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1 Introduction

Recently there has been a significant interest towards integrable structures which arise

in the context of AdS/CFT correspondence [1], with the best-studied example being the

AdS5/CFT4 duality between four-dimensional planar N = 4 Super-Yang-Mills theory and

Type IIB superstring theory on AdS5 × S5. There are also other AdS/CFT dual pairs [2–4]

where integrability gives us serious hopes of solving exactly a highly non-trivial quantum

field theory. One of these is the ABJM duality proposed in [5, 6], which relates three-

dimensional planar N = 6 super Chern-Simons theory and Type IIA string theory on

AdS4×CP
3. It appears that the spectrum of anomalous dimensions/string state energies in

this AdS4/CFT3 duality may be found exactly at any value of the coupling [4] by applying

an approach similar to the one used in AdS5/CFT4. In particular, the Bethe ansatz

equations, which describe the spectrum for asymptotically long single-trace operators at

any coupling, have been proposed in [7] and extended to all loops in [8, 9]. These equations

however do not capture the so-called wrapping interactions [10, 11] which means that other

tools have to be used in order to obtain the spectrum for short operators or the energies

in finite volume.

In the AdS5/CFT4 case this issue has been successfully addressed by means of the gen-

eralized Luscher formulae [12, 13] and the Y-system/Thermodynamic Bethe ansatz (TBA)

approaches [14–18]. For AdS4/CFT3 a Y-system of functional equations was proposed

in [14], and was later refined as well as supplemented with a set of TBA integral equations

in [19, 20]. Unlike the Bethe ansatz, the TBA and Y-system are expected to be valid

for any state, thus providing a way to obtain, in principle, the full exact spectrum of the

theory.
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For AdS5/CFT4 the Y-system and TBA have passed a number of nontrivial tests.

In particular, the Y-system allows one to efficiently reproduce perturbative gauge the-

ory calculations at weak coupling (see e.g. [14]), while at strong coupling it matches the

semiclassical predictions obtained from the algebraic curve [21–23]. In addition to these

analytical checks, important numerical results have been obtained from the TBA in [24, 25]

where the anomalous dimension of the Konishi operator was computed for a wide range of

values of the ’t Hooft coupling. The strong-coupling predictions obtained in these works

seem to agree with the analytical results obtained by several other methods [23, 26–29] (see

also [30, 31]), providing yet another successful test of the proposed TBA and Y-system.

Also, very recently the TBA equations were reduced to a finite set of integral equations [32].

Analogous checks have been done for AdS4/CFT3 — the four-loop wrapping correc-

tions obtained in [14] were reproduced in [33, 34], while in [20] the proposed Y-system and

TBA were shown to be remarkably consistent with the algebraic curve quantization [35].

However, a numerical analysis similar to [24, 25] has not been attempted so far and would

be an important test of the integrability properties in this theory.

Here we present a first step in this direction, solving numerically the TBA equations

for one of the simplest unprotected operators in the sl(2) sector to compute its anomalous

dimension non-perturbatively. We start from weak coupling and are able to reach those

values of the ’t Hooft coupling λ for which the AdS4/CFT3 interpolating function h(λ)

becomes equal to 1 (this should correspond to λ ∼ 1 as well).1 To facilitate efficient

numerical analysis, we implement a truncation method [36] for the TBA equations which

is based on partially solving the underlying Y-system and allows us to eliminate from the

equations an infinite number of unknown functions.

This paper is organized as follows. In section 2 we introduce the state that we are

studying, in section 3 we present the TBA equations, and in section 4 describe the trun-

cation method. In section 5 we discuss the numerical results, and we conclude in section

6. Appendix A contains notation that we use.

2 Description of the state

The gauge theory operator that we study in this paper is the L = 2 state in irrep 20 of

SU(4), described in the appendix of [7]. Grouping the scalar fields of the theory into SU(4)

multiplets as follows:

Y A = (A1, A2, B
†

1̇
, B†

2̇
) Y †

A = (A†
1, A

†
2, B1̇, B2̇) , (2.1)

we can write this operator as

O = tr (Y CY †
AY

DY †
B) χ

AB
CD , (2.2)

where the coefficients χAB
CD are antisymmetric in both A,B and C,D pairs of indices (for

more details see [7]). This is one of the simplest unprotected operators in the N = 6

