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1 Introduction

In the context of holographic approaches [1-3] to gravitational theories, 2 + 1 dimensional
models play a prominent role because there is detailed quantitative understanding both of
the bulk theories and of their two dimensional dual.

For the particular case of three dimensional gravity, the Chern-Simons formulation [4,
5] can be used to good effect. Indeed, the dual theory on closed spatial sections is obtained
simply by solving the constraints inside the Chern-Simons action [6-8] giving rise to a (chi-
ral) Wess-Zumino-Witten model [9]. Unlike in most conformal field theory considerations,
the relevant groups in applications to gravity are non-compact or non semi-simple, that is
SO(2,2) in the AdS case and ISO(2,1) in the flat case. Furthermore, the spatial section
is a plane and the choice of boundary conditions plays a crucial role in determining the
dual theory.



In the AdS case, these questions have been addressed in [10] (see also [11-16] for related
considerations). In particular, the chiral decomposition so(2,2) = s((2,R) & sl(2, R) allows
one to apply standard techniques for semi-simple algebras in each sector. The first stage
of the reduction then involves a formulation in terms of decoupled chiral models [17-20]
that combine into a standard Wess-Zumino-Witten model in a well-understood way (see
e.g. [21-23]). In a second stage, the gravitational boundary conditions allow for a further
simplification by implementing a standard Hamiltonian reduction from the SL(2,R) Wess-
Zumino model to Liouville theory [24-26].

The main purpose of the present paper is to construct the dual theory for three dimen-
sional asymptotically flat gravity at null infinity and to establish its connection with the
AdS results. Apart from shedding light on details of holography in backgrounds that are
not AdS, such a dual theory is liable to play a role as a toy model for cosmological scenarios
(see e.g. [27] and references therein) due to the existence of time-dependent cosmological
solutions in this context [28].

Not surprisingly, a detailed analysis of the Chern-Simons to Wess-Zumino-Witten re-
duction for the Poincaré algebra iso(2,1) does exist [29]. We will however have to adjust
the analysis to the case at hand. Indeed, for our purpose, it will be more convenient to work
with the spinor rather than the vector representation of s0(2,1) in order to connect AdS
and flat space results. Furthermore, the boundary conditions that have been used are not
directly related to those of asymptotically flat spacetimes at null infinity. Implementing the
appropriate boundary conditions modifies the resulting chiral Wess-Zumino-Witten model
and is important in order to have as rich a dynamics in the flat as in the AdS case [30, 31]
with a direct connection between the two asymptotic regimes [28] (see also [32]). In turn,
this is crucial in order to repeat the semi-classical arguments for a microscopic explanation
of the BTZ black hole entropy [33] of the corresponding asymptotically flat cosmological
solutions [34, 35].

As for other non semi-simple algebras (see e.g. [36]), the chiral Wess-Zumino-Witten
like model for is0(2,1) admits a globally well-defined two-dimensional action. The cen-
tral extension in the associated current algebra affects the brackets between rotation and
translations generators. In this case, the Hamiltonian reduction of the model gives rise to
a BMS3 invariant Liouville type theory that is discussed in more detail in the companion
paper [37].

The paper is organized as follows. Instead of using asymptotic conditions, we consider
instead a suitable gauge fixed form of the metric. This is not the more standard Fefferman-
Graham form in the AdS case, but rather a BMS type gauge that allows for a parallel
treatment of both the AdS and the flat case. After quickly reviewing the general solution
to the three-dimensional Einstein’s equations, we provide in section 2 explicit expressions
for the associated dreibeins and spin connections.

Section 3 is devoted to constructing the associated group elements. The field corre-
sponding to the Cartan generator of s[(2,R) can then be related to a standard Liouville
field in the AdS case and a BMS Liouville field in the flat case. In particular, the overall
normalization that has been left unspecified in [37] can be fixed at this stage. The limit
relating the group elements of the AdS to the flat case is provided and shows how the
explicit time dependence emerges from this point of view.



The remainder of the work consists in deriving the equations for the group elements on
the level of action principles. In a first step in section 4, suitable boundary terms are added
to the Chern-Simons action in order to make the variational problem well-defined for the
gravitational solutions that we are interested in. In terms of vielbeins and spin connections,
this step can be done in parallel for both AdS and flat space with an obvious limit.

In section 5 and the associated appendix, we first briefly recall results on the Chern-
Simons to WZW reduction for the AdS case, in particular how the reduction gives rise in
a first step to chiral sl(2,R) WZW models. We then review the structure of these models
from the point of view of constrained Hamiltonian systems, including their current algebras
and classical conformal invariance. These steps can then be directly generalized to the flat
case, where an appropriate chiral iso(2,1) WZW model is constructed. Its general solution
involves a linear time-dependence and the is0(2, 1) current algebra is constructed in terms
of Dirac brackets. BMS3 invariance of the model is established in terms of the current
algebra along standard lines. Finally, we show how to obtain the chiral iso(2,1) WZW like
model as a flat limit limit of two chiral s[(2, R) models.

In the last section 6, the Hamiltonian reduction is implemented. In the AdS case,
they reduce the chiral models s[(2, R) WZW models to free chiral bosons that combine into
Liouville theory in a standard way. In the flat case, a free first order action principle is
obtained that is related to the BMS3 Liouville theory in a similar way.

In order to emphasize novel aspects, conventions, notations and intermediate formulae
that are relevant only to follow the details of the computations are mostly relegated to
the appendix.

In all the analysis, we have concentrated for simplicity on the boundary at future null
infinity. This corresponds to analysing Chern-Simons theory with a spatial section that is a
disk. In a more complete analysis, other boundaries, sources in the interior and holonomies
can and should be taken into account by following the arguments in [8, 38, 39].

Obvious generalizations of the present work consist in including in the starting point
Chern-Simons formulation the exotic term, i.e., the Chern-Simons terms for the spin-
connection [5]. The inclusion of this term can be entirely captured through an extension of
the invariant metric that does not affect equations of motion or constraints, but suitably
modifies the current algebras. A related generalization consists in repeating the analysis
for topologically massive gravity [40, 41].

We have limited ourselves to the classical theory, but it should obviously be interesting
to consider quantum aspects of the is0(2, 1) chiral Wess-Zumino theory and investigate for
instance to what extent the general analysis of [42, 43] applies. These questions will be
addressed elsewhere.

