massive spin-2

field M to matter. In section 6, the discussion is extended to multimetric theories. Section

7 contains a brief discussion of the results and some comments. Appendix A summarizes

some useful equations used in the text. Appendix B describes a rescaling that render the

action more symmetric. Finally appendix C contains the details of the bimetric action in

terms of the nonlinear massless and massive modes G and MG.

2 Proportional-background solutions in bimetric theory

Generic solutions of the bimetric theory have little resemblance to solutions in general

relativity. In this section we concentrate on a particular class of bimetric background so-

lutions that are indistinguishable from backgrounds in general relativity. Although very

restrictive, this helps in identifying bimetric theories that are close to general relativity.

The solutions are also useful in analyzing the linear and nonlinear mass spectrum of the

bimetric theory. We begin with a review of the ghost-free bimetric action.

a counting does not hold for the massive gravity equations. It has also been argued that one can transform

gµν to ηµν by a coordinate transformation and then apply the decoupling limit. This argument ignores

the elementary fact that one cannot choose a locally flat coordinate systems over the entire spacetime.

Obviously, the flat space action and equations of motion are not the same as the curved space ones. Thus,

away from the decoupling limit it is not enough to study the φa alone, ignoring gµν and the potential ghost

within it, by invoking the above arguments. (2) So far, it is not obvious how to obtain a decoupling limit for

a generic non-flat fµν . For example, see [38] for a recent attempt to find a decoupling limit for a de Sitter fµν .
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2.1 Review of the ghost-free bimetric theory

Here we briefly review the ghost-free bimetric action and equations of motion. The ghost-

free bimetric action, excluding matter couplings, is [17],

Sgf =

∫
d4x

[
m2
g

√
− det g Rg +m2

f

√
− det f Rf − 2m4

√
− det g V

(√
g−1f ; βn

)]
. (2.1)

The potential V is given by,

V (X;βn) =
4∑

n=0

βn en (X) , (2.2)

where, en(X) are elementary symmetric polynomials of the eigenvalues of the matrix X. In

4 dimensions they can be expressed as,

e0 = 1, e1 = [X], e2 =
1

2
([X]2 − [X2]), e3 =

1

6
([X]3 − 3[X][X2] + 2[X3]), e4 = det(X) ,

(2.3)

where, [ ] denotes the matrix trace. This potential V was first suggested, for fµν = ηµν
in [22, 23] as the unique candidate for a ghost-free massive gravity, based on a “decou-

pling limit” analysis. That it was ghost-free nonlinearly was proven in [20]. The theories

with general and dynamical fµν where first considered and shown to be ghost-free in [17–

19, 21]. The square root matrix X =
√
g−1f in V is necessary to avoid the ghost, but also

complicates the analysis.

The independent parameters in the action (2.1) are the five dimensionless βn and the

two “Planck masses”, mg and mf . The mass scale m is degenerate with the βn and can

be expressed in terms of the other mass parameters. Integrating out matter fields coupled

to the g and f metrics respectively, results in vacuum energy contributions to β0 and β4.

The remaining βn measure the strength of nonlinear interactions between the two metrics.

An important property of V is,
√
− det g V (

√
g−1f ;βn) =

√
− det f V (

√
f−1g ;β4−n) . (2.4)

Then, the action (2.1) is symmetric under the simultaneous replacements,

g ↔ f , βn → β4−n , mg ↔ mf . (2.5)

The gµν and fµν equations of motion with generic “matter” couplings are [19],

Rµν(g)−
1

2
gµνR(g) +

m4

m2
g

V g
µν =

1

m2
g

T gµν , (2.6)

Rµν(f)−
1

2
fµνR(f) +

m4

m2
f

V f
µν =

1

m2
f

T fµν . (2.7)

Here, the stress-energy tensors are defined by T gµν = −(1/
√
g) δSm/δg

µν , and similarly for

T fµν , where Sm is the matter action added to Sgf as in (1.1). The interaction contributions

V g
µν and V f

µν are explicitly given by,

V g
µν =

3∑

n=0

(−1)nβn gµλ Y
λ
(n)ν(

√
g−1f) , V f

µν =
3∑

n=0

(−1)nβ4−n fµλ Y
λ
(n)ν(

√
f−1g) (2.8)

– 6 –
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where the matrices Y µ
(n)ν(X) can be expressed as,

Y(n)(X) =

n∑

r=0

(−1)r Xn−r er(X). (2.9)

The two expressions in (2.8) are related through the replacements (2.5). In this sense, the

bimetric theory treats gµν and fµν on the same footing.

The usual Bianchi identities of the curvature tensors together with ∇µ
g,fT

g,f
µν = 0, imply

the Bianchi constraints, which are independent of the scales mg and mf ,

∇µ
gV

g
µν = 0 , ∇µ

fV
f
µν = 0 . (2.10)

2.2 Proportional background solutions

Generic solutions of the bimetric theory are very different from solutions in general relativ-

ity. Here we consider a particular class of bimetric solutions ḡµν and f̄µν , sourced by T̄ gµν
and T̄ fµν , which coincide with solutions for the metric in GR. These are solutions of the type3

f̄µν = c2ḡµν , (2.11)

and exist only if T̄ fµν ∝ T̄ gµν . This restriction on the matter sources is not always realistic,

but such solutions are motivated by other considerations discussed at the end of this section.

For the ansatz (2.11), the Bianchi constraints (2.10) imply that c is a constant.

Then (2.6) and (2.7) reduce to two copies of Einstein’s equations for the curvatures of ḡµν ,

R̄µν −
1

2
ḡµνR̄+ Λg ḡµν =

1

m2
g

T̄ gµν , R̄µν −
1

2
ḡµνR̄+ Λf ḡµν =

1

m2
f

T̄ fµν , (2.12)

where the cosmological constants are given by,

Λg=
m4

m2
g

(
β0 + 3cβ1 + 3c2β2 + c3β3

)
, Λf =

m4

m2
fc

2

(
cβ1 + 3c2β2 + 3c3β3 + c4β4

)
. (2.13)

Obviously, the equations are consistent only if,

(Λg − Λf ) ḡµν =
(
m−2
g T̄ gµν −m−2

f T̄ fµν

)
. (2.14)

The vacuum energy contributions to T̄ gµν and T̄ fµν can always be absorbed in β0 and β4.

Hence, the right-hand side can be assumed to contain no piece proportional to ḡµν . Then,

for localizable sources, each side of the above equation must vanish separately,4

Λg = Λf , T̄ fµν =
m2
f

m2
g

T̄ gµν . (2.15)

Later it will be seen that (2.15) is also crucial for the existence of spin-2 massive and

massless eigenstates.

3For non-proportional metrics, GR type solutions exist for certain choices of βn, but for specific metric

ansatz, say the FRW ansatz [28, 29].
4If Λg 6= Λf , then (2.12) and (2.14) would lead to a complicated differential equation for the Tµν ’s.
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The equation Λg = Λf determines the constant c in terms of the parameters of the

theory, mg, mf and the five βn, through the quartic equation,

α2β3c
4 + (3α2β2 − β4)c

3 + 3(α2β1 − β3)c
2 + (α2β0 − 3β2)c− β1 = 0 (2.16)

where

α =
mf

mg
. (2.17)

On solving the above equation for c and substituting in Λg, one obtains the cosmological

constant in terms of the parameters of the theory.

To get a feeling for the behaviour of c we can solve this equation for the simple case

of the “minimal” bimetric model, corresponding to β1 = β3 = 0. Then (2.16) gives,

c2 =
3β2 − α2β0
3α2β2 − β4

, (β1 = β3 = 0) , (2.18)

showing that, in general, c2 could have any value depending on β0, β2 and β4 . This in

turn gives the cosmological constant,

Λg = Λf =
m4

m2
g

9β22 − β0β4
3α2β2 − β4

, (β1 = β3 = 0) . (2.19)

The scale m4 can be eliminated in terms of the Fierz-Pauli mass of the massive excitation

given in the next subsection.

Note that the most general set of parameters for which the theory admits flat space as

a solution is obtained from Λg = 0, after solving for c. This condition can be solved for one

of the βn, leaving the rest free. In contrast, specifying flat space through f̄ = ḡ = η and

Λg = Λf = 0 will eliminate two of the βn leading to a smaller parameter space. For exam-

ple, in the minimal case considered above, theories that admit flat space as a background

are parameterized by 9β23 = β0β4, whereas forcing c = 1 gives the smaller parameter space

β0 = β4 = −3β3.

2.3 Discussion

If one interprets one of the two metrics, say ḡµν , as the gravitational metric coupled to

ordinary matter T̄ g with Planck mass mg, then one recovers all classical backgrounds of

GR. However, the requirement T̄ fµν = α2T̄ gµν imposed by these solutions is not realistic

(except possibly for α = 1 such that the two metrics are coupled to the same matter). In

spite of this such backgrounds are motivated by other considerations.

(1) The ansatz (2.11) results in the most general class of bimetric backgrounds for which

there exist a well-defined massive spin-2 fluctuation δMµν with a Fierz-Pauli struc-

ture,

mFP

√
− det ḡ

[
δMµ

νδM
ν
µ − (δMµ

µ)
2
]
, (2.20)

along with a decoupled massless spin-2 fluctuation δGµν , as will be discussed below.

The explicit expressions help extend the linear mass eigenstates δM and δG to non-

linear fields M and G. The c 6= 1 case helps in identifying G. Finally, we interpret

the bimetric theory as a nonlinear theory of a massive spin-2 field coupled to gravity.