1Since the TBA equations include h(λ) rather than λ, our result is the anomalous dimension as a function

of h(λ) and not of λ.
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supersymmetric Chern-Simons theory. In the asymptotic Bethe ansatz (ABA) of [8] this

state is described in su(2) grading by two momentum-carrying Bethe roots — one u4 and

one u4̄, which are equal. The Bethe equations in this case reduce to2

(

x+4
x−4

)L

= 1 (2.3)

where the function x(u) is defined as

x+
1

x
=

u

h(λ)
, (2.4)

with standard two branches

xph(u) =
1

2

(

u

h
+

√

u

h
− 2

√

u

h
+ 2

)

, xmir(u) =
1

2

(

u

h
+ i

√

4− u2

h2

)

, (2.5)

and in the Bethe ansatz equations we use the physical branch. We also used the general

notation

f± ≡ f(u± i/2), f [+a] ≡ f(u+ ia/2) . (2.6)

The function h(λ) in (2.4) is the so-called interpolating function (see [37, 38]) which plays

the role of the effective coupling in the Bethe ansatz and TBA. Its weak and strong coupling

expansions are known to be

h(λ) = λ+ h3λ
3 +O

(

λ5
)

=
√

λ/2 + h0 +O
(

1√
λ

)

. (2.7)

The weak-coupling coefficient h3 = −8 + 2ζ(2) was computed directly from perturbation

theory in [33, 34, 39]. For the strong-coupling coefficient h0 several calculations suggest

different values: [40–44] argue that it is zero, while [45] propose the value − log 2
2π (see

also [46]).3

The TBA equations correspond to the sl(2) rather than su(2) Bethe ansatz equations,

so we need to make a duality transformation [8] in the Bethe ansatz. We find that the

sl(2) representative of this state is described by the same two Bethe roots but has L = 1

rather than L = 2, the corresponding Bethe equation being

(

x+4
x−4

)L

= −1 . (2.8)

The corresponding single-trace operator is in the same supermultiplet as (2.2) (and has the

same anomalous dimension). Its explicit form can be found in [50]4 and its bare dimension

is 3.

Importantly, from the ABA equations (2.8) we see that for any coupling the two roots

remain exactly at zero:5 u4 = u4̄ = 0. This means that, unlike what happens for Konishi

2the dressing factor σ does not appear because σ(u, u) = 1.
3Related calculations at strong coupling on the string side of the duality have been done in [47–49].
4Roughly speaking, it is a linear combination of terms with two scalar fields and two covariant derivatives

5This is also consistent with the zero-momentum constraint [8]:
∏

j

x+

4,j

x−

4,j

∏

j

x+

4̄,j

x−

4̄,j

=1.
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in the N = 4 SYM case, the Bethe ansatz result for the scaling dimension can be found

exactly (in terms of the interpolating function h(λ)). It is given by

EABA = E0 + ǫph1 (u4) + ǫph1 (u4̄) (2.9)

where E0 is the bare dimension of the operator and

ǫn(u) ≡ h(λ)

(

i

x[+n]
− i

x[−n]

)

, (2.10)

which means that in our case

EABA =

√

16h (λ)2 + 1 + 2 . (2.11)

It is well-known that the ABA result is usually incomplete because of the wrapping

interactions which arise due to the finite length of the corresponding spin-chain [10, 11].

The exact anomalous dimension includes a correction, δE, to the ABA result:

E = EABA + δE . (2.12)

The leading weak-coupling term of this correction (first wrapping) has been computed

in [14] and confirmed in [34] (see also [51, 52] where wrapping corrections for similar

operators were studied). It has the form6

δEwrapping = (32− 16ζ(2))h(λ)4 +O(λ5) (2.13)

and thus

EABA + δEwrapping = 3 + 8h(λ)2 − 16ζ(2)h(λ)4 +O(λ5). (2.14)

Our main result in this work is a numerical computation of the correction δE for 0 ≤
h(λ) ≤ 1 by means of the Thermodynamic Bethe Ansatz.

3 TBA equations for AdS4/CFT3

The Y-system which describes the spectrum of the ABJM theory in the planar limit was

first proposed in [14] and later refined in [19, 20]. This system of functional equations can

be summarized in the diagram shown in figure 1.

We denote the various Y-functions as in [20] — there are fermionic functions Y⊕ and Y⊗,

bosonic functions Y◦ n (n = 2, 3, . . . ), pyramid functions Y∆n (n = 2, 3, . . . ) and middle node

functions Y◮n , Y◭n (n = 1, 2, . . . ). As the state we consider belongs to the sl(2) subsector of

the theory, the middle node Y-functions of two types, corresponding to two series of black

nodes in figure 1, are pairwise equal. We denote these Y-functions by Y•a or Ya,0, so that

we have Y◮a = Y◭a = Y•a = Ya,0 for all a.