2 BMS gauge, fall-off conditions and general solution

The BMS gauge consists in using the diffeomorphisms to put the metric in the form

ds® = edeuz —2¢*P dudr + 1% (dp — Udu)?, (2.1)
r



in terms of three arbitrary functions 5, V,U. Here r is a radial coordinate restricted to
r € [F,00), u is a null coordinate, while ¢ € [0,27] is an angular coordinate. Associated
dreibeins e such that ds?> = 2e’e! + (€?)? can be chosen as

1
e = 3 <e2BV + T2U2> du — e*Pdr — r*Udg, e = du, e = rde. (2.2)
r

When imposing the fall-off conditions 5 = o(1) = U, the Einstein equations can be
solved exactly. They imply in particular the stronger fall-off conditions

V r?
—=-pt00), =00, U=0(77), (2.3)

that can be used to complete the definitions of asymptotically anti-de Sitter or flat space-

times in BMS gauge. In the flat case, the limit [ — oo is understood so that % =0(1).
The exact solution is given by

2
ds? = (JZ”Q + M) du?® — 2dudr + 2N dud + r2d¢?, (2.4)

where 0, M =0 = 0, N and
OuM = l%%/\/, 200N = Oy M. (2.5)
The general solution to these equations is
M=2E41+E__), N=UEy—=__), (2.6)
with 244 = Z44(2%), in the AdS case and
M=0, N=2+ ga¢e, (2.7)

with © = O(¢) and Z = =(¢) in the flat case. In terms of the arbitrary functions, the
conserved charges in the AdS case associated to £ = Y70, +Y~0_, Y* = Y*(aF), are
given by

l 271 _ L
Qy+ = 871'G/0 dp(Y 244 + Y E_), (2.8)

if normalized with respect to the M = 0 = J BTZ black hole. In the flat case, they are
associated to & = (T'+uY")0, + Y04, T =T(¢),Y = Y (¢) and given by

2
= — T 2Y = 2.
G [, ATe+2rs), (2.9)

Qry

when normalized with respect to the null orbifold.
In the first order formalism, the equations of motion are
1

dw + w? + l262 =0, de+we+ew=0. (2.10)



Associated dreibeins and spin connections are given by

1 2

602—5 (;—M) du — dr + Ndg, el = du, e = rde,

N ) (2.11)

1 r r
0 _ 1_ 2
w’ = ﬁdu — 5(72 — M)do, w' = do, w” = Z—Qdu.
In particular, we note that for the gravitational solutions that we are interested in
1

W = €y Wy = ﬁeg, wy =0, dey =0 = Ogey = Oyey. (2.12)

Note that for flat space, these expressions simplify as all terms proportional to negative
powers of [ vanish.

The results for AdS and flat space can be related through a modified Penrose limit by
translating the metric results of [28] to first order form. First, one introduces a dependence
on a dimensionless parameter ¢ > 0 in the arbitrary functions Z14 of the AdS results
giving rise to e dependent vielbeins and spin connections e(©), w(€). If, after the rescalings
(w, p, 7€), W) = (eu, er, ¢; e el W), the limit is well-defined it can be shown to be
a solution to the flat space equations. This is the case if the e dependence® in Egs)i is
such that

1
=, (z;€) = ;O = Q%E(j:x) +0(e?), (2.13)
so that, when taking (2.6) into account,
lim MO (eu, ¢) = O(¢),  lim e "N (eu, ¢) = Z(¢) + =0,0(¢). (2.14)
e—0 e—0 2

In the AdS case, the chiral Chern-Simons connections are given on-shell by

o mdet T (4 + (- 25aa)de*)
A=A e . (2.15)

in matrix form. They satisfy
AT =0, AF'=0=4F A =0=0,4". (2.16)

Let us briefly compare to the formulation in the more standard Fefferman-Graham gauge.
In this case, the general solution is

12 2 _ _ _ 2
ds* = T—QdTQ - <7“duv+ - ?:__dac > (rdx — r:++d1‘+> , (2.17)

where now zt = % + ¢ with a standard time-like coordinate ¢ and a different radial coor-

dinate r. Associated dreibeins e® and spin connections w® are

2 2
o__ " 4.- = T L A N - o |l
e =——dr  + —=,4dx", e = —dz" — =__dx~, e°=—dr,
V2 var V2 V2r (2.18)
; .

r _ I _ r _ _
W= —dz™ + — 2, daT, wl= —dat + =__dz”, w?=0.

V21 V2r V21 2r

"'When explicitly comparing to [28] one has to take into account the different normalization of the charges

and the associated constant shifts of the functions 244, M, ©.



In this gauge as well, conditions (2.12) hold. The corresponding chiral Chern Simons
connections are

dr l= + dr r —
& tE L dr _ - “dx
A+ = (Td2;+ r itil ) R A” = < = zrdw_ lﬂ ) . (219)
7 .

In particular, these connections satisfy (i) AT = 0 = A7 and (ii) 0+ AT' =0 = DA™Y
Af = 0 for all values of r, and thus in particular asymptotically, respectively to leading
order, which are the conditions used at spatial infinity in [10].

When comparing with (2.15), we see that (i) is valid in both gauges, while (ii) is
changed to 9, ATY =25/, ., 9_AT" = 22" | 0, AT' =0 = 0:A”" and AT? = 0 in the
BMS gauge.

3 On-shell group elements

It is instructive at this stage to exhibit the group elements that yield the flat connections
discussed in the previous section. The general solution to dA + A? = 0 is locally given by
A=G1dG.

In the AdS case, we deduce from F* = 0 and 0+ A+ = 0 = 0 AF that A* = GL'dG-
where G4 factorizes as G+ = g4 (u, ¢)hs(r).

In Fefferman-Graham gauge, the explicit form of the chiral connections then leads to

Gy = gieiéln§H, (3.1)
with .
97 0+9+ =E44EL + B, 0_g4+ =0, (3.2)
g 0.9 =E,+Z__FE_, 0+g— = 0.

