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1 Introduction

Local symmetries play a crucial role in understanding the thermodynamical properties of

black holes. It was shown that the Noether charges corresponding to the diffeomorphism

symmetry of any generally covariant theory of gravity are related to the black hole en-

tropy [1, 2]. This approach, when applied to the conventional Einstein-Hilbert action,

reproduce the well known Bekenstein-Hawking entropy (BH) [3, 4]. However, the Wald’s

formalism tells us little about the microscopic degrees of freedom responsible for the black

hole entropy. A major step to understand the black hole entropy from the microscopic

point of view was taken by Strominger and Vafa [5]. They showed that certain extremal

black holes in string theory can be described, through a string duality map, by two dimen-

sional conformal field theory (CFT). Then the entropy of this CFT was obtained by using

the Cardy formula [6] and shown to be consistent with the standard BH entropy. In the

related subsequent development [7], the entropy of the Banados-Teitelboim-Zanelli (BTZ)

black holes [8] was also obtained through two dimensional CFT. This formalism relies on

the remarkable observation that the algebra among the asymptotic symmetry generators

is isomorphic to two copies of the Virasoro algebra with the central charge c [9]

[Qm, Qn] = (m− n)Qm+n +
c

12
m(m2 − 1)δm+n,0 . (1.1)

This appearance of the Virasoro algebra of symmetry generators can be regarded as the

predecessor of the AdS/CFT correspondence [10].

An alternative approach which uses only the near horizon properties of black holes

was given by Carlip [11, 12]. In this ‘stretched horizon’ approach one begins by assuming

the existence of an approximate null Killing vector. The location of the Killing horizon is
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determined by the vanishing of the norm of that Killing vector. Under certain boundary

conditions near the Killing horizon, it was shown that the Fourier modes of diffeomorphism

generators realized by vector fields form subalgebra isomorphic to Diff(S1), which is also

known as Witt algebra, as

[ξm, ξn]
a = −i(m− n)ξam+n. (1.2)

The algebra among canonical conserved charges corresponding to the above generators is

identical with a copy of the standard Virasoro algebra. This construction of the algebra

indicates the existence of a certain two dimensional CFT, and allows us to read off the

central charge of the underlying CFT. Then, the black hole entropy is reproduced by sub-

stituting the central charge and zero mode eigenvalue of the conserved charge in the Cardy

formula. Based on this idea, several alternative methods have been proposed [13–24] to

know more about the microscopic origin of the horizon entropy.

The above stretched horizon approach has been revisited by Majhi et al. [25] wherein

the central charge and the horizon entropy is obtained by using the off-shell expressions

for the Noether current and potential. One of the key features of this method is that the

on-shell vanishing part of the Noether current is not essential for performing calculations in

brackets among the Noether charges. In this sense the definition of bracket is more general.

This formalism extends in a straightforward manner to Lanczos-Lovelock models of gravity.

Recently, it has been shown that the same expressions for the Noether charges and horizon

entropy can also be obtained by using either the Gibbons-Hawking surface term or the

gravitational surface term [26, 27]. This analysis was based on the holographic property

of the gravitational action functional [28]. Although Lanczos-Lovelock models generalize

Einstein gravity to a great extent, they still come under the two derivative theories. It

is known that a specific combination of Ricci scalar and Ricci tensor leads to interest-

ing gravity models in three and four dimensions [29–31]. The higher curvature gravity in

2+1 dimensions, the so-called new massive gravity (NMG), is originally introduced as the

parity even counter part of topologically massive gravity [32]. NMG allows propagating

massive gravitons and also incorporate various black hole solutions. Moreover, NMG has

been shown to be consistent with the so-called holographic c-theorem [33–35]. It is there-

fore natural to extend the analysis of [25] to obtain the horizon entropy for black holes in

genuinely higher derivative gravity such as NMG.

Another motivation to study 2+1 dimensional Einstein gravity and NMG is as follows.

For Einstein gravity, it was shown that the conserved quantities like mass and angular mo-

mentum for Kerr black hole geometries in arbitrary dimensions take the same values on

the near horizon and at the asymptotic infinity [36, 37]. A generalization of this result for

the the asymptotically AdS black holes by using the improved surface integrals has been

provided in [38, 39]. The improved surface integrals allow us to compute the conserved

charges both at the horizon and the asymptotic infinity. In addition to this, it has also been

shown that the angular momentum is invariant not only just at two asymptotic boundaries

but also all along the entire radial direction. This procedure is valid for higher dimensional

Kerr black holes in asymptotically flat as well as AdS geometries.

The rotating AdS black holes in 2 + 1 dimensions (BTZ black holes) possess an extra

feature. Since the asymptotic as well as the near horizon geometry correspond to AdS3
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space, this geometry may be viewed as the holographic renormalization group (RG) flow

between the ultraviolate and the infrared CFT. This provides another realization of holo-

graphic c-theorem beyond domain wall solutions.1 However, in the absence of any matter

field this holographic RG flow becomes trivial. The next simplest step would be to study

the rotating black holes in 2+1 dimensional Einstein gravity coupled to a scalar field. For

the interpretation in the holographic RG flow, the extremal black hole solutions are the

relevant one [40].2 The deformed extremally rotating BTZ black holes in NMG coupled

with a scalar are also discussed in [45]. It was shown that the family of extremally rotat-

ing hairy AdS black holes can be described by reduced-order equations of motions(EOM).

These black holes may be regarded as the scalar-hairy deformation of extremally rotating

BTZ black holes. However, the explicit derivation of the invariance of the angular momen-

tum for these black holes has not been given in the literature. The detailed analysis of the

invariance of the angular momentum for the Einstein as well as NMG by incorporating the

scalar field would provide us fresh insights to understand RG flow in the dual CFT.

The purpose of the present work is to compute the horizon entropy from the point

of view of the near horizon Virasoro algebra and to show explicitly the invariance of the

angular momentum for the rotating BTZ black holes in NMG. We first consider the general

expression for the off-shell Noether current and its potential [46, 47] for the NMG. Then,

by integrating the Noether potential on the stretched horizon we obtain the expression for

the Noether charge. Using the general definition of bracket given in [25], we construct the

algebra among the Noether charges. It turns out that this algebra is isomorphic to a copy of

the Virasoro algebra with a central extension. The zero mode eigenvalue and central charge

are obtained by Fourier transforming the Noether charge and central extension term, re-

spectively. Next, we evaluate these expressions for non extremal rotating BTZ black hole.

Finally, using the Cardy formula we obtain the expression for the horizon entropy. We also

sketch a method to calculate the entropy for extremal rotating BTZ black hole in NMG.