6since at weak coupling h(λ) = λ+O(λ2) this expression can be rewritten also as δE = (32−16ζ(2))λ4+

O(λ5).
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Figure 1. A graphical representation of the Y-system proposed in [14] for ABJM theory. Each

circle in this infinite 3D lattice corresponds to a Y-function.

The TBA equations which describe the exact energy of the ground state in finite volume

were proposed in [19, 20]. In [20] they were also extended via the contour deformation

trick [53–55] to excited states in the sl(2) subsector, the resulting equations being:

log Y⊗ = +Km−1 ∗ log
1 + 1/Y◦ m

1 + Y∆m

+ 2R(01)
1m ∗ log(1 + Y•m) + 2

[

log
R

(+)
4

R
(−)
4

]

+ iπ (3.1)

log Y⊕ = −Km−1 ∗ log
1 + 1/Y◦ m

1 + Y∆m

− 2B(01)
1m ∗ log(1 + Y•m)− 2

[

log
B

(+)
4

B
(−)
4

]

− iπ (3.2)

log Y∆n = −Kn−1,m−1 ∗ log(1 + Y∆m)−Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕
(3.3)

+2
(

R(01)
nm + B(01)

n−2,m

)

∗ log(1 + Y•m)

+2







n−1

2
∑

k=−n−1

2

log
R

(+)
4 (u+ ik)

R
(−)
4 (u+ ik)






+ 2







n−3

2
∑

k=−n−3

2

log
B

(+)
4 (u+ ik)

B
(−)
4 (u+ ik)







log Y◦ n = Kn−1,m−1 ∗ log(1 + 1/Y◦ m) +Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕
(3.4)

log Y•n = (L+K4) log
x[−n]

x[+n]
− B(10)

n1 ∗ log(1 + 1/Y⊕) +R(10)
n1 ∗ log(1 + Y⊗) (3.5)

+
(

R(10)
nm + B(10)

n,m−2

)

∗ log(1 + Y∆m)

+
(

2S̃nm −R(11)
nm + B(11)

nm

)

∗ log(1 + Y•m) +







n−1

2
∑

k=−n−1

2

log Φ(u+ ik)






+ iπn

Here and throughout the paper we use notation that is given in appendix A. We also

assume summation over the repeated index m.

The exact Bethe roots u4,j = u4̄,j are fixed by the exact Bethe equations,

Y ph•1 (u4,j) = −1, j = 1, 2, . . . ,K4 (3.6)
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and in general the values of these Bethe roots may differ from those one gets from the

ABA. In the case we are studying the roots remain at zero within our precision — we have

checked this numerically, verifying (3.6) with the use of equation (3.5) which we analytically

continued as in [24].

The energy of the state we are studying is written in terms of the Y-functions as

E = EABA + δE, δE = 2

∞
∑

a=1

∫ ∞

−∞

du

2πi

∂ǫmir
a (u)

∂u
log(1 + Y mir•a ) (3.7)

where ǫa(u) is defined by (2.10).

As our goal is to solve the TBA equations numerically, we will make to them several

modifications, which are described below.

First, we substract from the original equations the equations which are satisfied by

the asymptotic large L solution of the Y-system [14, 20]. Let us describe this solution

for the state discussed in section 2 which belongs to the sl(2) subsector and has L = 1,

K4 = K4̄ = 1 with two Bethe roots u4 = u4̄ = 0. We use bold font to denote the asymptotic

Y- and T-functions. The main formulas are:

Y∆a =
T+

a,1T
−
a,1

Ta+1,1Ta−1,1
− 1 , 1/Y◦ s =

T+
1,sT

−
1,s

T1,s+1T1,s−1
− 1 (3.8)

Y⊕ =
T2,3T2,1

T3,1T1,2
, Y⊗ =

T1,2T1,0

T2,0T0,1
. (3.9)

All the Ta,s functions can be found from the generating functional W. In particular

W =
∞
∑

s=0

T1,s(u+ i1−s
2 )Ds , W−1 =

∞
∑

a=0

(−1)aTa,1(u+ i1−a
2 )Da . (3.10)

