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then arbitrarily small within present experimental limits. However, in general 0νββ decay

can have an independent origin and be near its present experimental bound; whereas

neutrino masses are generated radiatively, contributing negligibly to 0νββ decay. We

provide a realization of this scenario in a simple, well defined and testable model, with

potential LHC effects and calculable neutrino masses, whose two-loop expression we derive

exactly. We also discuss the connection of this model to others that have appeared in

the literature, and remark on the significant differences that result from various choices of

quantum number assignments and symmetry assumptions. In this type of models lepton

flavor violating rates are also preferred to be relatively large, at the reach of foreseen

experiments. Interestingly enough, in our model this stands for a large third mixing angle,

sin2 θ13 & 0.008, when µ→ eee is required to lie below its present experimental limit.
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1 Introduction

Neutrino oscillations are the only new physics (NP) beyond the minimal Standard Model

(SM) observed to date [1] (for recent reviews see for instance [2–4]). They can be fully

explained introducing rather small neutrino masses mν and the corresponding (unitary)

charged current mixing matrix U [5, 6]. The observed pattern of neutrino masses can be

implemented, however, in two quite different ways depending on the Dirac or Majorana

character of the neutrinos. In the first case the SM is extended by adding three SM singlets,

νR, to provide Dirac masses to the SM neutrinos, νL, through small Yukawa couplings.

Alternatively, we can consider extending the SM by adding the only invariant dimension 5

(Weinberg) operator that can be written using the SM field content [7],1 O5 = ˜̀
Lφφ̃

†`L. In

this case the SM neutrinos acquire Majorana masses after electroweak symmetry breaking,

〈φ0〉 = vφ, and are inversely proportional to Λ, the NP scale associated with O5. The small

neutrino masses then require that the coefficients of this operator be small, either due to

a very large NP scale or suppressed dimensionless couplings.

1φ and `L are the SM Higgs and lepton doublets and φ̃ = iτ2φ
∗, ˜̀

L = iτ2`
c
L.
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Both alternatives (that light neutrinos are Dirac or Majorana), are viable and indistin-

guishable if Λ is very large, except for the possible observation of lepton number violation

(LNV) in neutrinoless double beta (0νββ) decay [8]2 (for a recent review see [12]). Indeed,

the SM extension with Dirac neutrino masses preserves lepton number (LN), and hence

0νββ decay is forbidden. Whereas Majorana masses carry LN equal two, as does the Wein-

berg operator, and this leads to a non-zero 0νββ width. Thus, the observation of 0νββ

decay would strongly favor Majorana neutrino masses [13]; hence the prime relevance of

this type of experiments (see [14, 15] for recent reviews).

All this, however, relies on the assumption that both such minimal SM extensions

describe the dominating NP effects up to very high scales. We will argue, however, that

LNV and neutrino masses may be due to NP near the electroweak scale, in which case a

much richer set of possibilities can be realized. The main point we wish to emphasize is

that although both 0νββ decay and Majorana neutrino masses do violate LN, they need

not be both directly related to the Weinberg operator O5, unlike the above minimal SM

extension consisting only of this dimension 5 operator. For instance, the leading LNV

effects in 0νββ decay could be mediated by an operator involving only right-handed (RH)

electrons, such as, for example, O9 = (eRe
c
R)
(
φ†Dµφ̃

)(
φ†Dµφ̃

)
which is the lowest-order

LNV operator with two RH leptons and invariant under the SM gauge transformations.

In this case O5 (with the associated Majorana masses) is generated radiatively by O9 at

two loops, where the charged leptons suffer a chirality change through mass insertions and

are transformed into neutrinos through the exchange of a W boson. This results in a

further suppression by two charged lepton masses divided by two powers of the NP mass

scale, which we do assume to be close to the electroweak scale. These radiatively-generated

Majorana masses will produce the usual contribution to 0νββ decay, which, however, will

be negligible compared to the O9 one.

In a companion paper [16] we classify the different ways of generating 0νββ decay and

light neutrino masses by the addition of higher order effective operators. This has been

studied in the literature [17–20], but mostly for operators involving fermions and scalars;

we will concentrate instead on operators involving gauge bosons but not quarks (thus, for

example, excluding ab initio models with heavy leptoquarks from our analysis). Here we

will instead provide a realistic testable model realizing the above scenario, where (i) LN

is broken at the electroweak scale; (ii) 0νββ decay into two RH electrons has a rate of

the order of its experimental limit, through the tree-level exchange of new scalars; and

(iii) it contains finite, and therefore calculable, neutrino masses. Despite a relatively small

number of parameters this model can also accommodate the observed pattern of neutrino

masses and mixings, which are generated at two-loop order (and whose contribution to

0νββ decay is in this case negligible). This model is related to others that have been

discussed in the literature [21, 22], the differences are crucial, and essential in maintaining

the 3 features just mentioned; we discuss these points in detail below.

There are many SM extensions where 0νββ decay receive new contributions besides

those from light Majorana neutrino masses (see [23] for a general overview). The simplest

2We shall not discuss the implications of requiring enough leptogenesis to account for the observed

baryogenesis [9] (for recent reviews see [10, 11]).
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scenario assumes the presence of heavy Majorana neutrinos whose exchange generates

new contributions to 0νββ decay, similar to the ones generated by the light neutrinos.

(See for recent work [24–27].) Other extensions with many more new particles have also

been studied; such as left-right (LR) models [28–30] and supersymmetric extensions (see,

for instance, for a review [1], and references there in). In such models there are several

contributions to the 0νββ decay amplitude, any of which can dominate depending on the

region of parameter space being considered. We are interested, however, in identifying

the minimal SM extensions leading to the largest possible contributions to 0νββ decay

and containing no independent neutrino masses. This means that, as argued above, light

neutrino masses only result from the unavoidable contributions mediated by the LNV

operators generating 0νββ decay; so that the effective Lagrangian approach provides the

proper language for classifying such scenarios [16]. Here, we are only concerned with giving

a specific example of the case where 0νββ and neutrino masses are generated by the same

underlying physics but at different orders in perturbation theory, with the former appearing

at tree level, while the latter only at two loops.3 Simple models with finite neutrino masses

at two loops have been often discussed in the literature [32, 33], although not necessarily

related to NP inducing 0νββ decay as it is the case here.

It is worth emphasizing again that the model we study is one particularly simple exam-

ple of a class of models realizing the above scenario, and that all such models share many

phenomenological implications. In our case the model contains a discrete Z2 symmetry,

which is spontaneously broken. This model has the virtue of providing a direct analysis

of the symmetries and scales, however, it also has a domain-wall problem [34, 35]. One

way of dealing with this problem is to allow the discrete symmetry to remain unbroken,

but at the price of generating both neutrino masses and the 0νββ amplitude at a higher

loop order; a possibility we will not pursue. We instead discuss related but somewhat more

involved models that avoid the domain wall problem while retaining the same low-energy

phenomenology. We will restrict ourselves to the most relevant region of parameter space

where the 0νββ decay rate lies within the reach of the next round of experiments. With this

assumption, together with the constraints from lepton flavor violation (LFV) processes such

as µ → eee, and with the requirement of perturbative unitarity (or if preferred, natural-

ness of perturbation theory), the model predicts that the neutrino masses obey a normal

hierarchy, that the lightest neutrino mass lies in the range 0.002 eV . m1 . 0.007 eV,

and that the third mixing angle in the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix

U [5, 6] obeys sin2 θ13 & 0.008. Value which lies well within the sensitivity of ongoing

neutrino oscillation experiments. Besides, the new (charged) scalar masses can be within

the LHC reach, and various LFV processes are predicted to have rates that will be probed

when present precision is improved by the next generation of experiments.

