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Abstract: We perform an exploratory investigation of how rapidly the physics of SO(2N)

gauge theories approaches its N = ∞ limit. This question has recently become topical

because SO(2N) gauge theories are orbifold equivalent to SU(N) gauge theories, but do

not have a finite chemical potential sign problem. It is therefore interesting to know how

close is the physics of SO(N) to that of SU(3) for the modest values of N where one

might be able to perform chemical potential calculations. We consider only the pure gauge

theory and, because of the inconvenient location of the lattice strong-to-weak coupling

’bulk’ transition in 3+1 dimensions, we largely confine our numerical calculations to 2+1

dimensions in this paper. We provide some analytic estimates of the SO(2N) spectrum in

both D = 2 + 1 and D = 3 + 1, and show, numerically, that the D = 2 + 1 SO(6) and

SU(4) low-lying spectra do indeed appear to be the same. Our numerical calculations of

a number of mass ratios show that the leading O(1/N) correction already dominates for

N ≥ 6, and in some cases down to N = 4, and that, as expected, these ratios become

consistent with those of SU(N) as N → ∞. In particular we see that SO(6) and SU(3)

gauge theories are quite similar except for the values of the string tension and coupling,

both of which differences can be readily understood.
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1 Introduction

SO(2N) gauge theories are of topical interest because they do not suffer a finite chemical

potential sign problem [1], are orbifold equivalent [2–4] to SU(N) gauge theories [1, 5] and

share with the latter a common large N limit in their common sector of states (see [6] for

an early derivation and [7] for a recent pedagogical one). Thus if SU(3) and, say, SO(6)

are both close to N = ∞, then the finite baryon density phase diagram in QCD might be

illuminated by lattice Monte Carlo calculations of, say, SO(6) [1].

This has motivated us to study the pure gauge theories, as a first step. In this case much

is known about SU(N) both in D=3+1 [8–10] and in D=2+1 [11, 12], and our calculations

have therefore focused upon SO(N). As shown below, if one uses the standard plaquette

action then the strong-to-weak coupling ‘bulk’ phase transition in D=3+1 SO(N) gauge

theories occurs at such a small value of the lattice spacing a, when N is not large, that

it becomes prohibitively expensive to perform weak coupling calculations in volumes that

are large enough to be in the confining phase. (This has long been known in the extreme

case of SO(3). For a recent study see [13].) To deal with this problem, we are currently

exploring improved actions in the hope that the bulk transition may be shifted to stronger

coupling. In D=2+1 on the other hand, the strong-to-weak coupling transition provides

much less of an obstacle and so most of the lattice calculations in the present paper will

deal with SO(N) gauge theories in 2+1 dimensions.
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There are of course additional reasons for being interested in SO(N) gauge theories.

For example, an SO(N) gauge theory can have exactly the same Lie algebra as some SU(N ′)

theory. This is the case for SO(3) and SU(2) and also for SO(6) and SU(4). One would

expect the two theories in each pair to have the same spectrum in the continuum limit,

assuming the global properties of the group do not play a role in the dynamics. It would

be nice to check this expectation, and we shall provide evidence later on in this paper that

this is indeed the case for SU(4) and SO(6). This will enable us to make an approximate

prediction for the N -dependence of SO(N) gauge theories for N ≥ 6 in both 2+1 and 3+1

dimensions, using the known properties of the SU(4) gauge theory.

Although our calculations are still at an early stage, the results we have obtained

provide useful information on the above questions and we will present these below. We

will also discuss in detail how to compare physical quantities in SU(N) and SO(2N) gauge

theories. We will present results for the string tension, σ, the lightest two JP = 0+ scalar

states, the lightest JP = 2+ tensor, the deconfining temperature Tc, and the coupling g2,

which in D=2+1 has dimensions of mass. We do so for SO(4), SO(6), SO(8) and SO(12)

gauge theories, and use these results to test the large-N equivalence with SU(N) and to

determine the rate of approach to that limit.

Since our primary focus here is on the SO(2N) and SU(N) equivalence, we do not

discuss SO(2N +1) gauge theories, which differ from SO(2N) in that they lack the (useful)

Z2 center symmetry of the latter. We will leave our detailed comparison of SO(3) and

SU(2) to a separate paper and will include our ongoing detailed study of odd N to a future

publication. We merely note here that our first glance at the physics of SO(2N +1) gauge

theories suggests that it is entirely continuous with that of neighbouring SO(2N) gauge

theories.

In the next section we review some expectations about the large-N limit. We also

discuss how precisely the calculated physics of SO(6) and SU(4) gauge theories is to be

identified. (And separately the case of SU(2) and SO(3).) We note that this equality

provides approximate predictions for the N -dependence of SO(N) gauge theories in both

D=2+1 and D=3+1. The following section contains our calculations. We outline the

lattice calculation and then locate the strong-to-weak coupling transition in both D=3+1

and D=2+1. We show that in the former case it is only for N ≥ 16 that one can obtain

useful weak-coupling physics on reasonably sized lattices. Focusing on D=2+1 we provide a

detailed calculation for SO(6) and compare the continuum extrapolation to SU(4). We then

extrapolate to the continuum our calculations for other values of N . Here our calculations

are currently much more limited and we need to justify the reliability of these extrapolations

using what we find in SO(6).

It is worth listing some of the ways in which our work in progress [14] will improve

upon the D=2+1 results presented here. First, we will perform calculations at smaller a

so as to reduce the systematic error on our continuum extrapolations. We will also include

P = − states. (Recall that in D=2+1 J± states are degenerate except possibly for J = 0.)