W =



1−
(

B
(+)+
4

B
(−)+
4

R
(+)−
4

R
(−)−
4

)2

D







1−
(

R
(+)−
4

R
(−)−
4

)2

D





−1

×



1−
(

R
(+)−
4

R
(−)−
4

)2

D





−1

(1−D) (3.11)

where D = e−i∂u . Finally,

Y•a(u) =
(

x[−a]

x[+a]

)L

Φa(u)Ta,1(u). (3.12)

A remarkable property of these asymptotic Y-functions is that they satisfy a set of

TBA-type equations. This is true not only for λ → 0, but also for finite values of λ and L

(see e.g. [32, 56, 57]).7 The equations satisfied by the asymptotic solution are the same as

the original TBA equations given above, except that the terms in the r.h.s. which involve

the Y•n-functions should be omitted. After substracting these equations from the original

7For the state we are studying we have also checked this numerically.
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ones and also slightly rewriting the kernels for more convenient numerics (similarly to [24])

we get:

log
Y⊗

Y⊗

= +Km−1 ∗ log
1 + 1/Y◦ m

1 + Y∆m

1 +Y∆m

1 + 1/Y◦ m

+ 2R(0m) ∗ log(1 + Y•m) (3.13)

log
Y⊕
Y⊕

= −Km−1 ∗ log
1 + 1/Y◦ m

1 + Y∆m

1 +Y∆m

1 + 1/Y◦ m

− 2B(0m) ∗ log(1 + Y•m) (3.14)

log
Y∆n

Y∆n

= −Kn−1,m−1 ∗ log
(1 + Y∆m)

(1 +Y∆m)
−Kn−1 ∗ log

1 + Y⊗

1 + 1/Y⊕

1 + 1/Y⊕
1 +Y⊗

(3.15)

+2Mnm ∗ log(1 + Y•m)
log

Y◦ n

Y◦ n

= Kn−1,m−1 ∗ log
(1 + 1/Y◦ m)

(1 + 1/Y◦ m)
+Kn−1 ∗ log

1 + Y⊗

1 + 1/Y⊕

1 + 1/Y⊕
1 +Y⊗

(3.16)

log
Y•n
Y•n

= −B(n0) ∗ log (1 + 1/Y⊕)

(1 + 1/Y⊕)
+R(n0) ∗ log (1 + Y⊗)

(1 +Y⊗)
(3.17)

+Nnm ∗ log (1 + Y∆m)

(1 +Y∆m)

+
(

2S̃nm −R(11)
nm + B(11)

nm

)

∗ log(1 + Y•m)

Note that in the Konishi case the function Y∆2
(u) had poles at the positions of the Bethe

roots; in accordance with that, in our case it has a double pole at u = 0. The asymptotic

Y-function Y∆2
(u) also has a double pole at u = 0, so the combination

1+Y∆2
(u)

1+Y∆2
(u) which

appears in the equations (3.13)–(3.17) has no singularities on the real axis.

In the next section we discuss a further simplification to these equations which leaves

only a finite number of unknown functions.

4 Truncating the TBA equations

The truncation method which we describe in this section has been proposed in [36] and is a

simpler version of the general treatment in [32]. Unlike the method of [32] it involves some

approximations, and it also relies on certain analyticity assumptions for the Y-functions.

We will not discuss these assumptions here, but we have confirmed numerically that in our

case the resulting equations are consistent with the original TBA of [20].

The truncation is done as follows. First, remarkably, it is possible to eliminate all the

Y◦ n functions from the TBA equations, replacing them by a single unknown function. The

reason is that the Y-system equations for these functions are quite simple,

Y +
◦ n
Y −
◦ n

= (1 + Y◦ n+1
)(1 + Y◦ n−1

) , n ≥ 3 (4.1)

and to solve them we can use the following ansatz for the corresponding T-functions (see [32,

36, 58]):8

T1,s = s+Ks ∗ fR (4.2)

8See also [59].
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where fR is a new unknown function. The Y◦ n functions are obtained [14, 20], as usual,

from

Y◦ n =

(

T+
1,nT

−
1,n

T1,n+1T1,n−1
− 1

)−1

, (4.3)

and it can be shown that the infinite set of equations (4.1) is indeed satisfied for any fR
with suitable analyticity properties. This function is fixed by the TBA equations — the

infinite set of equations (3.16) reduces to a single equation for fR. That equation has the

form
1 + Y⊗

1 + 1/Y⊕
=

(

1 +K+
1 ∗p.v. fR + fR/2

) (

1 +K−
1 ∗p.v. fR + fR/2

)

(

1 +K+
1 ∗p.v. fR − fR/2

) (

1 +K−
1 ∗p.v. fR − fR/2

) (4.4)

where ∗p.v. denotes principal value integration. Solving for fR we get an expression suitable

for numerical iterations:9

fR = 2
(a+ 1)(y + 1)−

√

4(a+ 1)2y2 − b2(y − 1)2

y − 1
(4.5)

where y = 1+Y⊗
1+1/Y⊕, a = Re

(

K+
1 ∗p.v. fR

)

, b = Im
(

K+
1 ∗p.v. fR

)

.

