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1 Introduction

Conformal phases in four dimensions are ubiquitous and may play a crucial role in

beyond the Standard Model physics. Some simple examples include walking [1–6] or

conformal [7–12] technicolor, explanations of the flavor hierarchies [13–16], and solutions to

the supersymmetric flavor problem [17–30], the µ/Bµ problem in gauge mediation [31–36],

or the η problem in inflation [37]. Moreover, studying conformal field theories (CFTs) can

also give us important insights into quantum gravity and string theory via the AdS/CFT

correspondence [38–40], which in turn provides a simple framework for describing many new

physics scenarios via effective field theories in AdS [41–43] (dual to ‘effective CFTs’ [44]).

However, in recent years it has been realized that the restrictions imposed by conformal

symmetry are not very well understood. While constraints on the form of simple corre-

lation functions (e.g., [45, 46]) and unitarity restrictions on operator dimensions [47, 48]

were worked out long ago, it was pointed out in [49] that crossing symmetry of four-point

functions combined with the constraints of unitarity imply additional bounds on opera-

tor dimensions that must be satisfied in any consistent CFT. These bounds were soon

strengthened [50] and extended to bounds on scalar operator product expansion (OPE)

coefficients [51]. In [52] the bounds were also extended to N = 1 superconformal field the-

ories (SCFTs); bounds on central charges in general CFTs and SCFTs were also explored

in [52] and [53]. In addition, progress on incorporating global symmetries into the program

(important for both phenomenological applications and to have a more direct comparison

with known theories) was made in [54], and improved bounds (both for general CFTs with

global symmetries and for SCFTs) were presented in [55].

The methods used in [49–55] to obtain bounds involve applying linear functionals to

CFT crossing relations, which in practice means taking linear combinations of derivatives

of the crossing relations evaluated at a particular point. By searching for linear functionals

that are positive when acting on the contributions of all possible primary operators in

the spectrum other than the unit operator, one can obtain bounds on OPE coefficients

(and sometimes operator dimensions). However, to implement this positivity condition,

the authors of [49–55] introduced a finely-spaced discretization of the set of possible op-

erator dimensions, making the resulting linear programming problem numerically difficult

and limiting how far the idea could be pushed. This numerical limitation was particu-

larly apparent when considering systems of crossing relations that occur in theories with

global symmetries, where the bounds obtained so far still seem to be quite far from their

optimal values.

In the present paper we will present an alternate approach that completely avoids this

discretization of dimensions. We will use the fact that linear combinations of derivatives

of conformal blocks can be arbitrarily-well approximated by ratios of polynomials in the

operator dimensions, which allows us to convert the problem of obtaining bounds into

a semidefinite programming problem that is numerically much more efficient. This then

allows us to obtain much stronger bounds on CFTs and SCFTs, particularly in the presence

of global symmetries.

– 2 –



J
H
E
P
0
5
(
2
0
1
2
)
1
1
0

More concretely, for general CFTs we will consider four-point functions of scalar oper-

ators φ, as well as collections of operators φi transforming as fundamentals under SO(N)

or SU(N) global symmetries. For theories with N = 1 supersymmetry we will focus on

the case of chiral superconformal primary operators Φ, as well as on collections of chiral

operators Φi transforming as SU(N) fundamentals. We start by reviewing the relevant

crossing relations and representation theory in section 2. There we will also introduce

our new method to obtain bounds on operator dimensions and OPE coefficients based on

semidefinite programming.

In section 3 we use this method to derive general bounds on operator dimensions. In

the case of general CFTs with SO(N) global symmetries, we will place upper bounds on the

dimension of the lowest-dimension SO(N)-singlet operator appearing in the φi × φj OPE.

This greatly improves upon the bounds in the presence of global symmetries previously pre-

sented in [54, 55]. We also place similar bounds on the lowest-dimension SO(N) symmetric

tensor φ(iφj). In the case of SU(N) global symmetries we can additionally place bounds

on SU(N)-singlet or SU(N)-adjoint operators appearing in the φi × φ† OPE. Somewhat

surprisingly, we find that SU(N)-singlet bounds turn out to be identical to SO(2N)-singlet

bounds using the present method.

The special case of an SO(4) or SU(2) global symmetry is relevant for the scenario of

conformal technicolor [7], with or without custodial symmetry. In this scenario one would

like the dimension of the Higgs operator H to be somewhat close to 1, while the dimension

of H†H should be close to or greater than 4. On the other hand, the bounds in this paper

show that requiring dim(H†H) ≥ 4 forces one to have at least dim(H) & 1.52, excluding

flavor-generic versions of this scenario and placing significant constraints on models where

Yukawa-like suppressions are generated in four-fermion operators.

In N = 1 superconformal theories we also place bounds on the lowest-dimension scalar

superconformal primary appearing in the Φ×Φ† OPE, where Φ is a chiral operator. This

greatly strengthens the bounds presented in [52, 55]. In fact, we will see that the bound

appears to asymptote to the line dim(Φ†Φ) ≤ 2 dim(Φ) near dim(Φ) ∼ 1, essentially

excluding the possibility of ‘positive anomalous dimensions’ (as recently discussed in [56])

in this region. This also implies that the solution to the µ/Bµ-problem proposed in [31, 32]

cannot easily work near dim(Φ) ∼ 1.

In section 4 we explore bounds on OPE coefficients. First we strengthen the upper

bounds presented in [51] on the sizes of OPE coefficients of scalars O appearing in the

φ× φ OPE in non-supersymmetric theories. Then, as a new application of these methods

in superconformal theories, we place both upper and lower bounds the OPE coefficient of

the chiral Φ2 operator which always appears in the Φ×Φ OPE. In this case, lower bounds

are possible because unitarity requires that there is a gap in the spectrum of dimensions, so

no other nearby operators can mimic the effects of the Φ2 operator in the conformal block

decomposition. We similarly place upper and lower bounds on the OPE coefficients of the

other higher-spin protected operators that can appear in the Φ × Φ OPE. These bounds

have interesting implications for Banks-Zaks theories or CFTs with weakly-coupled AdS5
duals, where they can be checked in perturbation theory.

– 3 –
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Next, in section 5 we place lower bounds on the central charge c, which appears as

the coefficient in the two-point function of the stress tensor: 〈TT 〉 ∝ c. These bounds

strengthen and expand upon those previously explored in [52, 53, 55]. In theories with

operators of dimension d transforming as fundamentals under SO(N) or SU(N) global

symmetries, we find that the bounds scale linearly with N near d ∼ 1, consistent with our

intuition from free CFTs. We explore these bounds on c in both general CFTs and N = 1

SCFTs. In the latter case one can calculate c using ’t Hooft anomaly matching in many

known SCFTs, and our bounds are satisfied in all such examples that we have checked.

In section 6 we place similar bounds on the coefficient κ appearing in the two-point

function of a global symmetry current: 〈JAJB〉 ∝ κTr(TATB). Here we extend the previ-

ous results of [52] to include the full information about global symmetries. In the case of

scalar operators transforming as fundamentals of SO(N), we place lower bounds on κSO(N).

In the case of SU(N) global symmetries, one can either bound the OPE coefficient appear-

ing in front of the SU(N) (adjoint) current or the coefficient in front of an SU(N)-singlet

current corresponding to a different global symmetry. In the latter case, the bounds again

scale linearly with N near d ∼ 1 in accordance with our intuition from free CFTs. We

also compute similar bounds in N = 1 SCFTs where κ can be computed using ’t Hooft

anomaly matching, and present a comparison of our results with supersymmetric QCD in

the conformal window [57]. We conclude in section 7.

2 Bounds from crossing relations

2.1 CFT review

Let us begin by reviewing some basic aspects of conformal field theories that will be im-

portant for our discussion. The conformal algebra contains, in addition to Poincaré gen-

erators, a dilatation generator D and special conformal generators Kµ. Operators in a

CFT can be classified into primaries OI satisfying KµOI(0) = 0, and their descendants

Pµ · · ·P νOI(0).1 Here, I denotes possible Lorentz indices. We will be primarily concerned

with spin-ℓ operators which transform as traceless symmetric tensors of the Lorentz group,

OI = Oµ1...µℓ .

Correlation functions of a conformal field theory on R
n are completely determined by

some simple discrete data: the spectrum of operator dimensions and spins, and the coef-

ficients appearing in the operator product expansion (OPE). Knowledge of the spectrum

is sufficient to determine all two-point functions. For primary operators OI
i and OJ

j with

equal dimensions and spins {∆, ℓ}, we have

〈OI
i (x1)OJ

j (x2)〉 ∝ wIJ(x12)

x2∆12
, (2.1)

where wIJ(x) is a tensor whose form is fixed by conformal symmetry (e.g., for spin-1

operators wµν(x) = ηµν − 2xµxν

x2 ). When the dimensions and spins are not equal, the

two-point function must vanish. In addition, unitarity constrains ∆ to satisfy [47, 48]

∆ ≥ 1 (ℓ = 0),

∆ ≥ ℓ+ 2 (ℓ ≥ 1). (2.2)

1We leave the adjoint action of charges on operators implicit, i.e. KµO ≡ [Kµ,O].
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These bounds can sometimes be strengthened if the conformal algebra is enhanced, as in

superconformal theories. We will see some examples of this shortly.

Let us choose an orthonormal basis of primaries Oi, so that the constant of propor-

tionality in eq. (2.1) is δij . Having done so, the remaining n-point functions of the theory

are determined by coefficients in the operator product expansion. For real scalars φ1 and

φ2, this takes the form [58]

φ1(x)φ2(0) =
∑

O∈φ1×φ2

λφ1φ2OCI(x, P )OI(0), (2.3)

where λφ1φ2O are constants that must be real in a unitary theory. The notation O ∈ φ1×φ2
indicates that O is a primary operator in the OPE of φ1 and φ2. We have grouped together

each primary O and its descendants PO, P 2O, . . . into a single term using the operator

CI(x, P ) (which depends on the dimensions and spins of φ1, φ2, and O, though we are

suppressing that dependence for brevity). One can show that the form of CI(x, P ) is com-

pletely fixed by conformal symmetry. For instance, applying special conformal generators

Kµ to both sides of eq. (2.3) gives a recursion relation for the terms in CI which can be

solved order-by-order. When φ1 = φ2 = φ, Bose symmetry dictates that only even-spin

operators may enter the OPE (2.3).

In a CFT, the OPE has a finite radius of convergence and can be used to simplify

products of operators inside correlation functions. A key example for us is a four-point

function of a scalar operator φ of dimension d, which can be evaluated as follows, provided

|x12| < |x13|, |x24|:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑

O∈φ×φ

O′∈φ×φ

λOλO′CI(x12, ∂2)CJ(x34, ∂4)〈OI(x2)O′J(x4)〉

=
∑

O∈φ×φ

λ2O
1

x2d12x
2d
34

g∆,ℓ(u, v), (2.4)

g∆,ℓ(u, v) ≡ x2d12x
2d
34CI(x12, ∂2)CJ(x34, ∂4)

wIJ(x24)

x∆24
, (2.5)

where we have inserted eq. (2.3) twice and used eq. (2.1) together with orthonormality of

the O’s. Here, ∆ and ℓ are the dimension and spin of O, u ≡ x2
12x

2
34

x2
13x

2
24

and v ≡ x2
14x

2
23

x2
13x

2
24

are

conformal cross-ratios, and the functions g∆,ℓ(u, v) are called conformal blocks. Since con-

formal symmetry completely fixes CI and w
IJ , it also determines g∆,ℓ. An exact expression

in four dimensions, computed by Dolan and Osborn [59, 60], is given by

g∆,ℓ(u, v) =
zz

z − z
(k∆+ℓ(z)k∆−ℓ−2(z)− (z ↔ z)), (2.6)

kβ(x) ≡ xβ/22F1(β/2, β/2, β, x), (2.7)

where u = zz and v = (1− z)(1− z).2 The unit operator is an important special case, with

g0,0(u, v) = 1.

2Our convention for conformal blocks here differs by a factor of (−2)ℓ from the one used in [59, 60].
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2.2 Crossing relations for singlets, SO(N), and SU(N)

While a set of dimensions, spins, and OPE coefficients is enough to compute any corre-

lation function, this data must satisfy additional consistency relations in a sensible CFT.

To simplify 〈φφφφ〉 using the OPE, we had to choose some way of pairing up the opera-

tors, and this choice necessarily broke manifest permutation symmetry among the φ(xi)’s.

Nevertheless it should be the case that the end result remains permutation-symmetric,

a requirement known as crossing symmetry. As an example, switching x1 ↔ x3 in the

conformal block expansion eq. (2.5) leads to the crossing relation

∑

O∈φ×φ

λ2Og∆,ℓ(u, v) =
(u
v

)d ∑

O∈φ×φ

λ2Og∆,ℓ(v, u). (2.8)

This equation holds for all u, v where the OPE converges in both channels (which includes

a neighborhood of the point u = v = 1/4 which will be important shortly). Meanwhile,

switching x1 ↔ x2 reproduces the statement that only even-spin primaries appear in φ×φ.
Other permutations give no new information in this case.3

Recall that the λO are real by unitarity, which means that the coefficients λ2O are

nonnegative. This is a source of tension in eq. (2.8), which can be expressed most clearly

by rewriting our crossing relation as a ‘sum rule’ with positive coefficients,

F0,0(u, v) +
∑

O∈φ×φ

λ2OF∆,ℓ(u, v) = 0, (2.9)

where

F∆,ℓ(u, v) ≡ vdg∆,ℓ(u, v)− udg∆,ℓ(v, u)

ud − vd
, (2.10)

F0,0(u, v) = −1, (2.11)

and we are suppressing the d-dependence of F∆,ℓ for brevity. Note that we have isolated

the term corresponding to the unit operator, whose OPE coefficient is fixed by the fact

that φ has a canonically normalized two-point function. The unit operator contributes to

eq. (2.9) in its own particular way. Requiring that this contribution be cancelled by F∆,ℓ’s

with positive coefficients leads to nontrivial constraints on the allowed ∆, ℓ appearing in

φ × φ. For some explicit examples and many details about the structure of the sum rule,

see [49, 50]. In sections 2.4 and 2.5, we will explain our improved method for extracting

bounds on CFT data from eq. (2.9). For now, let us present some generalizations of the

sum rule for other kinds of operators.

