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Abstract: We study 1-loop MHV amplitudes in N = 4 super Yang-Mills theory and in

N = 8 supergravity. For Yang-Mills we find that the simple form for the full amplitude

presented by Del Duca, Dixon and Maltoni naturally leads to one that has physical residues

on all compact contours. After expanding the simple form in terms of standard scalar in-

tegrals, we introduce redundancies under certain symmetry considerations to impose the

color-kinematics duality of Bern, Carrasco and Johansson (BCJ). For five particles we di-

rectly find the results of Carrasco and Johansson as well as a new compact form for the

supergravity amplitude. For six particles we find that all kinematic dual Jacobi identities

are encapsulated in a single functional equation relating the expansion coefficients. By the

BCJ double-copy construction we obtain a formula for the corresponding N = 8 super-

gravity amplitude. Quite surprisingly, all physical information becomes independent of the

expansion coefficients modulo the functional equation. In other words, there is no need

to solve the functional equation at all. This is quite welcome as the functional equation

we find, using our restricted set of redundancies, actually has no solutions. For this rea-

son we call these results virtual color-kinematics duality. We end with speculations about

the meaning of an interesting global vs. local feature of the functional equation and the

situation at higher points.

Keywords: Scattering Amplitudes, Supersymmetric gauge theory

ArXiv ePrint: 1210.1816

c© SISSA 2013 doi:10.1007/JHEP05(2013)070

mailto:yyuan@perimeterinstitute.ca
http://arxiv.org/abs/1210.1816
http://dx.doi.org/10.1007/JHEP05(2013)070


J
H
E
P
0
5
(
2
0
1
3
)
0
7
0

Contents

1 Introduction and main results 1

2 MHV polygons and their properties 4

3 1-loop MHV amplitudes in N = 4 super Yang-Mills 6

4 From Yang-Mills to gravity: 5-pt 1-loop amplitudes 7

5 From Yang-Mills to gravity: 6-pt 1-loop amplitudes 8

5.1 Analysis of the redundancies 9

5.2 Condition for color-kinematics duality 10

5.3 A global inconsistency 11

6 New formula for 6-pt 1-loop MHV amplitude in N = 8 supergravity 12

7 Discussions 14

A A brief review of color-kinematics duality 15

B Analysis of the color structure 17

C Effects of the parameter ∆ 19

D Analysis of color-kinematics duality 20

E Transformation to explicit formula for 6-pt 1-loop MHV gravity ampli-

tude in terms of MHV hexagons 24

1 Introduction and main results

Originally proposed by Bern, Carrasco and Johansson [1, 2], the remarkable discovery

of color-kinematics duality provides a powerful tool for exploring gravity amplitudes by

starting from Yang-Mills amplitudes and “squaring” the kinematic numerators (double-

copy construction). This technique has led to a new way of thinking about tree and

loop amplitudes. At tree level the validity of this construction has been proved [3], and

the existence of duality-respecting kinematic numerators has been explicitly shown for all

numbers of external particles [1, 4–6]. At loop level, arguments from unitary cuts and soft

limit strongly suggest that the double-copy construction should hold as long as the duality

is achieved [2, 3, 7]. This together with the validity of a duality-respecting formula has be
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confirmed in various cases for 4 points up to 4 loops and for 5 points up to 2 loops [2, 8–

14], the situation at 4 points 5 loops is currently under exploration [15], and the self-dual

sector in Yang-Mills has also been studied [16]. A natural next step is to study 1-loop

MHV amplitudes with n ≥ 6 as well as the explicit connection between the maximally

supersymmetric Yang-Mills theory and gravity here. The purpose of this paper is to give

some first steps in this direction.

In the 90’s, Del Duca, Dixon and Maltoni showed that one-loop amplitudes in Yang-

Mills can be written as1 [17]

A(1)
n = gnYM

∑
σ∈Sn/(Zn×Z2)

fσ1σ2...σnA
(1)
n (σ1σ2 . . . σn) (1.1)

where fσ1σ2...σn is a combination of structure constants fabc contracted in a necklace-like

form and A
(1)
n (σ1σ2 . . . σn) is the so-called leading color partial amplitude of the more

standard color-decomposition [18].

In [19, 20], a formula for A
(1)
n (σ1σ2 . . . σn) in terms of special integrals which gives

physical results on all compact contours respecting the color-ordering was presented. We

write it as

A(1)
n (σ1σ2 . . . σn) =

δ4(p1 + · · ·+ pn)δ8(λ1η̃1 + · · ·+ λnη̃n)

〈σ1σ2 . . . σn〉
Pn(σ1σ2 . . . σn) (1.2)

where 〈σ1σ2 . . . σn〉 is a shorthand notation for the standard Parke-Taylor denominator [21].

In the rest of the paper we will not write the (super) momentum conservation delta func-

tions and the coupling constant in any amplitude in order not to clutter equations.

In this paper, we show that a simple combination of (1.1) and (1.2)

Ã(1)
n =

∑
σ∈Sn/(Zn×Z2)

fσ1σ2...σn
〈σ1σ2 . . . σn〉

Pn(σ1σ2 . . . σn), (1.3)

gives a formula that matches physical residues on all compact contours.

We propose to use Pn(σ1σ2 . . . σn) as a basis of integrals not only in Yang-Mills but also

for gravity amplitudes. The intention is to seek for a clearer observation of the relations

between the two theories. In brief, these are totally “planar” objects enjoying cyclic and

reflection symmetry as well as simple residues on all contours, and we propose to call them

MHV polygons.

By expanding the MHV polygons onto scalar loop integrals and studying the color-

kinematics duality, we manage to recover Carrasco and Johansson’s result for 5-pt case

in N = 8 supergravity [8], and further transform it back to our formulation, which is as

simple and compact as that in Yang-Mills theory

M(1)
5 =

∑
σ∈S5/(Z5×Z2)

1

〈σ1σ2σ3σ4σ5〉
[σ1σ2σ3σ4σ5]

ε(σ1σ2σ3σ4)
P5(σ1σ2σ3σ4σ5). (1.4)

1Here we use a notation A(L) (or A(L)) to indicate the level of the amplitude, where L is the number

of loops, and L = 0 refers to tree-level amplitudes. The curly letter denotes the full amplitudes and the

ordinary letter denotes the partial amplitudes. The tilde sign indicates that the formula is written without

helicity factor or SUSY delta functions. Yang-Mills amplitudes are denoted by the letter A (or A) and

gravity amplitudes by M.
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Here [σ1σ2σ3σ4σ5] denotes the Parke-Taylor denominator of an MHV tree amplitude while

ε(σ1σ2σ3σ4) is the standard fully anti-symmetric tensor contracted with four vectors.

Then as we go on to 6-pt case, we start to observe a new phenomenon. The formula

for the gravity amplitude can still be expressed nicely as

M(1)
6 =

∑
σ∈S6/(Z6×Z2)

γ(σ1σ2σ3σ4σ5σ6)

〈σ1σ2σ3σ4σ5σ6〉2
P6(σ1σ2σ3σ4σ5σ6), (1.5)

with the coefficients γ required to satisfy a set of constraints, each of which relates two γ’s

that differ only by a transposition of two adjacent labels; e.g. for the standard ordering,

we have

γ(123456)

〈123456〉ε(123456)
+

γ(213456)

〈213456〉ε(213456)

+
[12][34][56]

〈12〉〈34〉〈56〉
s12s34s45s56〈3|4 + 5|6][3|4 + 5|6〉
ε(123456)ε(213456)ε(3456)

= 0,

(1.6)

where ε(abcdef) = 〈ab〉[bc]〈cd〉[de]〈ef〉[fa] − [ab]〈bc〉[cd]〈de〉[ef ]〈fa〉. For convenience, we

refer to these constraints as a single functional constraint, in the sense that it depends

on a choice of permutation of the labels. Quite surprisingly, all physical information in

M(1)
6 becomes γ independent. More explicitly, once P6(σ1σ2σ3σ4σ5σ6) is expanded, on the

physical R4 contour, in terms of only scalar box integrals the corresponding coefficients

become γ independent after using the functional equation. This fact is actually quite

welcome as the functional equation has no solutions!

The functional equation (1.6) is found by first expanding the MHV polygons in the

Yang-Mills amplitude in terms of scalar integrals. We then add some particular set of

redundancies to impose the color-kinematics duality conditions. It turns out that all con-

ditions boil down to the single functional equation (1.6). Using double-copy construction

we obtain the corresponding gravity amplitude. Just as for five particles, it is possible to

transform it back to our formulation leading to the formula presented above.