When using the Gauss parametrization
g+ = e"iEﬂFe%jWiHeTiEi, (3.3)
this implies Or0+ = 0+74 = O+p+ = 0 and
Oroy = e¥t, TL0r04L = —%616‘“[, OL7y — %Ti(‘)icpi =E14, (3.4)
or, equivalently, in Riccatti form
O+Ty+ + Ti =244, Orpr = —274, Oro4 = e¥*. (3.5)

When substituting the second in the first equation, one recognizes the characteristic ex-
pression for the energy-momentum tensor of a Liouville field,

_ 1 1 1
Eit = Z(ai‘;oi)2 - 53:25% = 0s7s + 73 = —g{Ui;mi}n (3.6)
where {F;z} = 1}’:’ - %((I;,/,/))j = (InF’")" — 3((In F’)")? denotes the Schwarzian derivative.
More precisely, consider a Liouville field ¢ with action
. L, I 2 H
S = /dudqb <7T§0L - 577' — ﬁ(pl’ - 2726,%0L> . (37)



It gives rise to the same relation (see e.g. equations (4.3), (4.5), (4.11) of [37] for details)
provided that the first of (3.4) holds, that?

16 8+a+8_a_
YPL — T 3.8
O Bl —o (38)
and
721% = 327G. (3.9)

For later use, let us point out that, off-shell, equation (3.8) together with an associated
change of variables for the momenta,

16
Yor =+ +o- —2In(oy —o-) +1In5—

12n’

1 o' + o’

(ot
vl oy —0_

(3.10)

where o/, = £e%+, is the change of variables that allows to write the Liouville action (3.7)
in terms of decoupled chiral bosons,

1 . . 1 1
S =5 /dud¢ [cp+<p’+ — ¢l = 2(elh)? - l(w’)z] : (3.11)
In BMS gauge, one finds

Gy = fi(u, ¢)eT . (3.12)

with 1
frlosfe = £V2ELLE + EE_, Oxfr = 0. (3.13)

In this case, the parametrization

fr= ei%Ef e*%‘piHei‘/iTiEh (3.14)

leads to the same equations (3.4) or (3.5) as in Fefferman-Graham gauge.
Finally, in the flat case, we start by solving dw + %wQ = (. Since all r and u dependence
drops out of (2.11) and

1 1
w=—=0doE, + —=d¢E_, 3.15
S 5Od0E- + —=d (3.15)
we have w = A~'dA where A = A(¢). The parametrization
A= evileapHVITEL (3.16)
then leads to 1 1 1
o =e? 710 = —igple“’, T — §Tg0/ = Z@, (3.17)
or, again, in Riccatti form
1
T4t =10, ¢ =2 o= (3.18)

*Note that o4,0_ are denoted by A, B in section 4.1 of [37].



In this case, we have

1 1 1
10= g# =7+ = {00} (3.19)

2
L

1
4
The equation de 4+ we + ew = 0 is locally solved by e = A~'daA. With

1 u 1 1 1
e= deu—dr—k(E—F—@ @)d ]E + 2rd¢H + du—FE._, 3.20
E 3050) do| o+ Grdof + du s (3.20)
the ansatz ,
a=——=AE A" +udy AN+ a(),
V2
n 9 ¢ (3.21)
a(p) = —=F, +-H+ —F_,
then leads to the system
o2
n=e¥%2, 0 =-0e¥2 (= —?eﬂoz, (3.22)
which can be trivially integrated.
Let us compare with a BMS Liouville field [37] with action
: 12 v e
Taking into account the expression for the energy density of this field leads to the relation
4 (o"\?
e == (C’) : (3.24)
v\o

where the first of (3.17) holds, by using® the first of equations (4.29) and (4.30) of [37].
From (4.22) of [37] and (2.9), we then get

B2 = 32nG. (3.25)

Off-shell, the change of variables from @, II to ¢, £ given by

4
P =2p—2Ino+In—,
v

(3.26)
BH = 5/ - (hl O-),£7
where o/ = e¢® maps the BMS Liouville action (3.23) to
2 :
S = m/dudqf) [5'90 — gp'ﬂ. (3.27)

We are now in a position to discuss the flat limit. On the level of the Liouville
action (3.7), let
1 1
pr, =€ 2|P, T =e2] I,
1 (3.28)
Py:e?l_lﬁ’ /,L:l_gl/.

3The function ¢ is denoted by B in section 4.3 of [37].



After rescaling u — eu, the limit ¢ — 0 of (3.7) then gives rise to the BMS Liouville
action (3.23).
On the level of solutions, consider the group element ff ) (z;€) determined

through (3.13) where Z;4 is replaced by Eg: with an expansion as in (2.13). A

parametrization like in (3.14) with e dependent fields U:(E), gag_f), 7'1(_5 ) now gives rise to equa-

tions (3.5), (3.6) in terms of € dependent fields. Compatibility with (3.18), (3.19), (3.22)
then leads to

(25 €) = £7(22) + erM (£2) + O(?), 17D = %e“"n,
pr(ri€) = p(xr) + oV (£r) + O(F), 1o = —0 =1, (3.29)
oi(z:6) = to(+a) + 0D (d2) + O(2), 1o = ¢ — o %17(72.

For the chiral groups elements we find

fr(z;e) = [A (1 + eb;t” (£x) + O(e?), (3.30)

with A parametrized as in (3.16) and

be _ oV 2 W _ oM e
7—%6 (E- —V2rH — 27 E+)—|—\/§(T — TP >E+—§<p H. (3.31)
This gives
Fil (e 0)0fs(zie) = + [A*laA + §(abi +[ATTA, bi])} (2) + O(2), (3.32)

According to the discussion on the flat limit in section 2, one defines
G = o (T xoie) T (3.33)
and computes
o1 e —1 € e —1 € : ! e —1 € e —1 €
w= 11_13(1)5(G+ dG¢ +G<7HdGY), e= E%E(G+ dG. — G<71dG<). (3.34)
This reproduces the flat space results discussed previously, that is w = A7'dA with A =
A(¢) and e = A~'daA with a given by
T 1
——AE AT ud AT A (b + b )AT 3.35
AR, pAA DAy + D) (3.35)

by taking into account that %(b+ +b_) =A"taA.

a =

4 Improved action principle

Neglecting again boundary terms and using A = dudy,+A, d = du@u—i—g, the Chern-Simons
action can directly be written in Hamiltonian form,

S[A] = —% / dudrde (e9wa; Oue] —H)

1.
v = 56” [0i€] — Ojei + e (wipeje — wipeic)], (4.1)
1

1 ..
72 = 56” [aiw? — Djwl 4 e <Wibch + lze’ibejc)] ;



where the Hamiltonian density is a combination of constraints, H = euq7? + wuevs and
where 2’ = r, ¢ with € determined by €'? = —1.
At this stage, we have to discuss boundary terms. On shell,

) (eijwm- 8ue? — 7—[) = —0; (eij (eua&u? + wuaée?)) + Oy (eijwm-ée?) . (4.2)

