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1 Introduction

In the context of holographic approaches [1–3] to gravitational theories, 2 + 1 dimensional

models play a prominent role because there is detailed quantitative understanding both of

the bulk theories and of their two dimensional dual.

For the particular case of three dimensional gravity, the Chern-Simons formulation [4,

5] can be used to good effect. Indeed, the dual theory on closed spatial sections is obtained

simply by solving the constraints inside the Chern-Simons action [6–8] giving rise to a (chi-

ral) Wess-Zumino-Witten model [9]. Unlike in most conformal field theory considerations,

the relevant groups in applications to gravity are non-compact or non semi-simple, that is

SO(2, 2) in the AdS case and ISO(2, 1) in the flat case. Furthermore, the spatial section

is a plane and the choice of boundary conditions plays a crucial role in determining the

dual theory.
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In the AdS case, these questions have been addressed in [10] (see also [11–16] for related

considerations). In particular, the chiral decomposition so(2, 2) ∼= sl(2,R)⊕ sl(2,R) allows

one to apply standard techniques for semi-simple algebras in each sector. The first stage

of the reduction then involves a formulation in terms of decoupled chiral models [17–20]

that combine into a standard Wess-Zumino-Witten model in a well-understood way (see

e.g. [21–23]). In a second stage, the gravitational boundary conditions allow for a further

simplification by implementing a standard Hamiltonian reduction from the SL(2,R) Wess-

Zumino model to Liouville theory [24–26].

The main purpose of the present paper is to construct the dual theory for three dimen-

sional asymptotically flat gravity at null infinity and to establish its connection with the

AdS results. Apart from shedding light on details of holography in backgrounds that are

not AdS, such a dual theory is liable to play a role as a toy model for cosmological scenarios

(see e.g. [27] and references therein) due to the existence of time-dependent cosmological

solutions in this context [28].

Not surprisingly, a detailed analysis of the Chern-Simons to Wess-Zumino-Witten re-

duction for the Poincaré algebra iso(2, 1) does exist [29]. We will however have to adjust

the analysis to the case at hand. Indeed, for our purpose, it will be more convenient to work

with the spinor rather than the vector representation of so(2, 1) in order to connect AdS

and flat space results. Furthermore, the boundary conditions that have been used are not

directly related to those of asymptotically flat spacetimes at null infinity. Implementing the

appropriate boundary conditions modifies the resulting chiral Wess-Zumino-Witten model

and is important in order to have as rich a dynamics in the flat as in the AdS case [30, 31]

with a direct connection between the two asymptotic regimes [28] (see also [32]). In turn,

this is crucial in order to repeat the semi-classical arguments for a microscopic explanation

of the BTZ black hole entropy [33] of the corresponding asymptotically flat cosmological

solutions [34, 35].

As for other non semi-simple algebras (see e.g. [36]), the chiral Wess-Zumino-Witten

like model for iso(2, 1) admits a globally well-defined two-dimensional action. The cen-

tral extension in the associated current algebra affects the brackets between rotation and

translations generators. In this case, the Hamiltonian reduction of the model gives rise to

a BMS3 invariant Liouville type theory that is discussed in more detail in the companion

paper [37].

The paper is organized as follows. Instead of using asymptotic conditions, we consider

instead a suitable gauge fixed form of the metric. This is not the more standard Fefferman-

Graham form in the AdS case, but rather a BMS type gauge that allows for a parallel

treatment of both the AdS and the flat case. After quickly reviewing the general solution

to the three-dimensional Einstein’s equations, we provide in section 2 explicit expressions

for the associated dreibeins and spin connections.

Section 3 is devoted to constructing the associated group elements. The field corre-

sponding to the Cartan generator of sl(2,R) can then be related to a standard Liouville

field in the AdS case and a BMS Liouville field in the flat case. In particular, the overall

normalization that has been left unspecified in [37] can be fixed at this stage. The limit

relating the group elements of the AdS to the flat case is provided and shows how the

explicit time dependence emerges from this point of view.
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The remainder of the work consists in deriving the equations for the group elements on

the level of action principles. In a first step in section 4, suitable boundary terms are added

to the Chern-Simons action in order to make the variational problem well-defined for the

gravitational solutions that we are interested in. In terms of vielbeins and spin connections,

this step can be done in parallel for both AdS and flat space with an obvious limit.

In section 5 and the associated appendix, we first briefly recall results on the Chern-

Simons to WZW reduction for the AdS case, in particular how the reduction gives rise in

a first step to chiral sl(2,R) WZW models. We then review the structure of these models

from the point of view of constrained Hamiltonian systems, including their current algebras

and classical conformal invariance. These steps can then be directly generalized to the flat

case, where an appropriate chiral iso(2, 1) WZW model is constructed. Its general solution

involves a linear time-dependence and the iso(2, 1) current algebra is constructed in terms

of Dirac brackets. BMS3 invariance of the model is established in terms of the current

algebra along standard lines. Finally, we show how to obtain the chiral iso(2, 1) WZW like

model as a flat limit limit of two chiral sl(2,R) models.

In the last section 6, the Hamiltonian reduction is implemented. In the AdS case,

they reduce the chiral models sl(2,R) WZW models to free chiral bosons that combine into

Liouville theory in a standard way. In the flat case, a free first order action principle is

obtained that is related to the BMS3 Liouville theory in a similar way.

In order to emphasize novel aspects, conventions, notations and intermediate formulae

that are relevant only to follow the details of the computations are mostly relegated to

the appendix.

In all the analysis, we have concentrated for simplicity on the boundary at future null

infinity. This corresponds to analysing Chern-Simons theory with a spatial section that is a

disk. In a more complete analysis, other boundaries, sources in the interior and holonomies

can and should be taken into account by following the arguments in [8, 38, 39].

Obvious generalizations of the present work consist in including in the starting point

Chern-Simons formulation the exotic term, i.e., the Chern-Simons terms for the spin-

connection [5]. The inclusion of this term can be entirely captured through an extension of

the invariant metric that does not affect equations of motion or constraints, but suitably

modifies the current algebras. A related generalization consists in repeating the analysis

for topologically massive gravity [40, 41].

We have limited ourselves to the classical theory, but it should obviously be interesting

to consider quantum aspects of the iso(2, 1) chiral Wess-Zumino theory and investigate for

instance to what extent the general analysis of [42, 43] applies. These questions will be

addressed elsewhere.

2 BMS gauge, fall-off conditions and general solution

The BMS gauge consists in using the diffeomorphisms to put the metric in the form

ds2 = e2β
V

r
du2 − 2e2βdudr + r2(dφ− Udu)2, (2.1)
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in terms of three arbitrary functions β, V, U . Here r is a radial coordinate restricted to

r ∈ [r̄,∞), u is a null coordinate, while φ ∈ [0, 2π] is an angular coordinate. Associated

dreibeins ea such that ds2 = 2e0e1 + (e2)2 can be chosen as

e0 =
1

2

(
e2β

V

r
+ r2U2

)
du− e2βdr − r2Udφ, e1 = du, e2 = rdφ. (2.2)

When imposing the fall-off conditions β = o(1) = U , the Einstein equations can be

solved exactly. They imply in particular the stronger fall-off conditions

V

r
= −r

2

l2
+O(1), β = O(r−1), U = O(r−2), (2.3)

that can be used to complete the definitions of asymptotically anti-de Sitter or flat space-

times in BMS gauge. In the flat case, the limit l → ∞ is understood so that V
r
= O(1).