We will include J = 1 states as well as J = 0, 2. All this will provide a larger spectrum of

states, calculated with greater precision. We also intend to perform the calculations of Tc

much more accurately using standard reweighting methods that have been used in the case
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of SU(N) (see e.g. [15–19]). We will include SO(2N +1) gauge theories in all these studies.

Finally, for a useful comparison it may also prove necessary to repeat the corresponding

SU(N) calculations with greater accuracy than that currently available.

More speculatively we hope that our lattice action improvement will enable us to obtain

SO(N) continuum physics in D=3+1 for the modest values of N where finite chemical

potential calculations might conceivably be performed. In addition it would be of interest

to study the spinorial representations particularly in the context of the corresponding flux

tubes and string tensions.

2 Expectations

2.1 General remarks

As is well known, the analysis of diagrams to all orders tells us [20] that the large N limit

of SU(N) gauge theories is achieved by keeping g2N fixed and that the leading correction

in the pure gauge theory is O(1/N2). A parallel analysis for SO(N) gauge theories tells

us [7] that g2N should be kept fixed but that the leading correction is O(1/N). Moreover

the N = ∞ limit of the two theories is the same if we choose the SO(N) value of g2 to be

twice the SU(N) value,

g2
∣

∣

SO(N)

N→∞
= 2× g2

∣

∣

SU(N)
(2.1)

or equivalently if we match SO(2N) and SU(N) theories at the same coupling. There exists

a corresponding orbifold equivalence [1, 5].

Of course SO(N) gauge theories have trivial charge conjugation properties and there-

fore the comparison with SU(N) is only in the C = + sector. The two groups also differ

qualitatively in their symmetry properties: even where SU(N ′) and SO(N) gauge theories

are equivalent at the level of the Lie algebra, their global properties differ. For example,

SU(4) has a Z4 center while SO(6) has only Z2 while in the pair SU(2) and SO(3) the former

has a Z2 center while the latter has a trivial center. Large fields may be sensitive to the

global properties and it is therefore interesting to test the expectations of the diagrammatic

equivalences at the non-perturbative level using lattice Monte Carlo techniques.

Matching physical quantities in SO(N) and SU(N ′) gauge theories is straightforward

for colour singlet quantities, such as ‘glueball’ masses. For flux tubes and string tensions,

however, one needs to be more careful. Suppose one considers a flux tube that wraps

around a spatial torus of length l. For l large the calculated energy gives the string tension

via E ≃ σl. In SU(N) there are a variety of stable flux tubes labelled by the value

k = 1, 2, . . . , N/2 of their N -ality, and other unstable flux tubes, such as the adjoint flux

tube, carrying flux in various representations. In the case of SU(2) and SO(3), it is well

known that the latter is equivalent to the former in the adjoint representation. Thus SO(3)

flux tubes correspond to SU(2) flux tubes that carry adjoint flux, which indeed have C = +.

The latter are of course unstable, and can decay into glueballs, but this is consistent with

the fact that SO(3) does not possess a non-trivial center which would prevent the mixing of

a winding flux tube operator with contractible operators that project onto glueball states.

Thus the σ extracted in SO(3) corresponds to the adjoint string tension in SU(2). Since
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we are interested in SO(2N), we will not pursue the SO(3) ∼ SU(2) correspondence any

further here, but will leave it to a future publication. The SU(4)∼SO(6) correspondence

is however relevant and that will be discussed below. More generally we note that the Z2

center of SO(2N) ensures that these theories have stable flux tubes just like SU(N). Of

course for 2N + 1 ≥ 5 we may expect, by continuity, that SO(2N + 1) theories also have

stable flux tubes, but if so (and our preliminary calculations indicate that this is indeed

the case) then it will be enforced by dynamics rather than an explicit non-trivial center

symmetry. Indeed it is known that as N → ∞ an emergent ZN center symmetry does get

dynamically restored [21] in a class of field theories that includes SO(N) .

2.2 SO(6), SU(4) and SO(2N)

As is well known, SU(4) and SO(6) have the same Lie algebra, so one expects that the

C = + glueball spectra will be identical. Now we recall that in SU(4)

4⊗ 4 = 6⊕ 10 (2.2)

(see e.g. [22]) where the 6 corresponds to the k = 2 antisymmetric representation (which

indeed is C = + for SU(4)) and maps to the fundamental 6 of SO(6). Thus in the

equivalence with SO(6) we are to think of k = 2A operators in SU(4) and the SO(6)

string tension should be compared to the k = 2A string tension in SU(4). In terms of the

fundamental SU(4) string tension this has values

σ2A
σf

=

{

1.355± 0.009 D = 2 + 1

1.370± 0.020 D = 3 + 1
(2.3)

in D = 2 + 1 [23, 24] and D = 3 + 1 [10]. This implies that we should compare mass

ratios as:
MG√
σ

∣

∣

∣

∣

so6

=
MG√
σ2A

∣

∣

∣

∣

su4

(2.4)

For example, consider the lightest scalar glueball in D=2+1 SU(4). Using the known

value of the ratio in SU(4) [11, 12] we obtain the corresponding ratio in SO(6):

MG√
σ

∣

∣

∣

∣

so6

=
MG√
σf

∣

∣

∣

∣

su4

× √{

σf
σ2A

}
∣

∣

∣

∣

su4

=
4.235(25)

1.164(4)
= 3.638(25) (2.5)

We also expect that at N = ∞,

MG√
σ

∣

∣

∣

∣

so(∞)

=
MG√
σf

∣

∣

∣

∣

su(∞)

= 4.108(20) (2.6)

If we now assume that the leading O(1/N) correction dominates for N ≥ 6, i.e.