In next section we present our model; few details on the scalar spectrum and couplings

are also worked out, and its relation to other models is briefly discussed. The reader mainly

3LNV effective operators including quarks also generate neutrino masses but in general at higher loop

order, in fact too high in some cases to explain the observed spectrum [31]. Although such operators are

not considered in our analysis, we will comment on them further when discussing our general set up in

detail [16].
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interested in the phenomenological implications of the model can go directly to section 3,

where we evaluate the rate for 0νββ decay. The requirement that this process can be

observed in the next round of experiments, together with perturbativity, translates into

upper bounds on the masses of the extra scalars. These, in turn, result in limits on their

couplings if present bounds on LFV processes are to be fulfilled, as we show in section 4. We

calculate the neutrino masses in section 5, where we show that the model can accommodate

the observed pattern of neutrino masses and mixings, though it predicts a somewhat small

electron neutrino effective mass mee. Finally, the prospects for the discovery of the extra

scalars at LHC are considered in section 6. In connection with this it must be noted

that models with extra scalars may allow for a would-be Higgs boson more elusive to LHC

searches, for it can have further decay channels open (see for instance [36–38]). Conclusions

are drawn in last section. In three appendices we collect some technical details.

2 A model with lepton number softly broken

This model only extends the SM Higgs sector, in order to allow for scalar couplings to lepton

bilinears with non-zero LN. More precisely, as we look for separating the origin of neutrino

masses from the mechanism mediating 0νββ decay, we only introduce new scalar couplings

to RH charged leptons, ensuring they are the only final state produced in tree-level 0νββ

decay. A simple way to achieve this is to enlarge the Higgs sector including, besides the

SM scalar doublet φ of hypercharge 1/2, a complex scalar singlet κ of hypercharge 2, a real

(neutral) scalar singlet σ, and an electroweak triplet χ of hypercharge 1. We also impose

a Z2 symmetry, under which all SM particles and κ are even while both σ and χ are odd,

which forbids their coupling to lepton bilinears. Thus, the Yukawa Lagrangian reads

LY = `LYeeR φ+ ecRgeRκ+ h.c. , (2.1)

where we can assume Ye to be a 3 × 3 diagonal matrix with positive eigenvalues, and g a

complex symmetric matrix with three of its phases unphysical.

The most general Higgs potential consistent with the symmetries is4

V = −m2
φ|φ|2 −m2

σσ
2 +m2

χTr
{
χ†χ

}
+m2

κ|κ|2

+λφ|φ|4 + λσσ
4 + λκ|κ|4 + λχ

(
Tr
{
χ†χ

})2
+ λ′χTr

{(
χ†χ

)2}
+λφσ|φ|2σ2 + λφκ|φ|2|κ|2 + λφχ|φ|2Tr

{
χ†χ

}
+ λ′φχφ

†χ†χφ

+λσκσ
2|κ|2 + λκχ|κ|2Tr

{
χ†χ

}
+ λσχσ

2Tr
{
χ†χ

}
+

[
µκκTr

{(
χ†
)2}

+ λ6σφ
†χφ̃+ h.c.

]
, (2.2)

where by rephasing the fields we can always choose µκ and λ6 real of either sign. For

convenience, we will take µκ positive and λ6 negative. In terms of charge eigenstates, the

4Terms like Tr
{
χ2

}
Tr

{
χ†2

}
, Tr

{
χ2χ†2

}
or φ†χχ†φ can easily be related to the terms already included

by using the fact that for two arbitrary 2×2 traceless matrices A = Aiτi and B = Biτi, {A,B} = Tr {AB}1.

Other possible terms are forbidden by the discrete symmetry.
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fields χ and φ are written

χ =

(
χ+/
√

2 χ++

χ0 −χ+/
√

2

)
, φ =

(
φ+

φ0

)
. (2.3)

The singlet σ is introduced to preserve the discrete symmetry that forbids the scalar

triplet from coupling to leptons. This symmetry is broken spontaneously by the VEVs

〈σ〉 and 〈χ0〉.
For the phenomenological discussion it is important to note that in the limit of vanish-

ing Ye, lepton number can be defined to only act on `L; this is enough to protect neutrinos

from getting a Majorana mass. While the eR lepton number, which would forbid 0νββ

decay (into two eR), is explicitly broken in the scalar potential due to the presence of the

µκ and λ6 terms. Therefore, the 0νββ decay amplitude will be proportional to all three

couplings: gab in eq. (2.1) and µκ and λ6 in eq.(2.2); whereas neutrino masses will also

depend on Ye.

This is one of a class of models with the same low energy physics. In order to under-

stand the common LNV features it is convenient to consider the above theory, but with

σ complex, and the modifications needed to insure a real Lagrangian. In this case LN is

exactly conserved; if leptons are assigned LN −1, κ carries LN equal to 2, while σ† and

χ both carry LN equal to 1, so that type II see-saw Yukawa couplings ˜̀
Lχ`L are forbid-

den. The vertex σ† ˜̀Lχ`L, however, is allowed and generated at two loops, providing light

neutrinos a finite mass (which we calculate exactly) after spontaneous symmetry breaking

proportional to
〈
σ†χ

〉
. Obviously, this model has a Majoron [39] because LN, which is

a global abelian symmetry, is spontaneously broken. One can then consider the region of

parameter space where such interesting models are phenomenologically viable,5 or promote

the symmetry to a local one by gauging, for instance, baryon minus lepton number (B−L).

Although, this is an interesting possibility, too, with renewed experimental interest (see, for

instance, for a review [45]), it requires adding RH neutrinos that provide a new potential

source of light neutrino masses; this lies outside the goal of the present investigation that

is centered on theories where neutrino masses are generated by the LNV effective operator

accounting for 0νββ decay.

For this reason we have assumed σ to be real, breaking LN explicitly but leaving as

a remnant an exact Z2 symmetry. The general features of the theory remain, though the

Majoron does not appear and LN is reduced to the above Z2 symmetry.6 The spontaneous

breaking of this discrete symmetry will generate domain walls. This poses no problem

provided 〈σ〉 is sufficiently large (with λ6 correspondingly small while keeping their product

fixed) guaranteeing the formation of such defects before the inflationary epoch. We have

5In this model the Majoron will be mainly a singlet [39]. In which case its couplings to ordinary matter

are small and then little constrained, while its coupling to the Higgs boson is essentially free. Thus, singlet

Majorons can result in invisible Higgs decays (see [40] for a recent example). Moreover, they can have

interesting implications in astrophysics and cosmology because they can substantially affect the cooling

of supernovas [41] and the neutrino relic abundance, due to the possibility of neutrino decaying [42] or

annihilating [43] into Majorons. They can be even used as a dark matter candidate (see for instance [44])

if massive (pseudo-Majorons).
6One can also assign an odd Z2 parity to the leptons, in which case this discrete symmetry equals (−1)LN.
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assumed instead that 〈σ〉 is not too large because we prefer avoid requiring λ6 unnaturally

small; we may then avoid a domain-wall problem by adding soft-breaking terms, such as σ3

to the potential (such a modification would not require the introduction of tree-level Yukawa

interactions violating the discrete Z2 symmetry). We do not pursue this discussion because

within this class of models there is an even simpler one, with the same neutrino physics at

low energy, and none of these potential drawbacks. It is the same model presented above,

but with σ replaced by its vacuum expectation value, σ → 〈σ〉; up to coupling constant

redefinition this yields the same potential as eq. (2.2) without the terms containing σ,

except for the last term that becomes µχφ
†χφ̃, with

µχ = λ6 〈σ〉 , (2.4)

of the order of a TeV. Obviously, the resulting renormalizable Lagrangian has the same

quantum behaviour than ours; in particular, neutrino masses are finite and generated at

two loop order and can be obtained from our results by eliminating λ6 using (2.4). We

will prefer to discuss the model including the real scalar field σ because the perturbative

and symmetry analyses appear to be more transparent to us. In the minimal model with

the SM addition of only κ and χ, and the scalar potential terms relating their LN charges

µκκTr
{(
χ†
)2}

and µχφ
†χφ̃ the LN of the χ field is not well defined since the first term

requires it to be 1 while the second 0 (though never 2); as a consequence the effective

vertex Yχ ˜̀
Lχ`L, is finite and generated radiatively.7 Despite the parallels of this discussion

with models implementing a type II see-saw mechanism (which contain a tree-level ˜̀
Lχ`L

coupling) there is an important difference, namely, that in such theories both the expression

for the neutrino masses and the 0νββ decay amplitude are linear in 〈χ〉; in contrast the

corresponding results in our model are proportional to 〈χ〉2 (see eqs. (3.4) and (5.2) below).