It follows that

5 / dudrdg (¢9ua; el —H) = — / dud [ euadel + wuadel] -
_ /dudr [eua(Sw?—i—wuaéeff} j - /drdqﬁ{wwéeg — Wagley “iuf (4.3)

Assuming the fields to be single-valued on the circle, neglecting the inner boundary at r = 7
and taking into account conditions (2.12), solutions (2.11) respectively (2.18) provide a true
extremum of the variational principle defined by

k

k 1 r=00
Ile,w] = ~5 /dudrdqﬁ (Waply —ware—H) I /dudqb [wa(bwg—i—lQeme;} . (44)

5 Reduction to Wess-Zumino-Witten theory

In all cases, BMS gauge in AdS and flat space and in Fefferman-Graham gauge in AdS
space, the on-shell vielbeins and spin connections satisfy in particular

3(1567« =0= 8¢wT =0, (5.1)

which are a subset of conditions (2.12). In an off-shell formulation, these conditions can
be taken as (partial) gauge fixing conditions. The reduced system is then simply obtained
by solving the constraints with those gauge fixing conditions in the action.

Because of the form of the constraints, the analysis has to be done separately depending
on whether there is a cosmological constant or not. In the next subsection we briefly review
the results in the AdS case along the lines of [10] in order to better appreciate what happens
in the flat case. Standard technical material can be found in the appendix.

5.1 AdS case

In the AdS case, one uses the chiral decomposition in terms of which the constraints split

as
dA*E + (A%)% =, (5.2)

and the improved action is

. ot a— k _ =00
Tfe,w] = IA"] — I°[A7] - = /dudqﬁ (g + (a7 (5.3)
where
I°[A] = _ kL dudrdep Tr<A¢A —A A¢) _ M /du Tr(A (324— fp)) (5.4)
4r . 4 “

,10,



The general solution to the constraints is locally given by A* = G;lchi. Taking into
account in addition the gauge fixing conditions, which can be rewritten as 8¢A;t =0, the
general solution factorizes,

Gy = gi(u,¢)ha(r,u), (5.5)

in terms of group elements g4, h4. At finite » = 7 fixed, we can assume without loss of
generality that h (7, u) = 0 by absorbing h+ (7, u) into g+ (u, ¢). We will assume that this
condition also holds for 7 = oo,

h (00, u) = 0, (5.6)

as it indeed does for the gravitational solutions of interest.
When inserting such a solution of the constraints into the improved action, one gets
the sum of two decoupled chiral Wess-Zumino-Witten models, I[e,w] = Iy [g+] + I_[g—],

k _ _ _ kl
Ii[gs] = :I:% /dudqur[(gilaJrgi — gila,gi)gil(%ng + %F[Gi], (5.7)
where 1
IG] = ?)'/Tr(G_ldG)S. (5.8)

One can then follow [10] and define

G=G{'G_, g=g7'g-, m=-9_"d 97'9-—9"'d, (5.9)

in terms of which

Ife,w] = ;{:—l /dudgf) Tr [17rglg - l(ﬂj + (glg/)z)] M

Con

- 5 i [G]. (5.10)

After elimination of the momenta, one gets the (non-chiral) WZW action at the boundary
r = 00,

kl

kl2 pv  —1 —1
Ilg] = —— [ dud¢ 'H[U 9~ 0ug9 Gug} — 5T

8

The equations of motions of the non-chiral theory are 9, (¢~ '0_g) = 0, with general so-

[G]. (5.11)

lution g = k4 (z7)k_(xz ™). It then follows directly from the Polyakov-Wiegmann identities
that the WZW action is invariant under ¢ — O (z*)g©~! (7). The conserved Noether
currents for the associated infinitesimal transformations dp, g = 0,9 — gf_ are

k _ _ k _
Jj =T [e_g 18_9}, o = ;Tr[9+8+gg 1}, (5.12)
with time components

ki kl
= 29,907, I_=—-—"g'9_g. 5.13
1099 e g (5.13)

As briefly recalled in the appendix, in the Hamiltonian formulation their Poisson bracket

JPe = 2Tr[0414), Iy

algebra consists of two commuting copies of an s[(2,R) current algebra,

(2(6),TE(0)) = e TE(@0(0 — ) & L 1aded (6~ &),
{10 ; (&) = 0.

(5.14)

— 11 —



Alternatively, in order to better compare with the flat case, one can concentrate on
the two chiral copies. The equations of motion are O+ (g;[1 g’.) = 0 which implies g4 =
h+(u)k+(z%). The analog of the Polyakov-Wiegmann identities for the chiral case imply

invariance of the chiral theories Ii[g+] under g» — g+O3'(z*). The conserved Noether
currents for the associated infinitesimal transformations dp, g+ = —g+0+ are given by
k
+ - _ —1
Jg+ =0, J@+ = —;Tr {9+g+ g;],
(5.15)

k
Jfo=omlogTlgl], gy =0
The time-components of these currents can be written as

Jg, = 2Te[6L1F], TF = ﬂFf—lg;lgi (5.16)
They agree on-shell with the current components (5.13) of the non chiral WZW theory,
which justifies the same notation. In this case, it is their Dirac bracket algebra that forms
the s[(2,R) current algebra given in (5.14). This is shown in the appendix along the lines
of [20]. The chiral models are more complicated than the non-chiral theory in the sense
that their Hamiltonian formulation involves constraints, the zero modes of which are first
class and generate the arbitrary functions of time in the general solution to the equations
of motion, while all other modes are second class.
Let us briefly recall how classical conformal invariance is expressed on the level of the
Hamiltonian formulation of the chiral models. On the constraint surface, the Hamiltonian
and momentum densities can be written as

18r o ko _ o
5.17
_ 21
P:t - _< B) (g:tlg;:)a ~ kl Ii[:l:
By using the Dirac bracket version of (5.14), one gets by direct computation,
. 1
{H*(0), HE (@)} = 5 (P(9) + PH(¢)050(¢ — &),
{HE(0), PE()}Y = (HE(6) + HE(6))056(6 — ), (5.18)
{PE(0), PE(¢)}" = (P(6) + PF(¢))0p0(¢ — &)
For the energy-momentum tensor components Tqﬁ =Ht = 1 =T ¢D>E¢>’ =P+ = T(;EL, the
components in light-cone coordinates
12 1 "
TE, = 5 (”Hi + Pi> 5i Y Tk,
12 21 (5.19)
+ _ + + + a
T = 5 (’H lP ) 0 - —I, 1%
T =0=T%,
satisfy
{TEL(9), TEL ()} = HUTEL(9) + TEL () (¢ — ), (5.20)

and all other brackets vanishing.
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5.2 Flat case