For this case we will proceed in a slightly different way. We take the same expressions

for the Noether current, potential and the bracket among the Noether charges mentioned

earlier. However, we choose the diffeomorphisms different from the non-extremal case,

which preserves the fall-off boundary conditions [48] at the asymptotic infinity of the near

horizon extremal BTZ. We show that algebra among the Noether charges is isomorphic to

the Virasoro algebra with the central extension. The central charge identified from this

algebra is consistent with the one given in [49].

To show the angular momentum invariance for the rotating BTZ black holes along

the radial direction, we adopt a specific quasi-local method for conserved charges, which

is known as the Komar integrals. Here as well, we use the same Noether potential as in

the computation for black hole entropy. We calculate the Noether potential corresponding

to the rotational Killing vector for the BTZ black hole in the Einstein gravity and NMG.

The angular momentum is obtained by integrating this expression over the surface with

codimension two situated at rH ≤ r ≤ r∞, where rH is the position of the outer horizon.

1The simplest examples of such holographic construction of RG flows are given by domain wall solutions

interpolating two AdS spaces.
2For some specific choice of the scalar potential the non-extremal black hole solution is given in [8, 41–44].
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In the Einstein case, our resulting expression for the angular momentum matches exactly

with the corresponding one given in [38, 39]. By applying the same technique we show

the invariance of the angular momentum for the rotating BTZ black holes in NMG. As

mentioned earlier, the invariance of the angular momentum for the rotating BTZ black

holes is related to the holographic RG flow. However, for the pure Einstein or NMG

theories this RG flow is trivial. In order to gain further insights into the holographic RG

flow, we consider extremally rotating BTZ solution for NMG coupled with a scalar field.

Then, we compute the relevant Komar integrals [50] corresponding to the rotating Killing

vector and show that the angular momentum is indeed invariant along the radial direction.

Apart from its relevance in understanding RG flow in the dual CFT’s, the invariance of

the angular momentum gives us an important relation between the infrared and ultraviolate

entropies. According to the conventional AdS/CFT correspondence, the central charge of

the dual ultraviolet CFT is always greater than that of the infrared CFT, which is coined

as holographic c-theorem. Since the Cardy formula requires the conformal weights of dual

states together with the central charge, this theorem is insufficient to identify which entropy

of dual CFT corresponds to the BH entropy of those black holes. By establishing the

angular momentum invariance of the hairy extremal black holes, we verify that the entropy

of the dual infrared CFT is always less than or equal to the one of dual ultraviolet CFT

and that the entropy of the infrared CFT gives the BH entropy of those black holes. This

matching between the infrared dual CFT and the BH entropy of black holes is anticipated

through the near horizon CFT approach [11]. However, we would like to emphasize that

this near horizon CFT is not the same one with the infrared dual CFT used in holographic

c-theorem. Nevertheless, by using conserved currents related to the generalized Komar

potential, one can see that the same entropy of black holes can be reproduced in this way.

This paper is organized as follows. In the next section we summarize some basic facts

about conserved currents for the local symmetry, for the sake of completeness, and then

we consider the modified Noether current which was introduced as the off-shell conserved

currents [46] and show that their meaning may be understood as the generalized Komar

potential. In section three we obtain the entropy of black holes through the near horizon

dual CFT by using the off-shell formalism of [25]. We conclude this section by providing

a brief discussion on the entropy for extremally rotating BTZ black holes. In section four,

using the generalized Komar potential, we obtain the quasi-local angular momentum of

extremally rotating hairy AdS black holes on three dimensions and show its invariance

along the radial direction. This verifies that the BH entropy of these black holes can be

obtained by the infrared dual CFT. We summarize our results and discuss some future

directions in the final section. Appendix A contains some useful formulae and definitions

in the stretched horizon approach. A derivation of angular momentum invariance for the

usual Einstein gravity is provided in appendix B.

2 Conserved currents and their potentials

In this section we review and summarize the Noether procedure for symmetry to fix our

conventions. Since we are interested in the conserved charges and the entropy of black holes,
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it is useful to collect some well-known results for conserved currents for local symmetry to

clarify our presentation (See for reviews, [51–53]).

Let us consider the generic action, I[ϕ], which enjoys local symmetry and contains

various fields which are denoted collectively as ϕi. Some of these fields can be regarded as

gauge fields and others as matter ones. Under the generic variation of the field ϕ → ϕ+δϕ,

the action is varied as

δI[ϕ] =

∫

ddx
√−g

[

Ei(ϕ)δϕ
i +∇µΘ

µ(ϕ, δϕ)
]

, (2.1)

where Ei(ϕ) = 0 denotes EOM for each field ϕi and Θ(ϕ, δϕ) denotes the total surface

term after integration by parts. The symmetry of the action is defined by the invariance of

the action under the specific variation of fields ϕ → ϕ+ δǫϕ. The invariance of the action

under the symmetry can be written as

δǫI[ϕ] =

∫

ddx
√−g∇aK

a(ϕ, δǫϕ) = 0 . (2.2)

The standard Noether current is introduced as

J̃a ≡ Θa(ϕ, δǫϕ)−Ka(ϕ, δǫϕ) . (2.3)

By taking the generic variation as the symmetry in eq. (2.2), one can see that this current

satisfies

∇aJ̃
a = −Ei(ϕ)δǫϕ

i , (2.4)

which tells us the on-shell conservation of the Noether current. For global symmetry this

procedure leads to the well-defined conserved charges by integrating the current on the

hypersurface. However, that is not the case for a local symmetry. The basic reason for the

inadequacy of this procedure in local symmetries is the existence of the so-called Noether

identities. In terms of local symmetry variation parameter ǫ = ǫ(x), this identity can be

written as the form of

− Ei(ϕ)δǫϕ
i = ∇aS

a(E(ϕ), δǫϕ) , (2.5)

where Sa denotes the on-shell vanishing current. Even for the the global symmetries,

which may appear as the rigid limit of corresponding local symmetries, the current Sa can

be introduced. However, for this case the corresponding Noether identities are somewhat

trivial. The absence of gauge fields in the case of global symmetry tells us that there are

missing equations for gauge fields among the equations of motion, E(ϕ) = 0. Because of

these missing equations, Sa for the global symmetry does not need to vanish even at the

the on-shell level.

Noether identities together with the Poincaré lemma enable us to express the Noether

current in terms of the on-shell vanishing current Sa and a certain arbitrary anti-symmetric

second rank tensor Jab, which will be named as the Noether potential3

J̃a = Sa +∇bJ
ab . (2.6)

3This tensor, in the canonical terminology, is called as the superpotential. However, we have chosen the

potential for this one since the same terminology is also used in the context of (fake) supersymmetry with

the completely different meaning.
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This expression shows that the Noether current for local symmetry becomes on-shell van-

ishing up to a certain ambiguity. Thus, it is unclear how to define conserved charges for

local symmetry generically in terms of currents. To define conserved charges under the

inherent ambiguity of the Noether current, one needs to adopt a certain prescription for

choosing the appropriate current or potential.