2.2.1 SO(N) crossing relations

An analysis of crossing relations in theories with SO(N) and SU(N) global symmetries was

performed in [54], and improved bounds for SO(N) were presented in [55]. We will make

extensive use of these results, so let us review them here.

3Note that crossing symmetry of all four-point functions is equivalent to associativity of the OPE, which

is enough to guarantee that higher n-point functions are crossing-symmetric as well.
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Consider a real scalar primary φi transforming in the fundamental representation of

an SO(N) global symmetry group. A complex scalar is a special case with symmetry group

SO(2) ∼= U(1). Operators in φi × φj can be organized into singlets S, symmetric tensors

T , and antisymmetric tensors A of SO(N). Schematically,

φi × φj ∼
∑

S+

δijO +
∑

T+

O(ij) +
∑

A−

O[ij]. (2.12)

The notation S±, T±, A± indicates that the sum is restricted to even-spin (+) or odd-spin

(−) primaries in φi × φj with the given representation, as dictated by Bose symmetry.

Keeping track of the SO(N) indices, each representation contributes differently to the

conformal block decomposition of a four-point function,

x2d12x
2d
34〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =

∑

S+

λ2O(δijδkl)g∆,ℓ(u, v)

+
∑

T+

λ2O

(
δilδjk + δikδjl −

2

N
δijδkl

)
g∆,ℓ(u, v)

+
∑

A−

λ2O (δilδjk − δikδjl) g∆,ℓ(u, v). (2.13)

If we recompute this four-point function using a different operator pairing, each primary

contributes again, but with the conformal cross-ratios u and v switched, and the tensor

structures δijδki, δikδjl, δilδjk permuted. Picking out the coefficients of each tensor structure

then leads to three sum rules, which we can write in vectorial form

∑

S+

λ2O




0

F∆,ℓ

H∆,ℓ


+

∑

T+

λ2O




F∆,ℓ

(1− 2
N )F∆,ℓ

−(1 + 2
N )H∆,ℓ


+

∑

A−

λ2O




−F∆,ℓ

F∆,ℓ

−H∆,ℓ


 = 0. (2.14)

Here H∆,ℓ(u, v) is a symmetrized version of F∆,ℓ(u, v),

H∆,ℓ(u, v) ≡ vdg∆,ℓ(u, v) + udg∆,ℓ(v, u)

ud + vd
, (2.15)

H0,0(u, v) = 1. (2.16)

For brevity, we have not isolated the unit operator in eq. (2.14); it is included with the

even-spin singlets S+.

The case of SO(4) is special, since one can additionally decompose antisymmetric ten-

sors into self-dual and anti-self-dual parts A±. Let us quickly summarize the consequences,

though they will turn out to be irrelevant for this work. A new tensor structure can now

appear in 〈φiφjφkφl〉, namely ǫijkl. In eq. (2.13) we must replace
∑

A−

λ2O (δilδjk − δikδjl) g∆,ℓ(u, v) →
∑

A−
±

λ2O (δilδjk − δikδjl ± ǫijkl) g∆,ℓ(u, v). (2.17)

Since ǫijkl maps to itself under permutations, the sum rule eq. (2.14) is unaffected. We

must simply supplement it with
∑

A−
+

λ2OF∆,ℓ −
∑

A−
−

λ2OF∆,ℓ = 0. (2.18)

– 7 –
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Before we proceed, it is worth mentioning that all three of the sum rules given in

eq. (2.14) can be derived from a single ‘master’ crossing relation

∑

S+

g∆,ℓ(u, v)−
2

N

∑

T+

g∆,ℓ(u, v) =
(u
v

)d
(
∑

T+

g∆,ℓ(v, u) +
∑

A−

g∆,ℓ(v, u)

)
. (2.19)

Adding eq. (2.19) to itself with u↔ v gives the second row of eq. (2.14) and subtracting it

from itself with u↔ v gives the third row. To obtain the first row, we must make repeated

use of the identity g(u, v) = (−1)lg(u/v, 1/v):
∑

T+

g∆,ℓ(u, v)−
∑

A−

g∆,ℓ(u, v) =
∑

T+

g∆,ℓ(u/v, 1/v) +
∑

A−

g∆,ℓ(u/v, 1/v)

= ud

(
∑

S+

g∆,ℓ(1/v, u/v)−
2

N

∑

T+

g∆,ℓ(1/v, u/v)

)

= ud

(
∑

S+

g∆,ℓ(1/u, v/u)−
2

N

∑

T+

g∆,ℓ(1/u, v/u)

)

=
(u
v

)d
(
∑

T+

g∆,ℓ(v/u, 1/u) +
∑

A−

g∆,ℓ(v/u, 1/u)

)

=
(u
v

)d
(
∑

T+

g∆,ℓ(v, u)−
∑

A−

g∆,ℓ(v, u)

)
. (2.20)

This implies in particular that the first sum rule is not independent from the other two.

However, in practice we find it useful to retain all three sum rules, since we will keep only

a finite number of terms in their Taylor expansions around a single point in (u, v)-space.

Since the derivation eq. (2.20) requires transformation between different (u, v) points, the

exact equivalence between the third sum rule and the other two is only visible with an

infinite number of terms in the Taylor expansion. However, it will be important to clar-

ify the meaning of this ‘master’ sum rule (and its generalization to other symmetries)

in future studies.

2.2.2 SU(N) crossing relations

Let us now consider a complex scalar φi transforming in the fundamental representation

of an SU(N) global symmetry. For this paper, we will only analyze four-point functions

〈φiφ†φkφl†〉 that would be invariant under an additional U(1) acting on φ. Note that this is

not tantamount to assuming such a U(1) exists — rather, we are restricting our attention to

a subset of CFT correlators. The various channels for decomposing our four-point function

now involve two different kinds of OPEs. Firstly,

φi × φ† ∼
∑

S±

δiO +
∑

Ad±

O
i (2.21)

which can contain SU(N) singlets and adjoints of any spin. We also have

φi × φj ∼
∑

T+

O(ij) +
∑

A−

O[ij] (2.22)

– 8 –



J
H
E
P
0
5
(
2
0
1
2
)
1
1
0

containing symmetric and antisymmetric tensors with even and odd spins, respectively, and

its complex conjugate φı†×φ† containing the conjugate operators in dual representations.

Extracting the coefficients of different tensor structures in all possible ways of evaluating

〈φiφ†φkφl†〉 leads to the six-fold sum rule

∑

S±

λ2OV
S±

∆,ℓ +
∑

Ad±

λ2OV
Ad±

∆,ℓ +
∑

T+

λ2OV
T+

∆,ℓ +
∑

A−

λ2OV
A−

∆,ℓ = 0, (2.23)

where

V S±

=




F

H

(−)ℓF

(−)ℓH

0

0




, V Ad± =




(1− 1
N )F

−(1 + 1
N )H

−(−)ℓ 1
NF

−(−)ℓ 1
NH

(−)ℓF

(−)ℓH




, V T+
=




0

0

F

−H
F

−H




, V A−

=




0

0

F

−H
−F
H




. (2.24)

Once again, the unit operator is included among even-spin singlets S+.

2.3 Crossing relations in superconformal theories

The 4D N = 1 superconformal algebra extends the conformal algebra to include super-

symmetry generators Qα, Qα̇, superconformal generators Sα, Sα̇, and a U(1) R-charge gen-

erator. SCFT operators admit a more refined classification into superconformal primaries

satisfying SO(0) = SO(0) = 0, with their superconformal descendants obtained by acting

with any combination of Q,Q, and P . It’s easy to see using {S, S} ∼ K that a super-

conformal primary is also a conformal primary. But the converse is not necessarily true.

A multiplet built from a single superconformal primary generally contains several (though

finitely many) conformal primaries whose dimensions, spins, and OPE coefficients are re-

lated by supersymmetry.

A principle example for this work is a chiral superconformal primary scalar Φ of di-

mension d, which satisfies SΦ(0) = SΦ(0) = QΦ(0). Unitarity implies that its dimension

is proportional to its R-charge, d = 3
2RΦ. Below we will review the structure of the OPEs

needed to decompose four-point functions of Φ and Φ† into conformal blocks. We also refer

the reader to [52, 55, 61] for additional discussions of these OPEs.

First, superconformal primaries O appearing in Φ×Φ† are restricted to have vanishing

R-charge and a dimension satisfying the unitarity bound ∆ ≥ 2+ℓ, where ℓ ≥ 0 is the spin of

O. Each superconformal primary generically comes with three superconformal descendants

of definite spin which are also primaries under the conformal subalgebra. (When the

unitarity bound is saturated, ∆ = 2+ ℓ, two of these descendants vanish and the multiplet

is shortened.) Schematically, the OPE takes the form

Φ× Φ† ∼
∑

O∈Φ×Φ†

[
O + (QQO)ℓ−1 + (QQO)ℓ+1 +Q2Q

2O
]
, (2.25)

where O ∈ Φ × Φ† denotes that the sum is over superconformal primaries in Φ × Φ†, and

the subscript on QQO indicates the spin. We are being somewhat sketchy in our notation;
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the exact form of these conformal primaries depends on ∆ and ℓ and is given in [52].

Superconformal symmetry imposes the following relations between their OPE coefficients,4

λ2
(QQO)ℓ+1

=
(∆ + ℓ)

4(∆ + ℓ+ 1)
λ2O, (2.26)

λ2
(QQO)ℓ−1

=
(∆− ℓ− 2)

4(∆− ℓ− 1)
λ2O, (2.27)

λ2
Q2Q

2O
=

(∆ + ℓ)(∆− ℓ− 2)

16(∆ + ℓ+ 1)(∆− ℓ− 1)
λ2O. (2.28)

Note that λ2
(QQO)ℓ−1

and λ2
Q2Q

2O
vanish when ∆ = ℓ+2, consistent with shortening of the

superconformal multiplet.

Meanwhile, the Φ × Φ OPE can only contain operators which are killed by Q. First

and foremost, we have the chiral primary Φ2, whose dimension is exactly 2d, by virtue of

the relation between dimension and R-charge for chiral operators. All other operators are

Q-descendants. Schematically,

Φ× Φ ∼ Φ2 +
∑

ℓ=2,4,...

QOℓ +
∑

O
Q

2O. (2.29)

The operators Oℓ transform in ( ℓ2 ,
ℓ−1
2 ) representations of the Lorentz group SO(4) ∼=

SU(2) × SU(2), and satisfy the BPS shortening condition Qα̇Oα̇α̇3...α̇ℓ,α1...αℓ
ℓ = 0. The

product QOℓ is then a spin-ℓ operator, which is required by the superconformal algebra

to have dimension 2d + ℓ. Finally, the remaining operators Q
2O are not protected by a

BPS condition, and can have any dimension satisfying ∆ ≥ |2d − 3| + 3 + ℓ. Note that

when d < 3/2, a gap in dimensions exists between the protected operators Φ2, QOℓ and

the non-protected operators Q
2O. In contrast to the situation for Φ× Φ†, each conformal

primary in eq. (2.29) appears with an independent coefficient — there are no additional

relations imposed by supersymmetry among operators in Φ× Φ.

Because of the U(1)R symmetry, crossing symmetry of the four-point function

〈ΦΦ†ΦΦ†〉 is a special case of crossing symmetry for SO(2). Note that the antisymmetric

tensor representation of SO(2) is the trivial representation, so that we may equivalently

write S− (odd-spin singlets) for A− (odd-spin antisymmetric tensors). We are also free to

multiply the sum rule by any invertible matrix without changing its content.5 Consequently,

we can rewrite eq. (2.14) for SO(2) as

∑

S±

λ2O




F∆,ℓ

(−)ℓF∆,ℓ

(−)ℓH∆,ℓ


+

∑

T+

2λ2O




0

F∆,ℓ

−H∆,ℓ


 = 0. (2.30)

4The difference in normalization from the formulae in [52] is due to our different convention for conformal

blocks eq. (2.6).
5Specifically, we will replace the middle row with itself plus twice the top row, and the top row with the

middle row.
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In our superconformal four-point function 〈ΦΦ†ΦΦ†〉, the S± terms will come from the

OPE (2.25), while the T+ terms come from (2.29). Making use of the relations between

OPE coefficients eq. (2.26), the specialization of eq. (2.30) to the superconformal case is

∑

S±

λ2O




F∆,ℓ

F̃∆,ℓ

H̃∆,ℓ


+

∑

T+
BPS

λ2O




0

F2d+ℓ,ℓ

−H2d+ℓ,ℓ


+

∑

T+
non-BPS

λ2O




0

F∆,ℓ

−H∆,ℓ


 = 0, (2.31)

where

F∆,ℓ ≡ F∆,ℓ +
(∆ + ℓ)

4(∆ + ℓ+ 1)
F∆+1,ℓ+1 +

(∆− ℓ− 2)

4(∆− ℓ− 1)
F∆+1,ℓ−1

+
(∆ + ℓ)(∆− ℓ− 2)

16(∆ + ℓ+ 1)(∆− ℓ− 1)
F∆+2,ℓ. (2.32)

In addition, F̃ is F with odd spins flipped F∆,ℓ → (−)ℓF∆,ℓ throughout, and H̃ is F̃ with

F∆,ℓ → H∆,ℓ. The set T+
BPS consists of the BPS operators appearing in Φ × Φ, namely

Φ2 and QOℓ for ℓ ∈ {2, 4, . . . }. T+
non−BPS consists of the remaining operators in Φ × Φ.

In going from eq. (2.30) to eq. (2.31), we have removed the factors of 2 in front of the

symmetric tensor contributions because their conventional normalization differs between

SO(2) and U(1), [λ2T+ ]U(1) = 2[λ2T+ ]SO(2).

2.3.1 Superconformal SU(N) crossing relations

It is straightforward to generalize this analysis to the case of a scalar superconformal

primary Φi transforming as a fundamental under an SU(N) global symmetry. The index

structure of the OPE is the same as is given in eqs. (2.21) and (2.22), but with the additional

constraints imposed by supersymmetry discussed above. Note that now both BPS and non-

BPS odd-spin operators can appear in the Φi ×Φj OPE as SU(N) antisymmetric tensors.