The exact solution is given by

ds2 =

(
−r

2

l2
+M

)
du2 − 2dudr + 2Ndudφ+ r2dφ2, (2.4)

where ∂rM = 0 = ∂rN and

∂uM =
2

l2
∂φN , 2∂uN = ∂φM. (2.5)

The general solution to these equations is

M = 2(Ξ++ + Ξ−−), N = l(Ξ++ − Ξ−−), (2.6)

with Ξ±± = Ξ±±(x±), in the AdS case and

M = Θ, N = Ξ+
u

2
∂φΘ, (2.7)

with Θ = Θ(φ) and Ξ = Ξ(φ) in the flat case. In terms of the arbitrary functions, the

conserved charges in the AdS case associated to ξ = Y +∂+ + Y −∂−, Y ± = Y ±(x±), are

given by

QY ± =
l

8πG

∫ 2π

0
dφ(Y +Ξ++ + Y −Ξ−−), (2.8)

if normalized with respect to the M = 0 = J BTZ black hole. In the flat case, they are

associated to ξ = (T + uY ′)∂u + Y ∂φ, T = T (φ), Y = Y (φ) and given by

QT,Y =
1

16πG

∫ 2π

0
dφ(TΘ+ 2Y Ξ), (2.9)

when normalized with respect to the null orbifold.

In the first order formalism, the equations of motion are

dω + ω2 +
1

l2
e2 = 0, de+ ωe+ eω = 0. (2.10)
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Associated dreibeins and spin connections are given by

e0 = −1

2

(
r2

l2
−M

)
du− dr +Ndφ, e1 = du, e2 = rdφ,

ω0 =
N
l2
du− 1

2
(
r2

l2
−M)dφ, ω1 = dφ, ω2 =

r

l2
du.

(2.11)

In particular, we note that for the gravitational solutions that we are interested in

ωa
φ = eau, ωa

u =
1

l2
eaφ, ωa

r = 0, δear = 0 = ∂φe
a
r = ∂ue

a
r . (2.12)

Note that for flat space, these expressions simplify as all terms proportional to negative

powers of l vanish.

The results for AdS and flat space can be related through a modified Penrose limit by

translating the metric results of [28] to first order form. First, one introduces a dependence

on a dimensionless parameter ǫ > 0 in the arbitrary functions Ξ±± of the AdS results

giving rise to ǫ dependent vielbeins and spin connections e(ǫ), ω(ǫ). If, after the rescalings

(u, φ, r; e(ǫ), ω(ǫ)) → (ǫu, ǫr, φ; ǫ−1e(ǫ), ω(ǫ)), the limit is well-defined it can be shown to be

a solution to the flat space equations. This is the case if the ǫ dependence1 in Ξ
(ǫ)
±± is

such that

Ξ
(ǫ)
±±(x; ǫ) =

1

4
Θ(±x)± ǫ

2l
Ξ(±x) +O(ǫ2), (2.13)

so that, when taking (2.6) into account,

lim
ǫ→0

M(ǫ)(ǫu, φ) = Θ(φ), lim
ǫ→0

ǫ−1N (ǫ)(ǫu, φ) = Ξ(φ) +
u

2
∂φΘ(φ). (2.14)

In the AdS case, the chiral Chern-Simons connections are given on-shell by

A± =

(
r
2ldx

± ∓ 1√
2

(
dr
l
+
(
r2

2l2
− 2Ξ±±

)
dx±

)

± 1√
2
dx± − r

2ldx
±

)
. (2.15)

in matrix form. They satisfy

A±α
∓ = 0, A±1

r = 0 = A±2
r , δA±0

r = 0 = ∂µA
±0
r . (2.16)

Let us briefly compare to the formulation in the more standard Fefferman-Graham gauge.

In this case, the general solution is

ds2 =
l2

r2
dr2 −

(
rdx+ − l2

r
Ξ−−dx

−
)(

rdx− − l2

r
Ξ++dx

+

)
, (2.17)

where now x± = t
l
± φ with a standard time-like coordinate t and a different radial coor-

dinate r. Associated dreibeins ea and spin connections ωa are

e0 = − r√
2
dx− +

l2√
2r

Ξ++dx
+, e1 =

r√
2
dx+ − l2√

2r
Ξ−−dx

−, e2 =
l

r
dr,

ω0 =
r√
2l
dx− +

l√
2r

Ξ++dx
+, ω1 =

r√
2l
dx+ +

l√
2r

Ξ−−dx
−, ω2 = 0.

(2.18)

1When explicitly comparing to [28] one has to take into account the different normalization of the charges

and the associated constant shifts of the functions Ξ±±,M,Θ.
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In this gauge as well, conditions (2.12) hold. The corresponding chiral Chern Simons

connections are

A+ =

(
dr
2r

l
r
Ξ++dx

+

r
l
dx+ −dr

2r

)
, A− =

(
−dr

2r
r
l
dx−

l
r
Ξ−−dx−

dr
2r

)
. (2.19)

In particular, these connections satisfy (i) A+
− = 0 = A−

+ and (ii) ∂±A
+1
+ = 0 = ∂±A

−0
− ,

A±2
± = 0 for all values of r, and thus in particular asymptotically, respectively to leading

order, which are the conditions used at spatial infinity in [10].

When comparing with (2.15), we see that (i) is valid in both gauges, while (ii) is

changed to ∂+A
+0
+ = 2Ξ′

++, ∂−A
−0
− = −2Ξ′

−−, ∂±A
+1
+ = 0 = ∂±A

−1
− and A±2

± = 0 in the

BMS gauge.

3 On-shell group elements

It is instructive at this stage to exhibit the group elements that yield the flat connections

discussed in the previous section. The general solution to dA+ A2 = 0 is locally given by

A = G−1dG.

In the AdS case, we deduce from F± = 0 and ∂±A±
r = 0 = ∂∓A±

r that A± = G−1
± dG±

where G± factorizes as G± = g±(u, φ)h±(r).

In Fefferman-Graham gauge, the explicit form of the chiral connections then leads to

G± = g±e
± 1

2
ln r

l
H , (3.1)

with
g−1
+ ∂+g+ = Ξ++E+ + E−, ∂−g+ = 0,

g−1
− ∂−g− = E+ + Ξ−−E−, ∂+g− = 0.

(3.2)

When using the Gauss parametrization

g± = eσ±E∓e
1

2
∓ϕ±Heτ±E± , (3.3)

this implies ∂∓σ± = ∂∓τ± = ∂∓ϕ± = 0 and

∂±σ± = eϕ± , τ±∂±σ± = −1

2
∂±e

ϕ± , ∂±τ± − 1

2
τ±∂±ϕ± = Ξ±±, (3.4)

or, equivalently, in Riccatti form

∂±τ± + τ2± = Ξ±±, ∂±ϕ± = −2τ±, ∂±σ± = eϕ± . (3.5)

When substituting the second in the first equation, one recognizes the characteristic ex-

pression for the energy-momentum tensor of a Liouville field,

Ξ±± =
1

4
(∂±ϕ±)

2 − 1

2
∂2±ϕ± = ∂±τ± + τ2± = −1

2
{σ±;x±}, (3.6)

where {F ;x} = F ′′′
F ′ − 3

2
(F ′′)2

(F ′)2 = (lnF ′)′′ − 1
2((lnF

′)′)2 denotes the Schwarzian derivative.

More precisely, consider a Liouville field ϕL with action

S =

∫
dudφ

(
πϕ̇L − 1

2
π2 − 1

2l2
ϕ′
L
2 − µ

2γ2
eγϕL

)
. (3.7)
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It gives rise to the same relation (see e.g. equations (4.3), (4.5), (4.11) of [37] for details)

provided that the first of (3.4) holds, that2

eγϕL =
16

l2µ

∂+σ+∂−σ−
(σ+ − σ−)2

. (3.8)

and

γ2l2 = 32πG. (3.9)

For later use, let us point out that, off-shell, equation (3.8) together with an associated

change of variables for the momenta,

γϕL = ϕ+ + ϕ− − 2 ln (σ+ − σ−) + ln
16

l2µ
,

π =
1

γl

(
ϕ′
+ − ϕ′

− − 2
σ′+ + σ′−
σ+ − σ−

)
,

(3.10)

where σ′± = ±eϕ± , is the change of variables that allows to write the Liouville action (3.7)

in terms of decoupled chiral bosons,

S =
1

γ2l

∫
dudφ

[
ϕ̇+ϕ

′
+ − ϕ̇−ϕ

′
− − 1

l
(ϕ′

+)
2 − 1

l
(ϕ′

−)
2

]
. (3.11)

In BMS gauge, one finds

G± = f±(u, φ)e
∓ r

l
j0 . (3.12)

with

f−1
± ∂±f± = ±

√
2Ξ±±E+ ± 1√

2
E−, ∂∓f± = 0. (3.13)

In this case, the parametrization

f± = e
±σ±√

2
E−e−

1

2
ϕ±He±

√
2τ±E+ , (3.14)

leads to the same equations (3.4) or (3.5) as in Fefferman-Graham gauge.