One way to define conserved charges is to introduce the asymptotically conserved po-

tential through the on-shell vanishing current by linearizing the fields and EOM on a given

background. Then, by removing the ambiguity from the potential, one can define the con-

served charges as their integrals of the on-shell potential corresponding to the ‘asymptotic

Killing vectors’. More mathematically, the arbitrariness of the potential may be resolved in

the language of the characteristic cohomology with the appropriate identification of asymp-

totic boundary behaviors [54]. The well-established Arnowitt-Deser-Misner (ADM) [55]

and Abbott-Deser-Tekin (ADT) [56, 57] methods can be understood in this category.

There are also well known approaches [1, 2, 58] to define conserved charges by the

Noether potential without the linearization, which belong to quasi-local category. For

some specific cases, these quasi-local charges are shown to be consistent with the conserved

charges under the linearized method by using the one parameter family of solutions when

a certain integrability condition is satisfied [38]. This indicate that the conserved charges

may be defined even at the non-linear level by the appropriate choice of the Noether po-

tential.

While the conventional Noether current defined in eq. (2.3) is conserved on-shell only,

it is possible to construct the current which would be conserved without using EOM, i.e.

off-shell current. Indeed, by using the eq. (2.6), one can construct the corresponding

off-shell Noether current Ja, as

Ja ≡ J̃a − Sa = ∇aJ
ab . (2.7)

It turns out that this current satisfies the off-shell conservation law. Just like the case of

the on-shell current, there exists a definite prescription to obtain the off-shell Noether cur-

rent by the appropriate potential Jab, directly from the Lagrangian of any diffeomorphism

theory of gravity [46]. Since our derivation of the horizon entropy and angular momentum

invariance uses the off-shell Noether current and its potential, we shall now review this

approach.4

Consider a generally covariant Lagrangian built from metric and curvature tensor

I =
1

16πG

∫

ddx
√−g

[

L(gab, Rabcd) + Lm(gab, φ)
]

. (2.8)

The variation of L with respect to gab is given by

δ(L√−g) =
√−g(Gabδg

ab +∇aVa) , (2.9)

4It is also possible to extend the following analysis for the more general theories containing derivatives of

curvature tensor. However, for the sake of simplicity we shall concentrate on the Lagrangians constructed

from the metric and curvature tensor.
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where

Gab = P cde
a Rbcde − 2∇c∇dPabcd −

1

2
gabL ; P abcd ≡ ∂L

∂Rabcd
,

Va(δg) = 2[P cbad∇bδgdc − δgdc∇bP
cabd] . (2.10)

Here, Gab is the generalized Einstein tensor which satisfies Bianchi identity. Let us consider

the variation in metric which is induced by the diffeomorphism

xa → xa − ξa ; δgab = 2∇(aξb) . (2.11)

Under the above transformation any scalar density changes as

δξ(L
√−g) =

√−g∇a(Lξa) . (2.12)

This implies (using eq. (2.9)) the off-shell conservation law for the ‘modified’ Noether

current

∇a

[

2Gabξb + ξaL − Va(ξ)
]

= ∇aJ
a = 0 , (2.13)

where

Ja = 2Gabξb + ξaL − Va(ξ) . (2.14)

Expressing the boundary term Va as a linear combination of δgab and δΓa
bc [59, 60] and

using the eq. (2.11), we can rewrite the above expression as

Ja = 2∇b(P
adcb + P acdb)∇cξd + 2P abcd∇b∇cξd − 4ξd∇b∇cP

abcd . (2.15)

There is an important point which we would like to emphasize. The usual expression

for the Noether current consists of the last two terms of eq. (2.14). A comparison with

eq. (2.7) clearly shows that Sa = 2Gabξb. Consequently, this current is conserved only after

using EOM. In contrast, the modified Noether current obtained above obeys the off-shell

conservation law.

Next, we introduce the antisymmetric tensor Jab (Noether potential) by the condition

Ja = ∇bJ
ab . (2.16)

Then, we can take

Jab = 2P abcd∇cξd − 4ξd(∇cP
abcd) . (2.17)

It is worth mentioning that for Einstein gravity if the diffeomophisms are Killing vectors

then the Noether potential reduces to the well known Komar potential [50]. As we shall

show later, for the higher curvature gravity like NMG, the above Noether potential can

also be used to calculate the conserved quantities corresponding to the appropriate Killing

vectors. In this sense, we call Jab[ξKilling] as the generalized Komar potential.

The conserved Noether charge corresponding to Jab may be defined by

Q =
1

16πG

∫

dΣab J
ab. (2.18)
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Our convention for the area element for the subspace of codimension one and two is taken

as dΣa and dΣab, respectively. These are defined such that the Stokes’ theorem takes the

following form
∫

M

dΣa J
a =

∫

M

dΣa∇bJ
ab =

∫

∂M
dΣab J

ab .

The variations of the current Ja and the measure dΣa under an arbitrary diffeomor-

phism xa → xa − ξ′a are given by

δξ′J
a = ξ′b∇bJ

a − Jb∇bξ
′a , δξ′ dΣa = dΣa(∇bξ

′b) , (2.19)

which lead to the variation of the charge as

δξ′Q =
1

8πG

∫

dΣab ξ
′[bJa] . (2.20)

One can apply the above formalism even to gravity theory coupled with matters. To be

specific, let us consider an interacting scalar field with two derivatives, whose Lagrangian is

Lm(gab, φ) = −1

2
∂aφ∂

aφ− V (φ) . (2.21)

Its generic variation and diffeomorphism transformation are given by

δ(
√−gLm) =

√−g
[

Eφδφ+∇aVa(δφ)
]

,

δξ(
√−gLm) =

√−g(ξaLm) , (2.22)

where δξφ denotes the variation of the scalar field under diffeomorphism and so it is given

by δξφ = Lξφ = ξa∇aφ. The additional contribution from a scalar field can be computed as

− 2T abξb + ξaLm − Va(δξφ) = 0 . (2.23)

As a result, the final expression for currents with a scalar field can be taken as the same

form given earlier (2.14) without matter fields.

3 Killing horizon and entropy of black holes

In this section we shall compute the central extension term in the Virasoro algebra among

the generators corresponding to the diffeomorphism symmetry for the NMG with a cos-

mological constant. Then, we implement the stretched horizon approach and calculate the

horizon entropy for the non-extremal rotating BTZ black hole.