The extension of the SM model we consider is related to the one presented in refs. [21,

22] as far as particle content is concerned (we differ by adding the singlet σ). However,

the symmetries and quantum number assignments are different, which proves a crucial

difference. Had we included the hard term κφ†χ†φ̃ as was done in the above references,

χ should have been assigned LN = 2; this would necessitate also including the tree-level

coupling ˜̀
Lχ`L that would lead to the usual type II see-saw scenario. In particular it would

have been inconsistent to assign LN zero to χ or to arbitrarily exclude this Yukawa coupling

from the Lagrangian, for its coefficient would receive divergent radiative corrections; in

consequence the neutrino masses are not calculable. If one requires χ to have LN equal

to 0, as was done in these publications, the quartic coupling κφ†χ†φ̃ must be absent; but

then LN remains unbroken and the light neutrino masses must vanish to all orders which

is again inconsistent with the results presented there.

7Note that in the theory containing an extra real scalar σ, one could also reason differently to justify this

result. Indeed, we could assign σ LN equal to 0; then the quartic term σφ†χφ̃ fixes the χ LN also equal to

0, while the trilinear term κTr{(χ†)2} breaks LN softly. In any case the discrete Z2 symmetry guarantees

that the neutrino masses stay finite.
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2.1 The scalar spectrum

The requirement on the scalar potential of being bounded from below is fulfilled restricting

the quartic couplings in eq. (2.2) adequately; these conditions include8

λσ, λφ > 0 , λφσ > −2
√
λσλφ . (2.5)

We have also checked that there is a non-trivial minimum on which the scalar neutral

components acquire non-zero expectation values: vφ ≡
〈
φ0
〉
> 0, vχ ≡

〈
χ0
〉
> 0, vσ ≡

〈σ〉 > 0, with

φ0 =
〈
φ0
〉

+
1√
2

(φR + iφI) , χ0 =
〈
χ0
〉

+
1√
2

(χR + iχI) , σ = 〈σ〉+ σR . (2.6)

In appendix A we comment on the experimental limit on the scalar triplet VEV vχ, which

we will find to be of the order of few GeV; to be conservative we will assume vχ < 5 GeV,

this satisfies vχ � vφ ≈ 174 GeV where 1/(v2φ + 2v2χ) = g2/2m2
W = 2

√
2GF (derived

from eq. (A.2) and the experimental limit on the ρ parameter, |ρ0 − 1| � 1 [1]). In this

approximation the minimization conditions can be easily solved:

vχ ≈
−λ6vσv2φ

m2
χ + v2φλφχ + v2σλσχ

, v2φ ≈
2λσm

2
φ − λφσm2

σ

4λσλφ − λ2φσ
, v2σ ≈

2λφm
2
σ − λφσm2

φ

4λσλφ − λ2φσ
.

(2.7)

Notice that the phase choice λ6 < 0 is consistent with vχ being real and positive. We set

the σ and φ mass squared terms in the Higgs potential negative to favour the development

of such a minimum. Though we choose the χ mass squared term positive, this field also

acquires a small VEV induced by the doublet and singlet VEVs, similar to the case observed

in see-saw of type II models [46–48].

The scalar masses can be obtained by substituting eq. (2.6) in the potential. Using the

exact minimization conditions to eliminate mφ and mσ in favour of the VEVs, the mass

terms for the charged scalars can be written

LM = −
(
κ−− χ−−

)
M2
D

(
κ++

χ++

)
−
(
φ− χ−

)
M2
S

(
φ+

χ+

)
, with (2.8)

M2
D =

(
m2
κ + v2φλφκ + v2σλσκ + v2χλκχ 2µκvχ

2µκvχ m2
χ + v2φ(λφχ + λ′φχ) + v2σλσχ + 2v2χλ

′
χ

)
, (2.9)

M2
S =

(
vχλ

′
φχ − 2vσλ6

)
2vχ

(
2v2χ −

√
2vφvχ

−
√

2vφvχ v2φ

)
. (2.10)

8Notice that the term |φ|2σ2 is always positive.

– 7 –



J
H
E
P
0
5
(
2
0
1
2
)
1
3
3

Analogously for the neutral sector

LM = −1

2
(φI χI)M

2
I

(
φI
χI

)
− 1

2
(φR χR σR)M2

R

φRχR
σR

 , with (2.11)

M2
I = −vσλ6

vχ

(
4v2χ −2vφvχ
−2vφvχ v2φ

)
, (2.12)

M2
R =


4v2φλφ 2vφ (vσλ6 + vχλφχ) 2

√
2vφ (vσλφσ + vχλ6)

2vφ (vσλ6 + vχλφχ) 4v2χ(λχ + λ′χ)− v2φvσλ6/vχ
√

2
(
v2φλ6 + 2vσvχλσχ

)
2
√

2vφ (vσλφσ + vχλ6)
√

2
(
v2φλ6 + 2vσvχλσχ

)
8v2σλσ − 2v2φvχλ6/vσ

 .

(2.13)

All eigenvalues of these mass matrices must be positive (except for the would-be Goldstone

bosons providing the longitudinal vector boson degrees of freedom) in order to guarantee

that the solution to the minimization conditions corresponds to a local minimum. This sets

further constraints on the model parameters, which can be satisfied rather easily, especially

in the limit mχ � vφ,σ,χ.

Thus, we are left with two massive doubly-charged scalars κ1,2,

κ1 = cos θDκ
++ + sin θDχ

++ ,

κ2 = −sin θDκ
++ + cos θDχ

++ , (2.14)

with

sin 2θD = 2 sin θD cos θD =
4µκvχ

m2
κ1 −m2

κ2

, (2.15)

and only one massive, mainly triplet, singly-charged scalar ω,

ω+ = −sin θSφ
+ + cos θSχ

+ , with tan θS =

√
2vχ
vφ

. (2.16)

Similarly, there is a neutral scalar A with imaginary components,

A = −sin θIφI + cos θIχI , with tan θI =
2vχ
vφ

. (2.17)

There are also three neutral scalars along the real components φR, χR, σR. We will denote

these mass eigenfields by h (mainly doublet), H (mainly triplet) and s (mainly singlet).

They are obtained rotating the current fields, what introduces other three mixing angles.

Notice that in the limit mχ � vφ,σ, we have vχ � vφ,σ and mκ2,ω,A ≈ mχ, with all

mixings small.

2.2 Some scalar couplings of phenomenological interest

Once the quadratic terms of the Lagrangian are diagonalized we can read the interactions

for the mass eigenfields. In the following we will need the scalar coupling to RH electrons

ecRa gab eRb (cos θDκ1 − sin θDκ2) + h.c. , (2.18)

– 8 –
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e

e
κ−−

χ−−

W

W
χ0

〈σ〉

〈φ〉

〈φ〉

〈φ〉〈σ〉

〈φ〉

χ0

Figure 1. Dominant tree-level diagram contributing to the effective neutrinoless double beta decay

operator.

and the corresponding doubly-charged scalar couplings to gauge bosons

g2χ0†W−µ W
µ−χ++ + h.c.→ g2vχW

−
µ W

µ− (sin θDκ1 + cos θDκ2) + h.c. , (2.19)

as well as their trilinear couplings

− µκκ++
(
χ−
)2 − 2µκκ

++χ−−χ0† + λ6σ
(
φ−
)2
χ++ + h.c. , (2.20)

which can be also expressed in terms of the mass eigenfields using eqs. (2.14)–(2.16), and

the corresponding VEVs in eq. (2.6). Finally, the Yukawa coupling changing charge and

chirality writes

νL Ye eR φ
+ + h.c. = νL Ye eR

(
cos θSG

+ − sin θSω
+
)

+ h.c. , (2.21)

where G+ = cos θSφ
+ + sin θSχ

+ is the would-be Goldstone boson providing the third

component to the W .

3 Neutrinoless double beta decay

Both doubly-charged scalars κ1,2 have components along the singlet κ++ and the triplet

χ++. Therefore, they (respectively) contain couplings to RH electrons and to W ’s, gen-

erating an effective vertex eeWW that mediates 0νββ decay. In this section we calculate

this contribution to 0νββ decay and obtain the explicit constraints on the model param-

eters derived from the assumption that 0νββ decay will be observed in the next round

of experiments.