Finally, in the flat case, we start by solving dω+ 1
2ω

2 = 0. Since all r and u dependence

drops out of (2.11) and

ω =
1

2
√
2
ΘdφE+ +

1√
2
dφE−, (3.15)

we have ω = Λ−1dΛ where Λ = Λ(φ). The parametrization

Λ = e
σ√
2
E−e−

1

2
ϕHe

√
2τE+ (3.16)

then leads to

σ′ = eϕ, τσ′ = −1

2
ϕ′eϕ, τ ′ − 1

2
τϕ′ =

1

4
Θ, (3.17)

or, again, in Riccatti form

τ ′ + τ2 =
1

4
Θ, ϕ′ = −2τ, σ′ = eϕ. (3.18)

2Note that σ+, σ− are denoted by A,B in section 4.1 of [37].
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In this case, we have

1

4
Θ =

1

4
ϕ′2 − 1

2
ϕ′′ = τ ′ + τ2 = −1

2
{σ;φ}. (3.19)

The equation de+ ωe+ eω = 0 is locally solved by e = Λ−1daΛ. With

e =

[
1

2
Θdu− dr +

(
Ξ +

u

2
∂φΘ

)
dφ

]
1√
2
E+ +

1

2
rdφH + du

1√
2
E−, (3.20)

the ansatz
a = − r√

2
ΛE+Λ

−1 + u∂φΛΛ
−1 + ā(φ),

ā(φ) =
η√
2
E+ +

θ

2
H +

ζ√
2
E−,

(3.21)

then leads to the system

η′ = e−ϕΞ, θ′ = −σe−ϕΞ, ζ ′ = −σ
2

2
e−ϕΞ, (3.22)

which can be trivially integrated.

Let us compare with a BMS Liouville field [37] with action

S =

∫
dudφ

(
ΠΦ̇− 1

2
Φ′2 − ν

2β2
eβΦ
)
. (3.23)

Taking into account the expression for the energy density of this field leads to the relation

eβΦ =
4

ν

(
σ′

σ

)2

, (3.24)

where the first of (3.17) holds, by using3 the first of equations (4.29) and (4.30) of [37].

From (4.22) of [37] and (2.9), we then get

β2 = 32πG. (3.25)

Off-shell, the change of variables from Φ,Π to ϕ, ξ given by

βΦ = 2ϕ− 2 lnσ + ln
4

ν
,

βΠ = ξ′ − (lnσ)′ξ,
(3.26)

where σ′ = eϕ maps the BMS Liouville action (3.23) to

S =
2

β2

∫
dudφ

[
ξ′ϕ̇− ϕ′2

]
. (3.27)

We are now in a position to discuss the flat limit. On the level of the Liouville

action (3.7), let

ϕL = ǫ−
1

2 lΦ, π = ǫ
1

2 l−1Π,

γ = ǫ
1

2 l−1β, µ = l−2ν.
(3.28)

3The function σ is denoted by B in section 4.3 of [37].
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After rescaling u → ǫu, the limit ǫ → 0 of (3.7) then gives rise to the BMS Liouville

action (3.23).

On the level of solutions, consider the group element f
(ǫ)
± (x; ǫ) determined

through (3.13) where Ξ±± is replaced by Ξ
(ǫ)
±± with an expansion as in (2.13). A

parametrization like in (3.14) with ǫ dependent fields σ
(ǫ)
± , ϕ

(ǫ)
± , τ

(ǫ)
± now gives rise to equa-

tions (3.5), (3.6) in terms of ǫ dependent fields. Compatibility with (3.18), (3.19), (3.22)

then leads to

τ±(x; ǫ) = ±τ(±x)± ǫτ (1)(±x) +O(ǫ2), lτ (1) =
1

2
eϕη,

ϕ±(x; ǫ) = ϕ(±x) + ǫϕ(1)(±x) +O(ǫ2), lϕ(1) = −θ − ησ,

σ±(x; ǫ) = ±σ(±x)± ǫσ(1)(±x) +O(ǫ2), lσ(1) = ζ − θσ − 1

2
ησ2.

(3.29)

For the chiral groups elements we find

f±(x; ǫ) =

[
Λ

(
1+ ǫ

b±
l

)]
(±x) +O(ǫ2), (3.30)

with Λ parametrized as in (3.16) and

b±
l

=
σ(1)√
2
e−ϕ(E− −

√
2τH − 2τ2E+) +

√
2
(
τ (1) − τϕ(1)

)
E+ − 1

2
ϕ(1)H. (3.31)

This gives

f−1
± (x; ǫ)∂f±(x; ǫ) = ±

[
Λ−1∂Λ +

ǫ

l

(
∂b± + [Λ−1∂Λ, b±]

)]
(±x) +O(ǫ2), (3.32)

According to the discussion on the flat limit in section 2, one defines

Gǫ
± = f±

(ǫu
l
± φ; ǫ

)
e
∓ ǫr

l
√
2
E+ , (3.33)

and computes

ω = lim
ǫ→0

1

2

(
Gǫ

+
−1dGǫ

+ +Gǫ
−
−1dGǫ

−
)
, e = lim

ǫ→0

l

2ǫ

(
Gǫ

+
−1dGǫ

+ −Gǫ
−
−1dGǫ

−
)
. (3.34)

This reproduces the flat space results discussed previously, that is ω = Λ−1dΛ with Λ =

Λ(φ) and e = Λ−1daΛ with a given by

a = − r√
2
ΛE+Λ

−1 + u∂φΛΛ
−1 +

1

2
Λ(b+ + b−)Λ

−1, (3.35)

by taking into account that 1
2(b+ + b−) = Λ−1āΛ.

4 Improved action principle

Neglecting again boundary terms and using A = duAu+Ã, d = du∂u+d̃, the Chern-Simons

action can directly be written in Hamiltonian form,

S[A] = − k

2π

∫
dudrdφ

(
ǫijωai ∂ue

a
j −H

)
,

γae =
1

2
ǫij [∂ie

a
j − ∂je

a
i + ǫabc(ωibejc − ωjbeic)],

γaω =
1

2
ǫij
[
∂iω

a
j − ∂jω

a
i + ǫabc

(
ωibωjc +

1

l2
eibejc

)]
,

(4.1)
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where the Hamiltonian density is a combination of constraints, H = euaγ
a
ω + ωuaγ

a
e and

where xi = r, φ with ǫij determined by ǫ12 = −1.

At this stage, we have to discuss boundary terms. On shell,

δ
(
ǫijωai ∂ue

a
j −H

)
= −∂i

(
ǫij(euaδω

a
j + ωuaδe

a
j )
)
+ ∂u

(
ǫijωaiδe

a
j

)
. (4.2)

It follows that

δ

∫
dudrdφ

(
ǫijωai ∂ue

a
j −H

)
= −

∫
dudφ

[
euaδω

a
φ + ωuaδe

a
φ

]r=∞

r=r̄
−

−
∫
dudr

[
euaδω

a
r + ωuaδe

a
r

]φ=2π

φ=0
−
∫
drdφ

[
ωarδe

a
φ − ωaφδe

a
r

]u=uf

u=ui

. (4.3)

Assuming the fields to be single-valued on the circle, neglecting the inner boundary at r = r̄

and taking into account conditions (2.12), solutions (2.11) respectively (2.18) provide a true

extremum of the variational principle defined by

I[e, ω] = − k

2π

∫
dudrdφ

(
ωaφė

a
r−ωarė

a
φ−H

)
− k

4π

∫
dudφ

[
ωaφω

a
φ+

1

l2
eaφe

a
φ

]r=∞
. (4.4)

5 Reduction to Wess-Zumino-Witten theory

In all cases, BMS gauge in AdS and flat space and in Fefferman-Graham gauge in AdS

space, the on-shell vielbeins and spin connections satisfy in particular

∂φer = 0 = ∂φωr = 0, (5.1)

which are a subset of conditions (2.12). In an off-shell formulation, these conditions can

be taken as (partial) gauge fixing conditions. The reduced system is then simply obtained

by solving the constraints with those gauge fixing conditions in the action.