– 8 –
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(2) To be consistent with observations, the solutions for the nonlinear field that is iden-

tified with the gravitational metric must be very close to the corresponding solu-

tions in GR. More specifically, corrections to the GR solutions coming from the non-

gravitational sector must be strongly suppressed in the weak gravity limit. These

issues are difficult to investigate nonlinearly. Thus as a first step, one can consider

perturbations around backgrounds of the type (2.11), sourced by independent δT g

and δT f to probe parameter regions that suppress deviations from GR. Later we will

also see that the nonlinear massive field defined with respect to these backgrounds

probes deviations from GR.

3 Linear massive and massless modes

In Minkowski backgrounds ḡ = f̄ = η, where the concept of mass is well defined through

the Poincaré group, the spectrum of bimetric theory is known to consist of a massive

and a massless spin-2 fluctuation [2, 17]. Such backgrounds exist only after two out of

the five βn parameters are fixed. Here we consider the spectrum of linear fluctuations in

the theory with arbitrary βn. In non-flat backgrounds we define a massive fluctuation as

one with a Fierz-Pauli mass term (2.20). In bimetric theory, such mass terms arise only

around proportional backgrounds f̄µν = c2ḡµν considered above. For independent source

fluctuations δT gµν and δT fµν the expressions help in characterizing deviations from GR. The

linear mass eigenstates are extended to nonlinear fields in the next section.

3.1 Massive and massless modes in the linearized theory

Consider canonically normalized fluctuations around the f̄µν = c2ḡµν backgrounds,

gµν = ḡµν +
1

mg
δgµν , fµν = c2ḡµν +

c

mf
δfµν . (3.1)

Then to linear order,

(
√
g−1f)ρν = c δρν + δSρν , where, δSρν =

1

2mf
ḡρµ

(
δfµν − c

mf

mg
δgµν

)
. (3.2)

Expanding the interaction contributions (2.8) and using the results in appendix (A) gives

the linearized equations,

Ēρσµν δgρσ + Λgδgµν −
m4B

mg
ḡµρ (δS

ρ
ν − δρνδS

σ
σ) =

1

mg
δT gµν , (3.3)

Ēρσµν δfρσ + Λfδfµν +
m4B

cmf
ḡµρ (δS

ρ
ν − δρνδS

σ
σ) =

1

mf
δT fµν , (3.4)

where,

B =
1

c
(cβ1 + 2c2β2 + c3β3) . (3.5)

Ē is given in (A.7). By taking appropriate linear combinations, (3.3) and (3.4) can

be easily decoupled in terms of a massive (δMµν ∼ ḡµλδS
λ
ν) and a massless δGµν ∼

– 9 –
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δgµν + c (mf/mg)δfµν spin-2 fluctuation. However, this is possible only if Λg = Λf , which

was also required on other grounds. Finally, the canonically normalized massless and mas-

sive fluctuations become,5

δGµν =
1√

c2α2 + 1
(δgµν + cα δfµν) , (3.6)

δMµν =
1√

c2α2 + 1
(δfµν − cα δgµν) , (3.7)

where α =
mf

mg
. The corresponding massless and massive equations are,

Ēρσµν δGρσ + ΛgδGµν =
δT

(g)
µν + c2 δT

(f)
µν

mg

√
c2 α2 + 1

, (3.8)

Ēρσµν δMρσ + ΛgδMµν +
m2

FP

2
(δMµν − ḡµν ḡ

ρσδMρσ) = c
δT

(f)
µν − α2δT

(g)
µν

mf

√
c2α2 + 1

. (3.9)

The Fierz-Pauli mass above is parameterized as,

m2
FP = m4(cβ1 + 2c2β2 + c3β3)

(
1

c2m2
f

+
1

m2
g

)
. (3.10)

From (3.8) it is evident that, in the background metric ḡµν , the massless fluctuation

δGµν couples to matter with the effective Planck mass,

mp = mg

√
c2α2 + 1 =

√
m2
g + c2m2

f . (3.11)

which must be large for gravity to be weak. This can be achieved in different ways with

different consequences. It is also evident that at the linear level, δG behaves like the metric

perturbation in GR. Deviations from GR emerge mainly at the nonlinear level.

Away from proportional backgrounds, the fluctuations generically do not have a Fierz-

Pauli mass term. The analysis is further complicated by the fact that in such cases,
√
g−1f

does not have a simple expansion.

3.2 Weak gravity limit

In GR, gravity is described in terms of a massless spin-2 field minimally coupled to matter,

as required by the weak equivalence principle. Considering the observational evidence in

support of GR, it is natural to assume that in interacting spin-2 theories too, the gravita-

tional interactions must be associated predominantly, if not exclusively, with the massless

spin-2 mode of the theory. The validity of the weak equivalence principle then requires

that this gravitational mode must couple to matter in more or less the same way that the

gravitational metric couples to matter in GR. This simple observation leads to the following

possibilities.

5The canonical normalization is determined from the action requiring that δgĒδg+ δf Ēδf = δM ĒδM +

δGĒδG. This value will change if Ē on the r.h.s. is computed with the background metric Ḡ instead of ḡ.
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(1) Let’s assume that the massless mode δGµν can be extended to a nonlinear field Gµν .

If Gµν could directly couple to matter in a ghost-free manner, using the same minimal

coupling prescription as in GR, then such matter couplings would not directly violate

the weak equivalence principle. In this case, one should express the operator Ēρσµν
in (3.8) in terms of the background Ḡµν which will be proportional to ḡµν , giving,

Ēρσµν (ḡ) = a(c,mf ,mg) Ēρσµν (Ḡ). Then the Planck mass is amp which must be large.

Later we identify a nonlinear massless mode Gµν and show that it cannot couple to

matter in a ghost-free way. In the absence of consistent direct couplings of Gµν to

matter, a different approach is needed.

(2) Now consider setups where matter fields can directly couple only to the metrics gµν or

fµν (as in (1.2)), but not to Gµν . This would be a natural way of accommodating the

weak equivalence principle only if gµν or fµν described gravity. On the other hand,

empirically, gravity is well described by a massless spin-2 field, which in the bimetric

setup is Gµν . These two requirements can be reconciled if the massless mode Gµν is

dominated by gµν or fµν . Here we consider the possibility that Gµν is mostly made

up of gµν .
6 The limits in which this holds can be identified at the linearized level

from (3.6), where, δGµν ∼ δgµν holds in the limit

mg ≫ cmf . (3.12)

This can be achieved by a small mf or a small c of both. Whether this choice is

natural or not, will not be addressed here. Also in this limit, the massive fluctuation

δMµν is mostly saturated by fµν . The strength of δMµν interactions depend on the

relative values of c and mf . Following this reasoning, in section 5 we consider the

nonlinear action in terms of gµν and the nonlinear massive mode Mµν .

4 The nonlinear massless and massive modes

Now we consider extending the mass eigenstates of linearized bimetric theory to nonlinear

fields. The ADM analysis of the bimetric action shows that even nonlinearly the theory

has seven propagating modes [17]. But only their linear fluctuations around f̄µν = c2ḡµν
backgrounds combine into well defined massless and massive spin-2 states. Here we explore

the nonlinear extensions of these mass eigenstates. In a theory with general covariance,

spin-2 fields are minimally represented by rank-2 symmetric tensors. Below we find such

tensors that reduce to the mass eigenstates (3.6) and (3.7) at the linear level. Since this

choice is not unique, one can also invoke simplicity as a criterion. These are the only

criteria employed here. We have not considered if the nonlinear modes also propagate two,

respectively, five degrees of freedom at the nonlinear level.

6Equally well, one could replace gµν by fµν and c by 1/c.
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4.1 The nonlinear massless spin-2 field G

The nonlinear massless mode is a symmetric rank-2 tensorGµν that reproduces the massless

fluctuation δG (3.6) at the linear level. To determine Gµν we work with the (1, 1) tensor,

Sµν =
(√

g−1f
)µ
ν
. (4.1)

First note that
√
g−1f = g−1(

√
fg−1) g. This follows on writing

√
g−1f =√

1+ (g−1f − 1) and formally expanding the square-root. We then have the important

property,7

gS = ST g . (4.2)

Now, let us start with a general symmetric (0, 2) tensor Gµν(g, f) and, in it, replace f

by S through f = gS2. In general, Gµν could contain powers of Sµν , (S−1)µν , (ST )
µ
ν and

(S−1T ) µν contracted with gµν in the right way to produce a (0, 2) tensor. Then using (4.2)

it is easy to see that general covariance alone restricts Gµν to the form,

G = gΦ(S) , (4.3)

where Φµν is a matrix function of the matrix Sµν and its inverse, but not its transpose. On

the proportional backgrounds f̄ = c2ḡ, where S̄µν = c δµν , this becomes,

Ḡ = ḡ Φ̄ ≡ ḡΦ(S̄ = c1) . (4.4)

Clearly, Φ̄ = φ(c)1 for a scalar φ(c). Φ̄(S̄) depends on c in two ways: through an explicit

dependence of Φ on c (e.g., through normalizations), and through S̄. If these two types of

contributions could be disentangled, Φ could be uniquely reconstructed from Φ̄.