Assuming that mκ,χ � vφ,σ and integrating out the heavy κ and χ modes we find,

after a straightforward calculation, that the effective Lagrangian contains the term

L9 =
4(λ6vσ)2µκ
m2
κm

6
χ

(eRa g
∗
ab e

c
Rb)
(
φ†Dµφ̃

)(
φ†Dµφ̃

)
+ h.c. , (3.1)

as announced in the Introduction, and discussed in the companion paper [16]. One can

better understand the origin of this LNV interaction by considering the contribution of
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the dominant diagram in figure 1, where the different couplings and VEVs involved are

displayed explicitly. The corresponding eeWW vertex at low energy (q2 � m2
κ1,2) can be

written as9

LeeWW = −
2g2µκv

2
χ

m2
κ1m

2
κ2

eRa g
∗
ab e

c
Rb W

µ Wµ + h.c. , (3.2)

where we have summed up all possible mass insertions in the internal propagator, and used

eq. (2.15). This expression coincides with eq. (3.1) when the scalar doublets develop a VEV

in the limit of large mκ,χ (� vφ,σ), i.e., vχ ≈ −λ6vσv2φ/m2
χ and mκ ≈ mκ1 , mχ ≈ mκ2 .

Let us particularize to the case a = b = e, relevant for 0νββ, and further integrate the

two W ’s to obtain the appropriate 6-fermion contact interaction

L0νββ =
G2
F

2mp
ε3 (ūγµ(1− γ5)d) (ūγµ(1− γ5)d) ē(1− γ5)ec , (3.3)

where mp denotes the proton mass and

ε3 = −
8mpµκv

2
χ

m2
κ1m

2
κ2

g∗ee . (3.4)

This type of interactions has been already considered in the literature [49], where limits

from the most sensitive experiments at that moment were derived. Since they have not

been substantially improved, we will directly use the results in [49] from the Heidelberg-

Moscow experiment corresponding to T1/2 > 1.9×1025 years which yields10 ε3 < 1.4×10−8

at 90% C.L. On the other hand, experiments in the near future will be sensitive to lifetimes

of the order of 6× 1027 years [14], i.e. a reduction factor on the coupling of roughly 0.05.

Then, in order to 0νββ decay be observable in the next round of experiments but still

satisfy the present limits, we must require

8.75× 10−11
Next
<

mpµκv
2
χ

m2
κ1m

2
κ2

|gee| < 1.75× 10−9 (90% C.L.) , (3.5)

where mp is the proton mass and the inequality with the superscript ”Next” corresponds to

the requirement that 0νββ decay will be observed in the next generation of experiments [14].

While the inequality without the superscript stands for the present experimental limit at

the 90% C.L.. The conditions in eq. (3.5) will prove rather restrictive because its range of

variation is relatively narrow. In fact, reducing the lower limit will appreciable enlarge the

allowed parameter region as discussed below.

Thus, the above lower limit together with the requirement of perturbative unitarity

(indicated by the ”Pert” superscript in the inequalities below) or naturality, which bounds

from above the product of couplings and VEVs µκv
2
χ|gee|, translate into an upper limit

on the product of the scalar masses mκ1,2 . These, however, are not precisely established

because the perturbative bounds are in fact estimates that vary with the approach. In

9It must be emphasized that the Lagrangian violating LN by 2 units for 0νββ decay is proportional to

v2χ. This must be compared with the linear dependence in vχ obtained when the χ LN assignment is 2.
10There is a misprint in ref. [49]. We thank the authors of this reference for providing us with the correct

limit on ε3.
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Figure 2. Projection on the mκ−mχ plane of the allowed parameter space region, with mκ ≈ mκ1

and mχ ≈ mκ2
. On the left (right) we draw the region assuming perturbative unitarity (a LN

breaking scale µκ < 20 TeV). The blue, darker (orange, lighter) areas correspond to vχ = 2 (5) GeV.

The crosses stand for the reference point mκ1 = 10 TeV,mκ2 = 2 TeV (and vχ = 2 GeV, µκ =

15 TeV, with gee = 1 and geµ = 0.001).

figure 2 we show the allowed mκ − mχ region, where mκ ≈ mκ1 and mχ ≈ mκ2 in the

limit of small mixing angle θD, for vχ = 2 (blue, darker) and 5 (orange, lighter) GeV

(see appendix A), respectively, assuming perturbative unitarity (left) and a maximum LN

breaking scale µκ (right). In the first case (see eqs. (B.1) and (B.2) in appendix B)

|gee|
Pert
<
√

4π , µκ
Pert
< 4π min(mκ1,2) ; (3.6)

whereas in the second one

|gee|
Pert
<
√

4π , µκ < 20 TeV . (3.7)

It must be noticed that all (pseudo-)observables violating LN are proportional to µκv
2
χ.

Hence, an increase in vχ can be traded by the corresponding increase in µκ, and vice-

versa. So, the orange areas in figure 2 can be also interpreted as the allowed regions for

vχ = 2 GeV and µκ
Pert
< 25π min(mκ1,2) (left) and µκ < 125 TeV (right). One may wonder

at this point why we choose the bound of 20 TeV for µκ in eq. (3.7); or equivalently, what

is the effect of varying such a value. The answer is simple. The blue, darker region in

the right panel of figure 2 disappears for µκ . 8 TeV, which only reflects the narrowness

of the range allowed by eq. (3.5), as required by our main working assumption that 0νββ

decay will be observed in the next round of experiments. The allowed regions in figure 2

are appreciably enlarged by reducing the lower limit in this equation. This can also be

achieved by further increasing µκ.

These areas are also bounded from below due to the non-observation of doubly-charged

scalars; we can then assume mκ1,2 > 100 GeV, as discussed in section 6. However, the
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enclosed areas in figure 2 are further reduced by a more stringent and subtle constraint.

As we shall discuss below, bounds on LFV processes (see section 4) like τ− → e+µ−µ−

banish mκ to large values if the corresponding coupling product gτeg
∗
µµ is sizeable, which

is required because neutrino masses are proportional to gab (see section 5), and gτe and

gµµ must be large in order to accommodate the observed neutrino spectrum. Moreover,

both mκ and mχ enter in the two-loop integrals generating neutrino masses, but these

tend to zero in the limit mχ/mκ → 0. As a result, both scalar masses are constrained, but

differently, by the τ− → e+µ−µ− bound. The regions in figure 2 satisfy all experimental

restrictions, including the upper bound in eq. (3.5). The LHC will further reduce the

allowed regions, mainly in the case of large LN breaking scale µκ. We also provide a

“benchmark point”, denoted by a cross in the figures, where all constraints are satisfied,

and which we will use as reference throughout the paper. As can be deduced from this

figure the parameter space is rather constrained in this simple model when we require that

the values of couplings and scalar masses stay natural, but one can think of other models

within this class of theories where these constraints are significantly relaxed (at the price

of complicating the spectrum through the introduction of additional scalars).

4 Lepton flavor violation constraints

We will show in the next section that in order to obtain neutrino masses in agreement with

experiment, the doubly-charged scalar Yukawa couplings gab and the mχ/mκ ratio cannot

be too small. In such a case some of the predicted LFV rates can become large enough

to be at the verge of their present experimental bounds, especially for very rare processes

like µ− → e+e−e− or µ− → e−γ. Thus, we can use LFV processes to further constrain the

model, and perhaps to confirm or exclude it in the near future.

In this section we will briefly discuss the most restrictive process µ− → e+e−e−, whose

tree-level amplitude is obtained by the single exchange of the doubly-charged scalar κ. The

corresponding branching ratio equals

BR(`−a → `+b `
−
c `
−
d ) =

1

2(1 + δcd)

∣∣∣∣ gabg∗cdGF m̃2
κ

∣∣∣∣2 BR(`−a → `−b νν̄) , (4.1)

where δcd takes into account the fact that there may be two identical particles in the final

state, as in our case, and
1

m̃2
κ

≡ cos2 θD
m2
κ1

+
sin2 θD
m2
κ2

. (4.2)

(If sin2 θD � 1, the effective mass m̃κ ≈ mκ1 since we, in practice, assume that mκ1,2

are never very different.) Then, the current experimental limit on BR(µ− → e+e−e−) <

1.0× 10−12 [1] translates into

|gµeg∗ee| < 2.3× 10−5 (m̃κ/TeV)2, (4.3)

which is mainly a constraint on gµe because gee must be relatively large if 0νββ decay has

to be observable at the next generation of experiments.
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ν e νe

κ++

χ+ χ+

φ+ φ+

〈φ〉 〈φ〉

〈σ〉〈σ〉

Figure 3. Two-loop diagram contributing to neutrino masses.