Because of the form of the constraints, the analysis has to be done separately depending

on whether there is a cosmological constant or not. In the next subsection we briefly review

the results in the AdS case along the lines of [10] in order to better appreciate what happens

in the flat case. Standard technical material can be found in the appendix.

5.1 AdS case

In the AdS case, one uses the chiral decomposition in terms of which the constraints split

as

d̃Ã± + (Ã±)2 = 0, (5.2)

and the improved action is

I[e, ω] = Ic[A+]− Ic[A−]− k

4π

∫
dudφ Tr

[
(A+

φ )
2 + (A−

φ )
2
]r=∞

, (5.3)

where

Ic[A] = − kl

4π

∫
dudrdφ Tr

(
AφȦr −ArȦφ

)
− kl

4π

∫
du Tr

(
Au

(
d̃Ã+ Ã2

))
. (5.4)
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The general solution to the constraints is locally given by Ã± = G−1
± d̃G±. Taking into

account in addition the gauge fixing conditions, which can be rewritten as ∂φA
±
r = 0, the

general solution factorizes,

G± = g±(u, φ)h±(r, u), (5.5)

in terms of group elements g±, h±. At finite r = r̄ fixed, we can assume without loss of

generality that ḣ±(r̄, u) = 0 by absorbing h±(r̄, u) into g±(u, φ). We will assume that this

condition also holds for r̄ = ∞,

ḣ±(∞, u) = 0, (5.6)

as it indeed does for the gravitational solutions of interest.

When inserting such a solution of the constraints into the improved action, one gets

the sum of two decoupled chiral Wess-Zumino-Witten models, I[e, ω] = I+[g+] + I−[g−],

I±[g±] = ± k

2π

∫
dudφTr

[
(g−1

± ∂+g± − g−1
± ∂−g±)g

−1
± ∂∓g±

]
± kl

2π
Γ[G±], (5.7)

where

Γ[G] =
1

3!

∫
Tr(G−1dG)3. (5.8)

One can then follow [10] and define

G = G−1
+ G−, g = g−1

+ g−, π = −g−1
− g′+g

−1
+ g− − g−1

− g′−, (5.9)

in terms of which

I[e, ω] =
kl

2π

∫
dudφ Tr

[
1

2
πg−1ġ − 1

4l

(
π2 + (g−1g′)2

)]
− kl

2π
Γ[G]. (5.10)

After elimination of the momenta, one gets the (non-chiral) WZW action at the boundary

r = ∞,

I[g] = −kl
2

8π

∫
dudφ Tr

[
ηµνg−1∂µgg

−1∂νg
]
− kl

2π
Γ[G]. (5.11)

The equations of motions of the non-chiral theory are ∂+(g
−1∂−g) = 0, with general so-

lution g = k+(x
+)k−(x−). It then follows directly from the Polyakov-Wiegmann identities

that the WZW action is invariant under g → Θ+(x
+)gΘ−1

− (x−). The conserved Noether

currents for the associated infinitesimal transformations δθ±g = θ+g − gθ− are

J+
θ±

= −k
π
Tr
[
θ−g

−1∂−g
]
, J−

θ±
=
k

π
Tr
[
θ+∂+gg

−1
]
, (5.12)

with time components

J0
θ± = 2Tr[θ±I±], I+ =

kl

4π
∂+gg

−1, I− = − kl

4π
g−1∂−g. (5.13)

As briefly recalled in the appendix, in the Hamiltonian formulation their Poisson bracket

algebra consists of two commuting copies of an sl(2,R) current algebra,

{I±a (φ), I±b (φ′)} = ǫab
cI±c (φ)δ(φ− φ′)± kl

4π
ηab∂φδ(φ− φ′),

{I+a (φ), I−b (φ′)} = 0.
(5.14)
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Alternatively, in order to better compare with the flat case, one can concentrate on

the two chiral copies. The equations of motion are ∂∓(g
−1
± g′±) = 0 which implies g± =

h±(u)k±(x±). The analog of the Polyakov-Wiegmann identities for the chiral case imply

invariance of the chiral theories I±[g±] under g± → g±Θ
−1
± (x±). The conserved Noether

currents for the associated infinitesimal transformations δθ±g± = −g±θ± are given by

J+
θ+

= 0, J−
θ+

= −k
π
Tr
[
θ+g

−1
+ g′+

]
,

J+
θ−

=
k

π
Tr
[
θ−g

−1
− g′−

]
, J−

θ− = 0.

(5.15)

The time-components of these currents can be written as

J0
θ± = 2Tr[θ±I

±], I± = ∓ kl

4π
g−1
± g′±. (5.16)

They agree on-shell with the current components (5.13) of the non chiral WZW theory,

which justifies the same notation. In this case, it is their Dirac bracket algebra that forms

the sl(2,R) current algebra given in (5.14). This is shown in the appendix along the lines

of [20]. The chiral models are more complicated than the non-chiral theory in the sense

that their Hamiltonian formulation involves constraints, the zero modes of which are first

class and generate the arbitrary functions of time in the general solution to the equations

of motion, while all other modes are second class.

Let us briefly recall how classical conformal invariance is expressed on the level of the

Hamiltonian formulation of the chiral models. On the constraint surface, the Hamiltonian

and momentum densities can be written as

H± =
1

2

[
1

l2
8π

k
(πB±)a(π

B
±)

a +
k

8π
(g−1

± g′±)a(g
−1
± g′±)

a

]
≈ 2π

kl2
I±a I

a
±,

P± = −(πB±)
a(g−1

± g′±)a ≈ ±2π

kl
I±a I

a
±.

(5.17)

By using the Dirac bracket version of (5.14), one gets by direct computation,

{H±(φ),H±(φ′)}∗ = 1

l2
(P±(φ) + P±(φ′))∂φδ(φ− φ′),

{H±(φ),P±(φ′)}∗ = (H±(φ) +H±(φ′))∂φδ(φ− φ′),

{P±(φ),P±(φ′)}∗ = (P±(φ) + P±(φ′))∂φδ(φ− φ′).

(5.18)

For the energy-momentum tensor components T±
uu = H± = 1

l2
T±
φφ, T

±
uφ = P± = T±

φu, the

components in light-cone coordinates

T±
++ =

l2

2

(
H± +

1

l
P±
)

≈ δ±+
2π

k
I+a I

a
+,

T±
−− =

l2

2

(
H± − 1

l
P±
)

≈ δ±−
2π

k
I−a I

a
−,

T±
+− = 0 = T±

−+,

(5.19)

satisfy

{T±
±±(φ), T

±
±±(φ

′)}∗ = ±l(T±
±±(φ) + T±

±±(φ
′))δ′(φ− φ′), (5.20)

and all other brackets vanishing.
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5.2 Flat case

In this case, taking into account that ∂φωr = 0, the general solution to γω = 0 is given by

ω̃ = Λ−1d̃Λ where Λ = λ(u, φ)µ(r, u), and λ, µ are group elements. The general solution

to the remaining constraint γe = 0, which is equivalent to dẽ+ ω̃ẽ+ ẽω̃ = 0, together with

the gauge fixing condition ∂φer = 0, is given by

ẽ = Λ−1d̃aΛ, a = α+ λβλ−1, (5.21)

where α = α(u, φ), β = β(u, r), which gives explicitly

ωr = µ−1∂rµ, ωφ = µ−1λ−1λ′µ,

er = µ−1∂rβµ, eφ = µ−1
(
λ−1α′λ+ [λ−1λ′, β]

)
µ.