Let us now consider fluctuations Gµν = Ḡµν+δG
′
µν . These can be computed using the

canonically normalized variables of the previous section. But to ensure explicitly that the

equations depend on c only through S̄ and not through normalizations, here we work with,

gµν = ḡµν + δg′µν , fµν = f̄µν + δf ′µν , δSµν =
1

2
ḡµλ
(
1

c
δf ′λν − c δg′λν

)
, (4.5)

Then the fluctuation of the nonlinear massless field becomes,

δG′
µν = δg′µλΦ̄

λ
ν + ḡµλ

∂Φλν
∂Sαβ

∣∣∣
S̄
δSαβ + · · ·

= δg′µλΦ̄
λ
ν −

c

2
ḡµλ

∂Φλν
∂Sαβ

∣∣∣
S̄
ḡασδg′σβ +

1

2c
ḡµλ

∂Φλν
∂Sαβ

∣∣∣
S̄
ḡασδf ′σβ + · · · (4.6)

On the other hand, in terms of (4.5) the massless fluctuation (3.6) becomes,

δG′
µν = A

(
δg′µν + α2δf ′µν

)
, (4.7)

7From the above properties of Sµ
ν it follows that, f = STgS. Hence, S is a local transformation between

fµν and gµν , or a generalized vielbein. Further, in terms of S the proportional backgrounds (2.11) are char-

acterized by the background value S̄µ
ν = c δµν which is invariant under general coordinate transformations.

– 12 –



J
H
E
P
0
5
(
2
0
1
3
)
0
8
6

with a normalization A. Comparing the coefficients of the fluctuations in (4.6) and (4.7)

gives two equations for Φ as a function of S, evaluated at S̄ = c1,

A−1 Φ̄λν = (1 + α2 c2) δλν , A−1 ∂Φ
λ
ν

∂Sαβ

∣∣∣
c1

= 2c α2δλαδ
β
ν . (4.8)

The right-hand sides acquire their c-dependence only through S̄ = c1, and not normal-

izations. It is then natural to assume that A−1Φ(S) depends on c only through S̄ = c1.

This leads to the unique solution,

Φ = A (1+ α2 S2) , (4.9)

obtained from the first equation on replacing c by S. It gives the nonlinear massless mode,

Gµν = A (gµν + α2 fµν) . (4.10)

Without loss of generality we can set A = 1. The fluctuations of this mode can be

canonically normalized either with respect to ḡ, to give (3.6), or with respect to Ḡµν .

Other nonlinear extensions of δGµν can be found if A−1Φ(S) is allowed to have an

explicit dependence on c, besides that coming from S̄. To find these note that,

δ(Sn)λν
δSαβ

∣∣∣
c1

= n cn−1 δλαδ
β
ν . (4.11)

Then general c-dependent solutions of (4.8) can be written as,

Φ = A

(
a0 + 2α2

∑

n>0

an c
2−n Sn

)
, with a0 + 2α2c2

∑

n>0

an = 1 + α2c2 ,
∑

n>0

nan = 1 .

(4.12)

Of course, an infinite number of such solutions exists, the one with the lowest power

of S being A−1Φ = 1 − α2c2 + 2α2cS. A non-polynomial solution of (4.8) is A−1Φ =

(1 + α2c4S−2)−1, giving the massless mode G−1 = g−1 + α2c4f−1.

Of all these, the c-independent solution (4.10) gives the simplest invertible relation

between the nonlinear modes and the original bimetric variables g and f . Note that to

identify this unique c-independent mode, it was important to work with c 6= 1 backgrounds.

Otherwise, at c = 1, this criterion is not useful.

4.2 The nonlinear massive spin-2 field M

From the outset it is evident that the nonlinear massive field is closely related to

Sµν =
(√

g−1f
)µ
ν
. This is hinted by the linear equations (3.2), (3.7) and also by the fact

that the mass potential V in (2.2) is a polynomial in S. Sµν is a (1, 1) tensor but it can

be brought to a symmetric (0, 2) form in more than one way and the nonlinear extensions

of the massive spin-2 fluctuation are related to these (0, 2) forms. Here we consider two

nonlinear extensions, Mµν and MG
µν , before discussing the general case.

In terms of Sµν ≡ gµλS
λ
ν , equation (4.2) is the symmetry condition,

Sµν = Sνµ . (4.13)
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The fluctuation δ(Sµν) = cδgµν+ c̃δMµν is a mixture of δg and the massive mode δM (3.7).

Now it is obvious that a nonlinear massive mode can be written as,

Mµν = B
(
gµλS

λ
ν − cgµν

)
, (4.14)

allowing for a normalization B. On proportional backgrounds, M̄µν = 0. This is a natural

vacuum value for a non-gravitational spin-2 field in the sense that it does not break general

covariance in its vacuum. Fluctuations around this background are the massive modes

δM (3.7) with a Fierz-Pauli mass term.8 The condition gS = ST g implies that Sµν and

gµν are not independent fields, whereas Mµν and gµν can be regarded as independent.

A different nonlinear extension of the massive fluctuation is obtained by using

Gµν (4.10) instead of gµν ,

MG
µν =

B

A(1 + α2c2)

(
GµλS

λ
ν − cGµν

)
. (4.15)

The normalization is fixed such that δMG = δM . It is easier to invert the relations and

express (g, f) in terms of (G,MG) rather than in terms of (G,M). For more on this see

appendix C.

In general, the massive fluctuation δM has many possible nonlinear extensions. More

nonlinear extensions can be obtained by following a procedure similar to the massless case.

By general covariance alone, any matrix function M of g and f can be written as

M = gΨ(S) . (4.16)

The fluctuations of this field,

δMµν = δg′µλΨ̄
λ
ν + ḡµλ

∂Ψλ
ν

∂Sαβ

∣∣∣
S̄
δSαβ + · · · (4.17)

should be equated to the massive fluctuation (3.7) with arbitrary normalization B,

δMµν = B ḡµλ δS
λ
ν . (4.18)

This gives,

B−1Ψ̄ = Ψ(c1) = 0 , B−1∂Ψ
λ
ν

∂Sαβ

∣∣∣
S̄
= δλαδ

β
ν . (4.19)

Again the c-dependence of the right-hand sides comes only from S̄ and not from normal-

izations. However, now we cannot assume that B−1Ψ depends on S and not explicitly on c

since then Ψ̄(c) = 0 would imply Ψ(S) = 0, identically. At a least a minimal c-dependence

is needed to get a nonlinear massive mode with a vanishing background value. The solution

with the simplest and most natural c dependence is the one corresponding to (4.14),

Ψλ
ν = B

(
Sλν − c δλν

)
. (4.20)

8A note on notation: for c = 1 and fµν = ηµν , g
−1M coincides with theK =

√

g−1η−1 in terms of which

the dRGT model is written. Kµ
ν was engineered to produce the massive mode around flat space for c = 1,

while M represents the massive mode around any background for which a Fierz-Pauli mass can be written.
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More general solutions of equations (4.19), involving higher powers of S, are given by,

Ψ = B
∑

n≥0

bn c
1−n Sn , with

∑

n≥0

bn = 0 ,
∑

n≥1

n bn = 1 . (4.21)

For example, one can check that the massive mode MG (4.15) is a solution to the above

equations by reading off the bn from B−1MG = (1 + c2α2)−1 g (−c+ S − cα2S2 + α2S3).

4.3 Absence of ghost-free matter coupling of the massless mode G

In the previous subsection we obtained a nonlinear generalization Gµν (4.10) of the massless

fluctuation of bimetric theory. It is natural to ask if Gµν could be consistently coupled to

matter in the standard way, and be interpreted as the gravitational metric. As in GR, such

matter couplings must be consistent with the weak equivalence principle. Here we show

that minimal couplings of Gµν are not ghost-free. The alternative, then, is to regard gµν
as the gravitational metric and rely on the weak gravity limit discussed earlier.

Consider standard minimal couplings of Gµν to matter, for example, to a scalar field φ,

L(m,G) = −
√
−G Gµν∂µφ∂νφ . (4.22)

To see if such ghost-free couplings exist in the bimetric theory, one can perform a

Hamiltonian (ADM) analysis [36]. We introduce the following notation for the 3 + 1

decomposition of G,

Gµν =

(
−K2 +K lKl Kj

Ki
3Gij

)
, (4.23)

where Ki =
3 GijK

j . Standard matter couplings of Gµν such as (4.22), when written in

the Hamiltonian form using canonically conjugate variables, are linear in K and Ki,

L(m,G) = L̃+KC̃ +KiC̃i . (4.24)

If the dynamics of Gµν were described by the Einstein-Hilbert action,
√
−GRG ∼

Πij ∂t
3Gij + KC + KiCi, then K and Ki would be Lagrange multipliers in the full

theory. Their equations of motion would result in four constraints that, along with

gauge symmetries, would eliminate the ghost and leave two propagating modes for Gµν .

However, in bimetric theory, the nonlinear action expressed in terms of Gµν and M (or

MG) is complicated and it is not convenient to carry out the ghost analysis in terms

of the ADM variables of Gµν . Instead, since the bimetric analysis is already known in

terms of the ADM variables for g and f [17], the strategy here is to analyze the matter

coupling (4.24) in terms of these variables.