In this case, taking into account that dyw, = 0, the general solution to v, = 0 is given by
& = A"LdA where A = AMu, @)pu(r,u), and A, u are group elements. The general solution
to the remaining constraint v, = 0, which is equivalent to de + we + ew = 0, together with
the gauge fixing condition dge, = 0, is given by

c=A1daA, a=a+ B\, (5.21)

where o = a(u, @), 8 = [(u,r), which gives explicitly

wr = p o, we = AN,
u—l " ’ M—1 -1 lj 1y (5.22)
€r = aTBN» €¢:/.L (>\ CJL)\—F[)\ A)ﬁ]):u
Inserting this solution into the improved action (4.4) with [ — oo gives
k IA—1; 1 —1 A2 k
Ie,w] = = [ dudeTr [A Ala— (AN } +2T[A, a], (5.23)
0 2 m
with
T'[A,a] = / Tr (dAA"'dAA " da). (5.24)

As for the non semi-simple Lie algebra considered in [36], this Wess-Zumino term for the

Poincaré algebra iso(2,1) is exact,
Tr (dAA""AAA""da) = d|Tx (dAA"da) |, (5.25)
so that, when concentrating on the boundary at r = oo,
T[A,a] = / dudg Tr [AA—la’ - A’A‘la]. (5.26)
Furthermore, when using the decompositions of A and a,
Tr|AAT | = Tr[AA TN/ ™ (A A+ AN B = BATN)
FATING — 9,(\TINB) + a¢(x1X5')] . (5.27)

For the gravitational solutions of interest we have again

(oo, u) = 0= B(co,u), (5.28)

so that only the first term survives and
k in—1 L1
I\, o) = — [ dudp Tr | A"’ — 5()\)\ )7l (5.29)
T

This action differs from the WZW action for flat gravity proposed in [29] by the potential
energy term, which originates from the boundary term in (4.4).
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The equations of motion are
AN =0, Dy = (WaTY, (5.30)
These equations are equivalent to the conservation laws Ouj =0, 0,P" = 0 where
JO=2ta/N, Jl=—2W, PP=NATh Pl (5.31)

The general solution of the first equation is A = pu(u)v(¢). After defining o = pyu=!

the second equation reads 4" = (v/v~!)" with general solution v = p(¢) + §(u) + ur/'v1.
Solution space is invariant under A — AO~(¢), a — a — uAO 1O\l and also

under A = Z(u)A, a — Za=Z" L

The infinitesimal version of the former, g\ = —\0,
Spa = —uN@’' A7, leave action (5.29) invariant and the associated Noether currents are now
jg = —ETr[ug’ \7IN 4+ oA Lo/ ], jel = ETr[9A~1N]. For Noether currents, the physically
meaningful quantity is the equivalence class [J#], where J* ~ JH 4 t + 9,k with
t* ~ 0. Choosing kM = EuerTe(OA"IN) and t* = E§i'Tr[0(99(A"1\)], an equivalent

representative for the Noether current is

k

™

Jg =2Tx[0J], J= AN —u(ANY], Jp =0. (5.32)

The action is furthermore invariant under A — X and a — a + AX(¢)A~!. Associated
infinitesimal transformations are d,\ = 0,0, = Ao A~! with Noether currents

k
P? =2Tr[¢P], P= Qfxlx, P! =o. (5.33)
7T

As shown in the appendix, in the Hamiltonian formulation, the Dirac brackets of their time
components satisfy the iso(2,1) current algebra

{Pu(9). Bo(6)}" =0,
(a(0) B} = caPo)3(0 = &) — 5180 — o), (5:34)
{1a(6) (6} = e J(0)0(6 — &),

Let us now discuss BMS3 invariance of the model. Using the Hamiltonian analysis that
has been done in the appendix, it follows that, on the constraint surface, the Hamiltonian
and momentum densities are given by

2
H~ %P“Pm P~ —%J"Pa. (5.35)

When using the current algebra (5.34), we find

= (H(¢) + H(¢))0s0(6 — &), (5.36)
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This is the form BMS3 invariance takes in the Hamiltonian framework. Indeed, in terms
of modes P, = 0% dé e™H, J, = fo% d¢ e™*P, one finds

i{Pn, Py} =0, {Jn, P} =(m—n)Pnin, {Jm,Jn}=(m—n)Ipmin. (5.37)

When translating to the Lagrangian level, the transformations
2
0= {.Qch Qe [ T+ PY), (5.38)
where T'=T(¢), Y = Y (¢), are expressed through
—SA=YN, —Ga= NN LY, f=T+uY’. (5.39)

It can then readily be checked that they leave action (5.29) invariant, 0¢£ = 8uk:g and that

the energy-momentum tensor —jg =TH, = k’g + 8gf)\ Oe + 635(1 d¢ar reads
U eV k 1 Iy—1\2 In—1 7 ¢ U k /y—1\2
T, = ——Tr Q(M VE+ENATY |, T?¢ :2—Tr[()\)\ )?Y]. (5.40)
T T

Agreement with the Hamiltonian analysis follows by using ﬁyﬁl’ =TH, " + 8pk£p " }, with

kgu(b] = —ZTr[u(NA71)2Y], so that

— k 1
TH, & = 55;% [—2()\1)\')2T —NATY Fu ATV Y (5.41)

The chiral WZW theory for flat space (5.29) can be understood as a flat limit of the
sum of chiral s[(2, R) WZW theories described by I in (5.7). In order to take the limit in
terms of a dimensionless parameter we replace in I4 the cosmological radius | by 1€ = ¢!
and G4 by G4 involving an explicit ¢ dependence. If we assume G = A(1+ ebTi) +0(€?)
with @ = L1A(by + b_)A™L, we have lim. o 2L (T[GS] — T[G<]) = £T[A,a], while for

the two dimensional term one gets %Tr(A’Afld + AAfla’) as € — 0. Summing up both
contributions and using (5.26) gives the result.

6 Reduction to Liouville

6.1 AdS case

Let us discuss the reduction at the level of the chiral WZW actions.