(5.22)

Inserting this solution into the improved action (4.4) with l → ∞ gives

I[e, ω] =
k

π

∫
dudφTr

[
Λ′Λ−1ȧ− 1

2
(Λ−1Λ′)2

]
+
k

π
Γ[Λ, a], (5.23)

with

Γ[Λ, a] =

∫
Tr
(
dΛΛ−1dΛΛ−1da

)
. (5.24)

As for the non semi-simple Lie algebra considered in [36], this Wess-Zumino term for the

Poincaré algebra iso(2, 1) is exact,

Tr
(
dΛΛ−1dΛΛ−1da

)
= d
[
Tr
(
dΛΛ−1da

)]
, (5.25)

so that, when concentrating on the boundary at r = ∞,

Γ[Λ, a] =

∫
dudφTr

[
Λ̇Λ−1a′ − Λ′Λ−1ȧ

]
. (5.26)

Furthermore, when using the decompositions of Λ and a,

Tr
[
Λ̇Λ−1a′

]
= Tr

[
λ̇λ−1α′ + µ̇µ−1(λ−1α′λ+ λ−1λ′β − βλ−1λ′)

+ λ−1λ′β̇ − ∂u(λ
−1λ′β) + ∂φ(λ

−1λ′β̇)
]
. (5.27)

For the gravitational solutions of interest we have again

µ̇(∞, u) = 0 = β̇(∞, u), (5.28)

so that only the first term survives and

I[λ, α] =
k

π

∫
dudφ Tr

[
λ̇λ−1α′ − 1

2
(λ′λ−1)2

]
. (5.29)

This action differs from the WZW action for flat gravity proposed in [29] by the potential

energy term, which originates from the boundary term in (4.4).
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The equations of motion are

(λ̇λ−1)′ = 0, D−λ̇λ−1

u α′ = (λ′λ−1)′, (5.30)

These equations are equivalent to the conservation laws ∂µJ̃
µ = 0, ∂µP

µ = 0 where

J̃0 = λ−1α′λ, J̃1 = −λ−1λ′, P 0 = λ′λ−1, P 1 = 0. (5.31)

The general solution of the first equation is λ = µ(u)ν(φ). After defining α = µγµ−1

the second equation reads γ̇′ = (ν ′ν−1)′ with general solution γ = ρ(φ) + δ(u) + uν ′ν−1.

Solution space is invariant under λ → λΘ−1(φ), α → α − uλΘ−1Θ′λ−1 and also

under λ → Ξ(u)λ, α → ΞαΞ−1. The infinitesimal version of the former, δθλ = −λθ,
δθα = −uλθ′λ−1, leave action (5.29) invariant and the associated Noether currents are now

J̃0
θ = − k

π
Tr[uθ′λ−1λ′ + θλ−1α′λ], J̃1

θ = k
π
Tr[θλ−1λ′]. For Noether currents, the physically

meaningful quantity is the equivalence class [Jµ], where Jµ ∼ Jµ + tµ + ∂νk
[µν] with

tµ ≈ 0. Choosing k[µν] = k
π
uǫµνTr(θλ−1λ′) and tµ = k

π
δ
µ
1Tr
[
θ(∂0(λ

−1λ′)
]
, an equivalent

representative for the Noether current is

J0
θ = 2Tr[θJ ], J = − k

2π

[
λ−1α′λ− u(λ−1λ′)′

]
, J1

θ = 0. (5.32)

The action is furthermore invariant under λ → λ and α → α + λΣ(φ)λ−1. Associated

infinitesimal transformations are δσλ = 0, δσα = λσλ−1 with Noether currents

P 0
σ = 2Tr[σP ], P =

k

2π
λ−1λ′, P 1

σ = 0. (5.33)

As shown in the appendix, in the Hamiltonian formulation, the Dirac brackets of their time

components satisfy the iso(2, 1) current algebra

{Pa(φ), Pb(φ
′)}∗ = 0,

{Ja(φ), Pb(φ
′)}∗ = ǫab

cPc(φ)δ(φ− φ′)− k

2π
ηab∂φδ(φ− φ′),

{Ja(φ), Jb(φ′)}∗ = ǫab
cJc(φ)δ(φ− φ′).

(5.34)

Let us now discuss BMS3 invariance of the model. Using the Hamiltonian analysis that

has been done in the appendix, it follows that, on the constraint surface, the Hamiltonian

and momentum densities are given by

H ≈ π

k
P aPa, P ≈ −2π

k
JaPa. (5.35)

When using the current algebra (5.34), we find

{H(φ),H(φ′)}∗ = 0,

{H(φ),P(φ′)}∗ = (H(φ) +H(φ′))∂φδ(φ− φ′),

{P(φ),P(φ′)}∗ = (P(φ) + P(φ′))∂φδ(φ− φ′).

(5.36)
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This is the form BMS3 invariance takes in the Hamiltonian framework. Indeed, in terms

of modes Pm =
∫ 2π
0 dφ eimφH, Jm =

∫ 2π
0 dφ eimφP, one finds

i{Pm, Pn} = 0, i{Jm, Pn} = (m− n)Pm+n, i{Jm, Jn} = (m− n)Jm+n. (5.37)

When translating to the Lagrangian level, the transformations

− δξ = {·, Qξ}, Qξ =

∫ 2π

0
dφ(HT + PY ), (5.38)

where T = T (φ), Y = Y (φ), are expressed through

− δξλ = Y λ′, −δξα = fλ′λ−1 + Y α′, f = T + uY ′. (5.39)

It can then readily be checked that they leave action (5.29) invariant, δξL = ∂µk
µ
ξ and that

the energy-momentum tensor −jµξ ≡ Tµ
νξ

ν = k
µ
ξ +

∂L

∂∂µλ
δξλ+

∂L

∂∂µα
δξα reads

T u
νξ

ν = −k
π
Tr

[
1

2
(λ′λ−1)2f + λ′λ−1α′Y

]
, T φ

νξ
ν =

k

2π
Tr
[
(λ′λ−1)2Y

]
. (5.40)

Agreement with the Hamiltonian analysis follows by using T̃µ
νξ

ν = Tµ
νξ

ν + ∂ρk
[ρµ]
ξ , with

k
[uφ]
ξ = − k

2πTr
[
u(λ′λ−1)2Y

]
, so that

T̃µ
νξ

ν = δ
µ
0

k

π
Tr

[
−1

2
(λ−1λ′)2T − λ′λ−1α′Y + u(λ−1λ′)(λ−1λ′)′Y

]
. (5.41)

The chiral WZW theory for flat space (5.29) can be understood as a flat limit of the

sum of chiral sl(2,R) WZW theories described by I± in (5.7). In order to take the limit in

terms of a dimensionless parameter we replace in I± the cosmological radius l by lǫ = ǫ−1l

and G± by Gǫ
± involving an explicit ǫ dependence. If we assume Gǫ

± = Λ(1± ǫ
b±
l
) +O(ǫ2)

with a = 1
2Λ(b+ + b−)Λ−1, we have limǫ→0

kl
2πǫ(Γ[G

ǫ
+] − Γ[Gǫ

−]) = k
2πΓ[Λ, a], while for

the two dimensional term one gets k
2πTr(Λ

′Λ−1ȧ + Λ̇Λ−1a′) as ǫ → 0. Summing up both

contributions and using (5.26) gives the result.

6 Reduction to Liouville

6.1 AdS case

Let us discuss the reduction at the level of the chiral WZW actions.

In Fefferman-Graham gauge, one can read from equations (3.2) that (g−1
± ∂±g±)∓ = 1

where the superscript denotes the component along the Lie algebra element E− respec-

tively E+. Using in addition ∂±g∓ = 0, this implies the conditions (g−1
+ g′+)

− = 1 while

(g−1
− g′−)

+ = 1, which correspond to fixing some of the chiral conserved current components

in (5.15).