Note that the Y-system equation for Y◦ 2
, which reads

Y +
◦ 2
Y −
◦ 2

=
(1 + Y⊗)(1 + Y◦ 3

)

1 + 1/Y⊕
, (4.6)

is not satisfied automatically for arbitrary fR (since it includes the fermionic functions

Y⊕, Y⊗), but will hold provided that the TBA equations are satisfied.

So far we haven’t made any approximations in the TBA equations — the truncation

we have just described is exact. However, we cannot directly apply the same method in the

upper wing of the Y-system to replace the functions Y∆n , Y•n by a finite number of unknown

ones, as the Y-system equations for Y∆n , Y•n are more complicated than (4.1). But since the

Y•n functions decay fast with n, within our precision it is enough to keep only the first 6 or

7 of them and set the other ones to zero. With this approximation we see that for n > M ,

whereM the number of Y•n functions that we retain, the pyramid Y-functions Y∆n decouple

from the rest of the Y-system and are governed by an equation very similar to (4.1):

Y +
∆n

Y −
∆n

=
1

(1 + 1/Y∆n+1
)(1 + 1/Y∆n−1

)
, n > M. (4.7)

This equation is solved by an ansatz analogous to (4.2):

Ta,1 = a+Ka−M+1 ∗ fU (4.8)

with Y∆a =
T+
a,1T

−

a,1

Ta+1,1Ta−1,1
− 1. Here fU is another new unknown function, and it is fixed by

an equation similar to (4.5):

fU = a(4y − 2)− 2(
√

(y − 1)y(2a+M + 1)2 − b2 − (M + 1)y +M) (4.9)

9Note that fR is only nonzero for −2h ≤ u ≤ 2h.

– 8 –



J
H
E
P
0
5
(
2
0
1
2
)
1
4
2

where y = 1 + Y∆M
, a = Re

(

K+
1 ∗p.v. fU

)

, b = Im
(

K+
1 ∗p.v. fU

)

.

Lastly, we need to rewrite the r.h.s. of the remaining TBA equations in terms of

the new functions fR, fU . To do this, we will need the exact T-functions — which are

given by (4.2), (4.8) — and the asymptotic T-functions, which are obtained from the same

expressions when fR, fU are replaced by fR, fU :

fR(u) =
xmir(u−i0)−1/xmir(u+i0)

xmir+
4 −1/xmir−

4

, fU (u) = KM−1(u, v) ∗
xmir(v−i0)−1/xmir(v+i0)

(

1/xmir+
4

)

−xmir−
4

.

(4.10)

We list the remaining TBA equations below.

Equations for fermions:

log
Y⊗

Y⊗

= log
T1,2

T1,2
−K1 ∗ log

T1,1

T1,1
−KM−1 ∗ log

TM+1,1

TM+1,1
+KM ∗ log TM,1

TM,1
(4.11)

−
M
∑

m=2

Km−1 ∗ log
1 + Y∆m

1 +Y∆m

+ 2R(0m) ∗ log(1 + Y•m)

log
Y⊕
Y⊕

= − log
T1,2

T1,2
+K1 ∗ log

T1,1

T1,1
+KM−1 ∗ log

TM+1,1

TM+1,1
−KM ∗ log TM,1

TM,1

+
M
∑

m=2

Km−1 ∗ log
1 + Y∆m

1 +Y∆m

− 2B(0m) ∗ log(1 + Y•m). (4.12)

Equations for pyramids (n = 2, . . . ,M)

log
Y∆n

Y∆n

= −δn,M log
TM+1,1

TM+1,1
−Kn−1,M−1 ∗ log

TM+1,1

TM+1,1
+Kn−1,M ∗ log TM,1

TM,1

−
M
∑

m=2

Kn−1,m−1 ∗ log
1 + Y∆m

1 +Y∆m

−Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕

1 + 1/Y⊕
1 +Y⊗

(4.13)

+2Mnm ∗ log(1 + Y•m).