To this end, we introduce the 3 + 1 decompositions of g and f ,

gµν =

(
−N2 +N lNl Nj

Ni
3gij

)
, fµν =

(
−L2 + LlLl Lj

Li
3fij

)
. (4.25)
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The indices on Ni and Li are raised using the inverses of 3gij and 3fij , respectively. It is

known that in terms of new variables ni that parameterize N i − Li through (for details

and the form of the matrix D, see [17, 21]),

N i = Li + Lni +NDi
kn

k , (4.26)

the bimetric theory (2.1) (with no matter couplings) takes the form [17],

L = m2
eff

[
πij∂tgij + pij∂tfij +NCg + LCf + LiR

i
gf

]
. (4.27)

For convenience we use the scaled fields of appendix B, effectively settingmg = mf . πij and

pij are the momenta conjugate to gij and fij . The functions Cg, Cf and Rigf are independent
ofN , L and Li, but depend on ni and the remaining variables. The action has the additional

property that the ni equations of motion are independent of N , L and Li, and determine ni

in terms of the remaining variables. Thus, N , L and Li are five Lagrange multipliers whose

equations, in particular, Cg = 0 and Cf = 0, provide the constraints that render the theory

ghost-free (along with the associated secondary constraints and gauge conditions) [17, 18].

To emphasize, this argument for the absence of ghosts crucially depends on the

possibility of parameterizing the N i in terms of the ni through (4.26). Only then N , L and

Li appear linearly in the action (4.27) and enforce the required constraints. Introducing

standard matter couplings for gµν and fµν individually, does not change this story.9 If,

instead, one couples a combination of g and f to matter, one has to insure that it does

not reintroduce ghosts by destroying the constraints.

Now, we consider the matter coupling of the nonlinear massless mode G = g + f by

adding (4.24) to (4.27). The relevant terms in the action are,

NCg + LCf + LiR
i
gf ++KC̃ +KiC̃i . (4.28)

From the 3 + 1 decompositions of Gµν , gµν and fµν it is easy to see that,

Ki = Ni + Li ,
3Gij =

3gij +
3fij , (4.29)

K2 = N2 + L2 + 3GijKiKj +− 3gijN
iN j − 3fijL

iLj . (4.30)

Already at first glance K is highly nonlinear in N and L which are no longer Lagrange

multipliers. But this may not yet imply a ghost. Note that after the N i have been

expressed in terms of the ni (4.26), we may still carry out a similar reparameterization of

the Li in terms of some li. If this could somehow render (4.28) linear in N and L, then

the theory may still have the constraints to avoid ghosts (although it may propagate more

than seven modes if the Li constraints are lost). But it turns out that K2 given above is

independent of Li, so reparameterizing it does not help.

To see this, simplify the expression forK2 using (4.29) and writing N i = (N i−Li)+Li,

K2 = N2 + L2 + (N i − Li)(N j − Lj)
(
3gij − 3gik

3Gkl 3glj

)
. (4.31)

9Coupling gµν and fµν individually to matter in the standard way, as in (1.2), results in terms of the

form (4.24), now written for the metrics g and f . Adding these to the bimetric action (4.27) simply modifies

Cg, Cf and Ri
gf , but keeps the Lagrange multipliers. Hence the no-ghost argument goes through unmodified.
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Since N i−Li = Lni+NDi
kn

k, in terms of ni, this is independent of Li and has the form,

K2 = c1N
2 + c2L

2 + 2c3LN . (4.32)

For the given c1, c2 and c3, this expression is not a prefect square implying that there is no

way to render K linear in N and L. Hence the associated constraints are lost. Therefore,

coupling Gµν to matter will reintroduce ghosts. Of course, to linear order, δK is linear in

δN and δL and, to this order, ghost-free matter couplings exist, as in (3.8).

4.4 Spin-2 mixing and oscillations

In the absence of ghost-free coupling of the massless mode Gµν to matter, one is led to

consider the standard individual couplings of gµν and fµν to matter, which are known to be

ghost-free. In the weak gravity limit, mg ≫ mf , we regard gµν as the gravitational metric.

The fluctuations δg and δf , sourced respectively by δT g and δT f , are linear combinations of

the mass eigenstates δG and δM given in (3.6) and (3.7). So the spin-2 states are produced

in the interaction basis (δg, δf) while they propagate as mass eigenstates (δM, δG). As is

well known, this will lead to oscillations between (δg, δf) and a graviton δg may oscillate

to the other spin-2 field δf . This is very similar to neutrino oscillations or the K0 − K̄0

oscillations. The detectability of this effect reduces for higher FP mass of the massive

mode. So in cases where the massive spin-2 state can be interpreted as a meson or a heavy

elementary particle, the effect is negligible. But it will have consequences for very light

spin-2 states. Nevertheless it remains an interesting consequence of the inconsistency of

coupling the massless field to matter that in the presence of a neutral massive spin-2 field,

the gravitational force is mediated by a particle that is a superposition of mass eigenstates.

5 Action for the nonlinear massive spin-2 field

In this section we consider the bimetric action (2.1) as a theory of a massive spin-2 field

Mµν in the presence of a gravitational metric gµν . We also obtain the ghost-free couplings

of Mµν to fermionic matter fields.

5.1 The action in terms of g and M

To regard the bimetric action (2.1) as a theory of a massive spin-2 field in the presence of

gravity, we express it in terms of the nonlinear massive fieldMµν and the metric gµν .
10 gµν

couples to matter in the standard way and is the gravitational metric. Mµν is a massive

spin-2 field and couples non-minimally to gravity. The two spin-2 fields mix and their

mass and interaction eigenstates do not coincide, just as for spin-12 fields in the standard

model. These mixings also result in deviations from GR. In section 3, in the linearized

theory, the mixings became small in the weak gravity limit mg ≫ cmf . The hope is that

10Other possibilities would be to write the bimetric action in terms of the nonlinear massless field

Gµν (4.10) and the massive fieldM orMG. The G−MG action is given in the appendix. In the G−M case

the expressions for g and f become too involved. Since Gµν cannot be coupled to matter in a ghost-free

way, here we concentrate on the g −M case.
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in this limit the mixings remain small even nonlinearly and the predictions of this theory

do not greatly differ from GR.

To express the bimetric action (2.1) in terms of the fields g and the massive spin-2

field M , let us start with the potential V (S , βn), where S =
√
g−1f (2.2), and use,

Sρν = gρσMσν + cδρν . (5.1)

Then, the potential written in terms of elementary symmetric polynomials, becomes [19],

V (S, βn) =
4∑

n=0

βnen(S) =
4∑

n=0

βn c
nen(1+ g−1M/c) =

4∑

n=0

αcnen(g
−1M) = V (g−1M,αcn)

(5.2)

The last step follows from the linear relations between the en(X) and en(1 + X).11 The

parameters αcn are given in terms of βn as,

αc4 = β4 , αc3 = β3 + cβ4 , αc2 = β2 + 2cβ3 + c2β4 ,

αc1 = β1 + 3cβ2 + 3c2β3 + c3β4 , αc0 = β0 + 4cβ1 + 6c2β2 + 4c3β3 + c4β4 .

An advantage of writing the theory in terms ofM , of course, is that the potential no longer

involves a square-root matrix. Also, this form is analogous to the familiar form of mass

terms in field theory, for example, the mass term for massive vector fields,
√−g gµνAµAν .

Now let us turn to the kinetic term for the massive field M which is obtained from√−fR(f) on expressing f in terms of M and g. The criterion is that in the final action

for Mµν , all covariant derivatives must be with respect to the metric gµν . To achieve this

in a systematic way, it is convenient to use,

fµν = gµρ(S
2)ρν , (5.3)

where S is related to M in a simple way (5.1). Now, the curvatures of f can be expressed

in terms of curvatures of g using the results in appendix A. In particular, (A.3) gives,

Rµν(f) = Rµν(g) + 2∇[µC
α

α]ν − 2C
β

ν[µ C
α

α]β , (5.4)

where ∇ is the covariant derivative compatible with gµν and,

C α
µν =

1

2
φαβ (∇µfβν +∇νfβµ −∇βfµν) . (5.5)

Here, f is given by (5.3) and, for ease of notation we have introduced,

φµν ≡ (f−1)µν = (S−2)µρ g
ρν . (5.6)

Using the curvature relation above, along with
√−f =

√−g det(S) and R(f) = φµνRµν(f),

it is a straightforward though tedious exercise to show that (modulo total derivatives),

√
−fR(f) = √−g det(S)

[
φµνRµν(g) + Πσπαβρω ∇αS

ρ
σ∇βS

ω
π

]
. (5.7)

11Explicitly, e0(1+X) = e0(X), e1(1+X) = 4e0(X)+e1(X), e2(1+X) = 6e0(X)+3e1(X)+e2(X), e3(1+X) =

4e0(X) + 3e1(X) + 2e2(X) + e3(X), and e4(1+X) = e0(X) + e1(X) + e2(X) + e3(X) + e4(X).
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The “polarization” tensor Π is a function of g and M (through S) given by,

Πσπαβρω =

(
2φαµφκδφβν−2φαµφβκφδν−φαβφκδφµν+φαβφκµφδν

)
δσ(κδ

γ
δ) δ

π
(µδ

λ
ν) Sγρ Sλω. (5.8)

The discarded total derivative terms in (5.7) arise since the left-hand side has f∂2f terms,

leading to M∂2M terms on the right-hand side. These have been converted to ∂M∂M

terms which amounts to adding the Gibbons-Hawking-York boundary term to the action

for f .

Finally, putting all this together, the action for a massive spin-2 field M interacting

with a gravitational metric g is given by,

SgM =

∫
d4x

√−g
[
m2
gR(g) +m2

f det(S)φ
µνRµν(g)

+m2
f det(S)Π

σπαβ
ρω ∇αM

ρ
σ∇βM

ω
π − 2m4 V (g−1M,αcn)

]
. (5.9)

Here Sµν is a function of Mµν . The coupling of M to matter fields will be discussed below.