Related processes provide weaker constraints. Thus, µ− → e−γ proceeds at one loop

and is suppressed by the corresponding loop factor, and similarly for µ − e conversion in

nuclei. The bounds from µ+e− ←→ µ−e+ (muonium-antimuonium conversion) or muon-

positron conversion, although tree-level processes, are also less restrictive (for a discussion

of LFV processes mediated by doubly-charged scalar singlets in a similar model see [50, 51]).

All these processes and the analogous ones involving τ leptons, as well as the corresponding

(anomalous) magnetic moments will be discussed in detail with more generality elsewhere.

Here we shall be mainly interested in the interplay of a large 0νββ decay rate and

a realistic pattern of Majorana masses, and for this purpose it is sufficient to show the

restrictions on these (pseudo-)observables in simple SM extensions as the one at hand,

and indicate which further processes may be within the reach of new experiments. In our

case, the most restrictive process besides µ− → e+e−e− is τ− → e+µ−µ−, which will be

discussed below taking into account the neutrino mass requirements.

5 Neutrino mass generation and θ13 expectation

In the model under consideration LN is not conserved when the couplings µκ, λ6 , gab and

Ye are non-vanishing. In this case there is no protection against the neutrinos acquiring

Majorana masses mν , which will then be proportional to all four couplings, are finite, and

appear at the two-loop level, as explained in section 2 and shown by explicit calculation in

appendix C. (If any of these couplings vanishes a conserved lepton number remains after

spontaneous symmetry breaking and the neutrino masses will vanish.) These masses are

generated by the non-renormalizable interaction σ ˜̀
Lχ`L generated at two loops, when σ

and χ develop VEVs; the corresponding coupling being mν/vσvχ. In contrast, the see-saw

type II coupling ˜̀
Lχ`L violates the Z2 symmetry and is forbidden to all orders.

In figure 3 we draw one of the diagrams. Defining the neutrino mass matrix as usual,

Lm = −1

2
νLmνν

c
L + h.c. , (5.1)

we can write, taking vχ � vφ (see eq. (A.3) and appendix A),

(mν)ab =
µκv

2
χ

2(2π)4v4φ
mag

∗
abmbIν , (5.2)
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where Iν is the sum of the (rescaled) loop integrals from the different graphs.11 Iν can be

estimated in the mass insertion approximation with mκ,χ � mW . For instance, in this limit

one of the contributions, I1, corresponding to the diagram in figure 3 gives (neglecting the

lepton masses in the denominator and assuming equal masses for the doubly and singly-

charged triplet components)

I1 = (4π)4m4
χ

∫
k · q

k4(k2 −m2
χ)q4(q2 −m2

χ)((k − q)2 −m2
κ)

. (5.3)

In this approximation the full Iν is a dimensionless function of y = (mχ/mκ)2 of order

one, except for y → 0, in which case it tends to zero as y log y. In contrast with I1 which

tends faster to zero, as (y log y)2, for vanishing y. Iν is also bounded from above, going to

a constant of order 2 for y →∞. A complete calculation taking into account the W -mass,

as well as the vχ corrections and the new scalar mass scales, is presented in appendix C. A

reasonable approximation is to neglect higher vχ effects and take all triplet masses equal

mκ2 = mω = mA; in fact, in the physical limit vχ � vφ, κ2 is mainly the doubly-charged

triplet component, ω the singly-charged one, and A the imaginary part of the neutral

triplet component.

In our model the Yukawa couplings gab appear in the neutrino mass matrix, the 0νββ

decay amplitude and the amplitudes for the LFV processes, and this translates into rather

stringent constraints on the allowed neutrino mass matrices (once one insists in dealing

with a perturbative theory up to several tens of TeV). We now consider these constraints.

Assuming µκ ∼ 10 TeV and vχ < 2 GeV, and taking Iν , |gee| ∼ 1, eq. (5.2) gives

| (mν)ee | ∼ 3.7×10−6 eV. How large can it be in general ? Using perturbativity limits (3.6)

and Iν ∼ 1, we get

| (mν)ee |
Pert
< 1.6× 10−5

(
min(mκ1,2)

TeV

)
eV

Next,Pert
< 1.6× 10−4 eV, (5.4)

where the upper limit is obtained by taking min(mκ1,2) ∼ 10 TeV (see figure 2, left).

Alternatively, we can translate the limits on 0νββ decay in eq. (3.5) into bounds on (mν)ee,

but for large scalar masses this limit is less stringent than (5.4). In either case, | (mν)ee |
is typically less than 10−4.

There is in addition a quite strong bound on (mν)eµ from µ → eee. Substituting

eq. (4.3) in the generic neutrino mass expression in eq. (5.2) we find

| (mν)eµ | < 2.3× 10−5
(
m̃κ

TeV

)2 µκv
2
χ

2(2π)4v4φ

memµ

|gee|
Iν . (5.5)

The constraint that a signal is seen in near-future 0νββ decay experiments (left inequality

in eq. (3.5)) can then be used to eliminate |gee|; in this way we obtain

| (mν)eµ |
Next
< 4.3Iν

m̃2
κµ

2
κ

m2
κ1m

2
κ2

v4χ
v4φ

eV
Next,Pert
< 1.2× 10−5 eV , (5.6)

11Again we note that neutrino masses, which violate LN by 2 units, are proportional to v2χ in our case.

In contrast the dependence is linear in the estimate for the model in refs. [21, 22], showing that χ must

be assigned LN 2, as in see-saw models of type II. Besides, the neutrino masses are in fact infinite in that

particular case, a point obscured because divergent diagrams were omitted.
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where in the second inequality we used Iν ∼ 1, vχ = 2 GeV, the naturality limit on µκ
(eq. (3.6)), and sin θD � 1. If we had used the LN breaking scale µκ = 10 TeV and the

production limit on mκ2 > 0.1 TeV, then | (mν)eµ | < 7× 10−4.

The final result of this phenomenological discussion is that both, | (mν)ee | and | (mν)eµ |,
must be below ∼ 10−4 eV, and this follows from requiring that (i) 0νββ decay is at the

reach of the next round of experiments, and (ii) that the theory is perturbative and free of

unnatural fine tuning up to several tens of TeV. These limits could be somewhat relaxed:

in the | (mν)ee | case by making doubly-charged scalar masses larger, and in the | (mν)eµ |
case by allowing for a smaller |gee|. However, this is at the price of generating some tension

with the naturality constraint in the former case, and spoiling the possibility of observing

0νββ decay induced by scalars in the near future in the latter one. There are additional but

less severe bounds on the remaining gab from other LFV processes; we discuss them below,

when presenting the plots for the relevant neutrino mass (pseudo-)observables satisfying

present experimental restrictions.

5.1 Prediction for the third neutrino mixing angle θ13

The question now becomes whether it is possible to accommodate the observed spectrum

of neutrino masses and mixing angles in this type of models once the above experimental

constraints are imposed. In the following we will use the standard parameterization of

the neutrino mass matrix [1, 48, 52, 53] in terms of 3 mass parameters, 3 mixing angles

and 3 phases:

mν = UDνU
T , with Dν = diag(m1,m2,m3) (5.7)

and

U =

 c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13


 eiα1/2

eiα2/2

1

 , (5.8)

where sij ≡ sin θij and cij ≡ cos θij . A global fit to neutrino oscillation data gives (see,

for instance, [54]) ∆m2
21 ≡ m2

2 − m2
1 = (7.59+0.20

−0.18) × 10−5 eV2, ∆m2
31 ≡ m2

3 − m2
1 =

(2.50+0.09
−0.16) × 10−3 eV2, s212 = 0.312+0.017

−0.015 , s223 = 0.52+0.06
−0.07 , s213 = 0.013+0.007

−0.005 . Neutrino

oscillations are not sensitive to the phases α1 and α2, nor to a common mass scale which is

conventionally chosen to be the lightest neutrino mass. δ, which appears multiplied by s13,

is beyond present experimental sensitivity. The sign of ∆m2
31 is not presently known, and

could be negative (known as inverted hierarchy), however, in this case | (mν)ee | > 10−2 eV

and cannot be accommodated within our model; we will therefore consider only the normal

hierarchy case ∆m2
31 > 0. Finally, recent data on electron neutrino appearance at T2K [55]

and Double Chooz [56] experiments point out to a mixing angle θ13 different from zero.