In Fefferman-Graham gauge, one can read from equations (3.2) that (gf@igiﬁ =1
where the superscript denotes the component along the Lie algebra element E_ respec-
tively F4. Using in addition 0+g+ = 0, this implies the conditions (g_T_1 ¢,)” =1 while
(g:1 g )" =1, which correspond to fixing some of the chiral conserved current components
in (5.15).

In terms of the parametrization

E Lo H 0 E
g = e0EFFeTaPEN gTERE (6.1)
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actions (5.7) read
k / —p+
Ii[g+] = iﬂ dude [ﬁﬂia:#ﬁi —4e Uia:FTi], (6.2)

while the reduction conditions become e~ #+¢’. = +1. Up to boundary terms, the reduced
actions are the ones for chiral bosons,

k
If = + - /dud¢>(gp’ia¢gpi). (6.3)

In the BMS gauge, we use the parametrization

+ZEp. 1
gr =€ V2 e 25"iHei\/§TiE+, (6.4)

which, when inserted into actions (5.7) gives the same actions (6.2). The reduction condi-
tions (f Li)- = \[ then become again e~ ?*g’, = +1 and give rise to the same reduced
actions (6.3) as in the previous gauge.

As shown in section 3, the sum of the chiral boson actions

N <¢+<p’+ @ o~ }(so’_ﬁ) , (6.5)
can be written in Liouville form (3.7) by using transformation (3.10).

The reduction of the chiral models to Liouville can also be discussed in terms of the
modified Sugawara construction. By allowed redefinitions of the currents associated to
conformal transformations as discussed in the previous section, equivalent representatives
for the time components can be chosen as vai =Ti, +u4 0sIE. Note that in this case, the
spatial parts of the currents have to be modified accordingly. On the surface defined by the
reduction constraints, the only representatives that commute with the first class reduction
constraints I = kl L2, I = kl L\/2 (FG gauge), respectively ISE = $4 (BMS gauge)
are ffi ~ Tfi + l8¢I . Being ﬁrst class, these are observables of the reduced theory
and their Dirac brackets in Liouville theory coincide, on the constraint surface, with their
brackets in the chiral WZW models, which are explicitly given by

. . . . 3
{T2:(9), TEa ()} = £UTEe(9) + T2 (0)060(0 — &) F ﬂ% o(¢—¢).  (6.6)

In terms of modes L = % f027r dqbeiimd’ff , this gives the standard Dirac bracket algebra

3l
Z{ no n} ( n) m+n + 12 m—+n>s c 6 2Gv (67)
i{Ly, L7}
6.2 Flat case
From equation (3.15) and (3.20), the reduction conditions are
AV~ =2 p a0 (AN A0 (6.8)
s . .
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In terms of the parametrization,

N 0
A= ex}iaEfe*%“pHeﬁTEJr, a= iEJ’_ +_-H ¢ E_, (6.9)

+ —_
V2 2 V2
the flat chiral WZW action (5.29) reads

k . .
I[@a o,T,1, 07 C] = g /dUd¢|: - (0/ + 077/)90 + 77,0_

1
—(fo?+2000 —20)e P71 — =¢p? —20'7'e %], (6.10
n 280
while the reduction conditions become
ole P =1, no*+200—20~0. (6.11)

Using integration by parts and neglecting all boundary terms, the reduced action can
be written as

I= ﬁ / dud¢ [f'gb . (p/Q], (6.12)

where §& = —2(6 + on). This is the centrally extended BMS3 invariant action in the
form (3.27). Again, as shown in section 3, it is related to the Liouville-like form (3.23)
through the transformation (3.26).

The analog of the modified Sugawara construction for the flat case is as follows. The
time-components of the currents associated to BMS3 transformations may be redefined as
H="%H+ 0y Py + %0y J, and P="P+ p*0y Py + 00y J,. Note that in this case, the
spatial parts of the currents do not need to be modified since JyP ~ 0 =~ 0Jy.J. On the
surface defined by the reduction constraints, the only representatives that commute with
the first class reduction constraints Jy = 0, Py = % are H ~ H + 0y P> and PrP— 0y J2.
Being first class, these are observables of the reduced theory and their Dirac brackets in
BMS Liouville theory coincide, on the constraint surface, with their brackets in the chiral
i50(2,1) WZW like model, which are given by

{H(e), H(¢)}* =0,
{H(9), P(¢))}* = (H(d) + H(#))0s6(¢ — &) —
{P(6), P(¢)}* = (P() + P(¢/)0p8(¢ — &).

k

3 /
5-038(6 — ), (6.13)

In terms of modes, P, = 027r d¢eim¢ﬁ7 I = fo% dqﬁeimd’?s, this gives the centrally ex-
tended BMS3 algebra,

i{ P, P} = 0,
3
i{ Ty P} = (m — 1) P + %m35g+n, ¢ =12k = =, (6.14)

{ Ty I} = (M= 1) Jn + —£m380

12 m-n> Cc1 = 0.
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7 A comment on zero modes

As already stressed in [38], the change of variables (5.9) is not well-defined in the zero mode
sector. As a consequence, the equivalence of the sum of the two chiral models with the non-
chiral theory does not hold in this sector. The same applies to the transformation (3.10)
used in order to relate the sum of two chiral bosons with Liouville theory, and also to the
transformation (3.26) that relates a free chiral boson like action to BMS Liouville theory.

It then follows that asymptotically AdS or flat gravity is, strictly speaking, not equiv-
alent to (BMS) Liouville theory, but rather to the respective chiral models.
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A Chern-Simons formulation of gravity

Let A= —1,0,1,2 and a = 0, 1,2 and consider the flat metric nap = diag(—1—1,1,1). In
terms of the (anti-hermitian) generators P, = %J_la, Jap, the s0(2,2) algebra reads

[Jab, Pe] = bePa — Nac P, [Jabs Jed) = Mbedad — NacIvd — MbdJac + NadJbes
1 (A1)