The perturbative content of the (g,M) action (2.1) can be discerned easily. The

second order action for the fluctuations, g = ḡ + δg and M = 0 + δM , will contain (δg)2,

δgδM , and (δM)2 terms. It can be diagonalized in terms of the massless mode δG and

massive mode δM , leading to the linearized equations (3.8) and (3.9).

5.2 Some features of the g −M action

Equivalence of the two formulations: it is straightforward that the g and M equations of

motion obtained from (5.9) imply the bimetric g and f equations of motion and vice versa,

δSgf
δf

∣∣
g
=
δSgM
δM

∣∣
g

δM

δf
= 0 ,

δSgf
δg

∣∣
f
=
δSgM
δg

∣∣
M

+
δSgM
δM

∣∣
g

δM

δg
= 0 . (5.10)

Hence the g−M formulation is classically equivalent to the g−f formulation and, in particu-

lar, is also ghost-free. The g−M form has the advantage that it does not involve square-root

matrices. The price one pays on the other hand, is the tedious kinetic structure for M and

its kinetic mixing with gravity. Although deriving the equations of motion from (5.9) is

not convenient, it is much easier to obtain these equations by starting with the g− f equa-

tions (2.6) and (2.7), eliminating R(f), and then converting Rµν(f) to Rµν(g) using (5.4).

In the g − M action, one may perform perturbative calculations even around non-

vanishing M backgrounds. In the g− f formulation, performing higher order perturbative

calculations around non-proportional backgrounds is not straightforward as in that case

expanding
√
g−1f is not simple. Of course, the two formulations are not expected to be

equivalent in quantum theory unless one takes into account the Jacobian factor that arises

from the change of variables.

Parameterizing deviations from general relativity : most of the classical solutions of

the bimetric action Sgf do not coincide with classical solutions in general relativity [26–

32], except for the class of proportional backgrounds f̄ = c2ḡ considered here, with c

determined by the parameters of the theory. Generic matter couplings of the g and f
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metrics will drive the solutions away from proportional backgrounds. We are interested in

parameter regions where these deviations are small.

In the g −M formulation, proportional backgrounds correspond to M̄µν = 0. Hence,

in the field theory language, a vanishing vacuum expectation value for the massive spin-2

field implies that the classical solutions for the metric coincides with general relativity.

Hence, deviations of the bimetric theory from general relativity are parameterized by the

deviations of Mµν from zero. These are driven by general couplings of gµν and Mµν to

matter fields that violate the condition T̄ f = α2T̄ g (2.15).

Energy-momentum tensor of spin-2 fields: consider the gravitational energy momen-

tum tensor δSgf/δgµν . In the g−f formulation, fµν contributes to this only through the po-

tential V , but its kinetic term
√−fR(f) does not gravitate (of course, it still affects the dy-

namics of gµν since their equations of motion are coupled). This is while the Noether energy

momentum tensor computed around flat fµν , will receive contributions from
√−fR(f).

In the g −M formulation, the gravitational energy momentum tensor δSgM/δgµν |M
contains contributions from the kinetic term of M , as well from V and these appear

consistent with the contribution to the Noether energy momentum tensor around flat

g. Of course the complete set of equations is the same in both formalisms as these

contributions drop out on imposing the M equation of motion. The same statements

apply to the matter couplings of f , that is S(f, ψ). In the g−M formulation, M is mostly

minimally coupled to g (in the sense that the curved space form can be constructed from

the flat space expression) except for the non-minimal φµνRµν term.

Comparison to earlier work : the g −M action (5.9) is useful in comparing to earlier

attempts of writing a theory of massive spin-2 on a gravitational background. For example,

the approach in [7, 8] was to start with the quadratic FP theory in flat spacetime and

covariantize it with a metric gµν , also adding non-minimal curvature couplings. This

procedure will in general not reproduce the action (5.9) as it will miss the factor det(S) as

well as the complicated polarization structure (5.8), since it only considers terms quadratic

in the massive field.

5.3 Coupling massive spin-2 fields to matter

At present, the only known ghost-free matter couplings in bimetric theory are the standard

couplings of gµν and fµν to matter sources, as in (1.2). In the weak gravity limit, we

interpreted the gµν couplings as the gravitational interactions of matter fields just as in

GR. Then the fµν couplings give rise to very specific interactions of the massive spin-2

field with matter, dictated by the absence of ghost. To write f in terms of M , again it is

convenient to proceed through the related matrix S = g−1M − c1 (5.1) and use,

fµν = S α
µ gαβS

β
ν = gµαS

α
βS

β
ν . (5.11)

For fµν couplings to bosonic matter, the manipulations are straightforward. For example,

for a Proca field, L(f,A) = −1
4

√
f
[
fµνfκλFµκFνλ + 2m2

Af
µνAµAν

]
, where Fµν = ∂µAν −

∂νAµ, One obtains the coupling of Aµ to the massive spin-2 field by expressing f in terms
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of M and g through S. Then, on raising some indices using gµν one gets,

L(g,M,A) = −1

4

√
g detS

[
(S−2)µρ(S

−2)κσFµκF
ρσ + 2m2

A(S
−2)µρAµA

ρ
]
. (5.12)

The details of this Lagrangian can be investigated further by, e.g., considering flat space

g = η, and/or expanding Sµν = cδµν + aḡµλδMλν .

For fermionic matter a little more work is needed since fermions couple to spin-2 fields

through vielbeins. For the fµν and gµν vielbeins (below we use the conventions of [53]),

fµν = ẽ a
µ ηabẽ

b
ν , gµν = e a

µ ηabe
b
ν , (5.13)

equation (5.11) implies the relation,

ẽaµ = Λabe
b
νS

ν
µ . (5.14)

Here Λ is an arbitrary Lorentz transformation, ΛTηΛ = η. In a Lorentz invariant theory Λ

drops out of all expressions, so we set Λ = 1 without loss of generality. The vielbeins enter

the couplings through the curved space γ-matrices and through the spin-connections. In

terms of the Lorentz frame γ-matrices γ̄a, one constructs a pair of curved space γ-matrices

γ̃µ = ẽµaγ̄a and γµ = eµaγ̄a. They satisfy,

{γ̄a, γ̄b} = 2ηab , {γ̃µ, γ̃ν} = 2fµν , {γµ, γν} = 2gµν . (5.15)

The inverse of the relation (5.11), with Λ = 1, then implies,12

γ̃µ = (S−1)µνγ
ν . (5.16)

Fermions also couple to vielbeins through spin connections in Lorentz covariant derivatives

acting on them,

D̃µ = ∂µ −
1

8
w̃ ab
µ [γ̄a, γ̄b] . (5.17)

The spin-connection is given in terms of vielbeins and the Christoffel connection through,

w̃ ab
µ = ẽbν∂µ[η

acẽ ν
c ] + ẽbση

acẽ ν
c Γ̃ σ

µν . (5.18)

Using (5.14), with Λ = 1, we can rewrite this as,

w̃ ab
µ =

(
ebρS

ρ
ν∂µ[(e

aα(S−1) να ] + ebλS
λ
σe
aα(S−1) να Γ̃ σ

µν

)
. (5.19)

From appendix A, Γ̃ is related to the Christoffel connection Γ of gµν by,

Γ̃ σ
µν = Γ σ

µν + C σ
µν , C σ

µν =
1

2
fσρ (∇µfρν +∇νfµρ −∇ρfµν) , (5.20)

where the covariant derivatives are with respect to gµν , and where fµν is regarded as

a function of g and M through (5.11). Using these relations, it is straightforward to

12A general Λ is absorbed by a Lorentz transformation of the spinors, ψ′ = Aψ where, Λa
bγ̄

b = A†γ̄aA.
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re-express any coupling of fµν to fermions in terms the massive spin-2 field Mµν and the

gravitational metric gµν . The resulting expressions are highly nonlinear in the fields.