Including these constraints, the six-fold sum rule of eq. (2.23) becomes

∑

S±

λ2OVS±

∆,ℓ +
∑

Ad±

λ2OVAd±

∆,ℓ +
∑

T+
BPS

λ2OV
T+

2d+ℓ,ℓ +
∑

A−
BPS

λ2OV
A−

2d+ℓ,ℓ

+
∑

T+
non-BPS

λ2OV
T+

∆,ℓ +
∑

A−
non-BPS

λ2OV
A−

∆,ℓ = 0, (2.33)

where

VS±

=




F
H
F̃
H̃
0

0




, VAd± =




(1− 1
N )F

−(1 + 1
N )H

− 1
N F̃

− 1
N H̃
F̃
H̃




, V T+
=




0

0

F

−H
F

−H




, V A−

=




0

0

F

−H
−F
H




. (2.34)
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2.4 Bounds from crossing relations

Crossing symmetry of four-point functions encodes an infinite number of relations between

OPE coefficients — one for each value of the conformal cross-ratios u and v. In [49] a

general method was outlined for extracting bounds on CFT data using these relations,

together with the constraints of unitarity. We will now review this method for the simplest

case of a real scalar φ of dimension d. Subsequently, we will discuss how the original

method can be improved using semidefinite programming.

Suppose we would like to bound the OPE coefficient of a particular operator O0 of

dimension ∆0 and spin ℓ0 appearing in φ × φ. The first step is to isolate λ2O0
on one side

of the sum rule eq. (2.9),

λ2O0
F∆0,ℓ0(u, v) = −F0,0(u, v)−

∑

O6=O0

λ2OF∆,ℓ(u, v). (2.35)

We can obtain different expressions for λ2O0
in terms of the other OPE coefficients by

evaluating eq. (2.35) at different values of u and v. We could also take some number of

u- and v-derivatives first, and then evaluate. And in general, we can apply any linear

functional α to both sides,

λ2O0
α(F∆0,ℓ0) = −α(F0,0)−

∑

O6=O0

λ2Oα(F∆,ℓ). (2.36)

A key insight of [49] is that the functions F∆,ℓ share certain positivity properties, so that

it’s sometimes possible to find a linear functional α such that

α(F∆0,ℓ0) = 1, and (2.37)

α(F∆,ℓ) ≥ 0, for all other (non-unit) operators in the spectrum. (2.38)

eq. (2.37) is simply a normalization condition, but to satisfy eq. (2.38) one must choose

α carefully. If α satisfies these constraints, then since the λ2O are positive by unitarity,

eq. (2.36) becomes an upper bound on λ2O0
,

λ2O0
= −α(F0,0)−

∑

O6=O0

pos.× pos. ≤ −α(F0,0). (2.39)

The space of viable α’s depends on precisely what assumptions one makes about the spec-

trum of the CFT. If one makes an assumption about the spectrum of operator dimensions

that makes it easier to satisfy eq. (2.38) (e.g., all scalars have a dimension greater than

some ∆min) and then finds a linear functional α such that the bound of eq. (2.39) violates

the unitarity constraint λ2O0
≥ 0, one can rule out that assumption about the spectrum.

Now, to make the bound (2.39) as strong as possible, we should minimize −α(F0,0)

over the set S of all α satisfying the constraints (2.37), (2.38). These constraints carve

out a convex subset of the space of linear functionals, so the task of determining the best

α is an infinite-dimensional convex optimization problem. It would be extremely interest-

ing to develop analytical techniques for finding solutions. However, the most successful
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SS

α(F∆0,ℓ0) = 1 α(F∆0,ℓ0) = 1

α(F∆1,ℓ1) ≥ 0

α(F∆2,ℓ2) ≥ 0

α(F∆,ℓ1) ≥ 0 α(F∆,ℓ2) ≥ 0

. . .

Figure 1. The ‘search space’ S (shown in blue) is the intersection of the hyperplane α(F∆0,ℓ0) = 1

with the convex cone of linear functionals α satisfying α(F∆,ℓ) ≥ 0 for all {∆, ℓ} in the spectrum.

Previous methods discretized ∆ to some finite set {∆i}, thus approximating S as an intersection

of a finite number of hyperplanes and half-spaces (left). Our approach is to approximate S as

the intersection of a smaller number of curved spaces — specifically cones of semidefinite matrices

(right). Such intersections are sometimes called spectrahedra.

approaches to date, including the one we present here, involve simplifying the problem to

make it tractable on a computer, and then determining solutions numerically.

Putting our optimization problem on a computer requires surmounting two difficulties:

1. The search space S of α’s satisfying eqs. (2.37), (2.38) is infinite dimensional.

2. The number of constraints α(F∆,ℓ) ≥ 0 is infinite — there’s one for each ∆, ℓ.

The first difficulty is easy enough to address: we can restrict to a finite-dimensional

subspace W of linear functionals. Then, minimizing −α(F0,0) over all α ∈ W∩S will give a

possibly sub-optimal, but still valid bound λ2O0
≤ −α(F0,0). The choice of W is somewhat

arbitrary, and it would be interesting to explore a wider variety of functionals than we do

here. Following [49–55], we will simply take linear combinations of derivatives around the

symmetric point z = z = 1/2. That is, we define Wk to be the space of functionals

α : F (z, z) 7→
∑

m+n≤2k

amn∂
m
z ∂

n
z F (1/2, 1/2), (2.40)

with real coefficients amn. This choice is computationally convenient, and will prove useful

in our solution to the second difficulty in a moment. One hopes that as we increase k to

include more and more derivatives, our search will cover more and more of S, and our

bound will converge to the optimal one.

The second difficulty is more problematic. Since angular momentum ℓ is discrete, it’s

reasonable to include constraints with ℓ = 0, 1, . . . , L, for some large L. But the dimension

∆ can vary continuously, and the constraints α(F∆,ℓ) ≥ 0 carve out a complicated shape S
inside W as ∆ varies. The computer has to know about this shape, which means we must

encode it with some finite amount of data. The approach used in [49–55] is to approximate
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the shape by a convex polytope — namely discretize ∆ to lie in some finite set {∆i}, so
that the constraints α(F∆i,ℓ) ≥ 0 become a finite number of linear inequalities for α. Then

the problem of minimizing −α(F0,0) becomes a linear programming problem, which can be

solved by jumping from vertex to vertex on the boundary of the polytope, following the

direction of steepest descent. As one makes the set {∆i} larger, the approximation of S as a

polytope gets more and more refined, and the solution should converge to the correct one.

This method can be quite powerful if one chooses the {∆i} carefully. However, some

basic tensions limit how far it can be pushed. For example, consider increasing k to obtain

a stronger bound. At higher k, the space Wk can include wilder linear functionals, and one

must include more ∆i to ensure that a constraint α(F∆,l) ≥ 0 isn’t violated. However, the

running time of the usual search algorithm is cubic in the number of constraints, which

means that computations become quickly unwieldy.

Our approach in the present paper is to approximate S with a different kind of shape

that is more efficient to encode than a polytope, one that naturally respects the properties

of conformal blocks (specifically the differential equation that they satisfy), and also admits

fast searches. In the process, we will do away with the discretization ∆ ∈ {∆i} entirely.

2.5 Semidefinite programming

Semidefinite programs (SDPs) [62] are linear optimization problems that can contain

positive-semidefiniteness constraints for matrices, along with the usual linear inequalities

included in linear programs. As we’ll see momentarily, positive-semidefiniteness lets us

express the condition that a collection of polynomials be nonnegative for all values of their

arguments. This is useful for us because there is a systematic approximation for the deriva-

tives of F∆,l in terms of polynomials. Specifically, there exist positive functions χℓ(∆) and

polynomials Pm,n
ℓ (∆) such that

∂mz ∂
n
z F∆,ℓ(1/2, 1/2) ≈ χℓ(∆)Pmn

ℓ (∆), (2.41)

where the approximation can be made arbitrarily good, at the cost of increasing the degree

of Pmn
ℓ . The details of this approximation, which follows from the differential equation for

conformal blocks along with some basic facts about hypergeometric functions, are explained

in appendix A.

For now, let us assume that such an approximation exists, and understand how to

phrase our problem as an SDP. We will write Fmn
ℓ (∆) ≡ ∂mz ∂

n
z F∆,ℓ(1/2, 1/2) for brevity.

Once again, we would like to minimize −amnF
mn
0 (0) subject to the constraints

amnF
mn
ℓ0 (∆0) = 1, (2.42)

amnF
mn
ℓ (∆) ≥ 0 for ∆ ≥ ∆ℓ, for all 0 ≤ ℓ ≤ L, (2.43)

where ∆ℓ is a lower bound on ∆ depending on the spin ℓ.

Using eq. (2.41) along with the fact that χℓ(∆) is positive, eq. (2.43) becomes the state-

ment that each polynomial amnP
mn
ℓ (∆ℓ(1 + x)) is nonnegative on the interval x ∈ [0,∞).

Such statements are naturally written in terms of positive-semidefinite matrices, a fact
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which is well-known in the optimization literature and has been exploited to solve a wide

variety of problems (see, e.g., [63]). The rewriting proceeds as follows. Firstly, a theorem

due to Hilbert [64] states that a polynomial p(x) is nonnegative on [0,∞) if and only if

p(x) = f(x) + xg(x), (2.44)

where both f(x) and g(x) are sums of squares of polynomials. Now suppose f and g have

degrees 2d and 2d′ respectively, and let [x]d denote the vector with entries (1, x, . . . , xd). If

f(x) is a sum of squares of polynomials with coefficients ci = (ci0, . . . , cid), then we have

f(x) =
∑

i

(cTi [x]d)
2 = [x]Td

(
∑

i

cic
T
i

)
[x]d = [x]TdA[x]d, (2.45)

where A ≡ ∑
i cic

T
i is positive-semidefinite. Conversely, any positive-semidefinite matrix

A admits a Cholesky decomposition A =
∑

i cic
T
i , so that [x]TdA[x]d is a sum of squares.

Thus, the condition that p(x) be nonnegative on [0,∞) can be written

p(x) = [x]TdA[x]d + x([x]Td′B[x]d′), with A,B � 0, (2.46)

where the � symbol means ‘positive-semidefinite.’

Returning to OPE bounds, we now have the following presentation of our convex

optimization problem as an SDP: minimize −amnF
mn
0 (0), subject to the constraints

amnF
mn
ℓ0 (∆0) = 1, (2.47)

amnP
mn
ℓ (∆ℓ(1 + x)) = [x]TdℓAℓ[x]dℓ + x([x]Td′ℓ

Bℓ[x]d′ℓ) for 0 ≤ ℓ ≤ L, (2.48)

Aℓ, Bℓ � 0 for 0 ≤ ℓ ≤ L. (2.49)

There are numerous advantages to this formulation. Firstly, we avoid discretizing the

set of operator dimensions ∆, and thus evade the trade-off between refining {∆i} and im-

proving the running time. Further, small and large ∆ are accounted for equally well, so

there is no need for separate checks on the asymptotic behavior of α(F∆,ℓ) at large dimen-

sions. Most importantly, there exist efficient algorithms for solving semidefinite programs

using interior point methods, with some excellent implementations (see appendix B). Their

complexity scales much less sharply with the dimension of the search space than the linear

programming algorithms used in [49–55]. Consequently, we have been able to push the pre-

vious state-of-the-art searches from 55 dimensions to almost 400 dimensions in some cases.

2.6 Generalizations for global symmetries

While we specialized the above discussion to the case of the singlet sum rule eq. (2.9), it

is straightforward to modify it for situations with global symmetries. E.g., if we wish to
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place a bound on the OPE coefficient of an S+ operator appearing in the SO(N) sum rule

of eq. (2.14), we should look for a vectorial linear functional α satisfying

α




0

F∆0,ℓ0

H∆0,ℓ0


 = 1, (2.50)

α




0

F∆,ℓ

H∆,ℓ


 ≥ 0, for all other (non-unit) operators in S+, (2.51)

α




F∆,ℓ(
1− 2

N

)
F∆,ℓ

−
(
1 + 2

N

)
H∆,ℓ


 ≥ 0, for all operators in T+, and (2.52)

α




−F∆,ℓ

F∆,ℓ

−H∆,ℓ


 ≥ 0, for all operators in A−. (2.53)

Any such linear functional then leads to the upper bound

λ2O0
≤ −α




0

F0,0

H0,0


 . (2.54)

The modification for alternatively placing bounds on the OPE coefficients of T+ or A−

operators should be clear. As in the singlet case, we can also rule out an assumption about

the spectrum of operator dimensions by making the assumption and then finding a linear

functional that leads to a violation of the unitarity constraint λ2O0
≥ 0.

Similarly, we can bound the OPE coefficient of an S± operator appearing in the SU(N)

sum rule of eq. (2.23) by finding an α satisfying

α
(
V S±

∆0,ℓ0

)
= 1, (2.55)

α
(
V I
∆,ℓ

)
≥ 0, for all other (non-unit) operators in the spectrum, (2.56)

where I = {S±,Ad±, T+, A−}. This leads to the upper bound

λ2O0
≤ −α

(
V S+

0,0

)
. (2.57)

The appropriate generalization of this logic for placing bounds on operators in other SU(N)

representations, and also for obtaining bounds using the superconformal sum rules given

in eqs. (2.31) and (2.33), should be clear.

In all of these situations, the task of numerically finding the optimal α can be recast in

terms of a semidefinite program. Similar to what we described in the previous section, to

do this we use the fact that derivatives of any of the functions {F∆,ℓ, H∆,ℓ,F∆,ℓ,H∆,ℓ, F̃∆,ℓ,

H̃∆,ℓ} at (1/2, 1/2) can be arbitrarily-well approximated by positive functions times poly-

nomials in ∆. The details of these approximations can be found in appendix A.
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2.7 Coincidence between SU(N) and SO(2N) singlet bounds

In the course of running the above algorithm, we found that our bounds on singlet operators

appearing in an OPE between SU(N) fundamentals were numerically identical to bounds

on singlets appearing in an OPE between SO(2N) fundamentals. This exact coincidence

is surprising given the rather different structure of the crossing symmetry constraints. It

hadn’t been previously observed because SU(N) computations were too difficult to perform

with previous techniques. In this section, we’ll discuss the relations between those bounds

in more detail.