A possible way of identifying the allowed region in parameter space would be to first

generate random values for masses, angles and phases within the 1 σ regions experimentally

allowed in eqs. (5.7) and (5.8), and obtain scatter plots for mν . Then, using eq. (5.2) we

can solve for gab, up to an overall factor ∝ µκv
2
χIν/v

4
φ, and then find the values of µκ, vχ,

mκ,mχ which respect the constraints discussed in the previous sections. The potential
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problem we face is due to the specific form of the neutrino mass matrix, which contains

mag
∗
abmb (see eq. (5.2)), and is therefore suppressed for the first generations due to the light

charged-lepton mass factors. To compensate this may require gab to be too large to meet

the bounds required by 0νββ decay (section 3), LFV processes (section 4) and perturbative

unitarity (appendix B). An alternative way to proceed is noticing that in practice (see (5.4)

and (5.6)) we are asking if |(mν)ee,eµ| ∼ 0 is consistent with neutrino oscillation data (a

question also of general interest not only within the model under consideration). These

additional constraints will hold only within a limited region of the allowed neutrino masses

and mixing parameters, which then implies that the type of models under consideration

gives rather clear predictions about some of these parameters.

In order to see how this comes about it is useful to go through a straightforward

parameter counting exercise: mν is a 3× 3 complex and symmetric matrix specified by 12

real numbers: 3 of these are unphysical and can be absorbed in re-phasing the neutrino

fields, and 5 of the remaining 9 are measured (2 mass differences and 3 mixing angles,

where we include θ13). If we now impose (mν)ee,eµ = 0, corresponding to 4 additional (real)

constraints, only a set of points (or narrow regions, allowing for experimental accuracy)

will be consistent. In fact, there may be no allowed values at all ! We have checked,

however, that for each allowed choice of the experimentally measured parameters there is

a unique solution for α1, α2, δ and m1 satisfying all these restrictions. For example using

the central values of the global fit given after eq. (5.8) we find:

α1 = 0.65 , α2 = −2.32 , δ = −0.78 , m1 = 0.0036 eV , (5.9)

with

mν ≈ 10−2

 0 0 0.59 + 0.58i

0 2.47− 0.2i 2.64 + 0.2i

0.59 + 0.58i 2.64 + 0.2i 2.12− 0.21i

 eV . (5.10)

This exercise can be repeated for different values of sin2 θ13, and the amazing result is that

for the central values of ∆m2
21,31 and s212,23 there are solutions only for 0.012 < sin2 θ13 <

0.024, a range of values that roughly coincides with the result obtained by the global

fits to present data and by recent T2K and Double Chooz experiments. To illustrate

this result we present in figure 4 the sin2 θ13 − δ region allowed when |(mν)ee,eµ| = 0 is

imposed. The green, darker region is obtained when measured mixings and mass differences

(except sin θ13) are varied within 1 σ, while the yellow, lighter one is obtained by varying

them within 3 σ. For comparison we also present the recent Double Chooz result [56]

(sin2(2θ13) = 0.085± 0.029± 0.042, adding statistical and systematic errors quadratically

we obtain sin2 θ13 = 0.022 ± 0.013) as a vertical band, while the cross stands for the

reference point in figure 2.

Of course, (mν)ee and (mν)eµ cannot be identically zero but small, . 10−4 eV. In fact,

gee must be different from zero and rather large in order to 0νββ decay be observable (in

this type of models (mν)ee is small due to the huge suppression factor m2
e entering in its

expression, not because gee is small itself). When (mν)ee and (mν)eµ are allowed to vary

within the model, with the other parameters staying within their 1 σ range, sin2 θ13 is no
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Figure 4. Allowed sin2 θ13 − δ region for |(mν)ee,eµ| = 0. The green, darker region is obtained

when measured mixings and mass differences (except sin θ13) are varied within 1 σ; while the

yellow, lighter one is obtained by varying them within 3 σ. The middle dotted curve corresponds

to the central values of the neutrino masses and mixings in the global fit performed in ref. [54]. For

comparison, we also draw the recent Double Chooz [56] 1 σ limits, where statistical and systematic

errors are added in quadrature (vertical dashed lines). The cross stands for the reference point in

figure 2.

longer bounded from above although the lower bound remains:

sin2 θ13 & 0.008 . (5.11)

In order to illustrate this behaviour we plot in figure 5 |(mν)eµ| as a function of sin2 θ13, with

all the neutrino masses and other mixing parameters varying arbitrarily within their 1 σ

limits. The red, darker region corresponds to |(mν)ee| less than |(mν)eµ|. For comparison,

we also plot the recent Double Chooz limit given above which is fully compatible with

the T2K 90% C.L. interval 0.007 − 0.07 [55], and in agreement with current global fits

(for instance, the one used in this paper [54] allows for 0.008 < sin2 θ13 < 0.020 at 1 σ).

Analogously, in figure 6 we draw |(mν)ee| as a function of the lightest neutrino massm1. The

red, darker region stands now for |(mν)eµ| < |(mν)ee|. The previous figures are obtained

from the neutrino mass restrictions only. But in our approach the model parameters are

further constrained by the bounds from 0νββ decay and LFV processes, which, as already

emphasized, require |(mν)ee,eµ| . 10−4 (see eqs. (5.4) and (5.6), respectively). Then,

sin2 θ13 & 0.008 and 0.002 eV . m1 . 0.007 eV, as seen from figures 5 and 6, respectively.

It then follows that a sufficiently precise measurement of sin θ13 can exclude the model

being discussed, as stressed before.

To conclude this section we derive the lower bounds, announced in section 3, on the

scalar masses implied by the experimental limit on the τ− → e+µ−µ− branching ratio
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Figure 5. |(mν)eµ| as a function of sin2 θ13. The green, lighter area which extends to all the panel

is obtained varying the other measured masses and mixings within 1 σ. The red, darker region

satisfies the extra constraint |(mν)ee| < |(mν)eµ|. The cross corresponds to the reference point in

figure 2, and can be reached with either condition |(mν)ee|<> |(mν)eµ|; whereas the darkest vertical

1 σ band stands for the recent Double Chooz result, summing errors in quadrature. We also draw

the line |(mν)eµ| = 10−4, which is the upper-limit estimate in this model.

Figure 6. |(mν)ee| as a function of m1. Similarly to figure 5, but with the red, darker region

instead satisfying the extra constraint |(mν)eµ| < |(mν)ee|. We also draw the line |(mν)ee| = 10−4,

which is the upper-limit estimate in this model.

(< 1.7 × 10−8). In our model |gτeg∗µµ| must be large in order to reproduce the observed

pattern of neutrino masses. More precisely,

|geτgµµ| =

(
2(2π)4v4φ

)2
memτm2

µ

| (mν)eτ || (mν)µµ |
µ2κv

4
χI

2
ν

Pert
> 0.065

(
TeV

Iνmin(mκ1,2)

)2

, (5.12)
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where the second inequality follows from eq. (3.6) and the substitution of the other variables

by their approximate values (see, for instance, eq. (5.10) for the | (mν)eτ,µµ | estimates),

in particular vχ < 2 GeV. Then, using eq. (4.1) for τ− → e+µ−µ− and the experimental

limit on its branching ratio one obtains |geτgµµ| < 0.007(mκ/TeV)2, which combined with

eq. (5.12) yields mκ > 1.2 TeV (see figure 2, left).12 We will present a detailed study of

LFV processes in this type of models elsewhere.

6 Collider signals

Direct evidence for this type of models would be the discovery of the new scalars at a large

collider. Doubly-charged scalars have fixed couplings to photons and are then produced at

colliders with known cross sections. In addition their decay into leptons offers a very clean

signal, which is particularly important at hadronic machines. Therefore, if doubly-charged

scalars are light enough, they are very well suited for detection at colliders.