Let us consider the action for NMG with the cosmological constant [29, 30]

I =
1

16πG

∫

d3x
√−g

[

R+
2

ℓ2
+

1

m2
K
]

, (3.1)

where

K ≡ RabR
ab − 3

8
R2 .
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For this Lagrangian the corresponding P abcd is given by

P abcd =
∂L

∂Rabcd
= ga[cgd]b +

1

m2

(

Ra[cgd]b −Rb[cgd]a − 3

4
Rga[cgd]b

)

. (3.2)

It is easy to see that ∇aP
abcd 6= 0 in general and therefore we should use the general

expressions for the Noether current and potential given in (2.15) and (2.17), respectively.

It is useful to compare this with the corresponding expressions in the usual Einstein or

Lanczos-Lovelock gravity. In these cases, only second term in eq. (2.15) and first term in

eq. (2.17) survive.

Our task is to compute the central extension term C[ξ1, ξ2] for the algebra among the

conserved Noether charges defined in eq. (2.18). The general form of C[ξ1, ξ2] is given by

C(ξ1, ξ2) = [Q(ξ1), Q(ξ2)]−Q( [ξ1, ξ2] ) , (3.3)

where the Lie bracket [ξ1, ξ2] is defined by

[ξ1, ξ2]
a ≡ ξb1∇bξ

a
2 − ξb2∇bξ

a
1 . (3.4)

The essential part in the computation of the central extension term is to consider the Lie

variation of the covariantly conserved Noether current under the diffeomorphism x → x−ξ2.

Note that the current Ja[ξ1] is the consequence of the invariance of the original action under

the diffeomorphism labeled by ξ1 (see eq. (2.14)). The Lie variation of this current, δξ2J
a[ξ1]

induces the corresponding variation in the conserved Noether charge as

δξ2Q[ξ1] =
1

16πG

∫

dΣab

(

ξb2J
a[ξ1]− ξb1J

a[ξ2]
)

. (3.5)

This enable us to compute the bracket among the Noether charges [25]

[Q(ξ1), Q(ξ2)] ≡ δξ1Q(ξ2)− δξ2Q(ξ1) = 2

∫

dΣab

(

ξ
[a
2 J

b]
1 − ξ

[a
1 J

b]
2

)

. (3.6)

where Ja
1 ≡ Ja[ξ1]. Note that the the definition for the bracket is general in the sense that

it does not require explicit form for the Noether current and works well for any covariant

theory of gravity.

Next, in order to obtain the horizon entropy we shall evaluate the algebra among the

Noether charges, Q([ξ1, ξ2]) on the null surface. To this purpose we implement the stretched

horizon approach given in [12]. In this approach one begins with an approximate Killing

vector χa in the neighborhood of the boundary Σ of generic d + 1 dimensional Rieman-

nian manifold. The local Killing horizon is defined by the condition χ2 = 0. This can be

alternatively stated as

χ2 = ǫ. (3.7)

with ǫ being taken to be zero at the end. The vector orthogonal to the orbits of χa is given by

ρa = − 1

2κ
∇aχ

2 . (3.8)
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Where κ is the surface gravity associated with the Killing vector field χa

κ2 ≡ lim
χ2→0

[∇aχ
2∇aχ2

4χ2

]

. (3.9)

Consider a general diffeomorphism transformation

ξa = Tχa +Rρa , (3.10)

with the condition that

δχ2 = 0 ; as χ2 → 0 . (3.11)

This condition leads to the following relation between two arbitrary functions T and R:

R =
1

κ

χ2

ρ2
DT ; D ≡ χa∇a . (3.12)

Now we compute the Noether potential Jab for the diffeomorphism (3.10) on the stretched

horizon. By exploiting the relation (3.12) we can express this diffeomorphism completely

in terms of T . Then by using eq. (A.5) we get

Jab(ξ) = −
{

P abcdScd

[

2κT − D2T

κ

]

+ 4∇cP
abcd

(

χdT + ρd
DT

κ

)}

. (3.13)

Integrating this expression over the null surface with the differential area element dΣab

given by (A.7) and using the identity (A.9), we arrive at the expression for the conserved

Noether charge

Q[ξ]=− 1

32πG

∫ √
hdd−2x

{

P abcdSabScd

[

2κT−D2T

κ

]

+4∇cP
abcdSab

(

χdT−ρd
DT

κ

)}

.

(3.14)

Note that the above expression contains the terms proportional to P abcd as well as ∇aP
a···.

However, near the Killing horizon, ∇aP
a··· term is of the higher order χ2 compared to P abcd

term. Since the Killing horizon is defined by the limit χ2 → 0, we can neglect the derivative

term of P -tensor.5 This can be explicitly checked by Taylor expanding the P and ∇P terms

near the Killing horizon. Similar kind of arguments were used earlier (see the eq. (19) of

ref. [24]) to obtain the central charge for higher curvature gravity within the Carlip’s on-

shell approach. On using this fact, the expression for the Noether charge becomes

Q[ξ] = − 1

32πG

∫ √
h dd−2x

{

P abcdSabScd

[

2κT − D2T

κ

]}

. (3.15)

We now evaluate the corresponding expression for Q( [ξ1, ξ2] ). First, we note that the

Lie bracket for the diffeomorphisms (3.10) can be writen as

[ξ1, ξ2]
a = χa[T1, T2]−

ρa

κ
D[T1, T2] ; [T1, T2] = T1DT2 − T2DT1 . (3.16)

5For some specific cases, where the near horizon geometry is AdS (e.g. BTZ black hole) or the product

of two maximally symmetric spaces like AdS2 ×M
n−2 or Rindler ×M

n−2, ∇P vanishes identically.
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Inserting this in eq. (3.15), we obtain the expression for Q( [ξ1, ξ2] ) as

Q[{ξ1, ξ2}] = − 1

32πG

∫ √
h dd−2X

{

P abcdSabScd

[

2κ (T1DT2 − T2DT1)−
1

κ

(

DT1D
2T2

+T1D
3T2 −DT2D

2T1 − T2D
3T1

)

]}

. (3.17)

Next, we perform the similar analysis on the right hand side of eq. (3.6). The explicit

expression of the Noether current (2.15) for the diffeomorphism (3.10) is given by

Ja(ξ) = 2P abcd χcρdχb

χ4

(

2κDT − D3T

κ

)

+ 2∇bP
abcd χcρd

χ2

(

2κT − D2T

κ

)

−4∇b

[(

Tχd −
DT

κ
ρd

)

∇cP
abcd

]

. (3.18)

Substituting this in eq. (3.6) and using the identity (A.10), we can see

[Q(ξ1), Q(ξ2)] =
1

32πG

∫ √
h dd−2x

{

P abcdSabScd

[(

2κDT1 −
D3T1

κ

)

T2 − (1 ↔ 2)

]}

.