In terms of the parametrization

g± = eσ±E∓e∓
1

2
ϕ±Heτ±E± , (6.1)
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actions (5.7) read

I±[g±] = ± k

4π

∫
dudφ

[
ϕ′
±∂∓ϕ± − 4e−ϕ±σ′±∂∓τ±

]
, (6.2)

while the reduction conditions become e−ϕ±σ′± = ±1. Up to boundary terms, the reduced

actions are the ones for chiral bosons,

IR± = ± k

4π

∫
dudφ

(
ϕ′
±∂∓ϕ±

)
. (6.3)

In the BMS gauge, we use the parametrization

g± = e
±σ±√

2
E−e−

1

2
ϕ±He±

√
2τ±E+ , (6.4)

which, when inserted into actions (5.7) gives the same actions (6.2). The reduction condi-

tions (f−1
± f ′±)

− = 1√
2
then become again e−ϕ±σ′± = ±1 and give rise to the same reduced

actions (6.3) as in the previous gauge.

As shown in section 3, the sum of the chiral boson actions

IR+ + IR− =
kl

8π

∫
dudφ

(
ϕ̇+ϕ

′
+ − 1

l
(ϕ′

+)
2 − ϕ̇−ϕ

′
− − 1

l
(ϕ′

−)
2

)
, (6.5)

can be written in Liouville form (3.7) by using transformation (3.10).

The reduction of the chiral models to Liouville can also be discussed in terms of the

modified Sugawara construction. By allowed redefinitions of the currents associated to

conformal transformations as discussed in the previous section, equivalent representatives

for the time components can be chosen as T̃±
±± = T±

±±+µa±∂φI
±
a . Note that in this case, the

spatial parts of the currents have to be modified accordingly. On the surface defined by the

reduction constraints, the only representatives that commute with the first class reduction

constraints I+0 = − kl
4π

√
2, I−1 = kl

4π

√
2 (FG gauge), respectively I±0 = ∓ kl

4π (BMS gauge)

are T̃±
±± ≈ T±

±± ± l∂φI
±
2 . Being first class, these are observables of the reduced theory

and their Dirac brackets in Liouville theory coincide, on the constraint surface, with their

brackets in the chiral WZW models, which are explicitly given by

{T̃±
±±(φ), T̃

±
±±(φ

′)}∗ = ±l(T̃±
±±(φ) + T̃±

±±(φ
′))∂φδ(φ− φ′)∓ kl3

4π
∂3φδ(φ− φ′). (6.6)

In terms of modes L±
m = 1

l

∫ 2π
0 dφe±imφT̃±

±±, this gives the standard Dirac bracket algebra

i{L±
n , L

±
n }∗ = (m− n)L±

m+n +
c

12
m3δ0m+n, c = 6kl =

3l

2G
,

i{L±
n , L

∓
n }∗ = 0.

(6.7)

6.2 Flat case

From equation (3.15) and (3.20), the reduction conditions are

(λ−1λ′)− ≈ 1√
2
=

2π

k
P−, J− ≈ 0 ⇒ (λ−1α′λ)− ≈ 0. (6.8)
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In terms of the parametrization,

λ = e
1√
2
σE−e−

1

2
ϕHe

√
2τE+ , α =

η√
2
E+ +

θ

2
H +

ζ√
2
E−, (6.9)

the flat chiral WZW action (5.29) reads

I[ϕ, σ, τ, η, θ, ζ] =
k

2π

∫
dudφ

[
− (θ′ + ση′)ϕ̇+ η′σ̇−

− (η′σ2 + 2θ′σ − 2ζ ′)e−ϕτ̇ − 1

2
ϕ′2 − 2σ′τ ′e−ϕ

]
, (6.10)

while the reduction conditions become

σ′e−ϕ ≈ 1, η′σ2 + 2θ′σ − 2ζ ′ ≈ 0. (6.11)

Using integration by parts and neglecting all boundary terms, the reduced action can

be written as

I =
k

4π

∫
dudφ

[
ξ′ϕ̇− ϕ′2

]
, (6.12)

where ξ = −2(θ + ση). This is the centrally extended BMS3 invariant action in the

form (3.27). Again, as shown in section 3, it is related to the Liouville-like form (3.23)

through the transformation (3.26).

The analog of the modified Sugawara construction for the flat case is as follows. The

time-components of the currents associated to BMS3 transformations may be redefined as

H̃ = H + µa∂φPa + νa∂φJa and P̃ = P + ρa∂φPa + σa∂φJa. Note that in this case, the

spatial parts of the currents do not need to be modified since ∂0P ≈ 0 ≈ ∂0J . On the

surface defined by the reduction constraints, the only representatives that commute with

the first class reduction constraints J0 = 0, P0 =
k
2π are H̃ ≈ H+ ∂φP2 and P̃ ≈ P − ∂φJ2.

Being first class, these are observables of the reduced theory and their Dirac brackets in

BMS Liouville theory coincide, on the constraint surface, with their brackets in the chiral

iso(2, 1) WZW like model, which are given by

{H̃(φ), H̃(φ′)}∗ = 0,

{H̃(φ), P̃(φ′)}∗ = (H̃(φ) + H̃(φ′))∂φδ(φ− φ′)− k

2π
∂3φδ(φ− φ′),

{P̃(φ), P̃(φ′)}∗ = (P̃(φ) + P̃(φ′))∂φδ(φ− φ′).

(6.13)

In terms of modes, Pm =
∫ 2π
0 dφeimφH̃, Jm =

∫ 2π
0 dφeimφP̃, this gives the centrally ex-

tended BMS3 algebra,

i{Pm, Pn}∗ = 0,

i{Jm, Pn}∗ = (m− n)Pm+n +
c2

12
m3δ0m+n, c2 = 12k =

3

G
,

i{Jm, Jn}∗ = (m− n)Jm+n +
c1

12
m3δ0m+n, c1 = 0.

(6.14)
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7 A comment on zero modes

As already stressed in [38], the change of variables (5.9) is not well-defined in the zero mode

sector. As a consequence, the equivalence of the sum of the two chiral models with the non-

chiral theory does not hold in this sector. The same applies to the transformation (3.10)

used in order to relate the sum of two chiral bosons with Liouville theory, and also to the

transformation (3.26) that relates a free chiral boson like action to BMS Liouville theory.

It then follows that asymptotically AdS or flat gravity is, strictly speaking, not equiv-

alent to (BMS) Liouville theory, but rather to the respective chiral models.
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A Chern-Simons formulation of gravity

Let A = −1, 0, 1, 2 and a = 0, 1, 2 and consider the flat metric ηAB = diag(−1− 1, 1, 1). In

terms of the (anti-hermitian) generators Pa = 1
l
J−1a, Jab, the so(2, 2) algebra reads

[Jab, Pc] = ηbcPa − ηacPb, [Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc,

[Pa, Pb] =
1

l2
Jab .

(A.1)

The three dimensional Poincaré algebra iso(2, 1)is obtained by keeping the generators

Pa, Jab fixed and taking the limit of l to infinity.