As an example, consider the couplings to lowest order in the fluctuation δM of the

massive spin-2 field around the M̄ = 0 background. Then, Sµν = cδµν + aḡµλδMλν , and to

first order,

C σ
µν =

a

c
gσρ

[
2∇(µδMν)ρ −∇ρδMµν

]
. (5.21)

Similarly, to this order,

γ̃µ =
1

c
γµ − a

c2
ḡµλδMλνγ

ν , D̃µ = Dµ −
a

4c
[γρ, γσ]∇[ρδMσ]µ . (5.22)

Let us apply these to the coupling of fµν to a spin-12 field ψ,

L1/2 = i
√
−f ψ̄(γ̃µD̃µ + imψ)ψ + h.c. , (5.23)

in which ψ̄ = ψ†γ̄0. D̃µ = D̃µ + iqAµ is the Lorentz and gauge covariant derivative with

Abelian gauge field Aµ. We write this to linear order in δM and in the flat space limit

gµν = ηµν . Using,
√−f = c4 + c3aδMρ

ρ + · · · , one has,

L1/2 =c
3

(
1 +

1

cmeff
δMρ

ρ

)
Lfree

− i
c3

cmeff
ψ̄

(
δMµ

ν γ̄
ν∂µ + iqδMµ

ν γ̄
νAµ +

1

4
γ̄µ[γ̄ρ, γ̄ν ]∂[ρδMν]µ

)
ψ + h.c. , (5.24)

where Lfree = i ψ̄ (γµ∂µ + iqγ̄µAµ + icmψ)ψ. After a partial integration and using (5.15),

the derivative couplings become,

− ic3

cmeff
δMµν

[
3

8
ψ̄(γµ∂ν + γν∂µ)ψ−1

8
(∂µψ̄γν + ∂νψ̄γµ)ψ

+
1

4
ηµν∂ρψ̄γ

ρψ − 3

4
ηµνψ̄γρ∂ρψ

]
+ h.c. . (5.25)

Finally, considering the hermitian conjugate (with the usual hermiticity condition

(γµ)† = γ0γµγ0), this can be written,

− ic3

cmeff
δMµν

[
1

2
ψ̄(γµ∂ν + γν∂µ)ψ − ηµνψ̄γρ∂ρψ

]
+ h.c. . (5.26)

Couplings of this form were recently considered in a phenomenological context in [54],

to address the top-quark forward-backward asymmetry. Here, in contrast to [54], the

couplings are not a priori expected to be flavor violating since they come only from

the Lorentz covariant derivative and are essentially of a purely gravitational nature. In

particular, the first term of (5.26) is simply the stress-energy tensor while the second

corresponds to a non-derivative trace coupling on-shell.
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6 Generalization to more than one massive field

Recently, in [24] the bimetric action was generalized to a ghost-free theory of N interacting

spin-2 fields. In this theory, the kinetic term is given in terms of N metrics gµν(I) and the

interactions between these are constructed in terms of the corresponding vielbeins eaµ(I),

N∑

I=1

∫
d4x
√
−g(I) R(I) + m2

4

∫
d4xU [e(1), · · · , e(N )] . (6.1)

The potential U , constructed in [24], will be presented below in a reformulation. Around

flat backgrounds, the spectrum consists of one massless and N − 1 massive states. The

vielbein description is elegant and was very convenient for showing the absence of the

Boulware-Deser ghosts. For further work, see [25].

Here we are interested in interpreting (6.1) as a theory of N − 1 spin-2 fields in the

presence of gravity. First one has to identify one of the vielbeins, say, ebν(1), with the

gravitational metric, gµν = e aµ (1)ηabe
b
ν(1). Then, off shell, the 16(N − 1) components of

the remaining vielbeins contain the 10(N − 1) degrees of freedom for describing N − 1

spin-2 fields as symmetric rank-2 tensors with kinetic terms consistent with general

covariance. In addition, there are 6(N − 1) extra non-dynamical fields, as there are no

leftover local Lorentz transformations to remove them. The latter, have to be eliminated

through their equations of motion to isolate the spin-2 content of the theory. A difficulty

that arises for N > 2 is in disentangling these non-dynamical components from the ones

belonging to the spin-2 fields in kinetic terms [24].

In other words, from the remaining vielbeins, one can construct N − 1 rank-2 tensors

θµν(I) = eµa(1) eaν(I) of mixed symmetry. The potential is a function of the θµν(I). It

is difficult to extract from these the spin-2 fields that have kinetic terms, by solving the

non-dynamical equations. Even more difficult is doing so in a general covariant way.

This issue is addressed in the metric formulation of the multivielbein action (6.1) that

was obtained, and argued to remain ghost-free, in [25]. In this setup, the non-dynamical

fields are isolated from the spin-2 content in a generally covariant way without solving

any equations of motion, making it appropriate for the considerations here. Then we work

with the multi spin-2 action,

N∑

I=1

∫
d4x
√
−g(I) R(I) + m2

4

∫
d4xT I1...I4 UI1...I4 , (6.2)

where TI1I2I3I4 , totally symmetric in its indices, contains the free parameters of the theory

and the multivielbein potential of [24] is reformulated to [25],

UI1···I4 =
√
− det g(1) ǫ̃µ1···µ4 ǫ̃ν1···ν4

× Lν1λ1(I1)
[√

g−1(1) g(I1)
]λ1
µ1

· · ·Lν4λ4(I4)
[√

g−1(1) g(I4)
]λ4
µ4
. (6.3)

In this expression the Lνλ(I) satisfy gµνL
µ
ρ(I)Lνσ(I) = gρσ and Lνλ(1) = δνλ. They carry

the 6(N − 1) non-dynamical parameters as they do not enter the kinetic terms. They
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can be eliminated through their own equations of motion, but solving these equations is

not necessary to identify the spin-2 content of the theory. In this form, the similarity to

bimetric form as given in [19] is apparent.

The equations of motion obtained from (6.1) or (6.2) admit proportional background

solutions,

ḡµν(I) = c2I ḡµν , or ēaµ(I) = cI ē
a
µ , (6.4)

for I = 2, · · · ,N , and were we have denoted gµν(1) ≡ gµν and eaµ(1) ≡ ēaµ. The cI will

be determined by the parameters of theory. In analogy with the bimetric case, one can

introduce, for I = 2, · · · ,N ,

S(I) ≡
√
g−1 g(I) , M(I) = g S(I)− cIg . (6.5)

Since,

g S(I) = [ g S(I) ]T , (6.6)

the Mµν(I) will be symmetric and represent the N −1 massive spin-2 fields with vanishing

expectation values in proportional backgrounds. These generalize the massive mode (4.14)

of the bimetric theory in the picture that gµν is the gravitational metric. Note however

that for generic coefficients TI1I2I3I4 in (6.2), the actual mass eigenstates will be given by

linear combinations of the Mµν(I).

In terms of g and M(I) = gS(I) − cIg, the potential
√−g V

(
L(I)S(I)

)
is a finite

polynomial of its argument. The kinetic terms for the M(I) will simply involve N − 1

copies of the corresponding terms in the bimetric case. The L(I) are determined in terms

of g and the M(I).

7 Discussion

The results have already been summarized in section 1 so here we only make some additional

comments. The nonlinear massless and massive modes were introduced as an extension

of the corresponding linear modes. It remains to be seen if they have a relevance directly

at the nonlinear level. Although it is stated that the weak gravity limit is needed to

approach GR solution in a generic sense, and that the non-vanishing VEV of the massive

modeM parameterizes deviations from GR, these effects have not yet been quantified. For

example, note that the Bianchi constraints (2.10) are independent of mg and mf hence

their nontrivial consequences will not be affected by the weak gravity limit.

Another feature of the bimetric theory is that in the g − f formulation with g as the

gravitational metric, the kinetic energy of f as well as its matter couplings affect gravity

only through the potential V (g−1f). In the g −M formulation there are direct couplings

between g and the kinetic term as well as matter interactions of M . However, after the

M equation of motion is imposed, the two sectors interact only through V again. In this

sense the couplings in spin-2 theories are maximally non-minimal.

– 24 –



J
H
E
P
0
5
(
2
0
1
3
)
0
8
6

Acknowledgments

We would like to thank Jonas Enander, Paolo Gondolo, Alexander Merle, Stefan Sjörs,
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A Curvature relations

Here we provide a relation between Ricci tensors on a manifold endowed with two covariant

derivatives (see, for example, [55]). This simplifies manipulation in bimetric theory.

General relations. Given any two derivative operators ∇ and ∇̄, there exist a (1, 2)

tensor field C such that the actions on vectors ωµ are related by,

∇µων = ∇̄µων − C α
µν ωα . (A.1)

If ∇ and ∇̄ are torsion free and compatible with metrics g and ḡ, the tensor C is given by,

C α
µν =

1

2
gαβ

(
∇̄µgβν + ∇̄νgβµ − ∇̄βgµν

)
. (A.2)

Defining the associated Riemann tensors by [∇µ,∇α]ων = −R β
µαν ωβ , it is straightforward

to derive a relation between the Ricci tensors Rµν = R α
µαν as,

Rµν(g) = Rµν(ḡ) + 2∇̄[µC
α

α]ν − 2C
β

ν[µ C
α

α]β . (A.3)

Example: linearizing general relativity. Consider a metric g as a perturbation

around a background metric ḡ, gµν = ḡµν + δgµν . To linear order in δg, the curvature

relation (A.3) gives,

Rµν(g) = Rµν(ḡ) + 2∇̄[µδΓ
α

α]ν , (A.4)

where, with an obvious change of notation, δΓ is given by the linear terms in (A.2),

δΓ α
µν =

1

2
ḡαβ

(
∇̄µδgβν + ∇̄νδgβµ − ∇̄βδgµν

)
. (A.5)

This can be used to expand the Einstein equations, Rµν − 1
2gµνR + Λgµν = 1

M2
P

Tµν , to

linear order in δg. One gets the background and the fluctuation equations,

R̄µν −
1

2
ḡµνR̄+ Λḡµν =

1

M2
P

T̄µν , Ēρσµν δgρσ + Λδgµν =
1

M2
P

δTµν , (A.6)

where we have defined,

Ēρσµν δgρσ = −1

2

[
δρµδ

σ
ν ∇̄2 + ḡρσ∇̄µ∇̄ν − δρµ∇̄σ∇̄ν − δρν∇̄σ∇̄µ

− ḡµν ḡ
ρσ∇̄2 + ḡµν∇̄ρ∇̄σ − ḡµνR̄

ρσ + δρµδ
σ
ν R̄
]
δgρσ . (A.7)

Using the background equation, the curvature contributions to Ēρσµν can be re-expressed in

terms of T̄µν and Λ.
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B Bimetric action in scaled variables

The action (2.1) can be recast in a more symmetric form. Consider the rescalings,

gµν =
m2

eff

m2
g

g̃µν , fµν =
m2

eff

m2
f

f̃µν , βn =

(
mf

mg

)n
β̃n , m4 = m4

g

m̃2

m2
eff

. (B.1)

In the new variables, the action is invariant under the interchanges g̃ ↔ f̃ , β̃n ↔ β̃4−n,

Sgf = m2
eff

∫
d4x

[√
−g̃ R(g̃) +

√
−f̃ R(f̃)− 2m̃2

√
−g̃ V

(√
g̃−1f̃ , β̃n

)]
. (B.2)

The analysis of consistency of coupling the nonlinear massless mode to matter in section 4.3

is performed in terms of these variables.