The fact that the functional equation has no solutions implies that the numerators we

found in Yang-Mills which in principle satisfy the color-kinematics duality do not actually

exist. This should not come as a surprise as our ansatz for the redundancies was not the

most general one. What is surprising is that even with a “virtual” solution to the color-

kinematics duality conditions one can still square the numerators to get the corresponding

gravity amplitude.

The paper is organized as follows. In section 2 we introduce MHV polygons and sum-

marize their general properties, after which we prove the formula for n-pt 1-loop MHV

amplitudes in super Yang-Mills constructed with these polygons. Then in section 4 we

analyze the 5-pt case to give a taste of the relation between this new formulation and the

color-kinematics duality in the context discussed by Carrasco and Johansson. Afterwards,

in section 5 we focus on the simplest case where new phenomena would arise, where we ana-

lyze the color structure, obtain the condition on which color-kinematics duality is satisfied,

and explain the “inconsistency” that appears. In section 6 we go on to test the correspond-

ing conjectured supergravity amplitude, where we provide evidences from quadruple cuts.

– 3 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
0

The details of this analysis as well as a short introduction to color-kinematics duality are

summarized in the appendices. In the end, we list out some possible future explorations

along this line.

2 MHV polygons and their properties

As has been stated in the introduction, we use chiral tensor integrals that possess unit

leading singularities to build 1-loop MHV amplitudes [19, 20], in order to bring all physi-

cally important information into the coefficients attached to them. Specifically within the

context of our discussion, we call these objects n-pt MHV polygons (or MHV n-gons),

and symbolically denote them as Pn(σ1σ2 . . . σn). They are functions of the configuration

of external particles (both the ordering and the kinematics data), and can be defined in

two equivalent ways. One is that an n-pt MHV polygon shares the same configuration of

leading singularities with its corresponding 1-loop MHV Yang-Mills partial amplitude, but

with the values of all non-zero leading singularities normalized. The other definition, as

can be seen in (1.2), is by the following equation

Pn(σ1σ2 . . . σn) =
Ã

(1)
n (σ1σ2 . . . σn)

Ã
(0)
n (σ1σ2 . . . σn)

. (2.1)

The equivalence of the two definitions is due to the fact that for any quadruple cut on

the 1-loop MHV Yang-Mills amplitude, the associated leading singularity (whenever it is

non-zero) is always the corresponding tree-level amplitude [22].

By definition, these objects should be invariant under both cyclic permutation and

reflection of the sequence of the particle labels

Pn(σ1σ2 . . . σn−1σn) = Pn(σ2σ3 . . . σnσ1), (2.2)

Pn(σ1σ2 . . . σn−1σn) = Pn(σnσn−1 . . . σ2σ1). (2.3)

That is to say, for n particles, the length of the set {Pn} is (n − 1)!/2, and each MHV

polygon is a planar object with a fixed ordering of particle labels.

It is always possible to expand MHV polygons as a linear combination of scalar pen-

tagon integrals and scalar box integrals, and the general method to obtain this expansion

is worked out in [20]. Here we will only list out the 5-pt and 6-pt cases, which are needed

in subsequent analysis.

For any MHV pentagon (e.g. P5(12345)), there is one unique reduction formula

P5(12345) =
s12s23s34s45s51

ε(1234)
I5(1|2|3|4|5)

+
∑
Z5

〈34〉[45]〈51〉[13]s12s23

ε(1234)
I4(1|2|3|45),

(2.4)

where the summation in the second line is performed over cyclic permutations of the

sequence (12345); In denotes the ordinary scalar loop integrals with n loop propagators,

and the vertical bars in the arguments separate external legs into groups that connect to
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different vertices on the loop. We also use the notation sab = (pa + pb)
2, and the ε symbol

is defined by

ε(abcd) = 4iεµνρσp
µ
ap

ν
bp
ρ
cp
σ
d

= 〈ab〉[bc]〈cd〉[da]− [ab]〈bc〉[cd]〈da〉,
(2.5)

and so it is completely antisymmetric in its arguments.

Redundancies begin to appear in the reduction of MHV hexagons (e.g. P6(123456)).

From the method as given in [20], by fixing label 1 and 6, we can obtain one specific formula

P6(123456) = −
∑ s34s45s56(3|4 + 5|6)2

ε(3456)
I5(12|3|4|5|6)

−
∑ 〈12〉[23]〈34〉[41](1|2 + 3|4)2

ε(1234)
I4(1|23|4|56)

+
∑ s56ε(123456)(5|3 + 4|6)2

ε(3456)ε(5612)
I4(12|34|5|6)

+
∑

s45s56
〈34〉[46][3|4 + 5|6〉

ε(3456)
I4(123|4|5|6)

+
∑

s34s45
[35]〈56〉〈3|4 + 5|6]

ε(3456)
I4(612|3|4|5).

(2.6)

In the above expression, each summation is performed over cyclic permutations of even

steps. And we use the following abbreviations

(a|b+ c|d)2 = 〈a|b+ c|d][a|b+ c|d〉, (2.7)

ε(abcdef) = 〈ab〉[bc]〈cd〉[de]〈ef〉[fa]− [ab]〈bc〉[cd]〈de〉[ef ]〈fa〉. (2.8)

In (2.7) the square is just a notation to keep track of the dimension. We can observe that

ε(abcdef) is invariant under cyclic permutation of even steps, and acquires a minus sign

under cyclic permutation of odd steps.

Note that, (2.6) is manifestly invariant only under cyclic permutations of the labels by

even steps, and it consists of only half of all the pentagon and box integrals with the correct

ordering. Although cyclic permutations of odd steps also leads to a valid formula (which is

by itself also manifestly invariant under cyclic permutations of even steps), their equivalence

is only guaranteed by non-trivial identities among the pentagon and box integrals. Let us

denote these two reductions as H(123456) and H(234561) respectively. With the purpose

of exploring color-kinematics duality later on in the context of loop integrals, we should

exhaust the entire loop integral basis. And so we need to express the MHV hexagon as a

linear combination of the two reductions

P6(123456) = α(123456)H(123456) + β(123456)H(234561), (2.9)

under the constraint

α(123456) + β(123456) = 1. (2.10)

Here the argument in the parenthesis is pure labeling and identical up to cyclic permu-

tations of even steps. If we regard them as functions of particles’ kinematics data, the
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functions should respect this symmetry. But notice that by now there is no definition for

e.g. α(234561) and β(234561), so that we can further identify

α(234561) = β(123456), (2.11)

and require that as functions, α(234561) and α(123456) are related by permutations. Then

both the α functional parameter and the reduction formula (2.9) manifestly enjoy the full

cyclic invariance.

3 1-loop MHV amplitudes in N = 4 super Yang-Mills

We first go on to show that given the MHV polygons defined in the previous section, the

formula (1.3)

Ã(1)
n =

∑
σ∈Sn/(Zn×Z2)

fσ1σ2...σn
〈σ1σ2 . . . σn〉

Pn(σ1σ2 . . . σn)

matches correct physical residues on all contours. In order to do this, we need to use a

special formula for the tree-level amplitude [23], which can be easily proved by Britto-

Cachazo-Feng-Witten (BCFW) method [24, 25]

Ã(0)
n =

∑
σ∈Sn−2

f1σ2,σ3,...,σn−2,σn−1n

〈1σ2σ3 · · ·σn−1n〉
, (3.1)

where we take the abbreviation

f1σ2,σ3,...,σn−2,σn−1n = f1σ2a2fa2σ3a3 · · · fan−2σn−1n, (3.2)

and the permutation σi is taken over the label set {2, 3, . . . , n− 1}. This can be visualized

as the summation of chain-like diagrams where we fix the two ends of the “chain” (in the

given formula we fix 1 and n) and fully permute all the intermediate vertices.

Then we go on to evaluate the factorization of 1-loop full amplitude in the quadruple

cuts in N = 4 super Yang-Mills. Since in (3.1) each color factor is accompanied by a

kinematic factor which has exactly the form of an MHV tree-level partial amplitude, we

can start by evaluating the quadruple cuts on partial amplitude. As has been mentioned

previously, in MHV super Yang-Mills amplitudes, whenever the factorization is non-trivial,

it always has the form

A(1)
n −→

4∏
A(0) = A(0)

n ·Det(|J |), (3.3)

where Det(|J |) is exactly identical to the Jacobi determinant arising from cutting loop

propagators and is to be exactly canceled by that factor under quadruple cut [22]. So what

is left to be matched from the ansatz side is purely the Parke-Taylor form.