Let ǫ012 = 1 and take ηab = diag(−1, 1, 1) and its inverse to lower and raise tangent

space indices a, b, c, . . . . In terms of Ja = −1
2ǫ

abcJbc ⇐⇒ Jab = ǫabcJ
c, the algebra reads

[Ja, Jb] = ǫabcJ
c, [Ja, Pb] = ǫabcP

c, [Pa, Pb] =
1

l2
ǫabcJ

c. (A.2)

When neglecting boundary terms, the gravitational action in terms of dreibeins ea =

eaµdx
µ and spin connection ω = 1

2ω
ab
µ Jabdx

µ = ωa
µJadx

µ can be written as

S[e, ω] =
1

16πG

∫
d3x e(eµae

ν
bR

ab
µν − 2Λ) = − 1

8πG

∫ (
eaR

a − Λ

6
ǫabce

aebec
)
, (A.3)

with 1
2R

abJab = dω + ω2 = RaJa. We always omit the wedge product and have chosen the

orientation for the integration of 3-forms according to d3x = drdudφ so that the boundary

Wess-Zumino-Witten actions come with the standard sign. The latter action is equivalent

to the Chern-Simons action

S[A] = − k

4π

∫
〈A, dA+

2

3
A2〉, (A.4)
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where A = ωaJa + eaPa, 〈Ja, Pb〉 = ηab, 〈Ja, Jb〉 = 0 = 〈Pa, Pb〉 and

k =
1

4G
, Λ = − 1

l2
. (A.5)

In order to adapt the problem to our gauge choice, we now use light-cone coordinates

in tangent space by introducing two null vectors,

eµaeµb = ηab, ηab =



0 1 0

1 0 0

0 0 1


 . (A.6)

In the fundamental representation of sl(2,R), generators satisfying jajb =
1
2ǫabcj

c + 1
4ηab1,

Tr(jajb) =
1
2ηab, [ja, jb] = ǫabcj

c are given by

j0 =
1√
2

(
0 1

0 0

)
, j1 =

1√
2

(
0 0

1 0

)
, j2 =

1

2

(
1 0

0 −1

)
. (A.7)

In terms of e = eaµdx
µja and ω = ωa

µdx
µja, with ωab = ǫabcωc, the explicit form of the

equations of motion, the zero curvature condition F ≡ dA+A2 = 0 is (2.10).

The chiral decomposition J±
a = 1

2(Ja ± lPa), A
± = A±aJ±

a , Aa± = ωa ± 1
l
ea disen-

tangles the algebra in terms of so(2, 1)⊕ so(2, 1) and allows one to write the gravitational

action (A.3) as the difference of two Chern-Simons terms,

S[A+, A−] = − lk

8π

∫
ηab

(
A+a

[
dA+ +

2

3
(A+)2

]b
−A−a

[
dA− +

2

3
(A−)2

]b)
. (A.8)

It is only well-defined for non-zero cosmological constant, while all previous considerations

have a straightforward flat space limit l → ∞ for which so(2, 2) contracts to iso(2, 1).

Action (A.8) can be written in matrix form as

S[A+, A−] =
l

2
(SCS [A

+]− SCS [A
−]), SCS [A] = − k

2π

∫
Tr

(
AdA+

2

3
A3

)
. (A.9)

We will use coordinates r, u, φ and, in the AdS case, x± = u
l
± φ with 2∂± = l∂u ± ∂φ.

Note that the redefinition l−1 =
√
2j0, l1 = −

√
2j1, l0 = j2 gives [lm, ln] = (m−n)lm+n for

m,n = −1, 0, 1 and E+ =
√
2j0, E− =

√
2j1, H = 2j2 gives [E+, E−] = H, [H,E+] = 2E+,

[H,E−] = −2E− and

e[xE+,·]E− = E− + xH − x2E+, e[xE+,·]H = H − 2xE+,

e[yE−,·]E+ = E+ − yH − y2E−, e[yE−,·]H = H + 2yE−,

e[
1

2
zH,·]E+ = ezE+, e[

1

2
zH,·]E− = e−zE−.

(A.10)

B Wess-Zumino-Witten theories

B.1 Generalites

For the two dimensional Wess-Zumino-Witten theories, we will use coordinates u, φ with

ηµν = diag(−1, l2) and ǫµν determined by ǫ01 = 1. In the light-cone basis, we have

η+− = − 2
l2

= η−+ and η++ = 0 = η−−, while ǫ+− = −2
l
.
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For factorized group elements G = g(φ, u)h(r, u) satisfying ḣ(∞, u) = 0, we have

∂±GG−1 = −(∂±gh+
l
2gḣ)h

−1g−1 = −∂±gg−1. With only the boundary at r = ∞ one has

for the Wess-Zumino-Witten term Γ[G] defined in (5.8)

δΓ[G] =
1

2

∫
dudφTr(ǫµνδgg−1∂µgg

−1∂νgg
−1), (B.1)

with ǫ01 = 1 and where we have assumed that δG = δgh. Furthermore

Γ[G−1
1 G2] = Γ[G−1

1 ] + Γ[G2] +
1

l

∫
dudφTr[∂−g1g

−1
1 ∂+g2g

−1
2 − ∂+g1g

−1
1 ∂−g2g

−1
2 ], (B.2)

while the WZW action defined in (5.11) satisfies the Polyakov-Wiegmann identities

I[g−1h] = I[g−1] + I[h]− k

π

∫
dudφTr

[
∂−GG

−1∂+HH
−1
]r→∞

, (B.3)

Under the same assumptions, for the chiral Wess-Zumino-Witten theories defined

in (5.7) we get instead,

I±[g
−1
± h±] = I±[g

−1
± ] + I±[h±]∓

∓ k

π

∫
dudφTr

[
(∂+G±G

−1
± − ∂−G±G

−1
± )∂∓H±H

−1
±

]r→∞
. (B.4)

B.2 Group elements and Poisson brackets

Introduce local coordinates ζa on the group manifold. We have

g−1dg = θaja, θa =Ma
b(ζ)dζ

b, dθa = −1

2
ǫabcθ

bθc,

dgg−1 = κaja, κa = Na
b(ζ)dζ

b, dκa =
1

2
ǫabcκ

bκc,

(B.5)

where

Na
b = Ka

cM
c
b, Ka

c = 2Tr(jagjcg
−1), K−1ac = 2Tr(jag−1jcg) = Kca,

ǫcd
e(K−1)ca(K

−1)db = ǫab
f (K−1)ef ,

ǫabe(K
−1)ca(K

−1)db = ǫcdf (K
−1)f e.

(B.6)

Locally,

Γ[G] =
1

2

∫
dudφ ǫµνBab∂µζ

a∂νζ
b, Bab(ζ) = −Bba(ζ). (B.7)

Let Habc = ∂aBbc + (cyclic a, b, c). From the variation of Γ, one has

Habc =
1

2
Tr
(
g−1 ∂g

∂ζa

[
g−1 ∂g

∂ζb
, g−1 ∂g

∂ζc

])
=

1

4
Mg

aM
e
bM

f
cǫgef

=
1

2
Tr
(

∂g

∂ζa
g−1

[
∂g

∂ζb
g−1,

∂g

∂ζc
g−1
])

=
1

4
Ng

aN
e
bN

f
cǫgef .

(B.8)

Consider the canonical momenta η = ηaj
a, {ζa(φ), ηb(φ′)} = δab δ(φ − φ′) and define π =

−ηb(M−1)baj
a, the Poisson brackets are

{g(φ), πa(φ′)} = −g(φ)jaδ(φ− φ′),

{πa(φ), πb(φ′)} = ǫab
cπc(φ)δ(φ− φ′),

{(g−1g′)a(φ), πb(φ
′)} = ǫab

c(g−1g′)c(φ)δ(φ− φ′)− ηab∂φδ(φ− φ′).

(B.9)
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Similarly, with ρ = ηb(N
−1)baj

a,

{g(φ), ρa(φ′)} = jag(φ)δ(φ− φ′),

{ρa(φ), ρb(φ′)} = ǫab
cρc(φ)δ(φ− φ′),

{(g′g−1)a(φ), ρb(φ
′)} = ǫab

c(g′g−1)c(φ)δ(φ− φ′) + ηab∂φδ(φ− φ′),

{πa(φ), ρb(φ′)} = 0.