MG√
σ

∣

∣

∣

∣

so(N)

≃ MG√
σ

∣

∣

∣

∣

so(∞)

+
c

N
; N ≥ 6 (2.7)

we can use eqs. (2.6), (2.5) to determine the coefficient c in eq. (2.7) and hence the ratio

for all values of N ≥ 6. We display this prediction in figure 1, with c ≃ 2.8, where we
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M0+√
σ

161412108642

7

6

5

4

3

2

1

0

Figure 1. Mass of lightest glueball in units of the string tension σ. Curves are predictions (with

error band) for SO(Ñ) assuming just the leading O(1/Ñ) correction and equality of spectra for

SO(6) and SU(4) and SO(∞) and SU(∞) as described in the text. Red points are SU(N) values

at N = Ñ/2.

also display the SU(N) values of the ratio [11, 12], and the value predicted for SO(6)

in eq. (2.5). We see that this ratio approaches the N = ∞ limit from opposite sides for

SO(N) and SU(N). This is driven by the fact that in the denominator of this ratio we have√
σ|so6 =

√
σ2A|su4 ≃ 1.164

√
σ|su4. The important corollary is that even if our assumption

of the dominance of the O(1/N) correction is inaccurate, the qualitative behaviour shown

in figure 1 is almost certain to survive.

We can obviously extend the above argument to any glueball mass ratio: assume the

dominance of the leading O(1/N) correction for N ≥ 6, then use existing SU(4) and SU(∞)

results [8–12, 23, 24] to fix the mass ratio for SO(6) and SO(∞), and hence predict the

ratio for all SO(N ≥ 6). It is clear that the difference between SU(N) and SO(N) for

such glueball mass ratios is certain to be far more modest than for MG/
√
σ. For example,
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m2+/m0+ andm0+⋆/m0+ change by less than 1% when we go from SU(4) to SU(∞) [10–12]

and hence also when we go from SO(6) to SO(∞). Short of some fine-tuned cancellation

between the O(1/N) and O(1/N2) corrections for SO(6), the near constancy of these mass

ratios for SO(N ≥ 6) is thus more-or-less guaranteed. The same comment applies to the

location of the deconfining temperature Tc if expressed in units of the mass gap.

Irrespective of these arguments for larger N , the fact that such energy ratios are known

to be very similar for SU(3) and SU(4) immediately implies the same for SU(3) and SO(6),

i.e. in the case of particular interest to the finite chemical potential problem [1, 7]. (We

focus here on the pairing of SU(3) and SO(6) because of the large-N orbifold equivalence

of SU(N) and SO(2N) gauge theories. However we should bear in mind that other SO(N)

theories that are sufficiently ‘close’ to SU(3) may be useful — either because they are

less expensive, e.g. SO(4), or because they have a less severe bulk transition problem, e.g.

SO(12) in D=3+1.)

In D=2+1 the coupling g2 has dimensions of mass, and so we can consider ratios of

µ/g2N for some physical mass µ, and ask how this ratio approaches the N = ∞ limit

where, from eq. (2.1), one expects that g2|soN = 2g2|suN . Consider SO(6). The large N

expectation [7, 20] would be that

g2|so6 = 2g2|su6 = 2× 2

3
g2|su4 =

4

3
g2|su4 (2.8)

up to O(1/N) corrections. On the other hand, we know that the SO(6) action is equivalent

to working in SU(4) with the fields in the k = 2A representation, and this should predict

the precise relation between the SU(4) and SO(6) couplings. To proceed let us can think

of a mixed SU(4) lattice plaquette action

S = βf
∑

p

{

1− 1

Nf
ReTrfup

}

+ β2A
∑

p

{

1− 1

N2A
Tr2Aup

}

(2.9)

where

βf = 2Nf/g
2
f ; β2A = 2N2A/g

2
2A (2.10)

just like a more conventional mixed fundamental-adjoint action. We have added here a sub-

script f to the usual (fundamental) g2 for clarity. For SU(4), the sizes of the representations

are Nf = 4, N2A = 6. Using

Tr2Aup =
1

2

{

(Trfup)
2 − Trfu

2
p

}

(2.11)

and performing a weak coupling expansion one readily sees that the correct relation between

the SO(6) and SU(4) couplings is

g2|so6 = g22A|su4 = 2g2f |su4. (2.12)

This differs from the large-N expectation in eq. (2.8) by a factor of 1.5, implying that here,

just as with the string tension, there are quite substantial finite N corrections.
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We can conclude from the above general arguments that the comparison between SU(3)

and SO(6) is as follows: ratios of glueball masses and Tc are very similar, while ratios

involving the string tension and the coupling will typically differ at the 15− 20% level.

Of course, all the above assumes that the different global properties of the SU(4) and

SO(6) groups plays no important role in the details of the spectrum. This is something

that we shall explicitly check for the lightest masses below.

2.3 SO(3) and SU(2)

Although we do not study SO(2N+1) theories in this paper, it is relevant to note that, using

the fact that SO(3) is the adjoint of SU(2), one can further constrain the N -dependence of

SO(N) gauge theories, using the known properties of SU(2) gauge theories. Together with

the constraint from SO(6) and SU(4) this allows us to fix both the O(1/N) and O(1/N2)

corrections if we assume that these dominate down to SO(3). Care is needed with the

string tension, since the SU(2) adjoint string is unstable, but ratios involving glueball

masses, Tc, and g2 can be treated straighforwardly by an obvious extension of the analysis

in section 2.2.

3 Calculations in D=2+1

3.1 Calculating on the lattice

Our lattice field variables are SO(N) matrices, Ul, residing on the links l of the L2
sLt lattice,

whose spacing is a. (We will employ the same notation as used for unitary matrices although

here the matrices are of course real.) The Euclidean path integral is Z =
∫

DUexp{−S[U ]}
and we use the standard plaquette action,

S = β
∑

p

{

1− 1

N
TrUp

}

; β =
2N

ag2
(3.1)

where Up is the ordered product of link matrices around the plaquette p. We update the

fields using a natural extension to SO(N) of the SU(N) Cabibbo-Marinari algorithm. (The

details of this algorithm will be described elsewhere [14].)