C Details of the nonlinear G − M
G action

Below we work with the rescaled variables introduced above. For the sake of completeness,

here we provide the details for writing the bimetric action in terms of the nonlinear

massless and massive modes G and MG (4.10), (4.15). To do this systematically, note

that the expressions for G and MG can be inverted to give,

gµν = Gµα(Φ
−1)αν ≡ φµν , fµν = Gµα(Φ̃

−1)αν ≡ φ̃µν . (C.1)

Here Φαν and Φ̃αν are functions of the matrix S given by,

Φµν = δµν + SµαS
α
ν , Φ̃µν = δµν + (S−1)µα(S

−1)αν , (C.2)

and S is related to the massive mode MG in a simple way,

S = G−1MG + c1 . (C.3)

These express g and f in terms of G and MG. We also define the inverse matrices,

φµαφαν = δµν , φ̃µαφ̃αν = δµν . (C.4)

Using (A.3) the curvatures of g and f can be related to the curvature of G and quantities

that contain covariant derivatives only with respect to Gµν ,

Rµν(g) = Rµν(G) + 2∇[µC
α

α]ν − 2C
β

ν[µ C
α

α]β , (C.5)

where,

C α
µν =

1

2
gαβ (∇µgβν +∇νgβµ −∇βgµν) . (C.6)

Similarly we have that,

Rµν(f) = Rµν(G) + 2∇[µC̃
α

α]ν − 2C̃
β

ν[µ C̃
α

α]β , (C.7)

where,

C̃ α
µν =

1

2
fαβ (∇µfβν +∇νfβµ −∇βfµν) . (C.8)

We further note that the volume densities can be expressed as,
√
− det g =

√
− detG

√
detΦ−1 , and

√
− det f =

√
− detG

√
det Φ̃−1 . (C.9)

Using these relations we proceed to obtain the general structure of the nonlinear action.

– 26 –
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Kinetic structure for M
G. Using (C.1), (C.4), and (C.9), it is a straightforward but

tedious algebraic exercise to show that (modulo a total derivative),

√
− det g φµν

(
2∇[µC

α
α]ν − 2C

β
ν[µ C

α
α]β

)
(C.10)

=
√

− det g
1

4

(
φαβφκλφρσ + 2δβλδ

α
σφκρ − 2δαλδ

β
ρφκσ − φαβφκρφλσ

)
∇αφ

κρ∇βφ
λσ .

A similar result is obtained for the corresponding term in the fµν sector by simply

replacing Φ by Φ̃ everywhere in the above (and g by f in the determinant prefactor). Next

note that from (C.2) we have,

∇αΦ
µ
ν =

(
δµλS

σ
ν + δσνS

µ
λ

)
∇αS

λ
σ , (C.11)

and also

∇αΦ̃
µ
ν = −

(
(S−1)µλ(S

−1)σβ(S
−1)βν + (S−1)σν(S

−1)µβ(S
−1)βλ

)
∇αS

λ
σ . (C.12)

These together with (C.10) and its corresponding expression for fµν give,

√
− det g φµν

(
2∇[µC

α
α]ν − 2C

β
ν[µ C

α
α]β

)
=
√
− det g Pλσκρ

αβ ∇λS
α
σ∇κS

β
ρ , (C.13)

√
− det f φ̃µν

(
2∇[µC̃

α
α]ν − 2C̃

β
ν[µ C̃

α
α]β

)
=
√
− det f P̃λσκρ

αβ ∇λS
α
σ∇κS

β
ρ , (C.14)

in terms of the polarization tensors P and P̃. We refrain from writing out the full

expressions for these tensors here and simply note that they can be straightforwardly

deduced from (C.10), (C.11) and (C.12). Since,

∇κS
β
ρ = Gβλ∇κM

G
λρ , (C.15)

equations (C.13) and (C.14) provide the kinetic term for massive field MG with only

G-covariant derivatives.

Kinetic structure for G. From (C.5) and (C.7) combined with (C.1) we find the cor-

responding relations for the Ricci scalars,

R(g) = R(G) + SµαS
α
βG

βνRµν(G) + . . . (C.16)

R(f) = R(G) + (S−1)µα(S
−1)αβG

βνRµν(G) + . . . (C.17)

where the dots represents the kinetic terms for MG discussed above. Hence, the kinetic

structure for G is given by the usual Einstein-Hilbert term plus non-minimal coupling of

the Ricci tensor to S in the gµν sector and to S−1 in the fµν sector. Apart from this we

also take into consideration the volume densities given by (C.9). Thus, the full kinetic

structure for G is given by (omitting the overall factor of
√
− detG),

(√
detΦ−1 +

√
det Φ̃−1

)
R(G) +

√
detΦ−1 SµαS

α
βG

βνRµν(G)

+
√
det Φ̃−1(S−1)µα(S

−1)αβ G
βνRµν(G) . (C.18)

This relation together with (C.13) and (C.14) completely determine the kinetic terms.

– 27 –
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Full nonlinear G − M
G action. Using (C.3), the interaction potential is easily ex-

pressed in terms of MG as in (5.2),
√
− det g V (S, βn) =

√
− detG (1 + S2)−1/2 V (MG, αcn) . (C.19)

Collecting all the results, we can now write the Lagrangian in (B.2) in terms of G and

MG as,

L(G,MG) =
(
det(1 + S2)−1/2 + det(1 + S−2)−1/2

)
R(G)

+
(
det(1 + S2)−1/2Pλσκρ

αβ + det(1 + S−2)−1/2P̃λσκρ
αβ

)
∇λS

α
σ∇κS

β
ρ

+ det(1 + S2)−1/2 SµαS
α
βG

βνRµν(G)

+ det(1 + S−2)−1/2(S−1)µα(S
−1)αβG

βνRµν(G)

− 2m2 det(1 + S2)−1/2 V (MG, αcn) , (C.20)

such that the full action is given by

SGM = m2
eff

∫
d4x

√
− detG L(G,MG) . (C.21)
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[14] M. Bañados, A. Gomberoff, D.C. Rodrigues and C. Skordis, A note on bigravity and dark

matter, Phys. Rev. D 79 (2009) 063515 [arXiv:0811.1270] [INSPIRE].

[15] M. Milgrom, Bimetric MOND gravity, Phys. Rev. D 80 (2009) 123536 [arXiv:0912.0790]

[INSPIRE].

[16] D. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368

[INSPIRE].

[17] S. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity,

JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

[18] S. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in

massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

[19] S. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009

[arXiv:1103.6055] [INSPIRE].

[20] S. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity,

Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

[21] S. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general

reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

[22] C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action,

Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

[23] C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity,

Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

[24] K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047

[arXiv:1203.5783] [INSPIRE].

[25] S. Hassan, A. Schmidt-May and M. von Strauss, Metric formulation of ghost-free

multivielbein theory, arXiv:1204.5202 [INSPIRE].

[26] M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory,

JHEP 01 (2012) 035 [arXiv:1110.6153] [INSPIRE].

[27] M.S. Volkov, Hairy black holes in the ghost-free bigravity theory,

Phys. Rev. D 85 (2012) 124043 [arXiv:1202.6682] [INSPIRE].

[28] M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell and S. Hassan, Cosmological

solutions in bimetric gravity and their observational tests, JCAP 03 (2012) 042

[arXiv:1111.1655] [INSPIRE].

[29] D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Spherically symmetric solutions in

ghost-free massive gravity, Phys. Rev. D 85 (2012) 024044 [arXiv:1110.4967] [INSPIRE].

[30] D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, FRW cosmology in ghost free massive

gravity, JHEP 03 (2012) 067 [Erratum ibid. 06 (2012) 020] [arXiv:1111.1983] [INSPIRE].

[31] V. Baccetti, P. Martin-Moruno and M. Visser, Gordon and Kerr-Schild ansätze in massive

and bimetric gravity, JHEP 08 (2012) 108 [arXiv:1206.4720] [INSPIRE].