Now switch to the full amplitude, where the non-trivial factorizations only come from

two types of quadruple cuts. The virtue of the formula (3.1) is that, due to the freedom

in picking up any two external particles as the two ends of the chain, if we always choose

in the factorized amplitudes those “external particles” from the cut propagators, then as
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a result the color factors will just glue together to form the maximal loop (in the sense of

color diagrams). And when combining the results on the corresponding kinematic factors

that mimic partial amplitudes, we conclude the non-vanishing factorizations are always

Ã(1)
n −→

4∏
Ã(0) = Det(|J |) ·

∑
{σ(1)}

∑
{σ(2)}

∑
{σ(3)}

∑
{σ(4)}

f{σ(1)}{σ(2)}{σ(3)}{σ(4)}

〈{σ(1)}{σ(2)}{σ(3)}{σ(4)}〉
, (3.4)

where the summation is performed over the group of external particles attached to each

factorized amplitude respectively. This is exactly what we would get if the formula sums

over all non-equivalent MHV polygons and the coefficient in front of each MHV polygon has

the form as shown in (1.3). So we conclude that with the MHV polygons defined in (2.1)

as the fundamental building block, the formula for 1-loop n-pt MHV super Yang-Mills full

amplitude is

Ã(1)
n =

∑
σ∈Sn/(Zn×Z2)

fσ1σ2...σn
〈σ1σ2 . . . σn〉

Pn(σ1σ2 . . . σn). (3.5)

4 From Yang-Mills to gravity: 5-pt 1-loop amplitudes

In order to provide an example of how our formulation may work between Yang-Mills and

gravity, in this section we focus on the 5-pt case, showing that our formula

Ã(1)
5 =

∑
σ∈S5/(Z5×Z2)

fσ1σ2σ3σ4σ5
〈σ1σ2σ3σ4σ5〉

P5(σ1σ2σ3σ4σ5) (4.1)

naturally gives rise to color-kinematics duality in its expansion onto scalar loop integrals,

and further obtaining the corresponding gravity amplitude as a compact expression also

built purely upon MHV pentagons.

In the reduction formula for the MHV pentagons (2.4), it is easy to observe that each

I5 receives a unique contribution from its corresponding P5, while the coefficient in front

of each I4 would receive contributions from two P5’s. To make the structure that appears

in later discussion more apparent, we define

Q(σ1σ2σ3σ4σ5) =
[σ1σ2σ3σ4σ5]

ε(σ1σ2σ3σ4)
, (4.2)

where similar to the abbreviation for angle brackets, we have

[σ1σ2 · · ·σn] = [σ1σ2][σ2σ3] · · · [σnσ1]. (4.3)

The function Q is totally symmetric in any cyclic permutation of the labels and acquires

a minus sign under reflection2 (This is desirable since 〈σ1σ2σ3σ4σ5〉Q(σ1σ2σ3σ4σ5) is the

coefficient of the pentagon integral, and we would prefer it to have the same symmetry with

the corresponding basis element). Then the coefficient of one specific I4, e.g. I4(1|2|3|45) is

f12345
[12][13][23][45]

〈45〉ε(1234)
− f12354

[12][13][23][54]

〈54〉ε(1235)

=
1

s45
fa1bfb2cfc3dfdeafe45 [Q(12345)−Q(12354)] .

(4.4)

2It is interesting that this Q also played an important role in the analysis of [8]
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So in the expansion the formula is again purely in terms of another functional coefficient Q

Ã(1)
5 =

∑
fσ1σ2σ3,σ4σ5 [Q(σ1σ2σ3σ4σ5)−Q(σ1σ2σ3σ5σ4)]

I4(σ1|σ2|σ3|σ4σ5)

sσ4σ5

+
∑

fσ1σ2σ3σ4σ5Q(σ1σ2σ3σ4σ5)I5(σ1|σ2|σ3|σ4|σ5),

(4.5)

where we use the abbreviation

fσ1σ2σ3,σ4σ5 = faσ1bfbσ2cfcσ3dfdeafeσ4σ5 , (4.6)

and the summations are performed over all nonequivalent permutations of the labels re-

spectively. Very nicely, at this point we may observe that this is exactly Carrasco and

Johansson’s result obtained in [8] from an ansatz that respects color-kinematics duality,3

where the basis are {I4/s, I5}.
A more interesting implication is that the MHV pentagons in the new formulation

naturally encodes the color-kinematics duality in an implicit way. In fact, we can modify

the expansion of P5 (2.4) into a different form, e.g.

P5(12345) = 〈12345〉
{
Q(12345)I5(1|2|3|4|5) +

∑
Z5

Q(12345)−Q(12354)

s45
I4(1|2|3|45)

}
.

(4.7)

Hence we observe that, the MHV polygons may have a special reduction formula where all

the coefficients of lower-order scalar loop integrals can be generated solely by the one that

corresponds to its unique highest-order scalar loop integral. For this particular 5-pt case,

this structure comes right from the unique reduction formula of MHV pentagons.

To further appreciate the power of this Q functional coefficient, we go on to 1-loop 5-pt

gravity amplitude. Since the structure of the expansion onto loop integrals satisfies the

full color-kinematics duality, by the double-copy construction originally proposed by Bern,

Carrasco and Johansson [2], we can immediately substitute the color factor by another

copy of the kinematic factor in each term in the the expansion, and the resulted formula

is expected to be the correct gravity amplitude, which has already been confirmed in [8].

Moreover, it is not hard to check that in 5-pt case, the resulted expression can even be

directly re-summed to be a formula purely consisted of MHV pentagons again

M(1)
5 =

∑
σ∈S5/(Z5×Z2)

Q(σ1σ2σ3σ4σ5)

〈σ1σ2σ3σ4σ5〉
P5(σ1σ2σ3σ4σ5). (4.8)

5 From Yang-Mills to gravity: 6-pt 1-loop amplitudes

Since in 5-pt case we have observed that the MHV polygons serve as a very nice basis

for N = 8 supergravity amplitude, we would like to see whether they continue to work

for more particles. But we need to start by checking 6-pt case, since redundancies start

to occur in the reduction formula of MHV hexagons. The strategy is still to expand

3For a quick review of the color-kinematics duality, please refer to appendix A.
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the MHV polygons into loop integrals, and seek for color-kinematics duality, and once this

duality is satisfied, we can directly check whether double-copy construction gives the correct

gravity amplitude. However, one needs to be cautious, because due to the redundancies

the expansion does not in general have the correct color structure (in the sense that it

matches with the corresponding trivalent diagram, upon which color-kinematics duality is

based [1, 2, 8]. This is always true at tree level, but one needs to take loop propagators into

consideration at loop levels. For more detailed discussion, please refer to appendix A). In

6-pt case it turns out that, once we tune the expansion to have the correct color structure

under our construction, color-kinematics duality is just a subsequent outcome, although a

new phenomena would arise at the same time, which we will discuss in later parts of the

paper.

5.1 Analysis of the redundancies

In section 2, we have already obtained a reduction formula (2.9) for MHV hexagons, which

is manifestly cyclic symmetric. However, (2.9) is still not nice enough to work with. Instead,

we choose a particular point for the α parameter, and add deviations upon it

α(123456) = − [12]〈23〉[34]〈45〉[56]〈61〉
ε(123456)

+ ∆(123456),

α(234561) = − [23]〈34〉[45]〈56〉[61]〈12〉
ε(234561)

−∆(123456).

(5.1)

We can see the original constraint (2.10) on the α parameter is automatically satisfied.

The virtue of analyzing around this particular point will be clear in the next subsection.

But still ∆(234561) has no definition, and since α(234561) and α(123456) are assumed to

be related by permutations, we would expect α(234561) can be naturally associated with

a parameter ∆(234561) in the same way. And so it is necessary to further impose the

condition

∆(234561) = −∆(123456). (5.2)

Then ∆(abcdef) shares the same symmetry as ε(abcdef) under cyclic permutations.

With these adjustments, the reduction formula of the MHV hexagons still only have

pentagon integrals and box integrals, but no hexagon integral.4 The hexagon integral

should be introduced via the identities between hexagon integral and pentagon integrals,

which can also be worked out systematically [26] (see also [27, 28]). Since in the amplitude,

each MHV hexagon is dressed by the color factor corresponding to the maximal color loop

with the same sequence of labels, in a particular MHV hexagon we would add identity that

involves only one hexagon integral whose labels fall into the correct sequence, otherwise in

the resulted expansion formula the structure of the kinematic factor and the color factor

4We don’t consider here adding any tensor structures to the loop integrals, because by applying Carrasco

and Johansson’s ansatz [8] with the most general tensor structures to 6-pt case, one can check that once the

full color-kinematics duality is assumed to hold, any tensors of the type l2l2 just vanish, and any tensors of

the type l2 are purely gauge redundancies, which can be set to zero. We will not discuss this any further

since it is not relevant for our current purpose.