(3.19)

As before, we have neglected the terms proportional to ∇P and ∇∇P . Combining this

result with the eq. (3.17), the central extension term C[ξ1, ξ2] finally becomes

C[ξ1, ξ2] = − 1

32πG

∫ √
h dd−2X

{

P abcdSabScd
1

κ

[

DT1D
2T2 −DT2D

2T1

]

}

. (3.20)

By rewriting the above expression in the Fourier variables

C(ξ1, ξ2) =
∑

mn

fmnC(ξm, ξn) , (3.21)

we obtain

C(ξm, ξn) = − 1

32πG

∫ √
h dd−2x

{

P abcdSabScd
1

κ

[

DTmD2Tn −DTnD
2Tm

]

}

. (3.22)

We now apply this analysis for non-extremal rotating BTZ black hole given by the metric

ds2 = L2

[

− (r2 − r2+)(r
2 − r2−)

r2
dt2+

r2

(r2 − r2+)(r
2 − r2−)

dr2+ r2
(

dθ− r+r−
r2

dt
)2

]

. (3.23)

For this case, the approximate Killing vector χa is given by

χa = (1, 0,Ω) ; χa = (gtt +Ωgtθ, 0,Ωgθθ + gtθ) , (3.24)

where Ω = r−/r+ is the angular velocity at the outer horizon. In the near horizon region

given by r = r+ + ǫ, it is easy to see that the norm of the Killing vector χa behaves as

χ2 = −ǫ

[

2(r2+ − r2−)

r+
L2

]

. (3.25)
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In order to obtain the central charge, we take the ansatz of Tn, appropriate for Diff(S1)

algebra [21], as

Tn =
1

α+Ω
exp[in(αt+ θ + g(r))] . (3.26)

Here, variables t and θ have periodicities 2π/α and 2π respectively and g(r) is a certain

function regular at the Killing horizon. Inserting this in eq. (3.22), we arrive at

C[ξm, ξn] =
A

8πG

[

−im3δm+n,0
(α+Ω)

κ

]

, (3.27)

where

A ≡ −L

2

∫

rdθP abcdSabScd . (3.28)

Using the anstaz of Tn, one can see that the Fourier modes of the Noether charges are

given by

Q(ξm) =
A

8πG

[

δm,0
κ

(α+Ω)

]

; Q( [ξm, ξn ]) = −i(m− n)Q(ξm) . (3.29)

Using these expressions and the eq. (3.27) in the algebra (3.3), we identify the central

charge c and the zero-mode eigenvalue of Q(ξm) as

c =
α+Ω

κ

12

8πG
A ; Q0 =

κ

(α+Ω)

A
8πG

. (3.30)

Through the Cardy formula, the entropy for non-extremal BTZ black holes is given by

S = 2π

√

c∆0

6
= 2π

√

c
(

Q0 − c
24

)

6
=

A
4G

[

2−
(

α+Ω

κ

)2
]1/2

. (3.31)

By setting α = κ − Ω, one can see that the above expression reduces to familar Wald

formula [1].

Using the P -tensor for the rotating BTZ black holes

P abcd = ga[cgd]b
[

1 +
1

2m2L2

]

, (3.32)

and the expression for Sab in the eq. (3.28), we obtain

A = 2πLr+

[

1 +
1

2m2L2

]

. (3.33)

Hence, the corresponding entropy of the horizon (with the choice α = κ− Ω) becomes

S =
πLr+
2G

[

1 +
1

2m2L2

]

. (3.34)

The first term in the above represents the entropy for rotating BTZ black hole in Einstein

gravity, while the second term gives its correction due to the higher curvature terms in the

Lagrangian (3.1). Our result for entropy is also consistent with the one given in [61].
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We now briefly describe some important steps to compute the entropy for extremally

rotating BTZ black holes by the off-shell expressions for Noether current and potential.

For the extremal case, the ‘stretched horizon’ approach, given in [12] needs to be modified.

An alternate way to deal with such geometries within the stretched horizon approach was

presented in [67]. We shall not follow this approach here. Instead, we consider the near

horizon limit of extremally rotating BTZ black hole in which case the resultant geometry is

AdS3. We then compute the central extension term for the diffeomorphisms which preserve

the asymptotic fall-off conditions [9, 68].

To begin with, let us take the near horizon extremal BTZ geometry in the form of

ds2NH =
L2

4

[

− ρ2dt2 +
1

ρ2
dρ2 + 4r2H

(

dθ − ρ

2rH
dt

)2]

. (3.35)

The relevant diffeomorphisms given in [48, 68], are

ξn = einθ
(

∂θ − inρ∂ρ

)

, (3.36)

which preserve appropriate boundary conditions [9]. It can be easily checked that these

diffeomorphisms satisfy Diff(S1) algebra (1.2). We now use the generic expression for the

central term

C(ξ1, ξ2) =
1

8πG

∫

dΣab

{[(

2P bcdeξa2∇c∇dξ1e+ξa2

(

2∇cP
bcde∇dξ1e−4∇dP

bcde∇cξ1e

)

(3.37)

−4ξa2ξ1e∇c∇dP
bcde

)

−(1↔2)
]

− 1

2

[

2P abcd∇c {ξ1, ξ2}d−4 {ξ1, ξ2}d∇cP
abcd

]

}

.

which can be obtained by using the eq. (3.3). It may be recalled that this central extension

was derived using the off-shell expressions for Noether current (2.15) and potential (2.17).

After performing a little algebra, we obtain

C(ξp, ξq) = −i
L

8G

[

1 +
1

2m2L2

]

p(p2 + 4r2H) δp+q,0 , (3.38)

and hence the central charge becomes,

cIR =
3L

2G

[

1 +
1

2m2L2

]

. (3.39)

The above expression for the central charge is also consistent with the corresponding one

given in [49]. By exploiting the standard Cardy formula we can obtain the entropy for the

infrared dual CFT as

SIR = 2π

√

cIR
6

(MHL+ JH) + 2π

√

cIR
6

(MHL− JH) = 2π

√

cIR
3

JH , (3.40)

where MH and JH represent the mass and angular momentum at the horizon, respectively.

The second equality in the above expression comes from the fact that, at extremality, mass

and angular momentum satisfy MHL = JH . As we shall see later, the quasi-local angular

momentum JH matches exactly with the total angular momentum J∞. This property is

the consequence of the invariance of the angular momentum along the radial direction.