Let us consider more generally a CFT with global symmetry group G. Suppose we

want to obtain a dimension bound on a singlet scalar operator entering a given OPE. The

G crossing symmetry constraints produce a bound ∆G(d). Now consider a subgroup H ⊂ G
and repeat the procedure. This time, the H crossing symmetry constraints will produce

a bound ∆H(d). At this point we must distinguish two cases: 1) all H-singlets are also

G-singlets, 2) some nontrivial representation of G, once decomposed with respect to the

subgroup, contains H-singlets. In the first case we can immediately conclude

∆G(d) ≤ ∆H(d) (G-bound stronger). (2.58)

The above inequality is clear: there are no CFT’s with global symmetry H where the first

scalar singlet operator entering a given OPE has dimension larger than ∆H(d). Thus in

particular there are no CFT’s with a larger global symmetry.

An example of such a group and subgroup is given precisely by SU(N) ⊂ SO(2N).

In the decomposition with respect to the subgroup, the only singlets come from SO(2N)-

singlets: the symmetric tensor goes to a symmetric tensor and an adjoint while the anti-

symmetric tensor goes to an antisymmetric tensor and an adjoint. Thus, it is natural to

expect the triple sum rule eq. (2.14) to give a bound stronger than or equal to the sextuple

sum rule eq. (2.23). Indeed, one can verify this explicitly at the level of the optimization

problem for α.

To prove the equality of SU(N) and SO(2N) bounds one should also show that when-

ever a linear functional satisfying eqs. (2.50)–(2.53) exists, it is possible to construct a

second linear functional satisfying eq. (2.55). Unfortunately, we have not been able to find

an analytic proof of this result. However, we find numerically that it is always possible —

it would be good in future studies to gain a deeper understanding of why this is the case.

In the case 2) the two bounds are unrelated, since theH-bound could in principle be de-

termined by representations coming from the decomposition of nontrivial representations of

the larger symmetry group. This is the case for SO(N) and SO(N ′) or SU(N) and SU(N ′),

with N > N ′. In these examples we numerically observe behavior opposite to (2.58).

3 Bounds on operator dimensions

3.1 General theories

As a first application of our semidefinite programming algorithm, let us reproduce the

singlet dimension bound first derived in [49], and later improved in [50]. We let φ be
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Figure 2. An upper bound on the dimension of φ2, the lowest dimension scalar appearing in φ×φ.
Curves for k = 2, . . . , 11 are shown, with the k = 11 bound being the strongest.

a real scalar of dimension d in a general CFT, and seek to place an upper bound on the

dimension of φ2, the lowest dimension scalar appearing in φ×φ. The procedure is precisely
as described in section 2.4. In figure 2, we show the resulting bounds for k = 2, . . . , 11,

with k = 10 (a 55-dimensional search-space) being the previous state-of-the-art. We find

perfect agreement with older linear programming-based calculations for each k = 2, . . . , 10.

The curves appear to converge at large k, which is perhaps indicative that they are

approaching the best possible bound given our assumptions (referred to as f∞(d) in [50]).6

We will see this kind of convergence in many other plots in this paper. An approximate fit

to the strongest (k = 11) bound is given by7

dim(φ2) ≤ 2 + 3.006ǫ+ 0.160(1− e−20ǫ), (3.1)

where d = 1+ ǫ, with ǫ between 0 and 1. Notice that the behavior for both small and large

ǫ is approximately linear. The bound crosses dim(φ2) = 4 around d ≈ 1.61.

6However, since the full optimization problem involves an infinite-dimensional search space, it’s always

possible a new search direction could open up at higher k. Fully establishing convergence would require

more detailed analysis than we do here.
7While it gives a good description of the shape, we have chosen this functional form somewhat arbitrarily;

it is possible that a different basis of functions should be used when describing the optimal bound.
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3.2 Singlet operators in SO(N) and SU(N) theories

We can also place bounds on the lowest dimension singlet appearing in φi × φj , where φi
transforms as a vector of an SO(N) global symmetry. The procedure is as described in

section 2.6, where we must assume that ∆ > ∆min for all scalars in S+, and then scan over

∆min to obtain a dimension bound. Recall from section 2.7 that our bounds on singlets

of SU(N) turn out to be identical to those for singlets of SO(2N). Hence, we will present

all SU and SO singlet bounds together, with even values of N standing for both SO(N)

and SU(N/2).

Previous attempts to compute bounds for theories with global symmetries have been

somewhat hindered by the need to optimize over very high-dimensional spaces. Since the

vectorial sum rule eq. (2.14) has three components, a given k corresponds to

k(k + 1)

2
× 3 (3.2)

different linear functionals. The linear programming methods implemented so far are es-

sentially limited to a search space dimension that is not much larger than ∼ 50, or k ∼ 5

for SO(N). Worse, SU(N) vectorial sum rules have six components, making them even

harder to explore. However, our semidefinite programming algorithm appears to have few

problems with large search spaces, and we will present most of our bounds up to k = 11,

regardless of the type of global symmetry group.

As an example, figure 3 shows a bound on the lowest dimension singlet in theories with

an SU(2) or SO(4) global symmetry.8 This bound is particularly interesting for conformal

technicolor models, as we will discuss in detail in the following section. Notice again that

the curves start to converge at large k. An approximate fit to the strongest (k = 11) bound

is given by

dim(|φ|2) ≤ 2 + 3.119ǫ+ 0.398(1− e−12ǫ), (3.3)

where d = 1 + ǫ, with ǫ between 0 and 1. This bound crosses ∆0 = 4 around d ≈ 1.52.

Figure 4 shows dimension bounds for SO(N) with N = 2, . . . , 14 and SU(N) with N =

2, . . . , 7. The strongest bound corresponds to the global symmetry group SO(2) ∼= U(1),

and the bounds weaken as N increases. One might näıvely expect a larger symmetry group

to produce a stronger bound. For instance, a theory with an SO(N) symmetry certainly

also has an SO(N−1) symmetry, so why shouldn’t all bounds from the former apply to the

latter? However, as discussed in section 2.7, the problem we are solving actually changes

with N , and this turns out to be a more important effect than the enhanced symmetry.

Note that the lowest dimension singlet under an SO(N − 1) subgroup of SO(N) is not

necessarily a singlet at all under the full SO(N). Thus, SO(N) bounds for larger N apply

to the operator with lowest dimension among a more restricted class of operators, and

consequently can be weaker.

8Note that to compute the SO(4) bound, we have only used the triple sum rule of eq. (2.14). It is

straightforward to verify that including the fourth sum rule of eq. (2.18) leads to a redundant set of

constraints, and is therefore unnecessary.
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Figure 3. An upper bound on the dimension of φ†φ, the lowest dimension singlet scalar appearing

in φ† × φ, where φ transforms in the fundamental representation of an SO(4) or an SU(2) global

symmetry. Curves are shown for k = 2, . . . , 11. The bounds for SO(4) and SU(2) are identical in

each case. The strongest bound crosses ∆0 = 4 around d = 1.52.

3.2.1 Implications for conformal technicolor

Let us briefly discuss some phenomenological implications of the bounds presented in fig-

ures 3 and 4. Our analysis draws heavily on the previous discussions of [7–10, 49, 54, 55],

as well as the recent talk of [65].

Arguably the most interesting operator dimension in the Standard Model is dim(H†H),

the dimension of the Higgs mass operator, where H transforms as a bifundamental un-

der SU(2)L × U(1)Y ⊂ SU(2)L × SU(2)R. In a weakly-coupled theory with a scalar

Higgs, this dimension is approximately 2, which leads to the hierarchy problem and its

associated puzzles.

The idea of increasing dim(H†H) to ameliorate the hierarchy problem is an old one.

In traditional Technicolor models, the role of the Higgs is played by a fermion condensate

ψψ with dimension 3, so that the ‘mass’ term (ψψ)2 is irrelevant. A basic tension in this

setup is that the ‘Yukawa’ terms (ψψ)qu which generate fermion masses after EWSB are

also irrelevant. To correctly account for the top-mass, we must imagine that such terms

are suppressed by a low scale in the Lagrangian LYuk. ⊃ 1
Λ2
low

(ψψ)qu. But this same low

scale would then generically appear in other four-fermion operators, leading to dangerous

flavor-changing neutral currents.
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Upper bound on dim(|φ|2) for SO(N) or SU(N/2), N = 2, . . . , 14
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Figure 4. An upper bound on the dimension of |φ|2, the lowest dimension singlet scalar appearing

in φT × φ (or φ† × φ), where φ transforms in the fundamental representation of an SO(N) global

symmetry or an SU(N/2) global symmetry (when N ≥ 4 is even). Curves are shown for N =

2, . . . , 14, with N = 2 being the strongest bound.

Conformal Technicolor (CTC) [7] seeks to avoid this tension by assuming that H

participates in strong conformal dynamics above the electroweak scale, which generates

a large dimension for H†H, while the dimension of H remains near 1. While this idea

is intriguing, we will show that it needs additional assumptions to work in practice. In

particular, our bounds definitively rule out the simplest ‘flavor-generic’ CTC models.

To begin, let us determine the range of d = dim(H) and ∆ = dim(H†H) that is

phenomenologically viable in CTC. Firstly, we must require that yt remain perturbative

throughout the conformal regime, which places an upper bound on the possible running

distance. Indeed, suppose conformal dynamics occurs between ΛEW ≈ 4πv and some higher

scale ΛUV. Within this range of energies, Yukawa couplings run according to

yi(µ) =

(
µ

ΛEW

)d−1

yi(ΛEW) (3.4)

(ignoring corrections from small perturbations away from exact conformal symmetry, like

SM gauge couplings and other Yukawa couplings). Requiring yt . 4π for all µ ∈ [ΛEW,ΛUV]

then gives

ΛUV

ΛEW
.

(
ΛEW

mt

) 1
d−1

. (3.5)
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Secondly, we must ensure that small perturbations of the theory by the Higgs mass

operator H†H don’t destabilize the conformal dynamics. This is certainly the case if H†H

is irrelevant, ∆ ≥ 4. If on the other hand ∆ < 4, then we must also impose the lower bound,

ΛUV

ΛEW
.

(
1

c(ΛUV)

) 1
4−∆

, (3.6)

where c(ΛUV) is the coefficient of H†H in the perturbation δL = c(ΛUV)H
†H at ΛUV. The

strength of the bound eq. (3.6) varies, depending on the amount of tuning we’re willing to

tolerate in this coefficient.

Finally, while eqs. (3.5) and (3.6) prefer a small running distance, ΛUV must also

be sufficiently large to suppress problematic flavor-changing operators, such as (dsc)(sdc)

which contributes to K-K mixing. In a ‘flavor-generic’ model, we should demand

1

Λ2
UV

.
1

Λ2
F

(generically), (3.7)

where ΛF ∼ 3.2 × 105TeV for CP-violating contributions to K-K mixing [66]. More

optimistically, we might imagine that (dsc)(sdc) is generated with Yukawa suppression, so

that the constraint above gets modified to

yd(ΛUV)ys(ΛUV)

Λ2
UV

.
1

Λ2
F

(optimistically), (3.8)

with yi(ΛUV) given by eq. (3.4).

Together, these requirements restrict viable models to a particular region of the d-∆

plane, which can then be compared with our bounds. In models where the conformal

dynamics is custodially-symmetric, H transforms as a fundamental of SO(4) ∼= SU(2)L ×
SU(2)R (which is weakly gauged by SM gauge fields). However, the assumption of custodial

symmetry is not actually necessary for us because our bound for SU(2)L alone is identical

to our bound for SO(4).

The viable regions for flavor-generic and flavor-optimistic CTC models are shown in

figure 5, superimposed with our strongest SU(2) dimension bound. The right-hand edge of

the viable regions comes from the combination of eq. (3.7) with eq. (3.5), while the bottom

edges come from the combination of eq. (3.7) with eq. (3.6) for different values of c(ΛUV).

We see that for reasonable assumptions about the coefficient c(ΛUV), flavor-generic models

are ruled out. This conclusion remains true even if the conformal dynamics respects CP

symmetry, in which case the effective flavor scale can be closer to ΛF ∼ 104TeV.

By contrast, flavor-optimistic models with reasonable tunings c(ΛUV) . 0.1 and some-

what large dimensions d ∼ 1.3-1.5 are not necessarily ruled out. Our bound does place

an upper limit on the scale of new physics ΛUV, but with sufficient Yukawa suppression

these upper limits can be phenomenologically acceptable. For instance, with c = 0.01,

ΛUV must lie below 6.8 × 103TeV, while c = 0.1 gives ΛUV . 1.6 × 103TeV. At some

point however, the predictions for these models become essentially those of minimal flavor

violation with a low flavor scale, and strong conformal dynamics seems more and more like

a gratuitous assumption.
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Figure 5. Viable regions for conformal technicolor models in the flavor-generic (red) and flavor-

optimistic (cross-hatched green) cases are shown superimposed with our bound (blue, excluding the

gray-shaded region). Regions for c(ΛUV) = 1, 0.1, and 0.01 are shown in successively lighter shades

of each color, with the largest region corresponding to c(ΛUV) = 0.01 in each case. Flavor-generic

models are ruled out.

3.3 Symmetric tensors in SO(N) theories

It is straightforward to modify our procedure to obtain bounds on symmetric tensors O(ij)

appearing in φi × φj . To bound a symmetric tensor with dimension ∆0 and spin ℓ0, we

look for a linear functional satisfying the normalization condition

α




F∆0,ℓ0(
1− 2

N

)
F∆0,ℓ0

−
(
1 + 2

N

)
H∆0,ℓ0


 = 1, (3.9)

as well as α(V ) ≥ 0 for all other vectors V in the SO(N) sum rule.

Figure 6 shows the resulting dimension bound on φ(iφj) (the lowest dimension scalar

symmetric tensor appearing in φi × φj) in the case of SO(4) symmetry. Note that this

bound does not apply in a simple way to operators in theories with SU(2) symmetries,

because there is no coincidence between SU(N) and SO(2N) bounds for non-singlets.