– 9 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
0

would be drastically different, which is what we want to get rid of. Then take P(123456)

as an example, the identity that meets these requirements is unique

I6(1|2|3|4|5|6)−
∑
Z6

ε(3456)

ε(123456)
I5(12|3|4|5|6) = 0. (5.3)

We will dress it with a coefficient γ(123456). And by the consideration of the symmetry of

the identity (5.3), this functional coefficient should satisfy

γ(123456) = γ(234561), (5.4)

γ(123456) = γ(654321). (5.5)

5.2 Condition for color-kinematics duality

In order not to deviate into too much technical details, we choose to summarize here only

the main results in the analysis of color-kinematics duality, and put the remaining details

in appendix B, C and D.

As has been stated, in 6-pt case it is no longer true that the resulted formula auto-

matically has the correct color structure. Since color-kinematics duality is based on the

correct color structure, we should first make sure this condition is satisfied. We start by

temporarily setting the parameter ∆ = 0 (so we only consider γ), and find that in the

scalar loop integral expansion, box integrals of all types (I4(a|bc|d|ef), I4(ab|cd|e|f) and

I4(abc|d|e|f)) already have the correct color structure. Since every MHV hexagon gives rise

to its corresponding unique hexagon integral, the color structure of each hexagon integrals

is also already correct. Then by looking at the coefficient in front of each pentagon integral

(e.g. I5(12|3|4|5|6)), we obtain a constraint relating γ(123456) and γ(213456)

γ(123456)

〈123456〉ε(123456)
+

γ(213456)

〈213456〉ε(213456)
+

[12][34][56]s12s34s45s56(3|4 + 5|6)2

〈12〉〈34〉〈56〉ε(123456)ε(213456)ε(3456)
= 0.

(5.6)

As has been mentioned in the introduction, by permuting the labels, we can get constraints

on other pairs of γ’s related by transposition of two adjacent labels. So we can also

regard (5.6) as a single functional constraint equation that depends on the choice of label

ordering.

Now we turn on the redundancies parameterized by ∆, and upon the previous analysis

we only need to look at the effects of additional terms. Then the box integrals immediately

constrain the ∆ parameter to have the following form

∆(abcdef) =
〈abcdef〉
ε(abcdef)

κ(abcdef), (5.7)

where κ(abcdef) is completely symmetric under permutations of the labels, and so later on

we will abbreviate it as κ. Under this condition, the hexagon integrals are still untouched,

while the constraint (5.6) from pentagon integrals now becomes

γ(123456)

〈123456〉ε(123456)
+

γ(213456)

〈213456〉ε(213456)

+
[12][34][56]s12s34s45s56(3|4 + 5|6)2

〈12〉〈34〉〈56〉ε(123456)ε(213456)ε(3456)
− κ s12s34s45s56(3|4 + 5|6)2

ε(123456)ε(213456)ε(3456)
= 0.

(5.8)
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Since under (5.8) the correct color structure is guaranteed, we can go on to check

the condition for color-kinematics duality. Interestingly, it turns out that the kinematic

dual identities between the kinematic numerators of the hexagon integrals and pentagon

integrals are exactly equivalent to (5.6) or (5.8) (depending on whether we set κ = 0),

and the dual identities between kinematic numerators of the pentagon integrals and box

integrals also automatically hold as a result of (repeatedly) applying (5.6) or (5.8). And

the occurrence of κ doesn’t break the duality at all. In other words, starting from the

Yang-Mills formula (3.5) in 6-pt case and introduce redundant parameters γ and κ in the

way as described above, just by requiring that the formula should have the correct color

structure in its expansion onto scalar loop integrals, we know that these parameters only

need to satisfy a single functional constraint (5.8) in addition to their own symmetries, and

then color-kinematics duality just comes for free, almost the same as what happens at 5

points!

5.3 A global inconsistency

Before going on, let us perform a consistency check on the constraint (5.6) or (5.8). We can

see that, for every constraint with a specific configuration of the particle labels, it relates

exactly two γ’s which differ by exchanging only one pair of neighboring labels. This can

also be interpreted as, whenever we exchange two neighboring labels in γ, it would acquire

some additional contribution as given by the inhomogeneous term in this constraint. Since

this operation of exchanging labels allow us to exhaust the entire label configuration space

starting from any specific point in it, we may expect that if we start from a certain point

and move step by step, and if in the end we move back to the same starting point (label

configuration), all the additional contributions acquired during the middle should add up

to zero. This is an important consistency check in guaranteeing that the entire set of γ

parameters (with all in-equivalent label configurations) have a solution in terms of ordinary

kinematics data.

However, the constraint (5.6) or (5.8) that we have obtained in the previous subsection

seems to be self-contradictory under this check. In more detail, the procedure as described

above should be divided into two different classes. We may imagine the label arguments of

γ to reside on a circle, since by definition γ should be invariant under cyclic permutation

of the labels, and so there is no particular origin with respect to this operation. Then

within the first class, no matter what kind of operation we do during the middle, after we

have returned to the starting point, if the net effect is equivalent to that no labels have

been brought to move around the circle, we would find that all the additional contributions

ultimately cancel out and the γ just returns to itself, which is consistent. An example is

illustrated in figure 1.

However, in the other class, as long as the net effect is equivalent to that at least one

label has been brought around the circle (i.e. let it to acquire a non-zero winding number),

we would find a net discontinuity between the original γ and the final γ

γ(abcdef)final = γ(abcdef)original + (additional term). (5.9)

The simplest example of this kind is shown in figure 2.
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Figure 1. Consistent moves.

Figure 2. Inconsistent moves.

Attention should be paid that, no matter whether the additional term in (5.9) arise or

not, its value depends only on the net effect (the winding numbers the labels acquired during

the transformations), but not on the specific procedure of intermediate steps, and whenever

a non-zero discontinuity is there, there is no means to tune κ in order to eliminate it.

This indicates that, if we regard the γ and κ as being constructed with ordinary

variables (such as with the usual spin-helicity formalism) and attempt to solve the entire set

of constraints, we would end up in having no solution for them. However, this inconsistency

in γ is not so harmful as it appears to be. The reason is that, back in the beginning when

γ is first introduced, it comes with a purely mathematical identity which is completely

transparent to physical analysis, and characterizes an auxiliary parameter space; especially,

this parameter contributes nothing to any leading singularities. If we do not insist that

this parameter be constructed by ordinary variables, the inconsistency is not really there.

Although not globally solvable, these “virtual” parameters do encode physical data in an

astonishingly neat and compact way via the functional constraint on them, and allow us

to travel between scattering amplitudes in different theories. Or put it in another way, the

auxiliary space here only serve as a context where the constraint (the only object which

carries physical information) can be properly described. These would be clarified in detail

in the upcoming analysis.

6 New formula for 6-pt 1-loop MHV amplitude in N = 8 supergravity

From the previous section we know that although the existence of γ and κ in terms of

ordinary kinematics data is at risk, the color-kinematics duality is very well satisfied, which

still strongly tempts to suggest a “gravity” counterpart. Here in this section we are going

to show that indeed we can still follow the original double-copy construction to obtain the

correct formula for the corresponding 6-pt 1-loop gravity amplitude. This again confirms

that these auxiliary parameters are not “locally” inconsistent. Instead, we should take the

view that the constraints on these parameters work locally instead of globally, because all

the physical information to be extracted only depends on certain subset of the constraints
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(or the same functional constraint with different arguments) which are mutually consistent

with each other.

The same as in 5-pt case, in 6-pt case the formula obtained by double-copy construction

can still be reformulated purely in terms of MHV hexagons, which is equivalent to the

corresponding Yang-Mills amplitudes with the color factor in front of each MHV hexagon

substituted by the kinematic coefficient of the hexagon scalar loop integral with the same

ordering of labels in the loop integral expansion

M̃(1)
6 =

∑
σ∈S6/(Z6×Z2)

γ(σ1σ2 . . . σ6)

〈σ1σ2 . . . σ6〉2
P6(σ1σ2 . . . σ6). (6.1)

In order to check the consistency of (6.1) with the correct quadruple cuts in gravity,

we only need to check two types (since we are dealing with MHV polygons, leading singu-

larities in quadruple cuts of the type (a|b|cd|ef) are trivially zero). Again we first assume

κ = 0. The first type is (a|bc|d|ef). Without loss of generality, we can assign particular

configuration of the labels. So in this case we study the cut (1|23|4|56), which involves the

following contributions

γ(123456)

〈123456〉2
+
γ(123465)

〈123465〉2
+
γ(132456)

〈132456〉2
+
γ(132465)

〈132465〉2
. (6.2)

The amazing fact is, we are still able to use the constraints (5.4), (5.5) and (5.6) repeatedly

to fully eliminate the appearance of γ, and the final result is

[23]2[45][61]s23s45s56s61(4|5 + 6|1)2

〈23〉2〈45〉2〈61〉2〈46〉〈51〉ε(234561)ε(324561)

− [56][12][34]s56s12s23s34(1|2 + 3|4)2

〈123465〉〈56〉〈12〉〈34〉ε(561234)ε(1234)
− [56][13][24]s56s13s32s24(1|3 + 2|4)2

〈132465〉〈56〉〈13〉〈24〉ε(561324)ε(1324)
.