[Paapb]:ﬁ ab -

The three dimensional Poincaré algebra iso(2,1)is obtained by keeping the generators
P,, Jy fixed and taking the limit of [ to infinity.
Let €p12 = 1 and take n,, = diag(—1,1,1) and its inverse to lower and raise tangent

space indices a, b, c,.... In terms of J* = —%eachbc < Jup = €apeJ €, the algebra reads
1
[Jm Jb] = Eachcv [Jaa Pb] = 6aLbcf)Cv [Pm Pb] = ﬁeabct]c~ (AQ)
When neglecting boundary terms, the gravitational action in terms of dreibeins e* =
ezdac“ and spin connection w = %waJabdx“ = wZJad:U“ can be written as
Sle,w] = ! /d?’x e(eley R — 2A) = N eqR* — ée peetele’ (A.3)
’ 167G b 87G ¢ 6 " ’ '

with %RabJab = dw + w? = R*J,. We always omit the wedge product and have chosen the
orientation for the integration of 3-forms according to d*z = drdud¢ so that the boundary
Wess-Zumino-Witten actions come with the standard sign. The latter action is equivalent

to the Chern-Simons action

S[A] = —ﬁ (A, dA + §A2>, (A.4)
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where A = w?J, + €*Py, (Ja, Po) = Napy (Ja, Jp) = 0= (P,, P,) and
1 1
k=—, A=—=. A5
4G’ 12 (A.5)
In order to adapt the problem to our gauge choice, we now use light-cone coordinates
in tangent space by introducing two null vectors,

010
egeub = Nab Nab = 1001. (AG)
001

In the fundamental representation of s[(2,R), generators satisfying j,j, = %eabc 7+ inabl,
Tt (jajb) = 37abs [Jas o] = €abe® are given by

1 (o1 1 {oo o 1(10
30_@(00)’ jl_ﬂ(lO)’ 72_2(0—1>' (A7)

In terms of e = ejdz"j, and w = wydaztj,, with w = e

“we, the explicit form of the
equations of motion, the zero curvature condition F' = dA + A% = 0 is (2.10).

The chiral decomposition J& = (J, £1F,), AT = A*JE A = o + e disen-
tangles the algebra in terms of s0(2,1) @ so0(2,1) and allows one to write the gravitational
action (A.3) as the difference of two Chern-Simons terms,

S[At, A7) = —% Tab (A+a [dAJr + g(fﬁ)?} gy {dA‘ + z(A‘)Q} b) . (A8)

It is only well-defined for non-zero cosmological constant, while all previous considerations
have a straightforward flat space limit | — oo for which so0(2,2) contracts to iso(2,1).
Action (A.8) can be written in matrix form as

_ !
2

We will use coordinates 7, u, ¢ and, in the AdS case, 2+ = 7 T ¢ with 20+ = 10, £ 0.
Note that the redefinition I_1 = v/2jo, l1 = —v/2j1, lo = j2 gives [lm, ln] = (m —n)lyyn for
m,n = —1,0,1and E, = /2jo, E_ =/2j1, H=2js gives [E,,E_| = H, [H, E,] = 2E,,
[H,E_] = —2F_ and

SIAT, A7) = (Ses[AY] = Scs[AT]), Ses|A] = _£ / Tr (AdA+§A3>. (A.9)

ePPlp = B 4+ 2H — 2By, Pl = H — 22E,,
e[yE—v'}E_’_ :E+_yH_y2E_7 6[yE—»']H:H+2yE_, (AlO)
e[%ZH"}EJr =e'Fy, 2 = e 2 .

B Wess-Zumino-Witten theories

B.1 Generalites

For the two dimensional Wess-Zumino-Witten theories, we will use coordinates wu, ¢ with
N = diag(—1,1?) and € determined by €' = 1. In the light-cone basis, we have

Nt =—-F=nTandnT" =0=n"", while e"” = —3.
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For factorized group elements G = g¢(¢,u)h(r,u) satisfying h(oo,u) = 0, we have
0+GG™1 = —(0Lgh+ %gh)h_lg_l = —0+gg~". With only the boundary at r = oo one has
for the Wess-Zumino-Witten term I'[G] defined in (5.8)

1

G) = 5 /dud(bTr(e“”(Sgg_l@Mgg_l&,gg_l), (B.1)

with €' = 1 and where we have assumed that 6G = dgh. Furthermore
- - 1 - - - -
LGy G = T[G] 4 T(Go] + 5 /dudéﬁ[aglgl 01920, — 00197 10-gagy ], (B.2)
while the WZW action defined in (5.11) satisfies the Polyakov-Wiegmann identities

Ilg~'h] = I[g™ Y] + I[h] — % / dud¢Tr [a,GG—lmHH—l]Hm, (B.3)

Under the same assumptions, for the chiral Wess-Zumino-Witten theories defined
in (5.7) we get instead,

Lilgi'he] = Lifgi "] + Ii[ha)F

B [ dudome[(0,6o07' - 0_Goaihyoemns| ™. (B4
¥ udgTr|(04G+G= -GGy )0y HHy - (B4)
B.2 Group elements and Poisson brackets
Introduce local coordinates (* on the group manifold. We have
—1d — p% ¢ = M© b Qa__laebec
g g =0V Ja, = b(C)dC ) do® = 26bc )
1 (B.5)
dgg™t = k%4, K*=N%()dC®, drk®= 56&&%6,
where
N =K"M%, K =2T(j"jeg™"), K~ =2Tx(j%"j%) = K,
ot (K (K™ = e (K1), (B.6)
6abe(I{fl)ca(I{fl)db — ecdf(Kfl)fe‘
Locally,
1
G| = 5 [ dudo @ Bud,c o, Bul<) = ~Bu(0) (B.7)
Let Hgpe = 04 By + (cyclic a, b, ¢). From the variation of I', one has
1 199 [ —199 10 1
Hae = 5T (97 55 |97 5507 58 | ) = TMOab oM ey
1 (B.8)

dg _1[09g _—1 O0g _ 1
=3 (g oo gt o)) = gV N ey

Consider the canonical momenta 7 = 1j%, {C%(¢), m(¢')} = 676(¢ — ¢') and define 7 =
—np(M~1)?_j%, the Poisson brackets are
{9(¢), ma(¢")} = —9(¢)jad (¢ — &),
{ma(0), m(¢")} = e me(9)d(¢ — ¢'), (B.9)
{(97'9")a(®), m(¢)} = e (97" 9)e()3(¢ — ¢') — NabDpd(d — ).
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Similarly, with p = nb(N_l)bajaa

{9(0), pa(d)} = Jag(d)d(d — &),
{pa(®), po(¢')} = €ar“pe(0)d(d — ¢'), (B.10)
{(g97)a(®),p6(¢)} = €t (g9 ")e(#)5(6 — &) + NapDsd (¢ — &),
{ma(®), pp(¢')} =0

B.3 Current algebra of the non-chiral WZW theory

In local coordinates, the Lagrangian density for the non-chiral WZW action is given by
167 b 1 8 :
T L= MaM" (cbce - lzd”&/) — 7 Ba("¢". (B.11)