3.4 Superconformal theories

Now let us turn to bounding operator dimensions in superconformal theories, using the sum

rule eq. (2.31). A bound on dim(Φ†Φ) in terms of dim(Φ) was first obtained in [52] using
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Figure 6. An upper bound on the lowest dimension symmetric tensor scalar appearing in φ × φ,

where φ transforms in the fundamental of SO(4). Here we show k = 2, . . . , 11.

only the middle row of eq. (2.31). In [55], it was shown that the bound could be improved

by incorporating the other rows, and linear programming calculations were given up to

k = 4. In figure 7, we present a new version of these bounds for k up to 11, corresponding

to a 198-dimensional search space.

Several interesting new features emerge at large k. Most strikingly, the bound ap-

pears to be tangent to the factorization line ∆0 = 2d near d = 1. Figure 8 shows a

higher-resolution plot for small values of d, which displays this behavior more clearly. An

approximate fit to the k = 11 curve in figure 8 is given by

∆0 ≤ 2(1 + ǫ) + 2.683 ǫ2 + . . . (ǫ≪ 1), (3.10)

where d = 1+ǫ. Note that known superconformal theories populate the entire factorization

line,9 so it is impossible to have a bound stronger than ∆0 ≤ 2d. Our bound on dim(Φ†Φ)

is one of the few examples computed to date that approaches the provably best possible

bound for some nontrivial range of d’s.

Eq. (3.10) can be directly tested in theories that admit a perturbative Banks-Zaks

limit and contain a chiral operator with dimension near 1. As far as we are aware, there

are no known examples of perturbative theories living above the factorization line. Here we

9Namely supersymmetric mean field theories, which satisfy the necessary requirements of unitarity and

crossing symmetry, and exist for each d ≥ 1. They occur in the infinite-N limit of supersymmetric gauge

theories.
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Figure 7. An upper bound on the dimension of Φ†Φ, where Φ is a chiral primary scalar of dimension

d in an SCFT. The dashed line is the factorization value ∆ = 2d. Here we show k = 2, . . . , 11.

have shown numerically that this can be understood purely from the constraints of crossing

symmetry and unitarity.10

It is amusing to speculate on the form of the bound as k → ∞. A simple and intriguing

possibility is that the small-d behavior might extend to all d, so that the best possible bound

∆0 ≤ 2d is realized. In other words, it might be the case that the anomalous dimension

γΦ†Φ = dim(Φ†Φ) − 2 dim(Φ) is always non-positive. This possibility was investigated

recently for theories with a weakly-coupled gravity dual in [56], with inconclusive results;

effective field theories in AdS5 allow for both positive and negative contributions to γΦ†Φ.

However, it’s possible that additional constraints might be present in those theories which

admit a consistent UV completion.

Another possibility is that the bound converges above the factorization line, with a

shape similar to the k = 11 curve in figure 7. In that case, one might wonder about the

significance of the cusp near d = 1.4, which appears to be a common feature of each curve

with k ≥ 4. A previous example of a dimension bound with a cusp is the 2D real scalar

dimension bound, presented in [50] (building on the first 2D results of [49]). There, an

actual theory, the 2D Ising model, exists very near the cusp, so that the bound is close to

the best possible at that value of d. By analogy, one might speculate that an N = 1 SUSY

‘minimal model’ exists in the cusp in figure 7.

10After the original submission of this work, [67] appeared which gives an analytic understanding of this

under fairly general assumptions using conformal perturbation theory.
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Figure 8. A zoom in on the region of figure 7 near dim(Φ) = 1.

3.4.1 Phenomenological applications

Our bound on dim(Φ†Φ) has implications for several models that use strong superconformal

dynamics to tailor soft parameters in the MSSM. One example is the solution to the µ/Bµ

problem in gauge mediation proposed in [31, 32] and further developed in [33–36]. In this

scenario, SUSY breaking is communicated to the visible sector via a chiral field X which

develops a SUSY-breaking VEV 〈X〉 = Fθ2 at some scale ΛIR. In matching to the MSSM

at ΛIR, the effective operators

OX = cX

∫
d4θ

X†HuHd

M∗
+ h.c. and OX†X = cX†X

∫
d4θ

X†XHuHd

M2
∗

, (3.11)

contribute to µ and Bµ, respectively. Here, M∗ is the scale where these operators originate

(typically the messenger scale). Many of the simplest gauge-mediated models generate

both OX and OX†X at one-loop at the messenger scale, so that näıvely cX ∼ cX†X ∼ λ2

16π2 ,

with λ an O(1) coupling constant. However, this then leads to the problematic relation

Bµ/µ2 ∼ 16π2, which precludes viable electroweak symmetry breaking.

The solution proposed in [31, 32] is that X should participate in strong conformal

dynamics over some range of scales ΛIR < µ < ΛUV, with ΛUV ≤ M∗. If the anomalous

dimension γX†X ≡ dim(X†X) − 2 dim(X) is positive, then the operator OX†X will be

suppressed relative to OX , and Bµ/µ2 can be close to unity at the matching scale ΛIR. In

particular, to restore proper electroweak symmetry breaking, we should approximately have
(

ΛIR

ΛUV

)γ
X†X

≈ 1

16π2
. (3.12)
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Figure 9. An approximate lower bound on the running distance required for solving the µ/Bµ

problem with strong conformal dynamics, as a function of d = dim(X). The middle curve corre-

sponds to a loop factor suppression: cX†X(ΛIR) =
1

16π2 c
2
X(ΛIR), while the outer curves correspond

to suppressions within factors of 2 and 5 of a loop factor.

Using this relation, our upper bound on dim(X†X) in figure 7 translates into a lower

bound on the running distance ΛUV/ΛIR, shown in figure 9. Note in particular that a

small dim(X) requires a very large running distance, since our bound on γX†X approaches

zero as dim(X) → 1. Consequently, viable models should at least have dim(X) & 1.3. Note

that dim(X) can almost always be calculated using a-maximization in concrete examples,

so a bound on the required running distance can be easily read from figure 9 for specific

models.

Our bound can also apply to models of conformal sequestering [19, 20, 22–27, 32]

which contain chiral gauge singlets, where the idea is that a large dim(X†X) can lead to

suppression of flavor-dependent soft-mass operators,

cij

∫
d4θ

1

M2
∗
X†Xφ†iφj . (3.13)

Let us for example assume a gravity mediated scenario, where the cutoff scale is M∗ ∼Mpl

and conformal running occurs between Mpl and an intermediate scale Λint ∼ 1011GeV.

Viable flavor physics then roughly requires dim(X†X) − 2 & 1 [26], and from figure 7

we see that such models should also have dim(X) & 1.35 or so.11 Our bounds similarly

11However, it’s possible that one could avoid these constraints by having ‘safe’ flavor currents appear in

the OPE (as discussed in [26]).
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constrain the possible suppression of these operators in superconformal flavor models [14–

18, 21, 28–30], where the visible sector fields participate in the strong conformal dynamics.

Once again, in all of these situations a comparison to our bounds can be checked in concrete

examples using a-maximization.

4 Bounds on OPE coefficients

In this section we will turn our attention away from bounding operator dimensions and

instead explore some of the more basic bounds on OPE coefficients obtainable using these

methods. We’ll begin by reproducing (and strengthening) the upper bounds on scalar OPE

coefficients for general CFTs previously presented in [51]. Then we’ll focus on something

qualitatively new — the possibility of placing lower bounds on OPE coefficients in theories

that have a gap in the spectrum of operator dimensions. In fact, this happens naturally

in supersymmetric theories for protected operators appearing in the Φ× Φ OPE, where a

gap is forced by unitarity. We will then demonstrate that there are extremely constraining

upper and lower bounds on the OPE coefficients of these operators when dim(Φ) < 3/2.

4.1 Scalar operators in general theories

Let us begin by producing bounds on OPE coefficients of scalar operators O0 of dimension

∆0 appearing in the φ×φ OPE, where φ is a scalar operator of dimension d. As we saw in

eq. (2.39), by applying a linear functional α to the CFT crossing relations we can obtain

an upper bound λ2O0
≤ −α(F0,0). In figure 10 we show the best upper bounds on λO0 as a

function of ∆0 that we have obtained so far, for d = 1.01, . . . , 1.66 with a spacing of 0.05.

These bounds are obtained using k = 11, corresponding to a 66-dimensional search space.

This plot strengthens bounds previously presented in [51].

Figure 10 clearly contains a lot of interesting structure. First, as d → 1, the curve

becomes more and more sharply peaked around ∆0 ≃ 2, with the height of the peak

converging to the free value λ0 =
√
2.12 On the other hand, as ∆0 → 1 all of the curves

drop sharply to zero (first peaking at larger values of d), corresponding to the fact that a

free operator cannot appear in the OPE. All of the bounds also increase in strength as ∆0

becomes large, possibly asymptoting to zero. Finally, as d increases at fixed ∆0 the bounds

monotonically decrease in strength. Note that in the present study we have found the

region d > 1.66 to be numerically more difficult (though very weak bounds appear to exist

at least up to d ∼ 1.86), and we postpone a full investigation of this region to future work.

Let us take a moment to understand a way in which our method fails to fully pick out

the spectrum of free theories as d → 1. While our upper bound becomes nicely peaked

around the free value in this limit, our algorithm cannot easily distinguish between a single

∆0 ≃ 2 operator with λ0 ≃
√
2, and a broader spectrum of operators, each having ∆0

somewhat close to 2 and λ0 <
√
2. The issue is that both of these scenarios can lead to

very similar conformal block contributions to the 4-point functions that we are studying.

12Note that the free OPE coefficient is
√
2 rather than 1 because we have required the φ2 operator

to have a canonically normalized two-point function, rather than the normalization inherited from Wick

contractions.
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Figure 10. Upper bounds on the OPE coefficient of a scalar operator O0 ∈ φ× φ (not necessarily

of lowest dimension). Each curve is for a different value d = 1.01, . . . , 1.66, with a spacing of 0.05

and d = 1.01 corresponding to the lowest curve. Here we have taken k = 11.

On the other hand, if we knew that there was only a single operator appearing in the

OPE up to a certain dimension, this ambiguity could not occur and we would be able

to also place lower bounds on its OPE coefficient. In the next subsection we will study

this possibility in more detail, focusing on protected operators appearing in the Φ × Φ

OPE in SCFTs.

4.2 Protected operators in superconformal theories

As we reviewed in section 2.3, if Φ is a chiral superconformal primary of dimension d in an

N = 1 SCFT, the Φ×Φ† OPE contains superconformal primaries of dimension ∆ ≥ ℓ+ 2

and their descendants. On the other hand, the Φ×Φ OPE can contain a chiral Φ2 operator

of dimension 2d, superconformal descendants QOℓ of protected operators having dimension

2d + ℓ, and superconformal descendants Q
2O of unprotected operators with a dimension

satisfying ∆ ≥ |2d− 3|+ 3 + ℓ.

Notice that, as long as d < 3/2, there is necessarily a gap between the dimensions of

the protected operators appearing in the Φ×Φ OPE and the dimensions of the unprotected

operators. This gap is a consequence of the unitarity constraints on operator dimensions

in SCFTs. Because of this gap, no other operators appearing in the OPE can give similar

conformal block contributions to the four-point function 〈ΦΦ†ΦΦ†〉, and we can attempt to

derive lower bounds on the OPE coefficients λΦ2 and λQOℓ
, in addition to upper bounds.
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The logic used to obtain a lower bound requires only a slight modification to the

procedure described in section 2. Since one could in principle attempt to obtain a lower

bound in any theory with a dimension gap, let us first describe the logic for the simplest

case of the real scalar crossing relation in general CFTs. To obtain a lower bound on an

OPE coefficient λ2O0
, we can again consider applying a linear functional to the real scalar

crossing relation, as in eq. (2.36). However, instead of imposing the constraints (2.37)

and (2.38), we can alternatively require

α(F∆0,ℓ0) = 1, and (4.1)

α(F∆,ℓ) ≤ 0, for all other operators in the spectrum, (4.2)

which leads to the lower bound

λ2O0
= −α(F0,0)−

∑

O6=O0

pos.× neg. ≥ −α(F0,0). (4.3)

Note that (4.1) and (4.2) are only compatible with each other if we know that there is a

gap between ∆0 and the ∆’s for all other operators in the spectrum.

Generalizing to the superconformal crossing relation of eq. (2.31), if we isolate a pro-

tected operator O0 of spin ℓ0 and require

α




0

F2d+ℓ0,ℓ0

−H2d+ℓ0,ℓ0


 = 1, (4.4)

α




0

F∆,ℓ

−H∆,ℓ


 ≤ 0, for all other operators in Φ× Φ, and (4.5)

α




F∆,ℓ

F̃∆,ℓ

H̃∆,ℓ


 ≤ 0, for all (non-unit) operators in Φ× Φ†, (4.6)

we obtain the lower bound

λ2O0
≥ −α




F0,0

F̃0,0

H̃0,0


 . (4.7)

Meanwhile, reversing the inequalities in (4.5) and (4.6) leads to an upper bound on λ2O0
,

following our usual logic.

In figure 11 we show the resulting upper and lower bounds on λΦ2 , where we have

taken k = 2, . . . , 11 in the numerical optimization. We can see that the strongest bounds

are extremely constraining when d = dim(Φ) is even somewhat close to 1, forcing λΦ2 to

live very close to the free value λΦ2 =
√
2. In particular, these results imply that it should

not be possible to construct a weakly-coupled (Banks-Zaks) SCFT where both d and λΦ2

are modified at the one-loop level. Indeed, in all constructible examples λΦ2 receives its
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leading correction at second order in perturbation theory. On the other hand, we see that

the lower bound disappears before d = 3/2, as expected, while the upper bound persists.

As d→ 2, we may also compare the upper bound to the OPE coefficients of composite

operators in theories containing free chiral superfields. In the simplest case, we can consider

a single free field Q and then identify Φ ≡ 1√
2
Q2. In this case the operator Φ2 ≡ 1√

4!
Q4 is

canonically normalized, so the OPE is

(
1√
2
Q2

)
×
(

1√
2
Q2

)
∼

√
4!