Our SO(N) calculations closely parallel those in SU(N), so we will be very brief here

and will refer the reader to other papers for details.

The particle (‘glueball’) states can be labelled by parity P = ± and spin J . (Charge

conjugation is necessarily positive.) For J 6= 0 the P = ± states are necessarily degenerate

in D = 2 + 1 [11, 12] and in this exploratory study we shall only calculate the masses of

P = + and J = 0, 2 states. Here we will make the usual simplifying assumption that the

states we see have the lowest J that contributes to the relevant square lattice representation.

(This is usually but not always the case [25].)

Ground state masses M are calculated from the asymptotic time dependence of corre-

lators, i.e.

< φ(t)φ(0) >
t→∞∝ e−Mt (3.2)
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where M is the mass of the lightest state with the quantum numbers of the operator φ.

To calculate excited states as well one calculates (cross)correlators of several operators

and uses these as a basis for a systematic variational calculation in e−Ht0 where H is

the Hamiltonian (corresponding to our lattice transfer matrix) and t0 is some convenient

distance. To have good overlaps onto the desired states, so that one can evaluate masses

at values of t where the signal has not yet disappeared into the statistical noise, one uses

blocked and smeared operators. (For details see e.g. [10–12].)

To calculate the string tension σ we use the above technique to calculate the energy

E of the lightest flux tube that winds around one of the periodic spatial tori. If the length

l = aLs of the torus is large then E(l) ≃ σl where σ is the string tension. There are of

course corrections and we assume that for our range of l these are accurately incorporated

in the simple Nambu-Goto expression

E(l) = σl
{

1− π

3σl2

}1/2
(3.3)

which is what we shall use to extract σ from E(l). (See e.g. [26–28] and references therein.)

The operator we use is the Polyakov loop lp, i.e. the product of link matrices along a

minimal length curve that closes around the spatial torus. (And blocked versions of this.)

For even N , which is the case of interest in this paper, the theory has a Z2 symmetry that

ensures that < lp >= 0 as long as the symmetry is not spontaneously broken, and indeed

that < lpφG >= 0 where φG is any contractible loop (which is what one uses for glueball

operators). That is to say we have a stable flux tube state that winds around the torus.

We can similarly consider Polyakov loop operators that wind around the temporal torus

on our L2
sLt lattice. Such a finite torus corresponds to a finite temperature T = 1/aLt

if we are in the thermodynamic limit Ls ≫ Lt. The Polyakov loop is the contribution

to the action of a single charged static source. Just as above, the Z2 symmetry ensures

that < lp >= 0, i.e. that the free energy of the static source is infinite, if we are in the

low temperature confining phase. As we decrease Lt at some temperature T = Tc the Z2

symmetry spontaneously breaks, we have < lp > 6= 0 and we enter the deconfined phase

where we have Debye screening and the source has a finite free energy.

3.2 Bulk transition

Lattice gauge theories generally show a (‘bulk’) transition between the strong and weak

coupling regions where the natural expansion parameters are β ∝ 1/g2 and 1/β ∝ g2

respectively. Since the extrapolation to the continuum limit should be made within the

weak coupling region, it is important that the bulk transition should occur at a value of β

where a on the weak coupling side is not very small. Otherwise prohibitively large lattices

may be needed to ensure that one is in the weak coupling confining phase.

For D=3+1 SU(N) gauge theories it is known that the transition is first order for

N ≥ 5 and is a cross-over for smaller N [8, 9]. In D=2+1 it appears to [29] be quite

similar to the Gross-Witten transition in D=1+1 [30], i.e. a cross-over for all N < ∞
developing into a third-order transition at N = ∞. The location in D = 3 + 1 is such

that on the weak coupling side we can readily go down to a ∼ 1/5Tc (taking advantage

– 8 –
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C(nt)

1211109876543210

1

0.1

0.01

0.001

Figure 2. Correlation functions of the ‘lightest’, ◦, and ‘first excited’, •, 0+ glueball states in

SO(4) on a 16224 lattice at β = 9.3. Single mass cosh fits are shown.

of the metastable region when the transition is first order). In D = 2 + 1, we can go to

much larger a, a ∼ 1/1.6Tc. So in these cases the bulk transition presents no significant

obstacle to continuum extrapolations. On the other hand it has long been known that for

the D = 3 + 1 SU(2) theory in the adjoint representation, there is a bulk phase transition

with a very small (and not precisely known) value of a on the weak coupling side. (For a

recent discussion see [13].)

Since adjoint SU(2) is the same as SO(3), this suggests that in D = 3+ 1 the location

of the bulk transition may be an obstacle to accessing the continuum limit of SO(N) gauge

theories. We will address this in more detail later on in the paper. Here we turn to SO(N)

gauge theories in D=2+1. We have performed scans in β for various N which show no

sign of any first order transition. However we do find a transition which is characterised

by a near-vanishing of a scalar glueball mass. The transition is in a narrow range of β
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SO(N) , D=2+1

G (ag2N)b ∼ a
√
σ ∼

SO(3) 3.0 0.164

SO(4) 3.44 - 3.76 0.265 - 0.308

SO(6) 3.74 - 4.06 0.364 - 0.428

SO(8) 3.85 0.423

SU(∞) ∼ 2.2 ∼ 0.7

Table 1. Critical ’t Hooft coupling for the D=2+1 bulk transition.