Equations for middle nodes (n = 1, 2, . . . ,M):

log
Y•n
Y•n

=
(

2S̃nm −R(11)
nm + B(11)

nm

)

∗ log(1 + Y•m) (4.14)

−B(n0) ∗ log (1 + 1/Y⊕)

(1 + 1/Y⊕)
+R(n0) ∗ log (1 + Y⊗)

(1 +Y⊗)

+R(n0)
�∗
(

KM−1 ∗ log
TM+1,1

TM+1,1
−KM ∗ log TM,1

TM,1
+

M
∑

m=2

Km−1 ∗ log
1 + Y∆m

1 +Y∆m

)

+K 6=
n−1,M−1 ∗ log

TM+1,1

TM+1,1
−K 6=

n−1,M ∗ log TM,1

TM,1
+

M
∑

m=2

K 6=
n−1,m−1 ∗ log

1 + Y∆m

1 +Y∆m

.

As a result, the equations that we are solving numerically are (4.5), (4.9) and (4.11)–(4.14).

– 9 –



J
H
E
P
0
5
(
2
0
1
2
)
1
4
2

h(λ) δE(λ) h(λ) δE(λ)

0.00 0.0000 0.55 0.0703

0.10 0.0005 0.60 0.069

0.15 0.0023 0.65 0.059

0.20 0.0063 0.70 0.041

0.25 0.0129 0.75 0.014

0.30 0.0221 0.80 -0.025

0.35 0.0332 0.85 -0.072

0.40 0.0451 0.90 -0.126

0.45 0.0566 0.95 -0.188

0.50 0.0655 1.00 -0.254

Table 1. Numerical values of the correction to the Bethe ansatz result for the energy, with uncer-

tainty in the last digit.

5 Numerical results

Our numerical strategy is similar to [24], and we are solving the TBA equa-

tions (4.5), (4.9), (4.11)–(4.14) by iterations.10 We truncated the number of middle node

Y-functions to M = 6 or 7, and used cutoffs on the u axis to make finite the range of

integration in the convolutions. The range of coupling that we study is 0 ≤ h(λ) ≤ 1 (since

the TBA equations are written in terms of h(λ), we obtain the anomalous dimension as a

function of h(λ)).

Our main result is the correction δE to the ABA value for the energy (see (2.12)) and

it is shown in figure 2. The numerical values of this correction are also listed in table 1.

We estimated their absolute precision as about ±10−4 for h(λ) ≤ 0.55 and ±10−3 for

h(λ) > 0.55. In figure 3 we plot the full energy, including the ABA part. As expected, at

weak coupling our numerical results are completely consistent with the leading wrapping

correction obtained analytically in [14, 34] (this is also seen in figure 2). As the coupling

is increased, our results gradually deviate more and more from that prediction.

The behaviour of middle-node Y-functions Y•n exhibits several interesting features.

While in the AdS5/CFT4 Konishi case all these functions take positive values, here they

have signs alternating with n, i.e. Y•1 < 0, Y•2 > 0, Y•3 < 0 etc. In figure 4 (left) we

plot their absolute value for h(λ) = 0.9. Since these Y-functions appear as log(1 + Y•n)
in the expression for the energy and in the TBA equations, their negative values beyond

−1 would give rise to singularities. We discovered that as the coupling is increased, the

middle-node Y-function Y•1 indeed approaches the critical value −1 for u close to zero

(while other Y-functions remain far from this dangerous value). That is clearly seen from

figure 5 (left), and at h(λ) = 1 we have Y•1(0) ≈ −0.993 which is already very close to the

singularity. This means that proceeding further in the coupling would probably require

obtaining Y•1 with a high precision.

10Sometimes we also had to iterate the equation for Y•1
separately from the others to make the process

converge.
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0.05

hHΛL

∆
E

Figure 2. The correction δE to the Bethe ansatz result for the energy, as a function of h(λ), is

shown by black dots. The solid line is the first wrapping correction given by (2.13).
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2.5
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4.0

4.5

5.0

5.5

6.0

hHΛL

E

Figure 3. The full scaling dimension EABA + δE. Dots: numerics, solid line: ABA, dashed line:

ABA + 1st wrapping as given by (2.14).

The corresponding asymptotic Y-function Y•1 already starts to take values beyond −1

at h(λ) ≈ 0.6. However, that does not lead to any singularity since log(1 + Y•1) never

appears in the TBA equations. In figure 4 (right) we plot for comparison the exact and

the asymptotic Y-function.