2

(
1√
4!
Q4

)
+ . . . , (4.8)

and we have λΦ2 =
√
6, which is consistent with the bound. More generally, considering

the dimension-n operator Φ ≡ 1√
n!
Qn leads to an OPE coefficient of λΦ2 = (2n)!1/2

n! , which

the bound must respect at even higher integer values of d.

Another simple generalization is to consider meson operators M ≡ 1√
2N
QiQi built out

ofN free quarksQi. In this case Wick contractions give a two-point function 〈(M2)(M2)†〉∼
2 + 4

N , so the OPE in terms of canonically normalized operators is given by

M ×M ∼
√

2 +
4

N


 1√

2 + 4
N

M2


+ . . . . (4.9)

Thus, we can read off an OPE coefficient of λΦ2 =
√
2 + 4/N , which is consistent with our

bound for all values of N . It is interesting to see that while OPE coefficients of composite

operators with d ∼ 2 know about the underlying constituents of the operator, as d→ 1 the

OPE coefficient necessarily loses memory of where the operator came from. Indeed, free

operators have no hair!

In figure 12 we extend these upper and lower bounds to OPE coefficients of the other

protected operators QOℓ appearing in the Φ × Φ OPE. Here we give the results for ℓ =

2, . . . , 10 and have taken k = 11 in the numerical optimization (though similar bounds also

exist at larger values of ℓ). All of the bounds continuously interpolate to the free values as

d→ 1, given by λQOℓ
=

√
2 ℓ!
(2ℓ)!1/2

. Notice that all lower bounds vanish before d = 3/2, as

they should.13

Taken together, the upper and lower bounds on λQOℓ
are extremely strong, almost

determining this coefficient when d . 1.4. One can view this singling out of an essentially

unique OPE coefficient as a remarkable success of the 4D conformal bootstrap program!

It is worth comparing the bounds to the known values of λQOℓ
in supersymmetric mean

field theories (MFTs), which occur in the planar limit of large-N gauge theories. There,

the role of QOℓ is played by the ‘twist-2d’ double-trace operators

O(2)
ℓ ≡ Φ

↔
∂µ1 · · ·↔∂µℓΦ− traces, (4.10)

13Once they are computed, one can include information about these lower bounds in semidefinite programs

for other quantities, like e.g. upper bounds on OPE coefficients of operators in the Φ×Φ† OPE. We found

that this procedure does not significantly improve the results in practice.
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Upper and lower bounds on λΦ2
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Figure 11. Upper and lower bounds on the OPE coefficient of Φ2 in Φ × Φ, as a function of

d = dim(Φ). The dashed line indicates the free value λΦ2 =
√
2. The points shown at d = 2

indicate the sequence of values λΦ2 =
√
2 + 4

N
realized for composite operators in free theories. We

give the bounds for k = 2, . . . , 11.

with even spin ℓ. Their (squared) OPE coefficients in Φ× Φ are given by [68]

λ2
O(2)

ℓ

=
2Γ2(d+ ℓ)Γ(2d+ ℓ− 1)

Γ2(d)Γ(ℓ+ 1)Γ(2d+ 2ℓ− 1)
, (4.11)

and these values of λO(2)
ℓ

are shown as dashed lines in figure 12, for ℓ = 2, 4, . . . , 10. They

are fully consistent with both our upper and lower bounds on λQOℓ
. Note that the MFT

value of λO(2)
0

is equal to the free value
√
2, so it is consistent with our bounds in figure 11.

The striking agreement between our bounds and the mean field theory values of OPE

coefficients at small d has interesting implications for SCFTs with weakly-coupled AdS5
duals. In such theories, corrections to OPE coefficients away from their MFT values can

be computed in perturbation theory using Witten diagrams. Our bounds imply that cor-

rections to λ2
O(2)

ℓ

must vanish to very high order in (d − 1), particularly at large ℓ. If any

corrections were nonzero at finite values of (d− 1), then we would obtain sharp bounds on

bulk coupling constants. We defer further exploration of these interesting constraints to

future work.
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Upper and lower bounds on λQOℓ
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Figure 12. Upper and lower bounds on the OPE coefficients of protected operators QOℓ appearing

in Φ × Φ, along with their mean field theory values eq. (4.11) (dashed lines), for ℓ = 2, 4, . . . , 10.

Each curve goes continuously to the free value
√
2 ℓ!
(2ℓ)!1/2

at d = 1. All lower bounds vanish at

d = 3/2, since the gap in dimensions between QOℓ and non-protected operators disappears at that

point. Here we have taken k = 11.

5 Bounds on central charges

In this section we explore bounds on the OPE coefficient appearing in front of the stress

tensor Tµν , which is a conserved spin-2 operator of dimension 4 that must be present in any

CFT. Since this OPE coefficient is fixed by a Ward identity in terms of the central charge c

of the theory (defined as the coefficient appearing in the two-point function 〈TµνT γδ〉 ∝ c),

we will ultimately be deriving bounds on c. Previously, lower bounds on the central charge

in both general CFTs and SCFTs were explored in [52, 53, 55]. The main new results of

this section will be to extend these analyses to situations with global symmetries, where

we will show that there are bounds on the central charge that scale with the size of the

global symmetry representation.

5.1 General theories

Let us begin by establishing some notation. The stress tensor is typically normalized as

〈Tµν(x)T γδ(0)〉 =
40c

π4
Iµγ(x)Iνδ(x)

x8
, (5.1)

where Iµγ(x) = ηµγ − 2xµxγ

x2 and c is the central charge appearing in the trace anomaly,

〈Tµ
µ 〉 = c

16π2 (Weyl)2 − a
16π2 (Euler), when the theory is placed on a curved background. In

this normalization a free scalar has cfree =
1

120 and a free Weyl fermion has cfree fermion = 1
40 .
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The stress tensor is the local current generating the dilatation charge, where in ra-

dial quantization D = −
∫
dΩ x̂µxνT

µν (the integral is over a three-sphere surrounding

the origin). Requiring the action Dφ(0) = dφ(0) then fixes the OPE to have the form

Tµν(x)φ(0) ∼ − 2d
3π2x6

(
xµxν − 1

4η
µνx2

)
φ(0) + . . ., which leads to the stress tensor confor-

mal block contribution

x2d12x
2d
34〈φφφφ〉 ∼

d2

360c
g4,2 (general CFTs). (5.2)

Generalizing to the situation where φi transforms under an SO(N) or SU(N) global sym-

metry, the stress tensor appears as an S+ operator in the sum rules given in eqs. (2.14)

and (2.23), again with OPE coefficient λ2T = d2

360c . Note that a free real scalar transforming

as an SO(N) fundamental or a complex scalar transforming as an SU(N/2) fundamental

gives a contribution of Ncfree to the central charge.

To begin, in figure 13 we show the bounds on c obtained by applying our semidefinite

programming algorithm to the case of a single real scalar φ, where we show curves for

k = 2, . . . , 11 in the numerical optimization. We see that for k ≥ 6, the bounds smoothly

approach the free value cfree as d → 1. This is consistent with and improves upon the

bounds on c previously presented in [52, 53]. Note that here we are only assuming that

the dimensions of operators appearing in the φ×φ OPE satisfy the unitarity bound — one

could also assume that φ is the lowest dimension scalar in the theory to obtain somewhat

stronger bounds at larger values of d as was done in [53]. However, here we make only the

minimal assumption to allow for a more straightforward comparison to our other bounds.

In figure 14 we show bounds on c in the presence of SO(N) or SU(N/2) global sym-

metries for N = 2, . . . , 14. Here have taken k = 11. We see that the bounds also smoothly

approach the free values as d→ 1, scaling linearly with N . This greatly improves upon the

bounds derived in [52, 53] (and given in figure 13) for theories with global symmetries. The

reason for the improvement is that here we have incorporated the constraints of crossing

symmetry for all operators in the φi multiplet; without doing this the bounds of [52, 53]

could not differentiate between the stress tensor and other spin 2 operators (e.g., the SO(N)

symmetric tensor φ(i∂µ∂νφj)) that have an O(1) OPE coefficient in the d→ 1 limit.

It is interesting to understand the implications of the bound of figure 14 for the

AdS/CFT correspondence. For theories with an AdS5 dual description, the bulk Planck

scale is proportional to c, the bulk gauge group is identified with the SO(N) or SU(N/2)

global symmetry, and d is related to the masses of bulk fields. Our bound then says that

theories with sufficiently light bulk excitations cannot have a gravitational scale that is ar-

bitrarily small. Moreover, if those fields transform as fundamentals under the bulk SO(N)

or SU(N/2) gauge group (and correspond to operators with d ∼ 1), then the Planck scale

must scale at least linearly with N .

It would be fascinating to identify CFTs that live close to these bounds, particularly

in the large N limit. Unfortunately, in gauge theories believed to flow to conformal fixed

points that also posses an SO(N) or SU(N/2) global symmetry, the central charge typically

scales as N2, at least near d ∼ 1. The reason is that conformality forces the size of
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Lower bound on c for a real scalar
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Figure 13. A lower bound on the central charge of a theory containing a scalar φ of dimension

d. The dashed line indicates the value cfree = 1/120, corresponding to the central charge of a free

scalar. Here we show bounds for the values k = 2, . . . , 11.

the global symmetry to scale proportionally to the size of the gauge group, and gauge

degrees of freedom live in adjoint representations of the gauge group which have O(N2)

components. We will see examples of this in the next subsection, where we extend the

bounds to superconformal theories in which c is explicitly calculable.

5.2 Superconformal theories

In N = 1 SCFTs, the stress tensor is a superconformal descendant of the spin-1 U(1)R
current, T ∼ (QQJR)ℓ+1, as in eq. (2.25). Applying eq. (2.26) to (5.2), we see that Jµ

R has

an OPE coefficient of λ2R = d2

72c , appearing as an S+ operator in the superconformal sum

rules of eqs. (2.31) and (2.33). Since a free chiral superfield contains both a complex scalar

and a Weyl fermion, it gives a contribution of cchiral = 2× 1
120 + 1

40 = 1
24 .

In figure 15 we show the results of our semidefinite programming algorithm for ob-

taining bounds on the central charge of any theory containing a chiral scalar Φ. We give

the results for k = 2, . . . , 11, where all of the curves for k > 3 drop sharply very close to

d ∼ 1 and go just below the free value. The k = 11 curve significantly improves upon

SCFT central charge bounds previously obtained in [52, 55]. Note that the sharpness of

the drop (reaching within 1% of the free chiral value closer than d ∼ 1.0000002) is strong
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Lower bounds on c for SO(N) or SU(N/2), N = 2, . . . , 14
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0

10cfree
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Figure 14. A lower bound on the central charge of a theory containing a scalar φi of dimension

d transforming as a fundamental of an SO(N) or SU(N/2) global symmetry, for N = 2, . . . , 14. In

this plot cfree = 1/120, corresponding to the central charge of a free scalar. Here we have taken

k = 11.

evidence that the free theory is an isolated solution to the crossing relations. This is in-

tuitive from the perspective of constructing perturbations of the free theory — all such

perturbations leading to an interacting SCFT require additional matter, which increases

the central charge. In order to demonstrate that the bound does in fact approach the free

value, in figure 16 we also show the bound for k = 11 where (d− 1) has been placed on a

logarithmic scale.

We extend these bounds to the situation where Φi transforms as a fundamental under

an SU(N) global symmetry in figure 17, where we have taken k = 10 and show curves for

N = 2, . . . , 14. All the curves interpolate to the free values Ncchiral as d → 1, in all cases

with a very sharp drop in the bound close to 1. Again we see that the bounds scale linearly

with N , and moreover the linear behavior extends out to larger values of d compared to

the non-supersymmetric bounds of figure 14.

Let us now take a moment to compare these bounds to some concrete SCFTs. The

reason that such a comparison is possible is that both d and c are calculable in terms of

the U(1)R symmetry — d is calculable because the dimensions of chiral superconformal

primary operators are related to their R charge as d = 3
2R, and c is calculable via ’t
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Figure 15. A lower bound on the central charge of any SCFT containing a chiral scalar Φ of

dimension d. The dashed line is at cchiral = 1/24, corresponding to the central charge of a free

chiral superfield (d = 1). Despite appearances at this zoom level, all the curves above drop sharply

near d = 1 and interpolate smoothly to the free value. In this plot we have taken k = 2, . . . , 11.

Hooft anomaly matching using the relation c = 1
32(9TrR

3 − 5TrR) [69, 70]. The U(1)R
symmetry can then often be determined using symmetry arguments, or more generally

using a-maximization [71].

One of the simplest N = 1 SCFTs is supersymmetric QCD with gauge group SU(Nc)

and Nf flavors of quarks Q,Q in the conformal window 3
2Nc ≤ Nf ≤ 3Nc [57]. In this

case the gauge-invariant mesons M = QQ̃ have dM = 3(1 − Nc/Nf ), while the central

charge is evaluated as c = 1
16(7N

2
c − 9N4

c /N
2
f − 2). The mesons are bi-fundamentals under

the SU(Nf ) × SU(Nf ) symmetry group, so our bounds will apply by considering either

of these groups.

However, we immediately see that the central charge in SQCD grows like O(N2), so

theories at large values of Nf ∼ Nc trivially satisfy the bounds. On the other hand, all of

the small N theories still have a central charge larger than 1 = 24cchiral, so the bound is

also easily satisfied for these theories. Part of the problem is that we have only included

a subgroup of the full SU(Nf ) × SU(Nf ) global symmetry when deriving our bounds. In

a future publication [72] we hope to extend the bounds to bi-fundamentals transforming

under an SU(N)×SU(N) symmetry group, in order to make closer contact with the values

realized in SQCD and similar theories.
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Figure 16. The k = 11 curve of figure 15, where (d − 1) has been placed on a logarithmic scale.

The bound smoothly approaches the free value cchiral = 1/24 very close to d = 1.

6 Bounds on current two-point functions

6.1 General theories

Now let us turn to placing bounds on another set of fundamental OPE coefficients, namely

those appearing in front of spin-1 conserved global symmetry currents. In the OPE between

SO(N) or SU(N) fundamentals, we should be careful to distinguish between the SO(N) or

SU(N) symmetry currents living in the adjoint representation and singlet currents associ-

ated to some other global symmetry that we are not considering explicitly.