and its location depends slightly on the volume of the lattice. An example is shown in

figure 2. Here we show the correlation functions of the two lightest glueballs as obtained

from our variational procedure that maximises e−aH over the basis of operators. The

‘lightest’ glueball is well fitted by a single cosh, showing that it has a very good overlap

onto our basis. It is the state that is continuous with the lightest glueball masses away

from the phase transition/cross-over. The ‘first excited state’ , on the other hand, shows

the presence of a very light particle that only shows up at larger nt because it has a

small overlap onto our basis. The presence of this light particle is the signal for the bulk

transition. It is possible that we are seeing a nearby critical point, which might indeed

be a second order phase transition at a nearby value of β. We have not investigated the

nature of this transition or cross-over any further except to list in table 1 the values of the

’t Hooft coupling, ag2N = 2N2/β at which we have observed it to occur. For comparison

we show an estimate of the location for SU(∞) theories [29]. We note that our results

are roughly consistent with the naive orbifold expectation that g2b for SO(2N) and SU(N)

lattice gauge theories should become the same as N → ∞ i.e. that the ’t Hooft couplings

should differ by a factor of 2. We also show the corresponding values of the string tension.

We see that the transition occurs at a modest value of a in units of the string tension and

so should present no significant obstacle to a continuum extrapolation.

3.3 SO(6) and SU(4)

In the case of SO(6) we have performed calculations over an extended range of a, designed

to minimise any systematic error in performing the continuum extrapolation, so as to make

our comparison with existing results for SU(4) reasonably reliable. The parameters of these

calculations and some of the physical quantities calculated are shown in table 2.

As shown in table 2, we have performed calculations with various spatial volumes at

β = 29, in order to determine how large a volume we need in order to avoid finite volume

corrections (within the statistical errors characteristic of all our calculations). We observe

no significant volume dependence for Ls ≥ 16 (at the level of 2 standard deviations). In

physical units this lattice size corresponds to Lsa
√
σ ∼ 3.4. We note that all the other

calculations in table 2 which are beyond the bulk transition (βb ∼ 19) have been chosen to

satisfy this bound, and that the ones at the smallest values of a are considerably larger.

So we expect finite volume corrections to be small in our continuum extrapolations.
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SO(6) , D=2+1

β lattice plaq a
√
σ aM0+ aM0+⋆ aM2+

15.0 4212 0.54264 0.678(3) 1.92(4) — —

15.15 6212 0.55271 0.667(12) 1.872(28) — —

17.75 8216 0.66735 0.4279(9) 1.521(11) — 2.65(13)

18.0 8216 0.67383 0.4161(14) 1.482(19) — 2.72(19)

21.75 12224 0.74255 0.3100(7) 1,1277(70) 1.696(23) 1.89(4)

22.0 12216 0.74599 0.3053(8) 1.1122(52) 1.643(16) 1.940(28)

25.5 16240 0.78553 0.2512(7) 0.9206(46) 1.391(10) 1.597(13)

29.0 12248 0.81410 0.2108(5) 0.7517(42) 1.087(26) 1.299 (47)

29.0 16248 0.81410 0.2150(4) 0.7872(42) 1.152(32) 1.394(18)

29.0 20248 0.81410 0.2153(4) 0.7852(45) 1.183(27) 1.386(12)

29.0 24232 0.81410 0.2155(6) 0.7770(51) 1.212(13) 1.405(14)

36.0 24232 0.85294 0.1661(7) 0.6011(67) 0.947(7) 1.065(25)

48.0 32240 0.89152 0.1205(4) 0.4489(36) 0.6667(72) 0.7709(93)

Table 2. Our D=2+1 SO(6) calculations with parameters and some calculated quantities.

Taking ratios of glueball masses to the string tension, we can attempt to extrapolate

to the continuum limit using just a leading O(a2) lattice correction

aMG

a
√
σ

∣

∣

∣

∣

a

=
MG√
σ

∣

∣

∣

∣

a

≃ MG√
σ

∣

∣

∣

∣

a=0

+ ca2σ. (3.4)

In figure 3 we plot this ratio for the lightest two scalar glueballs and the lightest tensor

glueball. (Note that the light scalar associated with the bulk transition at β ∼ 18 is

deliberately excluded.) We show linear continuum extrapolations of the form in eq. (3.4)

and these seem reasonably well determined. The resulting continuum mass ratios, obtained

using values of β beyond the bulk transition, are listed in table 3. We have also shown

there the values obtained from fits in which eq. (3.4) is supplemented by an additional

O(a4) correction. The difference between the pair of fits provides an estimate of one

of the systematic errors in our continuum extrapolations. We also show the deconfining

temperature whose calculation we leave to a later section. Finally, for comparison, we show

the corresponding results for the SU(4) gauge theory [11, 12]. The agreement between

SO(6) and SU(4) is very good at the 2 standard deviation level. This provides direct

confirmation of the expected equivalence of the SU(4) and SO(6) spectra, and of our

identification of the SO(6) string tension with the k = 2A string tension of SU(4).

There remains one major prediction to test: the relationship between the SO(6) and

SU(4) couplings given in eq. (2.12). This can be done, for example, by calculating
√
σ/g2

in SO(6) and comparing it to the SU(4) value of
√
σ2A/g

2. The former is then predicted by

eq. (2.12) to be one-half of the latter. To obtain the SO(6) value of this ratio we perform

the continuum extrapolation

βI
2N2

a
√
σ

∣

∣

∣

∣

a

≃
√
σ

g2N

∣

∣

∣

∣

a=0

+
c

βI
(3.5)
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Figure 3. Masses of the ground state 0+ (•), first excited 0+ (◦), and ground state 2+ (�) in units

of the string tension, plotted versus the string tension, and with O(a2) continuum extrapolations

shown. All for SO(6) in D=2+1.

as displayed in figure 4. Note that we have used the mean-field improved coupling, βI =

βūp = lima→0 2N/ag2, which is commonly used to improve the approach to the continuum

limit [11, 12]. Taking the SU(4) value from [11, 12] we find

√
σ/g2 = 0.4365(19) SO(6)

√
σ2A/g

2 = 0.8832(41) SU(4) (3.6)

which implies that

g2
∣

∣

so6
= 2.023(13) g2

∣

∣

su4
(3.7)

which is again consistent with eq. (2.12) within 2 standard deviations.