It is possible that if the coupling is increased further the function Y•1 will cross the

critical value −1. Then the TBA equations will probably require some modification such

as extra driving terms, and it would be very interesting to understand whether this indeed

happens for the state we are studying. For other models similar issues have been explored

in [53–55], while in the AdS/CFT case the possibility of such singularities arising was

discussed in e.g. [24, 60, 61].

The second middle-node Y-function Y•2 also shows unusual behaviour, rapidly increas-

ing in magnitude as the coupling is being increased. This is shown in figure 5 (right).
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Figure 4. Left : The middle-node Y-functions Yn,0(u) for h(λ) = 0.9. The figure shows plots of

minus Y1,0 (blue), Y2,0 (purple), minus Y3,0 (yellow), Y4,0 (green) and minus Y5,0 (red). Right : the

exact Y-function Y1,0 (solid line) and its asymptotic counterpart Y1,0 (dashed line) for h(λ) = 0.9.
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Figure 5. The middle-node Y-functions Y1,0(u) (left) and Y2,0(u) (right) for several values of the

coupling: h(λ) = 0.6 (blue), 0.7 (purple), 0.8 (yellow) and 0.9 (green).

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.2
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-30 -20 -10 10 20 30

-0.35
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Figure 6. The functions fR(u) (left) and fU (u) (right) for h(λ) = 0.9 and M = 7, shown by solid

lines. The dashed line in the left figure shows the asymptotic fR function (4.10), while fU almost

coincides with its asymptotic expression fU .

Lastly, in figure 6 we show the plots of the new functions fR, fU which parametrize

the solution of the Y-system in the right wing and in the upper wing, respectively.

The total range of the coupling we have investigated, 0 ≤ h(λ) ≤ 1, is four times

greater than the convergence radius |h(λ)| ≤ 0.25 of the weak-coupling expansion of the

ABA result (2.11), which suggests that we are exploring the intermediate coupling regime.

We were not able to make a consistent prediction for the strong coupling expansion co-
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Figure 7. A log-log plot of the full conformal dimension E vs. h(λ). We show the ABA prediction

(solid curve), its asymptote (dotted line defined by E = 4h(λ)), our numerical data (black dots)

and the expected slope of the result at strong coupling (dashed line defined by E = const×
√

h(λ)).

efficients, but we hope this could be done in the future by going to greater values of the

coupling. Increasing the coupling poses a challenge because beyond the value h(λ) = 1 the

iterative procedure we use for solving the TBA equations converges too slowly; hopefully

this problem may be overcome by improving the numerical algorithm (e.g. using Newton’s

method).

At strong coupling the leading term in the exact energy should be proportional to

λ1/4 [62] which in our case is equivalent to
√

h(λ) (while string theory predictions for

subleading terms are not available as of now). However, the strong-coupling behavior of

the ABA result (2.11) is completely different

EABA = 2
√
2λ+O(1) = 4h(λ) +O(1), (5.1)

suggesting that the leading asymptotics predicted by the ABA should cancel against11 the

TBA correction δE. It is possible that we can already see this starting to happen for

h(λ) ≥ 0.8 when the exact energy becomes smaller than the ABA prediction. In figure 7

we show a log-log plot of the full energy, and the ABA result asymptotes to a straight line,

consistently with (5.1), while one may expect that the exact energy will asymptote to a

straight line with a different slope.12

11In contrast, in the AdS5/CFT4 Konishi case [23–29] the ABA result already has the correct ∼ λ1/4

asymptotics at strong coupling. For Konishi the TBA correction δE then compensates another correction

which arises because the exact Bethe roots are displaced from their ABA values, and as a result the exact

energy has the same asymptotics.
12Not necessarily the dashed line shown in figure 7.
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6 Conclusions

In this paper we have applied the Thermodynamic Bethe ansatz approach to compute the

exact anomalous dimension of a short operator in AdS4/CFT3, for the first time solving

numerically the TBA equations for this theory. We have explored the values of the coupling

0 ≤ h(λ) ≤ 1 and at weak coupling our results are consistent with known predictions. We

also found that as the coupling is being increased one of the Y-functions approaches the

critical value −1. It would be very interesting to go to higher values of the coupling,

and achieving that may be possible by improving the numerical strategy or perhaps by

applying the very recent approach of [32]. Hopefully a comparison with string theory

calculations could be made eventually at strong coupling, providing a deep test of the

integrable structures in AdS4/CFT3 correspondence.