In the next section we shall give the explicit proof for this invariance and show that the

entropy (3.40) is indeed identical with the one computed earlier (3.34).
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4 Angular momentum and extremal black holes

In this section we will compute the angular momentum for the BTZ black holes in NMG

by using only the off-shell Noether potential (2.17). As will be shown later, the angular

momentum remains invariant along the radial direction. Next, we show that hairy defor-

mation of the extremal BTZ black holes also carry the same property. The point is that

these extremal black hole solutions interpolate two AdS spaces, viz. the asymptotic AdS3

and the near horizon AdS3 and therefore can be regarded as a holographic realization of

RG flows of a certain field theory. Our confirmation of the angular momentum invariance

in these black hole solutions also verifies that the entropy of the infrared dual CFT is

identical with the BH entropy.6

The action for NMG minimally coupled to a scalar field φ is

I =
1

16πG

∫

d3x
√−g

[

R+
1

m2
K − 1

2
∂aφ∂

aφ− V (φ)

]

. (4.1)

The equations of motion for the metric and the scalar field are given by

Eab ≡ Gab − Tab = 0 , Eφ ≡ ∇2φ− ∂φV = 0 , (4.2)

where Gab denotes the generalized Einstein tensor and Tab does the stress tensor for a scalar

field as

Gab = Rab −
1

2
Rgab +

1

2m2
Kab , Tab =

1

2
∂aφ∂bφ− 1

2
gab

[

1

2
∂cφ∂

cφ+ V (φ)

]

, (4.3)

Kab ≡ gab

(

3RcdR
cd − 13

8
R2

)

+
9

2
RRab − 8RacR

c
b +

1

2

(

4D2Rab −DaDbR− gabD2R
)

.

By applying the formalism given in section 2 to the present case, we obtain the quasi-

local angular momentum corresponding to the rotational Killing vector on the domain B
of codimension two, as

JB ≡ QB(ξR) =
1

16πG

∫

B

dΣab J
ab(ξR) =

1

8G

√

−det g Jrt(ξR)

∣

∣

∣

∣

B

, (4.4)

where det g denotes the determinant of the three-dimensional metric gab. Our conven-

tion for the normalization of the rotational Killing vector ξR ≡ ∂
∂θ is chosen such as

ξ2R(r→∞) → L2r2.

For the Killing vector ξµ of the metric, one can see that

Ja = 2Rabξb −
2

m2
Rcd∇c∇dξb

+
1

m2

[

− 2RacdbRcd −
3

2
RRab + 2∇2Rab − 1

2
∇a∇bR− 1

2
gab∇2R

]

ξb . (4.5)

Let us consider rotating BTZ black holes (3.23) as an example to give some taste of our

approach. By computing the Komar potential of BTZ black holes, one obtains

Jrt(ξR) =
2r+r−
rL2

[

1 +
1

2m2L2

]

, (4.6)

6The relevant discussion for the Einstein gravity is provided in appendix B.

– 14 –



J
H
E
P
0
5
(
2
0
1
3
)
0
4
1

which leads to the quasi-local angular momentum as

JBr
= J∞ = JH =

Lr+r−
4G

[

1 +
1

2m2L2

]

, (4.7)

where JBr
, J∞ and JH denote the quasi-local angular momentum at the r = constant, the

asymptotic infinity and the horizon, respectively. Note that this expression for the angular

momentum at asymptotic infinity, J∞ is consistent with the result for the angular momen-

tum of BTZ black holes in other methods like ADT or boundary stress tensor [61–66]. In

fact, this result shows us that the angular momentum is invariant along the radial direction

as was argued generically to be the case for pure Einstein gravity in [36]. Now it is easy

to see that by inserting JH in the eq. (3.40) we can reproduce the entropy for extremally

rotating BTZ black holes

SIR =
πLr+
2G

[

1 +
1

2m2L2

]

. (4.8)

It is interesting to note that our result agrees with the corresponding one obtained by using

the central charge of ultraviolate CFT (cUV ) and the total angular momentum J∞ [7, 61].

Now we consider the extremally rotating BTZ black holes in NMG coupled with a

scalar field and show explicitly the invariance of the angular momentum along the ra-

dial direction. The most generic axi-symmetric metric of the rotating hairy black holes,

deformed from BTZ ones, can be taken as

ds2 = L2
[

− e2A(r)dt2 + e2B(r)dr2 + r2(dθ + eC(r)dt)2
]

, (4.9)

with the asymptotic AdS boundary condition for r → ∞ as

eA(r) → r , eB(r) → 1

r
, eC(r) → constant , φ(r) → constant . (4.10)

To obtain the extremal hairy AdS black hole solutions in the case of NMG, the scalar

potential can be taken in terms of the so-called superpotential W(φ) as

V (φ) =
1

2L2
(∂φW)2

[

1− 1

8m2L2
W2

]2

− 1

2L2
W2

[

1− 1

16m2L2
W2

]

, (4.11)

which is motivated by the domain wall case [69–72] and can be explained by fake super-

symmetry in the Einstein gravity limit [73]. As was shown in [45], extremal hairy deformed

BTZ black holes satisfy some reduced EOM. By solving partially this reduced EOM, one

can show that the metric functions A and B are determined in terms of a certain function

Ψ and the superpotential W as

rA′(r)− 1 =
Ψ

r
eB(r) , (4.12)

e−B(r) =
r

2

[

W − Ψ

r2

]

, (4.13)

where ′ denotes the differentiation with respect to the radial coordinate r. The remaining

part of the reduced EOM for the function Ψ is given by

∆̃

[

1 +
1

2m2L2

]

=
1

m2L2
e−2B(Ψ̈−WΨ̇) +

[

1 +
1

8m2L2
(W2 − 4Ẇ)

]

Ψ , (4.14)
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where ∆̃ is a certain integration constant and ˙ denotes the differentiation defined as

Ψ̇ ≡ e−BΨ′. In fact, it turns out that the constant ∆̃ is related to the horizon values ofW as

∆̃ = r2HW(φH)

[

1 +
1

8m2L2
W2(φH)

][

1 +
1

8m2L2
W2(φ∞)

]−1

. (4.15)

Note that these solutions satisfy the extremality condition as e−2B(rH) = d
dre

−2B(rH) = 0.

This is equivalent to the relation between the mass and the angular momentum: M∞L =

J∞.

In the following we confine ourselves to the Brown-Henneaux boundary conditions [9].

These boundary conditions however are not the most general ones even for the usual Ein-

stein gravity coupled to a scalar field [8, 41–43]. The asymptotic analysis in this case gives

us the following expression for metric variables, the superpotential and the scalar field

respectively

A(r) = ln r − ∆̃

2r2
+ · · · , B(r) = − ln r +

1

2r2

(

∆̃− 1

2q
φ̃2
1

)

+ · · · , (4.16)

W(φ(r)) = 2 +
φ̃2
1

2qr2
+ · · · , φ(r) = φ∞ +

φ̃1

r
+ · · · ,

where q is defined by q ≡ 1 − 1/2m2L2. By a straightforward near horizon analysis, one

can see that

A(r) = s̃0W(φH)(r − rH) + · · · , B(r) =
1

W(φH)(r − rH)
· · · , (4.17)

W(φ(r)) = W(φH)− 1

2
W(φH)

[

1− 1

8m2L2
W2(φH)

]−1

(φ− φH)2 + · · · ,

φ(r) = φH + g̃0(r − rH) + · · · ,

where s̃0 and g̃0 are certain non-vanishing constants. One can show that the near hori-

zon geometry becomes the so-called self-dual orbifold of AdS3 space whose metric can be

written as

ds2NH =
L̄2

4

[

− ρ2dt2 +
1

ρ2
dρ2 + 4r2H

(

dθ − ρ

2rH
dt

)2]

, L̄ ≡ 2L

W(φH)
. (4.18)

In this case, it turns out that the rt component of the potential is given by

Jrt(ξR) =
1

L2
e−2B−AF

[

1 +
1

2m2L2
e−2B)′′ − 3

4m2L2

F

r
(e−2B)′

]

(4.19)

+
3

2m2L4
e−2B−A F ′ (e−2B)′

+
1

8m2L4
e−4B−A

[

1

r2
F 3 − 4

r2
F − 12

r
F F ′ + 8F ′′

]

,

F ≡ rA′(r)− 1 .