The relation between canonical momenta 7, and velocities is

oL kl? 0 1. 4 W
Ne =~ W = 8n (M c(g Q)a - 7Bch > - (B‘12)

Defining v, = 1. + %Bcbg Y we have

{0a(0), 0(6)} = — 5= HaeC* (9)0(6 — &), (B.13)

The Hamiltonian is
= %(M‘l)“b(M_l)d’vavc + %MbaMbcga’gC’. (B.14)
In terms of the improved momenta 72 = —vb(M_l)baja R —%fg_lg, the Poisson brackets

are the same as in (B.9) with 7 replaced by 7, except for

. kl , _
{ma (6),m (&)} = ew (wf—&rw 1g’>c) (6)( — &), (B.15)
while the first order action principle can be written as
k 8T kl
Iy =— Tr |278¢7 g+ (g7 ') > + —5 (7P)?| — =T[G]. B.1
w=- [t 22757+ L 2] - il (B9

The current components I_ of (5.13) are given on-shell by I_ ~ 78 4 g—frg_lg’ so that

[ d¢/2Tr[I_6_] is the canonical generators of the symmetry transformation 6g = —gf_.
Evaluating the Poisson brackets then leads to (5.14) for I_.

Defining p? = v,(N~1)?,j¢. Since in (B.11) and (B.12) one can replace M%, by N%,
we have pP ~ g gg~!. The Poisson bracket are as in (B.10) except for

(2008 () = (4 = ™)) (90— o) (B.17)

On shell I, of (5.13) is now given by I ~ p? + E g1 so that [d¢/2Tr[I;64] is the
canonical generators of the symmetry transformation dg = 6, ¢g. Evaluating the Poisson
brackets then leads to (5.14) for I.. In the same way, one then establishes that the left
and right current components have vanishing Poisson brackets.
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B.4 Current algebra of the chiral models

Since a different parametrization for the right and left group elements will be useful, we
will use (¢ in what follows. The local Lagrangian densities are

8 — —1. \a Lo — a fa
Hﬁi = +(g95" 94 )9 g4)" — 7(91193[)11(9119;) +4B5 Y. (B.18)

The canonical momenta are related to the velocities through

oL* KLy, b + b
nE & ST ig((gilg;)bMia + 4B, i’). (B.19)
Defining
kl
v =1 F 5 Bt (B.20)
we now have .

{03 (9), vy ()} = 5 _Hap (L (@)d(0 — &), (B.21)
with Poisson brackets of variables associated to different chiral copies all commuting. In
terms of the improved momenta 78+ = —vlf(M *1)ftaja, the Poisson brackets are as
in (B.9) for each copy except for

kL, _
{ma*(0), 7 (9} = ea” (wfi + 8ﬂ<g£g;>c> (6)0(¢ — ). (B.22)
The primary constraints can be written as
B ki -1 7
¢t =77 £ —gi g ~0. (B.23)
8T

Consider then Iy

Ly =nf ¥ —gi'gl. (B.24)

They agree on the constraint surface with the time components of the conserved cur-
rents (5.16), I+ ~ F4Lg;'g/. Furthermore, [ d¢'2Tr[I;6] are the canonical generators
of the symmetry transformations dg, g+ = —g+0+. The components of It satisfy the cur-
rent algebra (5.14) in the standard Poisson bracket and have weakly vanishing Poisson
brackets with the constraints, i.e., they are first class,

{IE(0), ¢ (¢)} = €0 (0)3(0 — ¢). (B.25)

This proves the result on the Dirac brackets of the chiral currents.
Defining p? = U;E(Ni_l)baja, the Poisson bracket are as in (B.10) except for

kl _
(e (@) 0y (&)} = ea” (#5i + M(g;g;x) (6)d(¢ — ). (B.26)
+
Since pf ~ 8%2“ = j:é“—fr ((g;g;)bl\fia +4B% i’), the primary constraints can be written
0
as - »
r = P F o glhgi! 0. (B.27)
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They satisfy the current algebra

kl
{02(6), 95 ()} = eV (9)3(6 = &) F —ab00(6 — &). (B.28)
In terms of this representation of the constraints,

{12 (0), 45 (&)} = 0. (B.29)

It follows from (B.28) that the zero modes U = 027r d¢ F are first class constraints that
generate the arbitrary function of u in the general solution to the equations of motion,
while all other modes are second class constraints.

The chiral Hamiltonians are

k
H* == [doTr[gigi'gigi']+ [ do2Tr [usys]
4”/ / (B.30)

k _ _
— o [Tl o) + [ do2Trfosos)

where uy = u% j,, v+ = v j, contain the Lagrange multipliers. Taking the Poisson bracket
with the primary constraints shows that there are no secondary ones.

B.5 Current algebra of the flat model

Locally,
27 bara 1 Laa bl et
?E =(¢'N bQq — §N vNac(" ¢ (B‘Bl)
and so, if 7,,w, are the momenta conjugate to (¢, a®, the primary constraints are
k (N
Na ~ %N a®p,  We ~ 0. (B.32)

The primary constraints can be written as

k
w:p—%a/%(], w = 0. (B.33)

Up to zero modes, they are second class since their algebra is

{¥a(9), n(¢)} = € pcd(d — &),

[6a(@), ()} = — 5636 — &), (B.34)

{wa(o),ws(¢")} = 0.

Consider .
P=Xtwox+ —\"1N,
o (B.35)
J=-X"1'pA+uP =7+ uP.

On the constraint surface, they agree with the time components of the Noether currents.
Furthermore, [ d¢'2Tr[Po]|, [ d¢/2Tr[J6] are the canonical generators of the infinitesimal
symmetry transformations, 6;A = 0, d,a = AaA~! and Sg\ = —\0, Sgov = —ur@' AL,
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They have weakly vanishing Poisson brackets with the constraints,

{P(¢)7¢b(¢/)} = Ail[wvjb])‘(s((b - ¢/>7 {P(¢)awb(¢/)} = 07
{J(0), ()} = uA " w, 3N (0 — &), {J(9),wi(¢)} =0,

and by direct computation, one finds that their Poisson brackets, and thus also their Dirac

(B.36)

brackets, form the iso(2, 1) current algebra given in (5.34).
The Hamiltonian of the model is

k
H= 27T/dqur[)\'/\_l)\’)\_l] + /d¢2Tr[uw + vw]. (B.37)

Again, there are no secondary constraints.
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