(B.10)

B.3 Current algebra of the non-chiral WZW theory

In local coordinates, the Lagrangian density for the non-chiral WZW action is given by

16π

kl2
L =MabM

a
e

(
ζ̇bζ̇e − 1

l2
ζb′ζe′

)
− 8

l
Babζ̇

aζb′. (B.11)

The relation between canonical momenta ηg and velocities is

ηc ≈
∂L

∂(∂0ζc)
=
kl2

8π

(
Ma

c(g
−1ġ)a −

4

l
Bcbζ

b′
)
. (B.12)

Defining vc = ηc +
kl
2πBcbζ

b′, we have

{va(φ), vb(φ′)} = − kl

2π
Habcζ

c′(φ)δ(φ− φ′). (B.13)

The Hamiltonian is

H =
4π

kl2
(M−1)ab(M

−1)cbvavc +
k

16π
MbaM

b
cζ

a′ζc′. (B.14)

In terms of the improved momenta πB = −vb(M−1)baj
a ≈ −kl2

8π g
−1ġ, the Poisson brackets

are the same as in (B.9) with π replaced by πB, except for

{πBa (φ), πBb (φ′)} = ǫab
c

(
πBc − kl

8π
(g−1g′)c

)
(φ)δ(φ− φ′), (B.15)

while the first order action principle can be written as

IH = −
∫
dudφTr

[
2πBg−1ġ +

k

8π
(g−1g′)2 +

8π

kl2
(πB)2

]
− kl

2π
Γ[G]. (B.16)

The current components I− of (5.13) are given on-shell by I− ≈ πB + kl
8πg

−1g′ so that∫
dφ′2Tr[I−θ−] is the canonical generators of the symmetry transformation δg = −gθ−.

Evaluating the Poisson brackets then leads to (5.14) for I−.

Defining ρB = vb(N
−1)baj

a. Since in (B.11) and (B.12) one can replace Ma
b by Na

b,

we have ρB ≈ kl2

8π ġg
−1. The Poisson bracket are as in (B.10) except for

{ρBa (φ), ρBb (φ′)} = ǫab
c

(
ρBc − kl

8π
(g′g−1)c

)
(φ)δ(φ− φ′). (B.17)

On shell I+ of (5.13) is now given by I+ ≈ ρB + kl
8πg

′g−1 so that
∫
dφ′2Tr[I+θ+] is the

canonical generators of the symmetry transformation δg = θ+g. Evaluating the Poisson

brackets then leads to (5.14) for I+. In the same way, one then establishes that the left

and right current components have vanishing Poisson brackets.
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B.4 Current algebra of the chiral models

Since a different parametrization for the right and left group elements will be useful, we

will use ζa± in what follows. The local Lagrangian densities are

8π

kl
L± = ±(g−1

± g′±)a(g
−1
± ġ±)

a − 1

l
(g−1

± g′±)a(g
−1
± g′±)

a ± 4B±
abζ̇

a
±ζ

b′
±. (B.18)

The canonical momenta are related to the velocities through

η±a ≈ ∂L±

∂∂0ζa±
≈ ± kl

8π

(
(g−1

± g′±)bM
b
±α

+ 4B±
abζ

b′
±

)
. (B.19)

Defining

v±a = η±a ∓ kl

2π
B±

abζ
b′
±, (B.20)

we now have

{v±a (φ), v±b (φ′)} = ± kl

2π
H±

abcζ
c′
±(φ)δ(φ− φ′), (B.21)

with Poisson brackets of variables associated to different chiral copies all commuting. In

terms of the improved momenta πB± = −v±b (M−1)b±a
ja, the Poisson brackets are as

in (B.9) for each copy except for

{πB±
a (φ), πB±

b (φ′)} = ǫab
c

(
πB±
c ± kl

8π
(g−1

± g′±)c

)
(φ)δ(φ− φ′). (B.22)

The primary constraints can be written as

φ± = πB± ± kl

8π
g−1
± g′± ≈ 0. (B.23)

Consider then

I± = πB± ∓ kl

8π
g−1
± g′±. (B.24)

They agree on the constraint surface with the time components of the conserved cur-

rents (5.16), I± ≈ ∓ kl
4πg

−1
± g′±. Furthermore,

∫
dφ′ 2Tr[I±θ±] are the canonical generators

of the symmetry transformations δθ±g± = −g±θ±. The components of I± satisfy the cur-

rent algebra (5.14) in the standard Poisson bracket and have weakly vanishing Poisson

brackets with the constraints, i.e., they are first class,

{I±a (φ), φ±b (φ
′)} = ǫab

cφ±c (φ)δ(φ− φ′). (B.25)

This proves the result on the Dirac brackets of the chiral currents.

Defining ρB± = v±b (N
−1
± )b

a
ja, the Poisson bracket are as in (B.10) except for

{ρB±
a (φ), ρB±

b (φ′)} = ǫab
c

(
ρB±
c ± kl

8π
(g′±g

−1
± )c

)
(φ)δ(φ− φ′). (B.26)

Since p±a ≈ ∂L±

∂∂0ζa±
= ± kl

8π

(
(g′±g

−1
± )bN

b
±a

+4B±
abζ

b′
±

)
, the primary constraints can be written

as

ψ± = ρB± ∓ kl

8π
g′±g

−1
± ≈ 0. (B.27)
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They satisfy the current algebra

{ψ±
a (φ), ψ

±
b (φ

′)} = ǫab
cψ±

c (φ)δ(φ− φ′)∓ kl

4π
ηab∂φδ(φ− φ′). (B.28)

In terms of this representation of the constraints,

{I±a (φ), ψ±
b (φ

′)} = 0. (B.29)

It follows from (B.28) that the zero modes Ψ±
a =

∫ 2π
0 dφ ψ±

a are first class constraints that

generate the arbitrary function of u in the general solution to the equations of motion,

while all other modes are second class constraints.

The chiral Hamiltonians are

H± =
k

4π

∫
dφTr [g′±g

−1
± g′±g

−1
± ] +

∫
dφ 2Tr [u±ψ±]

=
k

4π

∫
dφTr [g−1

± g′±g
−1
± g′±] +

∫
dφ 2Tr [v±φ±],

(B.30)

where u± = ua±ja, v± = va±ja contain the Lagrange multipliers. Taking the Poisson bracket

with the primary constraints shows that there are no secondary ones.

B.5 Current algebra of the flat model

Locally,
2π

k
L = ζ̇bNa

bα
′
a −

1

2
Na

bNacζ
b′ζc′, (B.31)

and so, if ηa, ωa are the momenta conjugate to ζa, αa, the primary constraints are

ηa ≈ k

2π
N b

aα
′
b, ωa ≈ 0. (B.32)

The primary constraints can be written as

ψ = ρ− k

2π
α′ ≈ 0, ω ≈ 0. (B.33)

Up to zero modes, they are second class since their algebra is

{ψa(φ), ψb(φ
′)} = ǫab

cρcδ(φ− φ′),

{ψa(φ), ωb(φ
′)} = − k

2π
ηab∂φδ(φ− φ′),

{ωa(φ), ωb(φ
′)} = 0.

(B.34)

Consider

P = λ−1ωλ+
k

2π
λ−1λ′,

J = −λ−1ρλ+ uP ′ = π + uP ′.
(B.35)

On the constraint surface, they agree with the time components of the Noether currents.

Furthermore,
∫
dφ′2Tr[Pσ],

∫
dφ′2Tr[Jθ] are the canonical generators of the infinitesimal

symmetry transformations, δσλ = 0, δσα = λσλ−1 and δθλ = −λθ, δθα = −uλθ′λ−1.
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They have weakly vanishing Poisson brackets with the constraints,

{P (φ), ψb(φ
′)} = λ−1[ω, jb]λδ(φ− φ′), {P (φ), ωb(φ

′)} = 0,

{J(φ), ψb(φ
′)} = u(λ−1[ω, jb]λδ(φ− φ′))′, {J(φ), ωb(φ

′)} = 0,
(B.36)

and by direct computation, one finds that their Poisson brackets, and thus also their Dirac

brackets, form the iso(2, 1) current algebra given in (5.34).

The Hamiltonian of the model is

H =
k

2π

∫
dφTr[λ′λ−1λ′λ−1] +

∫
dφ2Tr[uψ + vω]. (B.37)

Again, there are no secondary constraints.
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