(6.3)

And this can actually be verified to be identical to the correct leading singularity of the

gravity amplitude.

For the other type we choose to study (1|2|3|456), which receives contributions from 6

terms

γ(123645)

〈123645〉2
+
γ(123654)

〈123654〉2
+
γ(123465)

〈123465〉2
+
γ(123564)

〈123564〉2
+
γ(123456)

〈123456〉2
+
γ(123546)

〈123546〉2
. (6.4)

For this expression, we can use the same constraints in different ways to obtain different

but equivalent final expressions, and still completely independent of γ, which can be shown

to be equivalent. One example is(
ε(123456)

〈123456〉
− [12]ε(3456)

〈12〉〈34〉〈65〉〈36〉〈45〉

)
[45][61][23]s45s61s12s23(6|1 + 2|3)2

〈45〉〈61〉〈23〉ε(123456)ε(123546)ε(6123)

− [12]ε(3456)

〈12〉〈34〉〈65〉〈36〉〈45〉
[56][12][34]s56s12s23s34(1|2 + 3|4)2

〈56〉〈12〉〈34〉ε(561234)ε(651234)ε(1234)

− [12]ε(3546)

〈12〉〈35〉〈64〉〈36〉〈54〉
[46][12][35]s46s12s23s35(1|2 + 3|5)2

〈46〉〈12〉〈35〉ε(461235)ε(641235)ε(1235)

+
[46][51][23]s46s51s12s23(5|1 + 2|3)2

〈123645〉〈46〉〈51〉〈23〉ε(123465)ε(5123)
+

[56][41][23]s56s41s12s23(4|1 + 2|3)2

〈123654〉〈56〉〈41〉〈23〉ε(123564)ε(4123)
,

(6.5)

– 13 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
0

which again has been checked numerically to be equivalent to the correct leading singularity.

Now we would also like to know how the κ parameter would affect the leading singu-

larities in the potential gravity amplitudes. The answer is that it has exactly zero effect.

More explicitly, the quadruple cut (1|23|4|56)) receives an additional contribution{
s56s12s23s34(1|2 + 3|4)2

〈123465〉ε(561234)ε(1234)
+

s56s13s32s24(1|3 + 2|4)2

〈132465〉ε(561324)ε(1324)

− [23]ε(4561)

〈23〉〈45〉〈61〉〈46〉〈51〉
s23s45s56s61(4|5 + 6|1)2

ε(234561)ε(324561)ε(4561)

}
κ,

(6.6)

which can be checked to be exactly zero. And the cut (1|2|3|456) receives an additional

contribution{
−
(
ε(123456)

〈123456〉
− [12]ε(3456)

〈12〉〈34〉〈65〉〈36〉〈45〉

)
s45s61s12s23ε(6123)

ε(123456)ε(123546)ε(6123)

+
[12]ε(3456)

〈12〉〈34〉〈65〉〈36〉〈45〉
s56s12s23s34(1|2 + 3|4)2

ε(561234)ε(651234)ε(1234)

+
[12]ε(3546)

〈12〉〈35〉〈64〉〈36〉〈54〉
s46s12s23s35(1|2 + 3|5)2

ε(461235)ε(641235)ε(1235)

− s46s51s12s23(5|1 + 2|3)2

〈123645〉〈123465〉ε(5123)
− s56s41s12s23(4|1 + 2|3)2

〈123654〉ε(123564)ε(4123)

}
κ,

(6.7)

which also vanishes. As a result, in both types of quadruple cuts, the terms that contain

κ just cancel out completely. Hence we do not only get a formula (6.1) with the correct

leading singularities of gravity amplitudes, but actually a one parameter family of them.

The price for this is that we have to build the color-kinematics duality on a virtual auxiliary

space.

7 Discussions

As a brief summary, we used MHV polygons to build 1-loop amplitudes for any number of

particles in N = 4 super Yang-Mills theory, and up to 6 points in N = 8 supergravity, all

of which are expressed as a simple sum over terms enjoying manifest cyclic and reflection

invariance and are related purely by permutations. In other words, with this basis, the

amplitudes can be generated with a single functional object (either a functional coefficient

or a functional constraint).

We have observed that non-trivial structures start to appear at 6 points. The coeffi-

cients multiplying the MHV hexagons cannot be expressed in terms of ordinary kinematics

data. Instead, the amplitude here is formulated by imposing upon these coefficients a set

of linear constraints, all of which have the same form (or, there is just a single functional

constraint), which totally determine all the physical information needed from the ampli-

tude. The striking fact is that, since these redundant parameters are not globally solvable,

we haven’t really obtained the real color-kinematics duality on the Yang-Mills side in our

specific construction. However, the result shows that we can still circumvent it to get the

correct gravity amplitude, just by imposing the algebraic relations but not solving them.
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By origin, γ and κ are only parameters that describe an auxiliary space. And so they

can be regarded as virtual, and their only purpose is to form a context to formulate the

constraint. It is really the constraint among these auxiliary variables that generates all

needed physical data.

As a natural generalization to the work presented in this paper, we can directly boost

the form in (6.1) to a conjecture for any number of particles

M̃(1)
n =

∑
σ∈Sn/(Zn×Z2)

γ(σ1σ2 . . . σn)

〈σ1σ2 . . . σn〉2
Pn(σ1σ2 . . . σn), (7.1)

with the γ(σ1σ2 . . . σn) still fully cyclic and reflection invariant but in general not solv-

able. Instead, we need to find out the constraints forced onto these coefficients, which are

mutually consistent with respect to each quadruple cut but not necessarily consistent as

a whole. By analogy, the coefficients here are still purely redundant parameters coming

from adding kinematic identities into the expansion of MHV polygons in analyzing the

color-kinematics duality (here by “purely redundant” we mean the parameters are dressed

with pure zeros). We have seen that given the color-kinematics duality is satisfied, the

gravity amplitude can be obtained just simply by substituting the color factor in front of

each MHV polygons with the coefficient of the highest order scalar loop integrals in the ex-

pansion of the polygons. But in order to achieve that, at this point we still have to go back

to the complicated expansions in terms of the scalar loop integrals and carefully fine-tune

the redundancies. Especially, we have to seek for a manifestly symmetric decomposition of

the MHV polygons into scalar loop integrals by introducing pure redundancies in a proper

way, which in general seems hard. But most of the information in this analysis is actually

not needed in the final answer. What we expect instead is a method that can work out the

single coefficient needed to put in front of the MHV polygons or the constraints they should

satisfy, without really working with the full set of loop integrals. Moreover, although the

entire set of constraints are inconsistent, they have some good behaviors under the oper-

ations as described before, which seems to suggest there is some non-trivial mathematical

structure to be better understood for this auxiliary space. And we hope that once this

auxiliary space is described in a better way, it may help reach a general formula for 1-loop

MHV amplitudes in N = 8 supergravity.

A A brief review of color-kinematics duality

In brief, color-kinematics duality refers to the situation that in a formula where the Yang-

Mills amplitude is expressed totally in terms of trivalent diagrams (whose structures have

one-to-one correspondence to the color structures in terms of fabc), for every color Jacobi

identity

ci ± cj ± ck = 0, (A.1)

there exists a dual kinematic identity

ni ± nj ± nk = 0 (A.2)
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sharing the same algebraic structure, but with each color factor substituted by its corre-

sponding kinematic numerator [1] (Notice that this is not necessarily a rational function.

The remaining kinematic factor is a product of propagators indicated by the trivalent

diagram).

At tree level, when this duality is satisfied, the amplitude can in general be written in

the form

A(0)
n =

∑
i

cini
(
∏
s)i
, (A.3)

where the summation is over all different trivalent diagrams. As the simplest example, the

4-pt tree-level Yang-Mills amplitude can be written as (without the helicity factor)

Ã(0)
4 =

f12afa34

s12

[12]

〈23〉〈34〉〈41〉
+
f13afa24

s13

[13]

〈32〉〈24〉〈41〉
, (A.4)

which already satisfies the color-kinematics duality, with the dual kinematic identity asso-

ciated to its unique color Jacobi identity

[12]

〈23〉〈34〉〈41〉
− [13]

〈32〉〈24〉〈41〉
− 0 = 0. (A.5)

4-pt is special in that, the duality holds for whatever form the amplitude is written in,

which is due to the possibility of adding a redundancy parameterized by α

Ã(0) = f12afa34

(
1

〈12〉〈23〉〈34〉〈41〉
+ α

)
+ f13afa24

(
1

〈13〉〈32〉〈24〉〈41〉
− α

)
− f1a4fa23α

(A.6)

while preserving the validity of the dual kinematic identity. For higher number of particles

the formula for any amplitude does not automatically satisfy this duality, but the formula

that meets this requirement is in general not unique.