6.1.1 Adjoint currents

Let us begin by focusing on the case of adjoint currents. Consider a CFT with some

global symmetry, containing a scalar field φi transforming in some representation of this

symmetry. We will denote by TA
ij the generators in this representation. The associated

conserved currents transform as global symmetry adjoints. Ward identities completely fix

the three-point functions with one current insertion:

〈φi(x1)φj(x2)JA
µ (x3)〉 = − i

2π2
TA
ij

x2−2d
12

x213x
2
23

Zµ, where Zµ ≡ x13µ
x213

− x12µ
x212

. (6.1)
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Lower bounds on c for a SUSY SU(N) chiral scalar, N = 2, . . . , 14
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Figure 17. A lower bound on the central charge of any SCFT containing a chiral scalar Φi of

dimension d transforming as a fundamental of an SU(N) global symmetry, for N = 2, . . . , 14. Here

cchiral = 1/24 denotes the contribution to c from a free chiral superfield. Despite appearances at

this zoom level, all the curves drop sharply very close to d = 1 and interpolate continuously to the

free values. In this plot we have taken k = 10.

With the above normalizations, the two-point function 〈JAJB〉 contains undetermined co-

efficients τAB that roughly measure the amount of stuff charged under the global symmetry:

〈JAµ(x1)J
Bν(x2)〉 =

3τAB

4π4
Iµν(x12)

x612
. (6.2)

Let us write τAB ≡ κTr(TATB), where κ can be viewed as a symmetry current ‘central

charge.’ As we did for the energy momentum tensor, we can rescale JA to have a canonically

normalized two-point function and absorb κ into the OPE coefficient λ2J associated with

the current. In the end, the contribution of an adjoint current to a four-point function of

φi’s can be written

x2d12x
2d
34〈φiφjφkφl〉 ∼

1

6κ
Tr(TATB)−1TA

ij T
B
kl g3,1. (6.3)

In order to proceed further we need to specify the global symmetry group. For instance,

for SO(N) and φi in the vector representation, one can show that

Tr(TATB)−1TA
ij T

B
kl =

1

2
(δilδjk − δikδjl), (6.4)
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and consequently, comparing to eq. (2.13), we have λ2J = 1
12κ . Similarly, for SU(N) and φi

in the fundamental representation, we have

Tr(TATB)−1(TA)ij(T
B)kl = δilδ

k
j − 1

N
δijδ

k
l , (6.5)

so that λ2J = 1
6κ . These relations hold for currents appearing in OPEs in general CFTs;

we will discuss the generalization to N = 1 superconformal theories below. However, first

we will consider the situation of singlet currents appearing in the OPE, namely currents

corresponding to a global symmetry that is different from the SO(N) or SU(N) that we

are studying.

6.1.2 Singlet currents

As mentioned above, the SO(N) or SU(N) global symmetry current is not the only con-

served spin-1 operator of dimension 3 that can contribute to the four-point function; addi-

tional currents, possibly transforming in different representations, may also exist. Clearly

the presence of an additional conserved current implies the existence of a global symmetry

beyond the one exploited to write the crossing symmetry constraints. The OPE coefficient

associated to this operator not only contains the two-point function normalization, but

also parametrizes our ignorance about the nature of the additional global symmetry. In-

deed, when the global symmetry is not specified the three-point function coefficient could

in principle be arbitrary.

In the case of fundamentals transforming under an SO(N) global symmetry, spin-1

operators appearing in the OPE can only transform in the adjoint (antisymmetric) repre-

sentation, corresponding to the SO(N) current itself. In the case of SU(N) fundamentals,

along with the adjoint current we also have the possibility of SU(N) singlet currents.14

For example, we can think about a CFT with a global symmetry SU(N) × G. If we con-

sider scalar operators transforming in some representation of G with generators T A, then

the G-current is a singlet with respect to SU(N), and its contribution to the four-point

function will be

1

6κG
Tr(T AT B)−1T A

ij T B
lm g3,1 = λ2Jδijδlm g3,1, (6.6)

where κG is the two-point function of the G-current. Until we additionally specify the G
symmetry group and charges, this parameter is arbitrary. However, we can collectively

define, by analogy with the adjoint current, an effective current two-point function nor-

malization κeff ≡ 1/6λ2J . We will place bounds on κeff when we give our results below.

6.1.3 Free theory and numerical results

To clarify the above discussion, let us analyze in detail the theory of N free complex scalars,

using only information about the SU(N) global symmetry, which is contained in the larger

14In addition, the OPE φi×φj could contain conserved spin-1 operators transforming in the antisymmetric

representation of SU(N). However, such currents (along with their complex conjugates) would generate

charges which enhance SU(N) to a larger group SU(N) → SO(2N). Thus, such theories necessarily fall

under the class of CFTs with a global SO(2N) symmetry, which we consider separately.
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SO(2N) symmetry of the theory. The OPE φi × φj† contains an adjoint current and a

singlet current, both conserved:

JA
Ad ∼ φ†TA↔

∂φ, JS ∼ φ†
↔
∂φ. (6.7)

The conformal block decomposition of the scalar four-point function directly gives us the

values of the singlet and adjoint OPE coefficients for spin-ℓ currents:

λ2Ad =
(ℓ!)2

(2ℓ)!
, κ =

1

3
, (6.8)

λ2S =
1

N

(ℓ!)2

(2ℓ)!
, κeff =

N

3
. (6.9)

The first point that we notice is the different scaling of the two above quantities with the

size of the symmetry group. While the adjoint current two-point function normalization

is independent of N , the singlet one grows with the dimension of the representation. We

therefore expect lower bounds on κeff to scale with N , similarly to the way that the central

charge bounds did in the previous section.

Let us now discuss the same theory, using the whole SO(N) global symmetry. This

time only the adjoint current contributes to the four-point function, and its OPE coefficient

(along with the other spin-ℓ adjoint operators) can be determined from the conformal block

decomposition (see for instance [54]) as

λ2Ad =
(ℓ!)2

(2ℓ)!
, κ =

1

6
. (6.10)

Now that we have an intuition for the free values of κ and κeff , we are ready to present

numerical bounds in several classes of theories. In figure 18, we show a lower bound

on the two-point function coefficient κ for a CFT with an SO(N) global symmetry for

N = 2, . . . , 14. As expected, when d→ 1, all of the bounds drop sharply to the free SO(N)

value κ = 1/6. The bounds get stronger as N increases, while as d varies away from 1,

they first become stronger and then weaken.

As a second example, in figure 19 we consider the case of an SU(N) global symmetry

and present lower bounds on κeff for a singlet current. Our expectation that the constraints

scale almost linearly with N (when d is close to 1) is confirmed. Thus, this quantity serves

as a rough measure of the number of degrees of freedom in the theory transforming under

the symmetry, at least near d = 1. One the other hand, the linear scaling disappears

as d increases.

6.2 Superconformal theories

Let us generalize the above bounds to theories with N = 1 supersymmetry, where currents

are descendants of scalar superconformal primaries of dimension 2. Consider four-point

functions 〈ΦiΦ
†ΦkΦ

l†〉 of chiral and anti-chiral operators transforming under an SU(N)

global symmetry. SU(N) adjoint currents give a superconformal block contribution

x2d12x
2d
34〈ΦiΦ

†ΦkΦ
l†〉 ∼ 1

κ
Tr(TATB)−1(TA)i(T

B)lk G2,0, (6.11)

– 41 –



J
H
E
P
0
5
(
2
0
1
2
)
1
1
0

d

κ

Lower bounds on κ for SO(N) adjoint currents, N = 2, . . . , 14

1 1.2 1.4 1.6 1.8
0

0.15

0.1

0.25

0.2

0.05

Figure 18. A lower bound on the two-point function coefficient 〈JA
µ J

B
ν 〉 ∝ κTr(TATB) of the

SO(N) adjoint current appearing in φ × φ, where φ transforms in the fundamental of an SO(N)

global symmetry group, for N = 2, . . . , 14. All curves smoothly approach the free SO(N) value

κ = 1/6. Here we have taken k = 11.

while SU(N) singlet currents give an effective superconformal block contribution

x2d12x
2d
34〈ΦiΦ

†ΦkΦ
l†〉 ∼ 1

κeff
δiδ

l
kG2,0. (6.12)

In figure 20, we show bounds on κ for adjoint currents appearing in Φi×Φ†, for SCFTs

with an SU(N) global symmetry and N = 2, . . . , 14. These bounds again increase strongly

with N , growing as a roughly affine function. For d . 1.5, κ must be substantially higher

than its free value, with the bound dropping sharply to the contribution of a free chiral

superfield κchiral = 1 near d = 1. Consequently, the free theory appears to be isolated

in the space of SCFTs with an SU(N) flavor symmetry. This accords with our intuition

from theories with a Lagrangian description. To couple a free SU(N) fundamental to a

nontrivial interacting sector (and thus raise its dimension away from d = 1), we need

additional matter which must itself transform under SU(N).

In figure 21, we also show a lower bound on κeff for singlet currents appearing in

Φi × Φ†. Once again, we see that these bounds increase with N , scaling roughly linearly

for small d. As in the adjoint case above, the bounds drop very sharply to their free values

Nκchiral near d = 1, while the N scaling disappears as d increases.

– 42 –



J
H
E
P
0
5
(
2
0
1
2
)
1
1
0

d

κeff

Lower bounds on κeff for SU(N) singlet currents, N = 2, . . . , 14

1 1.2 1.4 1.6 1.8
0

10κfree

12κfree

14κfree

2κfree

4κfree

6κfree

8κfree

Figure 19. A lower bound on the effective two-point function coefficient κeff = 1/6λ2J of SU(N)

singlet currents appearing in φi × φ†, where φi transforms in the fundamental of an SU(N) global

symmetry group, for N = 2, . . . , 14. All curves interpolate continuously to the free values Nκfree
where κfree = 1/3, and in this plot we have taken k = 11.

6.2.1 Comparison to SQCD

As with central charges, our bounds on current two-point functions can be checked explicitly

in a given superconformal theory. For example, in SUSY QCD, SU(Nf )L and SU(Nf )R
flavor currents appear in the OPE of a chiral meson and its conjugate

M †i
ı̃ ×Mj

̃ ∼ δij(T
A)̃ı̃J

A
R + δ̃ı̃ (T

A)ijJ
A
L + . . . . (6.13)

Here, i, j are indices for SU(Nf )L and ı̃, ̃ are indices for SU(Nf )R. We have not yet

generated bounds that exploit the full SU(Nf )L × SU(Nf )R symmetry group of SQCD.

However, we can compare to our SU(N) bounds by ‘forgetting’ one of the flavor groups, say

SU(Nf )R, and examining the theory from the point of view of SU(Nf )L alone. Specifically,

we shall set ı̃ = ̃ = 1, so that the right-flavor currents JA
R are then singlet scalars in

M †i
1 ×Mj

1, while the left-flavor currents JA
L are adjoints.

The current two-point functions for JA
R and JA

L in SQCD both scale like Nf (or Nc).

However, only our SU(N)-singlet bounds scale with N , and thus have a chance of ap-

proaching the values for SQCD. Consequently, we will focus on the contribution of JA
R to

the conformal block expansion of meson four-point functions. This reads

x2d12x
2d
34〈M †i

1 Mj
1M †k

1 Ml
1〉 = τAB(T

A)11(T
B)11δ

i
jδ

k
l G2,0 + . . . , (6.14)
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Figure 20. A lower bound on the two-point function coefficient 〈JAJB〉 ∝ κTr(TATB) of an SU(N)

adjoint current appearing in Φi × Φ†, where Φi is a chiral scalar transforming in the fundamental

of an SU(N) global symmetry group in an SCFT, for N = 2, . . . , 14. Despite appearances at this

zoom level, all the curves above drop sharply near d = 1 and interpolate continuously to the free

value κchiral = 1. Here we have taken k = 10.

where G2,0 is the superconformal block for a conserved current multiplet and τAB = (τAB)−1

is the inverse two-point function coefficient for JA
R . In superconformal theories, τAB can

be computed simply in terms of ’t Hooft anomalies using τAB = −3Tr(RTATB). For JA
R ,

this becomes

〈JA
RJ

B
R 〉 ∝ τAB =

3N2
c

2Nf
δAB, (6.15)

where the SU(Nf ) generators are normalized according to Tr(TATB) = 1
2δ

AB. Thus, we

have

1

κeff
=

Nf

3N2
c

(
δ11δ

1
1 −

1

Nf
δ11δ

1
1

)
=

Nf − 1

3N2
c

. (6.16)

In figure 22 we compare this value of κeff for several SQCD theories to our singlet

current bounds from figure 21. For many values of Nf and Nc, our bound comes within an

O(1) factor of the SQCD value, with the smallest separation at small dimensions d ∼ 1. We

expect our bound to become stronger with the added information of SU(Nf )R symmetry,

perhaps resulting in a hybrid of figures 21 and 20. It will be interesting to compare SQCD

to these new bounds, and understand more about the structure of four-point functions in

this important theory.
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Figure 21. A lower bound on the effective two-point function coefficient κeff = 1/λ2J of SU(N)

singlet currents appearing in Φi ×Φ†, where Φi is a chiral scalar transforming in the fundamental

of an SU(N) global symmetry group, for N = 2, . . . , 14. Despite appearances at this zoom level, all

the curves above drop sharply near d = 1 and interpolate continuously to the free values Nκchiral
where κchiral = 1. Here we have taken k = 10.

7 Conclusions

Let us briefly summarize our main results. In this work we explored bounds on operator

dimensions and OPE coefficients in 4D CFTs and N = 1 SCFTs, building on the previous

studies performed in [49–55]. These bounds can be viewed as the initial stages of a con-

crete implementation of a 4D conformal bootstrap program. Here we focused on bounds

in the presence of SO(N) and SU(N/2) global symmetries, which had previously shown

themselves to be more difficult (but not impossible [55]) to obtain using algorithms based

on linear programming methods. In order to push the program further, we presented a

new algorithm based on semidefinite programming, which utilized the fact that derivatives

of conformal blocks can be arbitrarily well approximated by positive functions times poly-

nomials in the operator dimensions. This new algorithm enabled us to show that there are

completely general bounds on CFTs and SCFTs in the presence of global symmetries that

are significantly stronger than were previously known to exist.