By using the eq. (4.13) and the eq. (4.15), one can obtain a differential equation without the

superpotential W. By combining the resultant equation with the eq. (4.12), one can show
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that the above quasi-local angular momentum is independent of the radial coordinate as

JBr
(ξR) =

L

8G
∆̃

[

1 +
1

2m2L2

]

=
L

8G
∆̃

[

1 +
1

8m2L2
W2(φ∞)

]

. (4.20)

Note that the above expression of angular momentum at the asymptotic infinity for hairy

deformed BTZ black holes is completely consistent with the previous results [64]. It is

interesting to compute the quasi-local angular momentum directly on the near horizon

geometry. The result is given by

JH =
L

8G
r2HW(φH)

[

1 +
1

8m2L2
W2(φH)

]

.

Now, by using the relation between ∆̃ andW(φH) given in the eq. (4.15), one can verify that

JBr
= Jr→∞ = JH . (4.21)

Some comments are in order. Firstly, the AdS radii on the asymptotic infinity and

on the horizon are different but give the same expression for the angular momentum. In

the Einstein gravity limit this result is consistent with the general argument given in the

appendix B. Secondly, this result is also consistent with the one from the Brown-Henneaux

method adopted in [40] for a specific example. Our result can be regarded as the generaliza-

tion of this case to more generic extremal hairy black holes. Furthermore, we showed that

the quasi-local angular momentum is invariant along whole RG trajectory not just at the

two conformal points. Finally, one may note that the invariance of angular momentum for

the extremal hairy deformed BTZ black holes is, more or less, connected with the reduced

order EOM, which may have some implication for the entropy of black holes.

Now we study the relationship between the entropy of the deformed extremal BTZ

black holes and holographic c-theorem. The central charge of the ultraviolet and the in-

frared dual CFT can be obtained through the dictionary of the AdS/CFT correspondence as

cUV =
3L

2G

[

1 +
1

2m2L2

]

=
3L

GW(φ∞)

[

1 +
1

8m2L2
W2(φ∞)

]

, (4.22)

cIR =
3L̄

2G

[

1 +
1

2m2L̄2

]

=
3L

GW(φH)

[

1 +
1

8m2L2
W2(φH)

]

.

Though the central charge, cUV , of ultraviolet dual CFT has been derived in various

ways [74, 75], the central charge, cIR of the infrared dual CFT has not done explicitly.

Following the discussion given at the end of the previous section, it is straightforward to

obtain the expression for cIR for the extremal hairy BTZ black holes by using the near

horizon geometry given in the eq. (4.18). This would provide a generalization of scalar-

Einstein theory given in [40] to the NMG case. The holographic realization of the central

charge function, which connects the above two central charges has been suggested in [45].

By using the relations between total conserved charges and conformal weights of the

ultraviolet dual CFT

M∞ = EL + ER , J∞ = L(EL − ER) ,
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one can see that the entropy of the ultraviolet CFT computed from the Cardy formula is

given by

SUV = 2π

√

cL
6
(M∞L+ J∞) + 2π

√

cR
6
(M∞L− J∞) = 2π

√

cUV

3
J∞ , (4.23)

where we have used the property of extremal black holes: M∞L = J∞. To apply the same

relations for the infrared dual CFT on the near horizon self-dual orbifold of AdS3, one

needs the quasi-local expressions for mass and angular momentum. Using our result for

the angular momentum invariance, J∞ = JH and the extremality condition for conserved

charges MH L̄ = JH , it can be easily seen that the entropy of the dual CFT is related to

the BH entropy as

SUV ≥ SIR = SBH =
AH

4G

[

1 +
1

2m2L̄2

]

, AH ≡ 2πL̄rH . (4.24)

This result verifies our claim that the entropy of the infrared CFT is indeed the same as

the usual black hole entropy.

5 Conclusion

In this work we have studied the entropy and the invariance of the angular momentum for

the rotating BTZ black holes in NMG by using the off-shell expressions for the Noether

current and potential. We have also showed the invariance of the angular momentum for

extremally rotating scalar-hairy deformed BTZ black holes which can be interpreted as the

RG flows for the dual field theory in the context of the AdS/CFT correspondence.

Firstly, we have computed the entropy for non-extremal rotating BTZ black hole by

using the so-called stretched horizon approach. In this case, the entropy tensor P abcd is

not divergence free. Consequently, the generic expressions for off-shell Noether current,

potential and conserved charge contain the terms proportional to P abcd, ∇P and ∇∇P .

Simplification occurs when we evaluate these expressions in the vicinity of the Killing

horizon. Near the Killing horizon, ∇P and ∇∇P terms are of the higher order in χ2

and hence does not contribute to the Virasoro algebra. As a result, the final expression

for the central term takes the same form with the one in Einstein or Lanczos-Lovelock

gravity [25]. By Fourier-transforming this central extension term and using the ansatz

for the scalar function T , we identified the central charge. Finally, by using this central

charge and zero mode eigenvalue of the conserved Noether charges the black hole entropy

is obtained.

We have also provided a brief derivation of the central charge for the rotating extremal

BTZ case. In this case, we also used the off-shell expressions for the Noether current and

potential as in the non-extremal case. However, we adopted the standard AdS/CFT dictio-

nary to obtain the central charge, for which we have taken the diffeomorphisms preserving

the fall-off boundary conditions at the asymptotic boundary of the near horizon extremal

geometry. Our result for the central charge is in agreement with the one given in [7, 61]

where the asymptotic boundary of whole extremal geometry is used.