When a formula for tree-level Yang-Mills amplitude satisfies color-kinematics duality,

Bern, Carrasco and Johansson conjectured that the correct formula for gravity with the

same number of particles can be directly obtained by substituting in (A.3) each color factor

ci by another copy of its corresponding kinematic numerator ni [1]

M(0)
n =

∑
i

ñini
(
∏
s)i
. (A.7)

This is called double-copy construction. Especially, the two copies of kinematic numerator

can come from two different formulas that satisfy color-kinematics duality respectively.

This conjecture has been proved at tree level [3].

The story is largely the same at loop level, except that here the duality is claimed to

hold down to the integrand [2]. In other words, the amplitude can be expressed as

A(L)
n =

∑
i

∫ (∏
d4k
) cini({p}, {k})

(
∏
s)i (

∏
l2)i

, (A.8)

where the summation is still over all different trivalent diagrams, {k} is the set of loop

momenta to be integrated over,
∏
l2 is the product of loop propagators, and

∏
s is the
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product of propagators corresponding to additional tree structures of the trivalent diagram

(if there is any). Note that, at loop level the kinematic numerator ni({p}, {k}) is in general

a function of both the external on-shell momenta and the loop momenta, so it may acquire

tensor structures (in terms of loop momenta). The way to go to gravity is still to substitute

each color factor ci by another copy of the kinematic numerator ñi({p}, {k})

M(L)
n =

∑
i

∫ (∏
d4k
) ñi({p}, {k})ni({p}, {k})

(
∏
s)i (

∏
l2)i

, (A.9)

However, if it is known that any tensor structures appearing in ni can be gauged away

(such as in 5-pt case as discussed by Carrasco and Johansson), then we can bring the color

factor together with its corresponding kinematic numerator out of the integration in (A.8)

A(L)
n =

∑
i

cini({p})
∫ (∏

d4k
) 1

(
∏
s)i (

∏
l2)i

=
∑
i

cini
(
∏
s)i
Ii, (A.10)

where I denotes the ordinary scalar loop integral corresponding to the trivalent dia-

grams (without the propagators from the tree structures). And the conjectured gravity

amplitude is

M(L)
n =

∑
i

ñini
(
∏
s)i
Ii. (A.11)

Since in the cases that we study here the tensor structures are still redundant, we always

use (A.10) and (A.11) when analyzing color-kinematics duality.

B Analysis of the color structure

This appendix summarizes the detailed analysis on the condition for 6-pt Yang-Mills am-

plitude to have the correct color structure when MHV hexagons are expanded into scalar

loop integrals. To simplify analysis, we temporarily set the parameter ∆ = 0. Then in the

hexagon reduction formula, box integrals of the type I4(a|bc|d|ef) are

−
∑
Z6

〈12〉[23]〈34〉[41]〈45〉[56]〈61〉[14](1|2 + 3|4)2

ε(1234)ε(4561)
I4(1|23|4|56). (B.1)

In order to obtain the correct color factor for this type of box integral, since this color

factor is a linear combination of four different color factors of the highest level, we should

expect that in the expansion of the full amplitude (multiply the above by the corresponding

Parke-Taylor form and then sum over MHV hexagons), the kinematic factors in front of

I4(a|bc|d|ef), I4(a|bc|d|fe), I4(a|cb|d|ef) and I4(a|cd|d|fe) should be equivalent up to a

possible minus sign, and this minus sign occurs when the two integrals differ by exchanging

labels only within either (bc) or (ef). It is straightforward to check that (B.1) meets this

requirement, so this type of box integrals already have the correct color structure at the

particular point as chosen in (5.1) when ∆ = 0. And then it is also easy to see the same

goes with the box integrals of the type I4(ab|cd|e|f), which are

−
∑
Z6

[12]〈23〉[34]〈45〉[56]〈61〉s56(5|3 + 4|6)2

ε(3456)ε(5612)
I4(12|34|5|6). (B.2)

– 17 –



J
H
E
P
0
5
(
2
0
1
3
)
0
7
0

Then for the third type I4(abc|d|e|f), the combined formula is

∑
Z6

s45s56〈34〉[46]〈61〉
ε(123456)

(
− [12]〈23〉[34]〈45〉[56][3|4 + 5|6〉

ε(3456)

+
〈12〉[23][45]〈56〉[61]〈4|5 + 6|1]

ε(4561)

)
I4(123|4|5|6).

(B.3)

The analysis is a little bit different for this case because of the color structure. For example,

this particular box integral I4(123|4|5|6) would give contributions to two color structures

fa1bfb23 and fa3bfb12. So for each coefficient of this type of box integrals, we need to

separate it into two parts and compare each part with the corresponding one from other box

integrals that would contribute to the same box color structure, which is hard to be carried

out. However, a careful look at the decomposition of color factors shows that another box

integral I4(321|4|5|6) exactly and only gives contributions to the same two color structures,

and with the same sign. By the fact that for each color structure, the decomposed coefficient

should match between the two box integrals, the two entire coefficients should also be

equivalent, and this has been verified by numerical check. Although this hasn’t fully

shown that the correct color structure can be obtained for this type of box integral, it is

already a strong consistency check. And later in the analysis of color-kinematics duality,

we’ll further strengthen this argument.

Then what is remaining are the pentagon integrals, which will give non-trivial con-

straints. The hexagon and pentagon integrals in the reduction formula are

γ(123456)I6(1|2|3|4|5|6)

+
∑
Z6

{
[12]〈23〉[34]〈45〉[56]〈61〉s34s45s56(3|4+5|6)2

ε(123456)ε(3456)
−γ(123456)

ε(3456)

ε(123456)

}
I5(12|3|4|5|6).

(B.4)

In order that the pentagon integrals have the correct color structure, we should have

0 =

{
[12]〈23〉[34]〈45〉[56]〈61〉s34s45s56(3|4 + 5|6)2

ε(123456)ε(3456)
− γ(123456)

ε(3456)

ε(123456)

}
1

〈123456〉

+

{
[21]〈13〉[34]〈45〉[56]〈62〉s34s45s56(3|4 + 5|6)2

ε(213456)ε(3456)
− γ(213456)

ε(3456)

ε(213456)

}
1

〈213456〉
,

(B.5)

which gives

[12][34][56]s12s34s45s56(3|4 + 5|6)2

〈12〉〈34〉〈56〉ε(123456)ε(213456)ε(3456)
+

γ(123456)

〈123456〉ε(123456)
+

γ(213456)

〈213456〉ε(213456)
= 0.

(B.6)

The constraints on γ with the other sequences of labels are related just by permutations.

So we can regard (B.6) either as a single functional constraint equation, or together with

its permutations forming a set of constraints on the set of γ’s with all possible orderings

of particle labels.
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C Effects of the parameter ∆

This appendix complements appendix B in studying the effect of ∆ on the color structures.

When ∆ is non-zero, the terms corresponding to the type I4(a|bc|d|ef) receive additional

contributions as

−
∑
Z6

s14ε(123456)(1|2 + 3|4)2

ε(1234)ε(4561)
∆(123456)I4(1|23|4|56). (C.1)

Since the original part itself already gives the desired color factor, if this new expression

should preserve this property, the additional term containing ∆ should satisfy

− s14ε(123456)(1|2 + 3|4)2

ε(1234)ε(4561)

∆(123456)

〈123456〉
− s14ε(132456)(1|3 + 2|4)2

ε(1324)ε(4561)

∆(132456)

〈132456〉
= 0, (C.2)

which is simplified to

ε(123456)∆(123456)

〈123456〉
=
ε(132456)∆(132456)

〈132456〉
. (C.3)

This already gives a very strong constraint on ∆. But to further confirm it, take another

type of box integral I4(ab|cd|e|f)∑
Z6

s56ε(123456)(5|3 + 4|6)2

ε(3456)ε(5612)
∆(123456)I4(12|34|5|6). (C.4)

Again by requiring the desired color factor for this box integral, we would get

ε(123456)∆(123456)

〈123456〉
=
ε(213456)∆(213456)

〈213456〉
. (C.5)

We may observe that given the symmetry of ∆, (C.5) is compatible with (C.3), and they

together indicate that the particular form

κ =
ε(abcdef)∆(abcdef)

〈abcdef〉
(C.6)

should be invariant under all permutations of the labels. In terms of the new parameter κ,

terms involving the type I4(abc|d|e|f) acquires the additional contribution

κ
∑
Z6

s45s56[46]〈123456〉
ε(123456)

(
〈34〉[3|4 + 5|6〉

ε(3456)
− 〈61〉〈4|5 + 6|1]

ε(4561)

)
I4(123|4|5|6). (C.7)

Numerically, take I4(123|4|5|6) for example, its additional kinematic factor is invariant

under the exchange of label 1 and 3, indicating that κ doesn’t break the correct color

structure for this type of box integral as well.