These calculations not only serve to demonstrate the equivalence of SO(6) and SU(4)

gauge theories at the nonperturbative level where the differing global nature of these groups
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µ/
√
σ̃ , D=2+1

µ SO(6) SU(4)

O(a2) O(a4)

M0+ 3.675(27) 3.723(47) 3.638(25)

M0+⋆ 5.66(7) 5.52(10) 5.48(5)

M2+ 6.47(8) 6.39(14) 6.16(8)

Tc 0.810(18) 0.817(5)

Table 3. Continuum limit of some glueball masses and the deconfining temperature in D=2+1

SO(6) and SU(4) gauge theories, all in units of the string tension σ̃. In some cases we show O(a4)

as well as O(a2) extrapolations. In SU(4) σ̃ is the k=2 antisymmetric string tension.

ag2

βI

2N2a
√
σ

1.81.61.41.210.80.60.40.20

0.1

0.09

0.08

0.07

0.06

0.05

0.04

Figure 4. String tension in units of g2N (using βI = 2N/ag2) with an O(ag2) extrapolation to

the continuum limit. For SO(6) in D=2+1.
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β

ūt − ūs
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Figure 5. Difference between average spatial and temporal plaquettes on a 2025 lattice in SO(12)

as β is reduced, •, and then increased, ◦.

might have played some role, but they also give us confidence that lattice calculations in

SO(N) gauge theories encounter no hidden obstacles.

3.4 The deconfining transition

SO(2N) gauge theories should deconfine at some temperature T = Tc = O(
√
σ) just

like SU(N) gauge theories and we expect deconfinement to coincide with the spontaneous

breaking of the Z2 symmetry. That is to say, one can locate the deconfining transition just

as one does for SU(N), see e.g. [15–19].

To illustrate the transition we consider a 2025 lattice in SU(12). In the relevant range

of couplings this spatial volume turns out to be large and so we can consider it to be at a

well defined temperature T = 1/5a(β). By varying β we vary a(β) and hence T . In figure 5

we show the value of the difference between the average spatial and temporal plaquette as

we first decrease β and then increase it. At large N , volume independence tells us that this
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SO(4) SO(6) SO(8) SO(12)

lt βc a
√
σ βc a

√
σ βc a

√
σ βc a

√
σ

2 6.475(99) 0.628(32) 15.15(15) 0.660(18) 27.35(50) 0.681(25) 63.75(75) 0.651(24)

3 7.45(10) 0.424(11) 17.75(25) 0.427(12) 33.25(75) 0.423(17) 81.25(75) 0.406(9)

4 8.30(20) 0.319(12) 21.75(75) 0.308(7) 41.50(25) 0.307(3) 102.00(75) 0.291(4)

5 9.30(40) 0.265(22) 25.20(60) 0.254(7) 49.75(75) 0.247(4) 125.0(10) 0.2337(20)

Table 4. Values of β at which D=2+1 SO(N) theories reach a temperature Tc = 1/a(βc)lt at

which they deconfine. The corresponding value of the string tension, a2σ, is listed.

quantity should be zero in the confining phase, and so in that limit it acts as an exact order

parameter. In figure 5 we see a clear transition at β ∼ 125. To locate the transition on a

spatial volume V one can form a ‘susceptibility’ from this plaquette difference, calculate

its value at several neighbouring values of β, interpolate using reweighting, and define the

transition βc(V ) to be the maximum of this suceptibility. One can now repeat this for

various V and extrapolate βc(V ) to βc(∞). This standard strategy, see e.g. [15, 16], can

provide very precise values of the critical coupling. However just locating the transition

region from scans such as that plotted in figure 5 provides a value of βc that is accurate

enough for our purposes in this exploratory study. In principle one can also attempt to

identify the order of the transition by looking for hysteresis effects, but we do not attempt

to do so here.

We have performed such scans for L2
sLt lattices with Lt = 2, 3, 4, 5 and typically for 2

or 3 values of Ls in each case to check that finite V corrections are negligible at our level

of accuracy. We have simultaneously calculated the string tension at the resulting values

of βc to give us an estimate of Tc/
√
σ = 1/{a(βc)

√
σLt}. (The calculations of a2σ have

been performed on lattices with Ls
√
σ ∈ [2.5, 4.0] and Lt > Ls, so that they are effectively

at T = 0.) These values are listed in table 4. We can then extrapolate to the continuum

limit using a leading O(a2) correction

Tc√
σ

∣

∣

∣

∣

a

≃ Tc√
σ

∣

∣

∣

∣

a=0

+ ca2σ (3.8)

We have done this for the SO(4), SO(6), SO(8) and SO(12) gauge theories, and the results,

with continuum extrapolations, are shown in figure 6. The resulting continuum values are

listed in table 5. Here we also show the known value for SU(4) [17–19] (using the k = 2A

string tension) and we observe that the SO(6) and SU(4) values of Tc/
√
σ are entirely

consistent.

Finally we extrapolate our results to N = ∞ using a leading O(1/N) correction, as

shown in figure 7. This gives us the N = ∞ value displayed in table 5. We list there the

SU(∞) value [17–19] which we can see is consistent with the SO(∞) value, hence providing

another confirmation of the large-N equivalence of SU(N) and SO(N) gauge theories.