– 29 –

http://dx.doi.org/10.1016/S0003-4916(03)00068-X
http://arxiv.org/abs/hep-th/0210184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210184
http://dx.doi.org/10.1103/PhysRevD.76.104036
http://arxiv.org/abs/0705.1982
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1982
http://dx.doi.org/10.1103/PhysRevD.79.063515
http://arxiv.org/abs/0811.1270
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1270
http://dx.doi.org/10.1103/PhysRevD.80.123536
http://arxiv.org/abs/0912.0790
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0790
http://dx.doi.org/10.1103/PhysRevD.6.3368
http://inspirehep.net/search?p=find+J+Phys.Rev.,D6,3368
http://dx.doi.org/10.1007/JHEP02(2012)126
http://arxiv.org/abs/1109.3515
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3515
http://dx.doi.org/10.1007/JHEP04(2012)123
http://arxiv.org/abs/1111.2070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2070
http://dx.doi.org/10.1007/JHEP07(2011)009
http://arxiv.org/abs/1103.6055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.6055
http://dx.doi.org/10.1103/PhysRevLett.108.041101
http://arxiv.org/abs/1106.3344
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3344
http://dx.doi.org/10.1007/JHEP02(2012)026
http://arxiv.org/abs/1109.3230
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3230
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://arxiv.org/abs/1007.0443
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0443
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://arxiv.org/abs/1011.1232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1232
http://dx.doi.org/10.1007/JHEP07(2012)047
http://arxiv.org/abs/1203.5783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5783
http://arxiv.org/abs/1204.5202
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5202
http://dx.doi.org/10.1007/JHEP01(2012)035
http://arxiv.org/abs/1110.6153
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6153
http://dx.doi.org/10.1103/PhysRevD.85.124043
http://arxiv.org/abs/1202.6682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6682
http://dx.doi.org/10.1088/1475-7516/2012/03/042
http://arxiv.org/abs/1111.1655
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1655
http://dx.doi.org/10.1103/PhysRevD.85.024044
http://arxiv.org/abs/1110.4967
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4967
http://dx.doi.org/10.1007/JHEP03(2012)067
http://arxiv.org/abs/1111.1983
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1983
http://dx.doi.org/10.1007/JHEP08(2012)108
http://arxiv.org/abs/1206.4720
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4720


J
H
E
P
0
5
(
2
0
1
3
)
0
8
6

[32] C. Deffayet and T. Jacobson, On horizon structure of bimetric spacetimes,

Class. Quant. Grav. 29 (2012) 065009 [arXiv:1107.4978] [INSPIRE].

[33] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an

electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

[34] W. Pauli and M. Fierz, On relativistic field equations of particles with arbitrary spin in an

electromagnetic field, Helv. Phys. Acta 12 (1939) 297 [INSPIRE].

[35] P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity,

JHEP 09 (2005) 003 [hep-th/0505147] [INSPIRE].

[36] R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity,

Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

[37] M. Mirbabayi, A proof of ghost freedom in de Rham-Gabadadze-Tolley massive gravity,

Phys. Rev. D 86 (2012) 084006 [arXiv:1112.1435] [INSPIRE].

[38] C. de Rham and S. Renaux-Petel, Massive gravity on de Sitter and unique candidate for

partially massless gravity, JCAP 01 (2013) 035 [arXiv:1206.3482] [INSPIRE].

[39] J. Kluson, Note about Hamiltonian structure of non-linear massive gravity,

JHEP 01 (2012) 013 [arXiv:1109.3052] [INSPIRE].

[40] A.H. Chamseddine and V. Mukhanov, Massive gravity simplified: a quadratic action,

JHEP 08 (2011) 091 [arXiv:1106.5868] [INSPIRE].

[41] S. Hassan, A. Schmidt-May and M. von Strauss, Proof of consistency of nonlinear massive

gravity in the Stückelberg formulation, Phys. Lett. B 715 (2012) 335 [arXiv:1203.5283]

[INSPIRE].

[42] J. Kluson, Non-linear massive gravity with additional primary constraint and absence of

ghosts, Phys. Rev. D 86 (2012) 044024 [arXiv:1204.2957] [INSPIRE].

[43] V. Baccetti, P. Martin-Moruno and M. Visser, Massive gravity from bimetric gravity,

Class. Quant. Grav. 30 (2013) 015004 [arXiv:1205.2158] [INSPIRE].

[44] V. Baccetti, P. Martin-Moruno and M. Visser, Null energy condition violations in bimetric

gravity, JHEP 08 (2012) 148 [arXiv:1206.3814] [INSPIRE].

[45] N. Khosravi, N. Rahmanpour, H.R. Sepangi and S. Shahidi, Multi-metric gravity via massive

gravity, Phys. Rev. D 85 (2012) 024049 [arXiv:1111.5346] [INSPIRE].

[46] N. Khosravi, H.R. Sepangi and S. Shahidi, Massive cosmological scalar perturbations,

Phys. Rev. D 86 (2012) 043517 [arXiv:1202.2767] [INSPIRE].

[47] E.N. Saridakis, Phantom crossing and quintessence limit in extended nonlinear massive

gravity, Class. Quant. Grav. 30 (2013) 075003 [arXiv:1207.1800] [INSPIRE].

[48] Y.-F. Cai, C. Gao and E.N. Saridakis, Bounce and cyclic cosmology in extended nonlinear

massive gravity, JCAP 10 (2012) 048 [arXiv:1207.3786] [INSPIRE].

[49] A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Cosmological perturbations of

self-accelerating universe in nonlinear massive gravity, JCAP 03 (2012) 006

[arXiv:1111.4107] [INSPIRE].

[50] D. Comelli, M. Crisostomi and L. Pilo, Perturbations in massive gravity cosmology,

JHEP 06 (2012) 085 [arXiv:1202.1986] [INSPIRE].

– 30 –

http://dx.doi.org/10.1088/0264-9381/29/6/065009
http://arxiv.org/abs/1107.4978
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4978
http://dx.doi.org/10.1098/rspa.1939.0140
http://inspirehep.net/search?p=find+J+Proc.Roy.Soc.Lond.,A173,211
http://inspirehep.net/search?p=find+J+Helv.Phys.Acta,12,297
http://dx.doi.org/10.1088/1126-6708/2005/09/003
http://arxiv.org/abs/hep-th/0505147
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505147
http://dx.doi.org/10.1007/s10714-008-0661-1
http://arxiv.org/abs/gr-qc/0405109
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0405109
http://dx.doi.org/10.1103/PhysRevD.86.084006
http://arxiv.org/abs/1112.1435
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1435
http://dx.doi.org/10.1088/1475-7516/2013/01/035
http://arxiv.org/abs/1206.3482
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3482
http://dx.doi.org/10.1007/JHEP01(2012)013
http://arxiv.org/abs/1109.3052
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3052
http://dx.doi.org/10.1007/JHEP08(2011)091
http://arxiv.org/abs/1106.5868
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5868
http://dx.doi.org/10.1016/j.physletb.2012.07.018
http://arxiv.org/abs/1203.5283
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5283
http://dx.doi.org/10.1103/PhysRevD.86.044024
http://arxiv.org/abs/1204.2957
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2957
http://dx.doi.org/10.1088/0264-9381/30/1/015004
http://arxiv.org/abs/1205.2158
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2158
http://dx.doi.org/10.1007/JHEP08(2012)148
http://arxiv.org/abs/1206.3814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3814
http://dx.doi.org/10.1103/PhysRevD.85.024049
http://arxiv.org/abs/1111.5346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5346
http://dx.doi.org/10.1103/PhysRevD.86.043517
http://arxiv.org/abs/1202.2767
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2767
http://dx.doi.org/10.1088/0264-9381/30/7/075003
http://arxiv.org/abs/1207.1800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1800
http://dx.doi.org/10.1088/1475-7516/2012/10/048
http://arxiv.org/abs/1207.3786
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3786
http://dx.doi.org/10.1088/1475-7516/2012/03/006
http://arxiv.org/abs/1111.4107
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4107
http://dx.doi.org/10.1007/JHEP06(2012)085
http://arxiv.org/abs/1202.1986
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1986


J
H
E
P
0
5
(
2
0
1
3
)
0
8
6

[51] M. Berg, I. Buchberger, J. Enander, E. Mortsell and S. Sjors, Growth histories in bimetric

massive gravity, JCAP 12 (2012) 021 [arXiv:1206.3496] [INSPIRE].

[52] M.F. Paulos and A.J. Tolley, Massive gravity theories and limits of ghost-free bigravity

models, JHEP 09 (2012) 002 [arXiv:1203.4268] [INSPIRE].

[53] T. Ortin, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004).

[54] B. Grinstein, C.W. Murphy, D. Pirtskhalava and P. Uttayarat, Massive spin-2 states as the

origin of the top quark forward-backward asymmetry, JHEP 08 (2012) 073

[arXiv:1203.2183] [INSPIRE].

[55] R.M. Wald, General relativity, Chicago University Press, Chicago U.S.A. (1984).

– 31 –

http://dx.doi.org/10.1088/1475-7516/2012/12/021
http://arxiv.org/abs/1206.3496
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3496
http://dx.doi.org/10.1007/JHEP09(2012)002
http://arxiv.org/abs/1203.4268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4268
http://dx.doi.org/10.1007/JHEP08(2012)073
http://arxiv.org/abs/1203.2183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2183

	Introduction, motivation and summary
	Issues considered and summary of results
	Background to bimetric theories

	Proportional-background solutions in bimetric theory
	Review of the ghost-free bimetric theory
	Proportional background solutions
	Discussion

	Linear massive and massless modes
	Massive and massless modes in the linearized theory
	Weak gravity limit

	The nonlinear massless and massive modes
	The nonlinear massless spin-2 field G
	The nonlinear massive spin-2 field M
	Absence of ghost-free matter coupling of the massless mode G
	Spin-2 mixing and oscillations

	Action for the nonlinear massive spin-2 field
	The action in terms of g and M
	Some features of the g-M action
	Coupling massive spin-2 fields to matter

	Generalization to more than one massive field
	Discussion
	Curvature relations
	Bimetric action in scaled variables
	Details of the nonlinear G-M*G action