The pentagon integrals in the reduction formula now takes the form∑
Z6

{
[12]〈23〉[34]〈45〉[56]〈61〉s34s45s56(3|4 + 5|6)2

ε(123456)ε(3456)

−κ〈123456〉s34s45s56(3|4 + 5|6)2

ε(123456)ε(3456)
− γ(123456)

ε(3456)

ε(123456)

}
I5(12|3|4|5|6).

(C.8)
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Due to this additional term involving κ, if we still want to preserve the correct color

structure for pentagon integrals, the original constraint (B.6) on γ should be modified to

[12][34][56]s12s34s45s56(3|4 + 5|6)2

〈12〉〈34〉〈56〉ε(123456)ε(213456)ε(3456)
− κ s12s34s45s56(3|4 + 5|6)2

ε(123456)ε(213456)ε(3456)

+
γ(123456)

〈123456〉ε(123456)
+

γ(213456)

〈213456〉ε(213456)
= 0.

(C.9)

D Analysis of color-kinematics duality

This appendix studies the condition for color-kinematics duality when the scalar loop

integral expansion of 6-pt Yang-Mills amplitude we have obtained has the correct color

structure.

Again let us set κ = 0, and we first look into the relations between hexagon integrals

and pentagon integrals. In order that color-kinematics duality holds at this level, for

example, from the pentagon integral I5(12|3|4|5|6), together with two hexagon integrals

I6(1|2|3|4|5|6) and I6(2|1|3|4|5|6), we should have the following constraint{
[12]〈23〉[34]〈45〉[56]〈61〉s34s45s56(3|4 + 5|6)2

ε(123456)ε(3456)
− γ(123456)

ε(3456)

ε(123456)

}
1

〈123456〉

=

{
γ(123456)

〈123456〉
− γ(213456)

〈213456〉

}
1

s12
.

(D.1)

Then by using the identity

ε(123456) + ε(213456) + s12ε(3456) = 0, (D.2)

it is easy to show that (D.1) is actually equivalent to the constraint (B.6) on γ from the

analysis of color structure.

For the box integrals of the type I4(a|bc|d|ef), we pick up I4(1|23|4|56) as an example,

and check the relation between this and I5(1|2|3|4|56) and I5(1|3|2|4|56). Substraction of

the coefficients of the two pentagon integrals gives{
[56]〈61〉[12]〈23〉[34]〈45〉s12s23s34(1|2 + 3|4)2

ε(561234)ε(1234)
− ε(1234)γ(561234)

ε(561234)

}
1

〈561234〉

−
{

[56]〈61〉[13]〈32〉[24]〈45〉s13s23s24(1|2 + 3|4)2

ε(561324)ε(1324)
− ε(1324)γ(561324)

ε(561324)

}
1

〈561324〉
,

(D.3)

which, after imposing the constraint (B.6) on γ from the pentagon color factors, results in

an expression that is entirely independent of γ

+
[56][12][34]s12s23s34(1|2 + 3|4)2

〈56〉〈12〉〈34〉ε(561234)ε(1234)
+

[56][13][24]s13s23s24(1|2 + 3|4)2

〈56〉〈13〉〈24〉ε(561324)ε(1234)

− [23][45][61]s23s45s56s61(4|5 + 6|1)2ε(1234)

〈23〉〈45〉〈61〉ε(561234)ε(561324)ε(4561)
.

(D.4)
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If color-kinematics duality is to hold between this type of box integrals and the pentagon

integrals, we should expect the above expression to be equivalent to the coefficient of the

box times s23

− 〈12〉[23]〈34〉[41]〈45〉[56]〈61〉[14](1|2 + 3|4)2

ε(1234)ε(4561)〈123456〉
· s23. (D.5)

This has been verified with numerical values. Given this is satisfied, the other dual kine-

matics relations in the same category are automatic just by permuting the labels. The

interesting fact here is that we don’t even need to use the explicit form of the coefficients

of the hexagon integrals.

Then go on to study the type I4(ab|cd|e|f). For this we pick up I4(12|34|5|6) together

with I5(1|2|34|5|6) and I5(2|1|34|5|6). Substraction of the coefficients of the two pentagon

integrals gives{
[34]〈45〉[56]〈61〉[12]〈23〉s56s61s12(5|6 + 1|2)2

ε(345612)ε(5612)
− ε(5612)

ε(345612)
γ(345612)

}
1

〈345612〉

−
{

[34]〈45〉[56]〈62〉[21]〈13〉s56s62s12(5|6 + 2|1)2

ε(345621)ε(5621)
− ε(5621)

ε(345621)
γ(345621)

}
1

〈345621〉
.

(D.6)

Similarly, after imposing the constraints (B.6), this reduces to another γ-independent ex-

pression

[34][56][12]s56s61s12(5|6 + 1|2)2

〈34〉〈56〉〈12〉ε(345612)ε(5612)
+

[34][56][12]s56s62s12(5|6 + 2|1)2

〈34〉〈56〉〈12〉ε(345621)ε(5612)

+
[12][34][56]s12s34s45s56(3|4 + 5|6)2ε(5612)

〈12〉〈34〉〈56〉ε(345612)ε(345621)ε(3456)
,

(D.7)

which has been numerically checked to be equivalent to the coefficient of I4(12|34|5|6) times

s12

− [12]〈23〉[34]〈45〉[56]〈61〉s56(5|3 + 4|6)2

ε(3456)ε(5612)〈123456〉
· s12. (D.8)

This confirms that with the condition of correct color structure, color-kinematics duality

also holds between pentagon integrals and the box integral of this second type.

For the remaining type I4(abc|d|e|f), we choose to study I4(123|4|5|6), and we would

like to check whether the kinematic factor of this box integral with color structure f123456

is consistent with color-kinematics duality in relation to the pentagon integrals. As has

be mentioned before, the color structure f123456 contributes to two box color structures,

so we should study the dual kinematics relations for both structures, and only the sum

(or substraction depending on the definition of the color structure) of the two results will

equal the kinematic factor of I4(123|4|5|6).

For the first color structure fa1bfb23, its related pentagon integrals are I5(1|23|4|5|6)

and I5(23|1|4|5|6). The substraction of the two is{
[23]〈34〉[45]〈56〉[61]〈12〉s45s56s61(4|5 + 6|1)2

ε(234561)ε(4561)
− ε(4561)

ε(234561)
γ(234561)

}
1

〈234561〉

−
{

[23]〈31〉[14]〈45〉[56]〈62〉s14s45s56(1|4 + 5|6)2

ε(231456)ε(1456)
− ε(1456)

ε(231456)
γ(231456)

}
1

〈231456〉
.

(D.9)
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Here we are still able to fully eliminate the γ, but should use two constraints. In the end,

we would obtain the following expression

[23][45][61]s45s56s61(4|5 + 6|1)2

〈23〉〈45〉〈61〉ε(234561)ε(4561)
+

[23][14][56]s14s45s56(1|4 + 5|6)2

〈23〉〈14〉〈56〉ε(231456)ε(4561)

− [12][34][56]s12s34s45s56(3|4 + 5|6)2ε(4561)

〈12〉〈34〉〈56〉ε(123456)ε(213456)ε(3456)
− [13][45][62]s13s45s56s62(4|5 + 6|2)2ε(4561)

〈13〉〈45〉〈62〉ε(134562)ε(314562)ε(4562)
.

(D.10)

For the other color structure fa3bfb12, we can obtain the formula just by doing the permu-

tation {1→ 3, 2→ 1, 3→ 2} to the above expression, which is

[12][45][63]s45s56s63(4|5 + 6|3)2

〈12〉〈45〉〈63〉ε(124563)ε(4563)
+

[12][34][56]s34s45s56(3|4 + 5|6)2

〈12〉〈34〉〈56〉ε(123456)ε(4563)

− [31][24][56]s31s24s45s56(2|4 + 5|6)2ε(4563)

〈31〉〈24〉〈56〉ε(312456)ε(132456)ε(2456)
− [32][45][61]s32s45s56s61(4|5 + 6|1)2ε(4563)

〈32〉〈45〉〈61〉ε(324561)ε(234561)ε(4561)
.