In general, this type of scalars is assumed to be part of a weak triplet, and usually

also acts as see-saw messenger of type II generating tree-level Majorana masses for the

light neutrinos [46–48, 57] (see also [58]). Such triplets are then well-motivated on theoret-

ical grounds, especially when considering LR symmetric models, and studies for searching

the corresponding doubly-charged scalars at future colliders have been performed in the

past [59–63] (see also [64, 65] for recent studies; model independent studies have also been

carried out in the literature [66, 67]). The general conclusion is that the LHC discovery

limit reaches masses over 600 GeV (for a center of mass energy of 14 TeV and an integrated

luminosity of 30 fb−1) [64, 68]. However, the actual limits may be much better given the

outstanding LHC performance, which almost matches the most favourable expectations for

a CM energy of 7 TeV [69]. (See for a review [70].)

Recently, first results from CMS have been presented at a CM energy of 7 TeV with

an integrated luminosity of 0.89 fb−1 [71]. The analysis assumed a scalar triplet coupled

to leptons, with 100% branching ratio to each leptonic channel. Nothing is seen, leading

to a lower bound on the doubly-charged scalar mass of about 250 GeV if the main decay

channel contain τ leptons, and to about 300 GeV if they contain only electrons or muons.

Weaker limits were obtained previously by LEP and the Tevatron. The absence at LEP of

a pair-production signal (e+e− → γ∗, Z∗ → κκ̄) gives the constraint mκ > 100 GeV [72–

74].13 Limits on this type of scalars have been also derived using Tevatron data [76–78],

leading to a limit mκ > 100− 150 GeV (depending on the details of the model).

In our model the triplet does not directly couple to fermions, while the doubly-charged

singlet does not couple to W pairs; however, triplet and singlet mix. Of the resulting mass

eigenstates one, κ1, is mainly a singlet and decays dominantly to lepton pairs, while the

other, κ2, is mainly a triplet and has suppressed couplings to charged leptons. Both of them

can be produced at LHC via the Drell-Yan mechanism (qq̄ → γ∗, Z∗ → κ++κ−−) with full

12Note that we have used Iν ∼ 2 because mχ is somewhat larger than mκ (see appendix C).
13Single production via e+e− → κee, as well the u-channel contribution of κ to Bhabha scattering have

also been studied at LEP [74, 75], but the corresponding bounds depend on the unknown values of the

Yukawa couplings.
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strength. Since this is the main production process considered by CMS, the former limits

apply directly to κ1 for a non-negligible mixing: 300 GeV < mκ1 . Limits on mκ2 will be

more difficult to obtain since the process qq̄ → γ∗, Z∗ → κ2κ̄2 → W+W+W−W− is much

more complicated to deal with, due to its large backgrounds and the in general difficult

reconstruction of several leptonic W decays.

Notice that there are other production processes that are more model dependent. In

particular, the same interaction that induces 0νββ decay and the decay of κ into gauge

bosons can mediate single-scalar production through WW fusion. The amplitude is pro-

portional to the triplet VEV, vχ, which is small, and to the singlet-triplet mixing, sin θD,

further suppressing this process. Nonetheless this could prove to be the dominant produc-

tion channel at LHC [60] if vχ > 1 GeV and mκ1,2 > 500 GeV. This is especially relevant for

our model since both LHC and low-energy constraints require a relatively large vχ as well

as large scalar masses (see figure 2), all of which is in marked contrast to the constraints

on triplet models with tree-level type II see-saw neutrino masses. A thorough study of the

various possibilities is somewhat involved [79] and lies outside the scope of this paper; we

will revisit these aspects of our model in a future publication.

7 Conclusions

In this paper we have presented a simple model with a large 0νββ decay rate into RH

electrons through the exchange of the SM W boson and new heavy scalars κ, χ. In this

model the light neutrino masses, 0νββ decay and LFV processes have a common origin,

which provides a simple description of these processes and also leads to a rather constrained

parameter space. A 0νββ decay final state with RH electrons also occurs in left-right (LR)

models (see [80] for a detailed discussion), but generated by the exchange of new heavy

neutrinos N and gauge bosons WR. In these models this process is a priori decoupled from

the light neutrino mass generation, and hence the rate for 0νββ decay can be large and

at the same time the effective electron mass (mν)ee small. Despite these differences both

types of models have similar low-energy (below the electroweak scale) limits or, equivalently,

they represent very different UV completions of two similar effective Lagrangians at scales

below mW . A general discussion of the different alternatives using an effective Lagrangian

approach is presented in a companion paper [16].

The specific model we have discussed is one of a wide class of theories with similar

phenomenology. For example, we choose to break LN explicitly by introducing one neutral

scalar singlet (σ), but, as discussed in section 2 we could promote σ to a complex singlet

and insure the Lagrangian is LN invariant, and this symmetry spontaneously broken; while

the neutrino phenomenology remains similar, it is simpler to discuss in our case. In general,

this class of models require several new scalar multiplets to allow for non-vanishing scalar

couplings to RH electrons, together with a chain of scalar couplings connecting them to

the standard gauge boson triplet, and if desired, to the SM Higgs doublet in order to relate

the new LN acting on the RH leptons to the ordinary LN associated with LH leptons. In

such cases 0νββ decay into RH electrons and the light neutrino Majorana masses are again

related although at different loop order, as in our model.
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This model, which we considered in some detail, is based on an extended scalar sector

containing three new multiplets: two isosinglets and one isotriplet, the physical spectrum

contains two light scalars (with masses ∼ vφ,σ) and 5 heavy scalars (with masses O(TeV)):

2 doubly-charged, 1 singly-charged and 2 neutral. After writing the corresponding scalar

potential and showing that there is a region of parameter space allowing for a local mini-

mum along the desired direction, we have elaborated on their low-energy phenomenological

implications. In deriving our quantitative predictions we required for the model to remain

perturbative up to several tens of TeV.

As repeatedly stressed, the new scalars mediate 0νββ decay into RH electrons, LFV

processes and, at two loops, generate Majorana neutrino masses. By requiring 0νββ decay

to be large enough to be observable at the next round of experiments, we have derived

lower bounds on the coupling to RH electrons gee and upper bounds on the masses of

the exchanged scalars. On the other hand, the stringent experimental limits on LFV

transitions (particularly µ− → e+e−e− and τ− → e+µ−µ−) translate into upper bounds

on the couplings gab and lower bounds on the masses of the new particles involved, and these

create some tension with the assumed 0νββ decay rate. As a result, the model predicts that

most LFV processes can be within the reach of the next generation of experiments, too.

These same couplings and masses also enter the (two-loop) expression for the Majorana

neutrino masses that have the very characteristic form, (mν)ab ∝ mag
∗
abmb, proportional

to the scalar couplings to two RH leptons gab and to the corresponding charged lepton

masses ma,b. Accommodating the observed neutrino mass spectrum and mixing parameters

together with the other constraints is possible, but only for very restricted values of the

lightest neutrino mass (not testable in neutrino oscillation experiments), and when the

mixing angle θ13 is constrained to lie within the preferred 1 σ range from the global fit in

ref. [54], 0.008 < sin2 θ13 < 0.020. This last prediction also goes far beyond our model, and

holds whenever the (symmetric) neutrino mass matrix contains three very small entries,

for example, mee,meµ(= mµe) ∼ 0, as in our case.14 Some of these constraints can be

alleviated by further extending the scalar sector, although at the price of requiring precise

cancellations (that could be naturally enforced using further symmetries).

The model considered presents a simple consistent extension of the SM exhibiting a

large 0νββ decay, but where the contributions to this decay generated by the neutrino

Majorana masses are negligible. The neutrino masses themselves are predictable, in con-

trast with other proposals (see, for example [84]), and consistent with existing data. Note,

however, that although our phenomenological approach and the constraints on the model

mainly follow from requiring an observable 0νββ in the next round of experiments, the

non-observation of this decay and even a vanishing decay rate would be compatible with

our analysis. That would be the case for gee → 0, value which would also ease the LFV

restrictions without altering the neutrino mass predictions. As they are obtained assuming

that (mν)ee, which is proportional to gee, too, is to a large extend negligible.