Acknowledgments

I thank M. Beccaria, N. Gromov, A. Tseytlin and A. Zayakin for many helpful com-

ments and discussions. I am especially grateful to Nikolay Gromov for sharing some of

his Mathematica code and for his guidance during the course of this project. This work

was partially supported by a grant of the Dynasty Foundation and by grants RFBR-12-02-

00351-a, PICS-12-02-91052. I am also grateful to the organizers of IGST 2011 at Perimeter

Institute (Waterloo, Canada) for hospitality during this program.

A Notation

The R and B functions are

R(±)
a =

Ka
∏

j=1

[

x(u)− x∓a,j

]

, B(±)
a =

Ka
∏

j=1

[

1

x(u)
− x∓a,j

]

, (A.1)

where for the state we consider in this paper all Ka are zero except K4 = K4̄ = 1. The

scalar factor Φ is defined as

Φ(u) =
B

(+)+
4 R

(−)−
4

B
(−)−
4 R

(+)+
4





K4
∏

j=1

x+4,j

x−4,j





K4
∏

j=1

σ2(u, u4,j), Φa(u) =

a−1

2
∏

k=−a−1

2

Φ(u+ ik). (A.2)

The kernels in TBA equations are:

Kn(u, v) ≡ 1

2πi

∂

∂v
ln

u− v + in/2

u− v − in/2
=

2n/π

n2 + 4(u− v)2
, (A.3)

Kn,m(u, v) ≡
m−1

2
∑

j=−m−1

2

n−1

2
∑

k=−n−1

2

K2j+2k+2(u, v), (A.4)

K 6=
n,m(u, v) ≡

m−1

2
∑

j=−m−1

2

n−1

2
∑

k=−n−1

2

K2j+2k+1(u, v), (A.5)
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where we assume K0,n = 0, K 6=
0,n = 0. Also,

Snm(u, v) ≡ 1

2πi

∂

∂v
log σBES(x

[+n](u), x[−n](u), x[+m](v), x[−m](v)), (A.6)

S̃nm(u, v) ≡ Snm(u, v) +
ni

2
P(m)(v), (A.7)

B(ab)
nm (u, v) ≡

n−1

2
∑

j=−n−1

2

m−1

2
∑

k=−m−1

2

1

2πi

∂

∂v
log

b(u+ ia/2 + ij, v − ib/2 + ik)

b(u− ia/2 + ij, v + ib/2 + ik)
(A.8)

R(ab)
nm (u, v) ≡

n−1

2
∑

j=−n−1

2

m−1

2
∑

k=−m−1

2

1

2πi

∂

∂v
log

r(u+ ia/2 + ij, v − ib/2 + ik)

r(u− ia/2 + ij, v + ib/2 + ik)
, (A.9)

R(nm)(u, v) ≡ ∂v
2πi

log
x
[+n]
u − x

[−m]
v

x
[−n]
u − x

[+m]
v

− 1

2i
P(m)(v), (A.10)

B(nm)(u, v) ≡ ∂v
2πi

log
1/x[+n]

u − x
[−m]
v

1/x[−n]
u − x

[+m]
v

− 1

2i
P(m)(v) (A.11)

Mnm ≡ Kn−1�∗ R(0m) +K 6=
n−1,m−1 , (A.12)

Nnm ≡ R(n0)
�∗ Km−1 +K 6=

n−1,m−1 , (A.13)

where

b(u, v) =
1/xmir(u)− xmir(v)

√

xmir(v)
, r(u, v) =

xmir(u)− xmir(v)
√

xmir(v)
, (A.14)

and

P(a)(v) = − 1

2π
∂v log

xmir(v + ia/2)

xmir(v − ia/2)
. (A.15)

The convolutions in integral equations are over the second variable, and ∗ denotes

standard convolution along the real axis: K(u, v) ∗ f(v) ≡
∫ +∞

−∞
dvK(u, v)f(v).

The symbol �∗ denotes convolution along with analytical continuation across the cut

u ∈ (−∞,−2h) ∪ (2h,+∞) (see [20, 24]). E.g.

R(n0)
�∗ log(1 + Y⊗) =

∫ 2h

−2h
dv
[

R(n0) log(1 + Y⊗)− B(n0) log(1 + 1/Y⊕)
]

. (A.16)

One should also be careful about which branch of x(u) to use in various places in TBA

equations. The mirror branch is used when u is the free variable or the variable that is

being integrated over. Otherwise the physical branch is used.
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