(D.11)

Then, since the color structures under study are decomposed as

fabdfb1cfc23 = fa1bfb2cfc3d − fa1bfb3cfc2d − fa2bfb3cfc1d + fa3bfb2cfc1d,

fabdfb3cfc12 = fa3bfb1cfc2d − fa3bfb2cfc1d − fa1bfb2cfc3d + fa2bfb1cfc3d,
(D.12)

it is (D.10)−(D.11) that should be equivalent to the kinematic factor of the box integral

I4(123|4|5|6) multiplied by s123 = (p1 + p2 + p3)2

s45s56[46]

ε(123456)

(
− [12]〈23〉[34]〈45〉[56]〈61〉〈34〉[3|4 + 5|6〉

ε(3456)

+
〈12〉[23]〈34〉[45]〈56〉[61]〈61〉〈4|5 + 6|1]

ε(4561)

)
· s123.

(D.13)

This equivalence has also been confirmed numerically. In doing this, we’ve not only verified

the color-kinematics duality for this case, but also obtained the desired decomposition of

the kinematic factor in (B.3) into (D.10) and (D.11) for I4(abc|d|e|f) in order to give rise

to the desired color structure for this type of box integrals, thus filling in the gap left by

previous analysis.

So far we see that when κ = 0, the color-kinematics duality is automatically satisfied.

Now we turn on κ, and check whether this parameter would break the duality. Here we

should be more careful, because non-vanishing κ would modify the constraint on γ, and so

in checking the duality, wherever γ appears, we should count the additional term in (C.9).

We still check the examples as we choose before, and only focus on the additional terms

that would appear. At the level between hexagons and pentagons, if we add the κ term

from the coefficient of the pentagon into the L.H.S. of the original relation (D.1), we can

observe that the modified relation is again just the condition of correct color structure for

pentagons with κ turned on. So the duality at this level is un-touched.

At the level between pentagon integrals and box integrals, we first go back to the type

involving I4(a|bc|d|ef) (e.g. I4(1|23|4|56)). Now the coefficient of the pentagon integrals
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I5(1|2|3|4|56) and I5(1|3|2|4|56) together with the constraint on γ would add in (D.4) the

following additional terms

− s12s23s34(1|2 + 3|4)2

ε(123456)ε(1234)
κ+

s13s32s24(1|3 + 2|4)2

ε(132456)ε(1324)
κ+

s23s45s56s61(4|5 + 6|1)2ε(1234)

ε(234561)ε(324561)ε(4561)
κ,

(D.14)

while on the box integral side, its coefficient (times s23) contains the additional term

− s14(1|2 + 3|4)2

ε(1234)ε(4561)
κ · s23. (D.15)

We have verified numerically that (D.14) and (D.15) are indeed identical.

For the type involving I4(ab|cd|e|f) (e.g. I4(12|34|5|6)), the pentagon integrals

I5(1|2|34|5|6) and I5(2|1|34|5|6) together with the constraint give additional terms in (D.7)

− s56s61s12(5|6 + 1|2)2

ε(123456)ε(5612)
κ+

s56s62s21(5|6 + 2|1)2

ε(213456)ε(5621)
κ− s12s34s45s56(3|4 + 5|6)2ε(5612)

ε(123456)ε(213456)ε(3456)
κ.

(D.16)

And numerically, we have also checked that this is equivalent to the additional term given

by the corresponding box integral (times s12)

s56(5|3 + 4|6)2

ε(3456)ε(5612)
κ · s12. (D.17)

For the remaining type involving I4(abc|d|e|f) (e.g. I4(123|4|5|6)), we first analyze

the relation from I5(1|23|4|5|) and I5(23|1|4|5|6), which together with the constraint adds

into (D.10) the following terms

− s45s56s61(4|5 + 6|1)2

ε(234561)ε(4561)
κ+

s14s45s56(1|4 + 5|6)2

ε(231456)ε(1456)
κ

+
s12s34s45s56(3|4 + 5|6)2ε(4561)

ε(123456)ε(213456)ε(3456)
κ+

s13s45s56s62(4|5 + 6|2)2ε(4561)

ε(134562)ε(314562)ε(4562)
κ.

(D.18)

Then in another relation (D.11), we would get the following terms

− s45s56s63(4|5 + 6|3)2

ε(124563)ε(4563)
κ+

s34s45s56(3|4 + 5|6)2

ε(123456)ε(3456)
κ

+
s31s24s45s56(2|4 + 5|6)2ε(4563)

ε(312456)ε(132456)ε(2456)
κ+

s32s45s56s61(4|5 + 6|1)2ε(4563)

ε(324561)ε(234561)ε(4561)
κ.

(D.19)

Similarly, in order for this type of dual kinematics relations to hold, we should expect

that (D.18)−(D.19) matches with the additional terms from the corresponding box integral

(times s123)

s45s56[46]

ε(123456)

(
〈34〉[3|4 + 5|6〉

ε(3456)
− 〈61〉〈4|5 + 6|1]

ε(4561)

)
κ · s123. (D.20)

And we have also verified this numerically.
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E Transformation to explicit formula for 6-pt 1-loop MHV gravity am-

plitude in terms of MHV hexagons

In this appendix we show that starting from our formula (6.1) for 6-pt 1-loop MHV ampli-

tude in N = 8 supergravity, which is constructed with MHV hexagons together with the

virtual coefficients γ, it is also possible to obtain a formula, which is expressed explicitly in

terms of ordinary kinematics data and meanwhile enjoys correct residues on all contours.

In order to achieve this, pay attention that in general there are many non-planar iden-

tities relating different MHV polygons. Specifically for MHV hexagons, a direct analysis on

leading singularities shows that, among the 60 inequivalent MHV hexagons, the maximally

independent set only contains 40, so we would expect a great many identities. The small-

est of such identities contains 8 MHV hexagons, which are related by exchanging labels

within each pair, if we regard all the 6 labels as being separated into 3 adjacent pairs. One

example is

P6(123456)− P6(123465)− P6(124356) + P6(124365)

−P6(126543) + P6(125643) + P6(126534)− P6(125634) = 0.
(E.1)

Since these are purely mathematical relations, we are allowed to freely add them with any

coefficient into the amplitude and meanwhile preserve all necessary physical data.

Now go back to our formula for 6-pt gravity amplitude. The trick is to modify the

coefficient of each term appearing in (6.1), say for γ(123456)

γ(123456)

〈123456〉2
= − [16][23][45]

〈16〉〈23〉〈45〉
γ(612345)

〈612345〉ε(612345)
− [12][34][56]

〈12〉〈34〉〈56〉
γ(123456)

〈123456〉ε(123456)
, (E.2)

and the rest can be obtained just by permutations. A straightforward combinatoric count-

ing gives 60 inequivalent MHV hexagons, so after the modification we have doubled them

to 120. Then notice that now in front of each term, we always have a pre-factor of the

pattern
[ab][cd][ef ]

〈ab〉〈cd〉〈ef〉
.

And in the 6-pt case there are altogether 15 of them. Then it is easy for us to check that

the 120 terms in the modified formula exactly fall into 15 groups, each involving 8 terms,

and with the same pre-factor. If we denote

γ̃(abcdef) =
γ(abcdef)

〈abcdef〉ε(abcdef)
,

then for example, one of the group is

− [12][34][56]

〈12〉〈34〉〈56〉
[
γ̃(123456)P123456+γ̃(123465)P123465+γ̃(124356)P124356+γ̃(124365)P124365

+γ̃(125634)P125634+γ̃(125643)P125643+γ̃(126534)P126534+γ̃(126543)P126543

]
.

(E.3)

But again, all γ̃ are just simply related by the constraint (5.6) (since here we are only

interested in obtaining an explicit example, for simplicity we just set κ = 0). For this
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group we can bring the other γ̃ to γ̃(123456) with some additional terms purely of ordinary

spinors, and when we collect all of the coefficient of the remaining γ̃(123456), we get

− [12][34][56]

〈12〉〈34〉〈56〉
γ̃(123456)

[
P123456 − P123465 − P124356 + P124365

−P125634 + P125643 + P126534 − P126543

]
.

(E.4)

However, the linear combination of the eight MHV hexagons in the big square bracket is

just one of the standard identities of these kind of mathematical objects as shown in (E.1)

that should always vanish. Since the same situation can be shown to occur in all other

groups, to this point we have shown the γ factors are completely eliminated from the entire

formula, and what is left over is just the 1-loop gravity amplitude in the ordinary spin-

helicity formalism, despite the fact that now the expression would look quite complicated

and asymmetric.
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