3.5 Continuum mass ratios

Our above calculations of Tc/
√
σ required us to calculate string tensions at values of β close

to βc, where a(βc) = 1/LtTc, with Lt ∈ [2, 5]. We calculated glueball masses at the same
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Figure 6. Lattice values of the deconfining temperature Tc in units of the string tension with

continuum extrapolations shown. For SO(4), •, SO(6), ◦, SO(8), �, and SO(12), ⋄.

SO(N) SU(N)

N Tc/
√
σ N Tc/

√
σ

4 0.774(33)

6 0.810(18) 4 0.817(3)

8 0.830(11)

12 0.8715(88)

∞ 0.924(20) ∞ 0.903(23)

Table 5. Continuum limit of deconfining temperature in units of the string tension for various

SO(N) gauge theories and the N → ∞ extrapolation. For comparison we show the SU(4) and

SU(∞) values from [17–19].
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Figure 7. Continuum values of the D=2+1 SO(N) deconfining temperature Tc in units of the

string tension plotted against 1/N with a large-N extrapolation shown.

time, and we will now use these calculations to estimate the continuum limit of various

dimensionless physical ratios just as we did earlier for SO(6). Of course the difference with

the latter calculation is that the range of a used for the continuum limit is much smaller

now. In fact the bulk ‘transition’, βb, more-or-less coincides with the deconfining transi-

tion, βc(Lt), on a lattice with Lt = 3. Thus, we are not surprised to find that we cannot

perform statistically credible continuum extrapolations with weak-coupling corrections if

we include the masses at β ≃ βc(Lt = 2). However we find that extrapolations are often

possible from a value of β ≃ βc(Lt = 3), i.e. from the bulk transition region onwards into

weak coupling. Some evidence that we are not being too optimistic is given by our results

for SO(6) where we have performed calculations to much weaker couplings. In figure 3,

we see that the extrapolations to the continuum of typical mass ratios pass through the

βc(Lt = 3) values but not through the values at βc(Lt = 2). For
√
σ/g2 we see in figure 4
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Figure 8. The SO(N) continuum string tension, •, in units of the ’t Hooft coupling modified by

using Ñ = N/2, with an O(1/N) extrapolation to N = ∞ shown. Also shown are known SU(N)

values, ◦, in units of the standard ’t Hooft coupling, Ñ = N , and with an O(1/N2) extrapolation

of these to N = ∞.

some deviation even from the βc(Lt = 3) values, but it is not large. So while some of our

extrapolations do have a mediocre χ2, most are good, and we can expect the overall picture

to be qualitatively reliable.

In figure 8 we display our SO(N) continuum values for the string tension in units of

the ’t Hooft coupling, g2N , modifed so that N → N/2, i.e. we double the calculated values

of
√
σ/g2N . We observe that the values for N ≥ 6 [23, 24] can be extrapolated to N = ∞

with just the leading O(1/N) correction. For comparison we have shown the SU(N) values,

with an unmodifed ’t Hooft coupling and we show an O(1/N2) fit to these. We observe

that the N = ∞ extrapolations for SO(N) and SU(N) are consistent with each other. The

various (unmodifed) continuum string tensions for SO(N) are listed in table 6 as are the

continuum extrapolations. Taking into account our other results, this tests the large N
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SO(N) , D=2+1

N
√
σ/g2N M0+/

√
σ M2+/

√
σ M0+⋆/

√
σ

4 0.0481(40) 3.366(33) 5.89(8) —

6 0.0727(4) 3.665(21) 6.36(6) 5.537(43)

8 0.0783(8) 3.547(111) 6.45(15) 5.761(125)

12 0.0884(15) 3.873(82) 6.69(11) 6.025(78)

SO(∞) 0.1002(23) 4.18(8) 7.13(14) 6.51(16)

SU( ∞) 0.0988(2 )×2 4.11(2) 6.88(6) 6.21(5)

Table 6. Continuum limits of various mass ratios for various SO(N) gauge theories and the N → ∞
extrapolations. For comparison we show the known SU(∞) values [11, 12, 23, 24].

prediction in eq. (2.1) for the relationship between the SO(N) and SU(N) couplings to an

accuracy of ∼ ±2%.

In figure 9 we display our SO(N) continuum values for some of the lightest glueball

masses, in units of the string tension. We also show the large N extrapolations. All these

values are listed in table 6 where we also list the corresponding large N limits for SU(N)

gauge theories [11, 12]. We see a satisfactory agreement at the 2 standard deviation level.

These results confirm, albeit with a modest accuracy, our expectations for the rela-

tionship between SU(N) and SO(N) gauge theories in 2+1 dimensions.

4 D=3+1

Finally we turn briefly to SO(N) gauge theories in 3+1 dimensions.

We begin with the strong-to-weak coupling bulk transition which is easy to identify in

D = 3 + 1 as it is a strong first-order transition in which the average plaquette undergoes

a large and sharp dicontinuity even on very small lattices. We have performed calculations

where we gradually decrease β through the transition and then, well after that transition,

we gradually increase β. Because the transition is strongly first order we have a substantial

hysteresis effect, and the two locations of the transitions obtained in this way do not

coincide. We list in table 7 the bulk transitions obtained for various SO(N) groups. These

calculations have been mostly obtained on small 44 lattices, but several checks on larger

volumes show that any finite volume corrections are small.

Any continuum extrapolation can only use values of β on the weak-coupling side of

the bulk transition. To calculate the continuum physics of the confining phase, the lattice

size Ls must be large enough i.e. aLs > 1/Tc at the very least. If the lattice spacing on

the weak-coupling side of βb is very small this may require prohibitively large values of Ls.