Finally, we have also reviewed the collider limits on doubly-charged scalars. The

excellent LHC performance should soon allow for the actual confrontation with the expected

14A general discussion of the implications of texture zeroes in neutrino mass matrices can be found

in [81, 82], and most recently in [83].
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masses and couplings for the new scalars in the type of models studied here. We must,

anyhow, be aware that once LHC settles the fate of the SM Higgs boson,15 the mass and

couplings of the scalar doublet will be further constrained, implying further restrictions in

the scalar potential which must be checked that can be satisfied. At any rate, the model

studied here is one of a wider class sharing the main assumption in our analysis, that 0νββ

decay is large and decoupled from any mechanism providing tree-level neutrino masses,

although the latter are generated through higher-order radiative corrections.

A Bound on the scalar triplet VEV

As it is well known, the VEV of a triplet with hypercharge 1 gives a tree-level contribution

to the ρ parameter, spoiling the successful SM (tree-level) prediction ρ0 = 1. In general,

ρ0 =
Σiv

2
i [Ti(Ti + 1)− Y 2

i ]

Σi2v2i Y
2
i

, (A.1)

where the sum runs over the scalars of isospin Ti and hypercharge Yi with VEV vi. For the

case under consideration, and assuming that the VEV of the triplet is much smaller than

the one of the doublet,

ρ0 =
v2φ + 2v2χ

v2φ + 4v2χ
≈ 1−

2v2χ
v2φ

. (A.2)

Then, the VEV of the scalar triplet contributes negatively to ρ0, while the best ρ value

obtained from a global fit to electroweak precision data is [1] ρ = 1.0008+0.0017
−0.0010 at 1σ,

and ρ = 1.0004+0.0023
−0.0011 at 2σ. Thus, v2χ/v

2
φ < 0.00035 at 2 σ, implying vχ < 3 GeV for

vφ ≈ 174 GeV. Which is comparable to the bound derived from the global fit including

explicitly the scalar triplet effects, vχ < 2 GeV at the 90% C.L. [88].

However, a more complete analysis should also include the radiative corrections to

the ρ parameter induced, for example, by the exchange of the scalar triplet, which can be

positive [89]. For instance, in the triplet Majoron model [90] ∆ρ =
(1− ln 2)

2π2
√

2
GFm

2
χ, with

mχ the mass of the doubly-charged scalar, cancelling partially the tree-level contribution.

Since these contributions depend on the mass splitting of the triplet components, which in

our model is not fixed, we will assume a conservative upper bound

vχ < 5 GeV . (A.3)

B Constraints from naturality and perturbative unitarity

The relevant parameter for 0νββ decay and neutrino masses is the product of couplings

and VEVs µκv
2
χgee. It cannot be too large without leaving the perturbative regime and

15In the very near future the LHC will be able to exclude a heavy Higgs with a relatively large signifi-

cance [85, 86] but electroweak precision data do prefer a light Higgs (see, for instance, ref. [87] and references

there in), which shall require further for confirmation (or exclusion).
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there are different arguments that can be used to set upper limits on its size (perturbative

unitarity, naturality, etc.).

Let us discuss the constraints from perturbative unitarity. Consider first the Yukawa

couplings of doubly-charged scalars. Tree-level unitarity at high energy, s � mκ1,2 , in

ee→ ee collisions mediated by κ1,2 requires |gee| <
√

4π. Similar bounds can be obtained

from other channels. In order to be definite, we will demand

|gαβ|
Pert
<
√

4π . (B.1)

Tree-level unitarity at high energy does not give useful information on dimensional param-

eters like µκ because amplitudes involving these couplings decrease with energy. However,

it does not seem natural to have µκ much larger than other dimensionful parameters in the

model, like mκ or mχ. In fact, one-loop diagrams involving the µκ coupling give contribu-

tions to mκ or mχ which are of order δmκ,χ ∼ µ2κ/(4π)2. Therefore, it seems appropriate

to require

µκ
Pert
< 4π min(mκ1,2) . (B.2)

Limits (B.1) and (B.2) also guarantee that the κ1 decay width (to leptons and to κ2, if this

is light enough) is not too large as compared to its mass.

One must be aware, however, that all these limits are estimates which depend on the

naturality approach. Thus, although at the price of fine tuning, one might decide to fix

the model parameters outside the range defined by these limits. Moreover, there can be

model extensions where those values are natural. At any rate, we use eqs. (B.1) and (B.2)

in the text to illustrate that the allowed regions in parameter space are at a large extent

bounded if the perturbative theory must stay natural.

C Loop integrals for evaluating neutrino masses

The evaluation of the complete two-loop contribution to neutrino masses, including mW

effects in a general Rξ gauge, is a complicated task. Fortunately, we found a gauge in

which the calculation simplifies enormously. Indeed, one can choose a gauge in which

triplet and doublet charged scalars do not mix at all (the gauge-fixing Lagrangian is of

the form Lgf = a|∂ · W+ + bχ+ + cφ+|2 with the constants a, b, c chosen to cancel the

φ+χ− and the W+χ−, W+φ− mixing terms). In this gauge the charged Goldstone boson

becomes degenerate with the physical charged scalar; and ω± does not couple to fermions,

whereas G± does not have derivative couplings to the doubly-charged scalars and gauge

bosons. Therefore, the only diagrams contributing to neutrino masses are those depicted in

figure 7. (The corresponding Feynman rules are obtained redefining the fields in section 2.1

adequately; in particular, in this gauge ω± = χ± and G± = φ±.) Following the notation in

eq. (5.2) we will have now Iν = IW + Iφ, where IW and Iφ are the two contributions from
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ν e νe

κ1,2

WW

ν e νe

φ+φ+

κ1,2

Figure 7. Two-loop diagrams contributing to neutrino masses in the generalized Rξ gauge.

Figure 8. Contour plot for the loop integral Iν as a function of the masses mκ1 ≈ mκ and

mκ2 ≈ mχ for mW = 80 GeV and mω = mA = mκ2 . The cross denotes the reference point in the

text.

the diagrams in figure 7. They read

IW = −2(4π)4m4
W cos4 θS

∫
1

k2(k2−m2
W )q2(q2−m2

W )((k−q)2−m2
κ1)((k−q)2−m2

κ2)
×

×
(

4−
(

1− m2
ω

m2
W

)(
k2

k2−m2
ω

+
q2

q2−m2
ω

)
+

(
1− m2

ω

m2
W

)2
(k · q)2

(k2−m2
ω)(q2−m2

ω)

)
, (C.1)

Iφ = (4π)4
m2
A

cos2 θI

∫
k · q

k2(k2 −m2
ω)q2(q2 −m2

ω)((k − q)2 −m2
κ1)((k − q)2 −m2

κ2)
,

where in Iφ we used the equality vχm
2
A = −λ6vσv2φ cos2 θI (see section 2) to rewrite λ6 in

terms of mA. Note also that both doubly-charged scalar masses must enter symmetrically

in the integrals to obtain a non-vanishing contribution.

We have checked that in the decoupling limit (mW � mκ1,κ2,ω,A and vχ � vφ, implying

mκ2 = mω = mχ and cos θS = cos θI = 1) we recover the results obtained in the mass
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insertion approximation discussed in section 5. In general Iν is a complicated function

of mW ,mκ1,κ2,ω,A and the ratio vχ/vφ, which defines cos θS and cos θI . However, since

vχ � vφ, we can safely neglect the corresponding corrections (in the limit of large mχ

the triplet VEV vχ is small, and so is then the mixing of the triplet components with

doublets and singlets; analogously, the contribution of doublet and singlet VEVs to the

masses of the triplet components can be ignored). In this case Iν becomes a function only

of m2
κ1/m

2
W and m2

κ2/m
2
W that we compute numerically. In figure (8) we plot the contours

of constant Iν as a function of the masses mκ1 ≈ mκ and mκ2 ≈ mχ, where we have

fixed mW = 80 GeV. From the figure we see that Iν is order one for a large region of the

parameter space. Only when mκ1 � mκ2 there is some suppression. The cross corresponds

to the value of the reference point in section 3.
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