– 18 –
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Secondly, we have established the invariance of the angular momentum along the radial

direction for black holes in our models. To this purpose, we have used the same expres-

sions for Noether current or potential and verified our claims explicitly. In the context of

the AdS/CFT correspondence conserved charges of three-dimensional AdS black holes are

related to the conformal weights of states dual to the black holes. Therefore, the angular

momentum invariance along the radial direction in this set-up indicates a certain RG flow

behavior of scaling dimensions of dual operators. This invariance also plays a crucial role in

the computation of the entropy. Our expression of the entropy for the extremally rotating

BTZ black hole (see eq. (3.40)) contains quasi-local angular momentum JH , which corre-

sponds to conformal weight in the infrared CFT. On the other hand, the Cardy formula

for ultraviolate case [7, 61] uses the asymptotic value for the angular momentum, J∞, as

the conformal weight. The fact that the angular momentum is invariant along the radial

direction allows us to match our result (4.8) with the corresponding one in the ultraviolate

case. While this is somewhat anticipated by the stretched horizon approach to the black

hole entropy, the quasi-local conserved charges need to be adopted to show this match-

ing. Moreover, we have also shown the angular momentum invariance of the deformed

extremally rotating BTZ black holes. In this case we verified that the corresponding en-

tropy computed from the infrared CFT is less than the one from the ultraviolate case and it

matches with the black hole entropy. Since our boundary conditions are rather restricted,

it would be interesting to study hairy deformed rotating AdS black holes with more generic

boundary conditions and investigate the angular momentum invariance in those cases.

The angular momentum invariance discussed here is restricted to some specific black

hole solutions. It would be interesting to extend this analysis to the more generic case. This

would enable us to connect the generalized Komar potential used here and the ADT/ADM

potentials for the generic higher derivative gravity. We would like to investigate these issues

in the near future.
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A Some formulae in stretched horizon approach

In this appendix we shall briefly state some results in Carlip’s stretched horizon ap-

proach [12]. This will be useful in deriving the near horizon expressions for Noether current,
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potential and charge. Detailed derivation of these results can be found in the appendix B

of ref. [25].

The approximate Killing vector χa and the vector ρa which is normal to the Killing

orbits satisfy

ρ2

χ2
= −1 , (A.1)

∇aχb =
2κ

χ2
χ[aρb] , (A.2)

∇aρb =
κ

χ2
(χaχb − ρaρb) . (A.3)

For the diffeomorphisms given by eq. (3.10), we have

∇aT =
χa

χ2
DT , (A.4)

∇aξb =
1

χ2

[

DTρaρb + 2κTχ[aρb] −
D2T

κ
χaρb

]

, (A.5)

∇a∇bξc =
1

χ4

[

χaχbρc

(

2κDT − D3T

κ

)

−D2Tχaχbχc

]

. (A.6)

These expressions are valid upto order χ2.

Next, we give the expression for d− 2 dimensional surface element dΣab:

dΣab =
√
hdd−2xSab , (A.7)

where h is the determinent of the metric hab on d− 2 dimensional surface and

Sab = −2|χ|
ρχ2

(χ[aρb]) . (A.8)

Using the eq. (A.8) and the symmetries of P abcd one can easily verify the following identities:

P abcdχcρd = −2|χ|
ρχ2

P abcdScd , (A.9)

χcχeρdρbP
becd =

ρ2χ2

4
P becdSbeScd . (A.10)

B Angular momentum invariance in Einstein gravity

In this appendix we show the angular momentum invariance in Einstein gravity minimally

coupled with a scalar field. Note that our class of the hairy deformation of extremal BTZ

black holes can be understood as the limit of the NMG case. In this case one can give

more general argument for the angular momentum invariance.

Through the so-called fake supersymmetry formalism, one may take the scalar

potential in this case as [73]

V (φ) =
1

2L2
(∂φW)2 − 1

2L2
W2 , (B.1)
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and it turns out that the extremally rotating AdS black holes can be described by the

following first order EOM

φ′ = −eB∂φW , A′ = eBW − 1

r
, A′ +B′ =

r

2
φ′2 , (eC)′ = ±

(

1

r
eA

)′

, (B.2)

where ′ denotes the derivative with respect to the radial coordinate r. Note that the last

equation can be integrate as eC(r) = C±±eA(r)/r. Since the sign in this equation is related

to the rotation direction, we will take the upper sign for definiteness. And the integration

constant C+ is taken as C+ = 1 to match with the BTZ black holes asymptotically.

By manipulating the first order EOM, one can show that the metric functions A and

B are determined in terms of a certain constant ∆ and the superpotential W as

rA′(r)− 1 =
∆

r
eB(r) , e−B(r) =

r

2

[

W − ∆

r2

]

, (B.3)

which correspond to Ψ = ∆ = const. in the NMG case.

In this case of Einstein gravity, it turns out that all the relevant quantities, e.g. the

asymptotic and the near horizon expansion, the relation ∆ = r2HW(φH) and the Komar

potential

Jrt(ξR) =
1

L2
e−2B(r)−A(r)

[

rA′(r)− 1
]

, (B.4)

can be understood as the limit m2 → ∞ in the NMG case.

By using the expression for the metric function A given in (B.3) and by noting that√
−det g = L3eA+Br, one can see that the quasi-local angular momentum is given by

JB =
L

8G
∆ =

L

8G
r2HW(φH) =

L̄

8G

r2HW2(φH)

2
, (B.5)

where Br denotes the hypersurface of the constant radius r.

One may apply our formalism for non-extremal hairy black holes. For rotating hairy

AdS black holes given in [44], one can check that the Komar potential leads to

Jrt(ξR) =
6

L2

ωB2(r + 2B)3

(r +B)4(1− ω2)
. (B.6)

By using
√−g = L3(r+B)4/(r+2B)3 for the metric of those black holes, one can see that

JBr
= J∞ = JH =

3L

4G

ωB2

1− ω2
, (B.7)

which is consistent with the result in [44] through the Hamiltonian formalism up to the

convention-dependent normalization. While these hairy AdS black holes satisfy more

generic boundary conditions than Brown-Henneaux ones, the Komar integrand gives us

the consistent result with the one given in [44].

In Einstein gravity, the more general argument for this angular momentum invariance

along the radial direction can be given as follows. When a hypersurface Σ has two
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boundaries B1 and B2, one can see that the quasi-local conserved charges for a Killing

vector ξ at each boundary are related as
∫

B1

dΣab J
ab(ξ) =

∫

B2

dΣab J
ab(ξ) +

∫

Σ
dΣa J

a(ξ) . (B.8)

This expression shows us that, whenever the current, Ja vanishes on the hypersurface Σ,

the quais-local conserved charge is independent of its domain. Interestingly for Einstein

gravity coupled with scalar fields, our current for a Killing vector ξ is simply given by

Ja(ξ) = 2P abcd∇b∇cξd = 2Rµνξν . (B.9)

The angular momentum invariance follows from the fact that, for the rotational Killing

vector ξR, the hypersurface Σ connecting two boundary Br=rH and Br=∞ can be chosen

such that it is orthogonal to the current, Ja(ξR).
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