Indeed it has long been known that this is the case in SO(3). One can of course improve

one’s chances by using the strong hysteresis to perform weak-coupling calculations at the

largest possible value of β, i.e. β ≃ β↓
b + ǫ.

This is the value of β at which we have performed some test weak-coupling runs. As

expected our test run in SO(3) at β = 2.52 on a ‘large’ 324 lattice reveals that we are
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Figure 9. Some SO(N) continuum glueball masses in units of the string tension: the lightest 0+,

•, and 2+, ◦ and the first excited 0+, ∗. Large N extrapolations shown.

in a small-volume phase. The same is true in SO(4) on a 324 lattice at β = 4.75 where,

in addition, we observe the spontaneous breaking of the Z2 center symmetry. In SO(6)

neither of the 324 or 24332 lattices appear to be clearly large volume. However in SO(8)

we appear to have what looks like the desired confining phase on a 24332 lattice at β = 20,

although not on a 16324 lattice. Here we appear to have a
√
σ ≃ 0.16. Finally in SO(16)

we find that we can obtain ‘large-volume’ physics on a 12316 lattice at β = 83.5, where

we find a
√
σ ≃ 0.31. Here we are beginning to approach the corresponding values found

in SU(N) gauge theories at larger N . Thus at our larger values of N one could imagine

reducing a by a further factor of ∼ 2 or 3 so as to have a useful range of a for a continuum

extrapolation. However one would be reluctant to calculate dynamical fermionic properties

at such large N . We are therefore focusing on improving the action rather than pursuing

further calculations with the standard plaquette action.
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SO(N) , D=3+1

G βb ↓ βb ↑
SO(3) 2.48(1) 2.53(1)

SO(4) 4.62(3) 4.87(3)

SO(5) 7.35(5) 7.95(5)

SO(6) 10.85(5) 11.8(1)

SO(7) 14.77(8) 16.58(8)

SO(8) 19.7(1) 21.9(1)

SO(9) 25.12(12) 28.12(12)

SO(10) 31.12(12) 35.12(12)

SO(16) 82.25(25) 93.25(25)

Table 7. Values of β at the bulk transition in various D=3+1 SO(N) gauge theories obtained

mainly on 44 lattices. Separately for β decreasing and increasing.

D=3+1

SO(6) SU(3)

M2+/M0+ 1.45(5) 1.35(4)

Tc/M0+ 2.13(5) 2.29(5)

M0+/
√
σ 2.87(6) 3.55(7)

Table 8. Comparing some continuum energy ratios in D=3+1 between SU(3) and that expected

for SO(6) from its equivalence with SU(4) [10]. (Using the k = 2A string tension.)

Although we are not yet in a position to compare values calculated within SO(6) with

known results for SU(3), we can do so indirectly by predicting the SO(6) physics from the

known SU(4) physics [11, 12]. Doing so we have the comparison in table 8. We observe that

the physics is very similar except where it involves the string tension, and this is simply

because the SO(6) string tension corresponds to the k = 2A SU(4) string tension.

Finally we comment that, just as for D = 2 + 1, we can make use of the SO(6)-SU(4)

equivalence to predict the physics in D = 3 + 1 of all SO(N ≥ 6) theories if we assume

that the leading O(1/N) correction dominates and input that SO(N) and SU(N) gauge

theories have a common large-N limit.

5 Conclusions

Our aim in this paper has been to review some relevant properties of SO(N) gauge theories,

complemented with some exploratory lattice calculations. This is intended to serve as

a useful background for more detailed and precise numerical calculations. Such studies,

comparing SO(N) and SU(N) pure gauge theories, will provide a starting point for attempts

to evade the finite chemical potential sign problem in QCD using the (orbifold) large-N

equivalence of SO(2N) and SU(N) theories [1, 7].
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We have seen, in D = 2+1, that the equivalence of SO(6) and SU(4) Lie algebras does

indeed appear to translate into an equivalence of the spectra — with the string tension of

the former corresponding to the lightest k = 2 (antisymmetric) tension in the latter. Since

‘glueball’ mass ratios are very similar in SU(3) and SU(4) gauge theories this implies that

dimensionless mass ratios will also be similar in SU(3) and SO(6) gauge theories, except

where they involve the string tension or the coupling g2, where, however, the differences

can be predicted.

If, furthermore, one assumes that the leading O(1/N) correction dominates down to

N = 6, then one can use the SO(6)/SU(4) equivalence and the known SU(4) spectrum to

predict the spectrum of SO(N) gauge theories for all N ≥ 6. (One can additionally use the

SO(3)/SU(2) equivalence to pin down both the 1/N and 1/N2 corrections with appropriate

assumptions.) Our exploratory D = 2+ 1 calculations of the deconfining temperature, Tc,

the lightest two JP = 0+ glueball masses and the lightest JP = 2+ glueball mass, indicate

that the O(1/N) correction does indeed dominate all the way down to N = 6 and often

down to N = 4.

This SO(6)/SU(4) spectral equivalence should also hold in D = 3 + 1 and suggests

a similarly strong similarity between SO(6) and SU(3) and similar predictions for N ≥ 6

assuming the dominance of the O(1/N) correction down to N = 6. Here however our lattice

calculations have been obstructed by the first-order strong-weak coupling ‘bulk’ transition.

For low N this is so located that to calculate physics on the weak coupling side would

require extremely large lattices. Although we find that for larger N , e.g. SO(16), this is no

longer the case, and the location of the transition in physical units is not much different

from that in SU(8), what we would really like to do is to access the continuum physics

of lower N SO(N) gauge theories, and to that end we are investigating improved actions

where the ‘improvement’ desired is to push the bulk transition to stronger coupling.
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