In particular, we greatly strengthened bounds on dimensions of singlet operators ap-

pearing in the OPE between fundamentals transforming under SO(N) or SU(N/2) global

symmetries. Bounds on dimensions of singlet operators in the presence of SO(4) or SU(2)

global symmetries are relevant for models of conformal technicolor, and our bounds place
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Lower bounds on κeff for SUSY SU(N) singlet currents and comparison to SQCD
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Figure 22. A lower bound on the effective two-point function coefficient κeff = 1/λ2J of SU(N)

singlet currents appearing in Φi ×Φ†, where Φi is a chiral scalar transforming in the fundamental

of an SU(N) global symmetry group, for N = 2, . . . , 14. Here we have taken k = 10. We have also

plotted points corresponding to SQCD theories with various values of Nf and Nc. The lines below

each point indicate the distance to the corresponding bound. Many SQCD theories lie within an

O(1) factor from our bounds.

severe constraints on these models, particularly when one does not assume any special fla-

vor structure in four-fermion operators. In fact, in the present work we saw that bounds on

singlet operators were in general identical between SO(N) and SU(N/2) global symmetries.

We have so far not been able to construct a rigorous proof of this equivalence, so it would

be good to gain a better understanding of it in future work.

We also obtained similar bounds on operator dimensions in N = 1 SCFTs, where

we showed that there are bounds on the lowest-dimension scalar appearing in the Φ× Φ†

OPE that appear to asymptote to the line ∆ = 2d near d ∼ 1. This result is particularly

interesting in light of the discussion of [56] on positive anomalous dimensions of these

operator in SCFTs — our results demonstrate that this should not be possible when one

is sufficiently close to the free limit.

In this work we also initiated an exploration of both upper and lower bounds on OPE

coefficients of protected operators appearing in the Φ × Φ OPE in SCFTs. In this case,

lower bounds are possible due to the fact that there is a gap in the dimensions of operators

appearing in this OPE that is required by unitarity. Because one can obtain bounds in

both directions, we are able to see that the possible behavior is very tightly constrained

even when one is only somewhat close to the free limit. We expect that similar lower
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bounds should be possible in any situation (including non-supersymmetric theories) where

one assumes that there is a dimension gap such that only a single operator can contribute

to the conformal block decomposition up to a certain dimension.

We also explored bounds on central charges and current two-point function coefficients

in the presence of operators transforming as fundamentals under SO(N) or SU(N/2) global

symmetries, finding bounds that scale linearly with N when the operator dimension is close

to 1. An exception is the case when the current is the adjoint current corresponding to the

SO(N) or SU(N/2) symmetry itself, in which case the bounds approach a value independent

of N in the free limit. In superconformal theories, these bounds can be compared to

concrete theories where the central charge c and current two-point functions κ are calculable

using ’t Hooft anomaly matching. While the central charge bounds are still relatively far

from their realized values, we showed concretely that our bounds on κ are an O(1) amount

away from the values realized in supersymmetric QCD in the conformal window.

A clear future direction is to generalize these bounds on N = 1 SCFTs to situations

with bi-fundamentals transforming under SU(N)× SU(N) global symmetries (or adjoints

transforming under SU(N) global symmetries). Then one would hope to see bounds on the

central charge that scale like ∼ N2, as well as significantly stronger bounds on current two-

point functions. It will be fascinating to see how these bounds compare to concrete N = 1

theories such as supersymmetric QCD in the conformal window, particularly if one can

find theories that nearly saturate the bounds. One could also input all known information

about these theories and attempt to find even stronger constraints on the dimensions of

unprotected operators.15 We plan to explore these bounds in a future publication [72].

Another interesting direction would be to apply these methods to four-point functions

of operators with spin, such as symmetry currents or the stress tensor. To do this, one needs

a tractable way of working with higher-spin conformal blocks. Recently, some progress has

been made in this direction [75, 76], though more work may be needed in order to make

a completely general analysis possible. However, if this program could be carried out, one

could for example start to study whether crossing symmetry of stress tensor four-point

functions is connected to the bounds on a/c obtained in [77]. In fact, it may be more

immediately tractable to begin such explorations for theories with N = 2 supersymmetry,

where the stress tensor is contained in a scalar multiplet. Similarly, one can explore crossing

symmetry of current four-point functions in N = 1 theories, where progress at deriving the

relevant superconformal blocks was made recently in [61]. We believe that these directions

may be worth pursuing in future work.

It is also interesting to explore these bounds to 3D CFTs, where progress was recently

made at understanding the properties of 3D conformal blocks [78]. While closed-form

expressions are not yet known, recursion relations similar to what we used in the present

study should make a numerical exploration tractable.16 It is particularly interesting to use

these bounds to learn about the 3D Ising model or place constraints on the behavior of

other real-world condensed matter systems. It is also interesting to explore these bounds

15An alternate approach to learning about these dimensions is to look for hidden structure such as

integrability (e.g., see [73]) that makes the theory more solvable than one näıvely expects. We recently

started exploring the possibility of such structure in N = 1 SQCD in [74].
16Indeed, after this article was originally submitted we made significant progress in this direction in [79].
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in 2D (expanding on the preliminary studies of [49, 50]) or in 6D, where perhaps progress

can be made at unraveling the structure of the mysterious 6D (2, 0) SCFTs.

Of course, it would be nice to have a better analytical understanding of the structure of

the optimal bounds. While such an understanding has eluded us so far, it is possible that a

new approach (such as studying the Mellin representation as in [80–82]) could shed light on

the origin of these bounds. Less ambitiously, it would be good to study whether expansions

of the crossing relation around other points in (z, z) space may provide a more efficient way

to find an optimal linear functional. A related question is to understand whether any of the

multiple crossing relations that we have used in cases of global symmetries are redundant

or unnecessary for obtaining an optimal bound. We leave such questions to future work.

Finally, we hope that progress can be made at understanding where these bounds fit

in the context of the AdS/CFT correspondence [38–40]. Bounds on the central charge and

current two-point function coefficients can be mapped to limitations on the strength of

gravitational or gauge forces in the presence of light bulk excitations. In the present work,

we have obtained bounds that scale with the sizes of global symmetry representations,

which in AdS corresponds to scaling with the size of the bulk gauge group. While many

of our bounds necessarily apply in a highly quantum regime, we have seen that there

are at least some bounds (e.g., bounds on operator dimensions in SCFTs) that constrain

deviations from the large-N factorization limit, where an AdS description would be weakly

coupled. It would then be good to find alternate ways of arriving at these bounds in the

context of AdS, particularly since these constraints are not obvious from the perspective

of effective field theory [56]. One hopes that thinking more along these lines will lead to a

deeper understanding of which low-energy theories may admit consistent UV completions,

particularly in the context of quantum gravity.
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A Polynomial approximation details

In this appendix we give further details of our implementation of the optimization problem

discussed in section 2.5 using semidefinite programming. In all of the situations we consider,

the problem is to find the optimal set of coefficients amnk, which minimizes the combination

−amnkV
S+,mnk
0 (0), subject to the constraints

amnkV
I0,mnk
ℓ0

(∆0) = 1, (A.1)

amnkV
I,mnk
ℓ (∆) ≥ 0, for all other (non-unit) operators in the spectrum. (A.2)
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Here V I,mnk
ℓ (∆) = ∂mz ∂

n
z V

I,k
∆,ℓ denotes derivatives of the k-th component of the appropriate

vector V I
∆,ℓ, which may be any of the functions {F∆,ℓ, H∆,ℓ,F∆,ℓ,H∆,ℓ, F̃∆,ℓ, H̃∆,ℓ}. The

index I denotes possible global symmetry representations.

As discussed in section 2.5, to apply semidefinite programming we must approximate

V I,mnk
ℓ (∆) as χℓ(∆)P I,mnk

ℓ (∆), where χℓ(∆) is a strictly positive function, and P I,mnk
ℓ (∆)

is a polynomial in ∆. Let us begin by discussing derivatives of F∆,ℓ and H∆,ℓ. It is

convenient to first rescale each of these by a (∆, ℓ)-independent function of z and z, so that

they become sums of terms that factorize:

E∆,ℓ,+(z, z) ≡
[

(z − z)

[(1− z)(1− z)]d
− (z − z)

(zz)d

]
F∆,ℓ(z, z)

=

[
k∆+l(z)k∆−l−2(z)

(zz)d−1
+
k∆+l(1− z)k∆−l−2(1− z)

[(1− z)(1− z)]d−1

]
− (z ↔ z), (A.3)

E∆,ℓ,−(z, z) ≡
[

(z − z)

[(1− z)(1− z)]d
+

(z − z)

(zz)d

]
H∆,ℓ(z, z)

=

[
k∆+l(z)k∆−l−2(z)

(zz)d−1
− k∆+l(1− z)k∆−l−2(1− z)

[(1− z)(1− z)]d−1

]
− (z ↔ z), (A.4)

where kβ(z) ≡ zβ/22F1(β/2, β/2, β, z). Derivatives of these quantities at (1/2, 1/2) can

then be straightforwardly evaluated using [52]

Cn
β,d ≡ ∂nz

[
z1−d+β/2

2F1(β/2, β/2, β, z)
]

z=1/2

= 2n+(d−1)−β/2 Γ(β/2 + 2− d)

Γ(β/2 + 2− d− n)
3F2(β/2 + 2− d, β/2, β/2;β/2 + 2− d− n, β; 1/2)

= 2(5− 2d− n)Cn−1
β,d + 2

(
β(β − 2) + 2n(n− 3)− 2d2 + 8d− 2

)
Cn−2
β,d

+8(n− 2)(n+ d− 4)2Cn−3
β,d

= Pn
d (β)kβ(1/2) +Qn

d (β)k
′
β(1/2). (A.5)

Here Pn
d (β) and Qn

d (β) are polynomials in β that can be determined through the above

recursion relation for Cn
β,d.

17 Note that taking z → 1−z simply introduces an overall factor

of (−1)n.

In eq. (A.5), we have written derivatives of kβ(z) at z = 1/2 in terms of polynomials in

β, up to two non-polynomial quantities: βkβ(1/2) and k
′
β(1/2). For the purposes of writing

positivity constraints, we are free to divide by k′β(1/2)/β, which is positive for all β that

occur in unitary theories (β ≥ −1). Now, the crucial fact for us is that the remaining non-

polynomial quantity Kβ ≡ βkβ(1/2)/k
′
β(1/2) is meromorphic in β, and admits a simple

approximation in terms of rational functions

Kβ ≡ βkβ(1/2)

k′β(1/2)
≃ 1√

2

M∏

j=0

(β − rj)

(β − sj)
≡ NM (β)

DM (β)
, (A.6)

17This recursion relation follows from the hypergeometric differential equation for kβ(z), which itself is a

consequence of the fact that conformal blocks are eigenfunctions of the quadratic Casimir of the conformal

group.
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where NM (β) and DM (β) are polynomials in β of degreeM+1. Here, rj is the j’th zero of

βkβ(1/2) and sj is the j’th zero of k′β(1/2), both of which are close to −2j − 1. Ordinarily

we would need to account for both the zeros and poles of βkβ(1/2) and k′β(1/2) in the

above product representation. However, the poles of βkβ(1/2) and k
′
β(1/2) coincide at the

negative odd integers, and so cancel between numerator and denominator.18

The approximation eq. (A.6) becomes arbitrarily good as more zeros are included, and

moreover converges very quickly. In fact, one can show that

rj , sj = −1− 2j +O(2−5.5j) j = 0, 1, 2, . . . , (A.7)

so that

Kβ =
NM (β)

DM (β)
×
(
1 +O

(
2−5.5M

β + 2M + 1

))
(β ≥ −2M − 1). (A.8)

Consequently, it is sufficient to take M ∼ a few to achieve an accurate rational approxi-

mation for Kβ that holds uniformly for all physical values β ≥ −1. In practice, we found

that M = 3 or 4 gives excellent results, which remain effectively unchanged when M is

increased. Henceforth, we will assume that some appropriate M has been chosen, and

write simply N(β) and D(β) for brevity.

Combining eqs. (A.5) and (A.6), we can now write

Cn
β,d =

k′β(1/2)

βD(β)
und (β), (A.9)

where

und (β) ≡ N(β)Pn
d (β) + βD(β)Qn

d (β) (A.10)

is a polynomial in β, and it can be verified that the pre-factor k′β(1/2)/βD(β) is positive

for all β ≥ −1. Note that the degree of und (β) depends on the number of roots M + 1

included in the approximation of eq. (A.6).

Derivatives of E∆,ℓ,±(z, z) at (1/2, 1/2) can now be written

∂mz ∂
n
zE∆,ℓ,±(1/2, 1/2) = χℓ(∆)Umn

ℓ,d,±(∆), (A.11)

where

χℓ(∆) ≡ k′∆+ℓ(1/2)k
′
∆−ℓ−2(1/2)

(∆ + ℓ)(∆− ℓ− 2)D(∆ + ℓ)D(∆− ℓ− 2)
(A.12)

is positive, and

Umn
ℓ,d,±(∆) ≡

(
1± (−1)m+n

)
[umd (∆ + ℓ)und (∆− ℓ− 2)− (m↔ n)] (A.13)

18The factor 1/
√
2 is limβ→∞ Kβ (with an arbitrary phase for β), as can be verified using the standard

integral formula for 2F1 hypergeometric functions. Since this limit exists, Kβ is meromorphic on the

Riemann sphere, not just C.
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is a polynomial in ∆. The inequalities amnkV
I,mnk
ℓ (∆) ≥ 0 given in (A.2) are then equiva-

lent to a set of polynomial inequalities, which can be rewritten in terms of a semidefinite

program as described in section 2.5.

Next let us consider derivatives of the functions F∆,ℓ(z, z) and H∆,ℓ(z, z), appearing

in superconformal crossing relations. We can again take derivatives using eq. (A.9) after

rescaling by the same functions of z and z appearing in eqs. (A.3) and (A.4). Applying

∂mz ∂
n
z at (1/2, 1/2) to the resulting functions gives

χℓ(∆)

[
Umn
ℓ,d,±(∆)

+
(∆ + ℓ)

4(∆ + ℓ+ 1)

D(∆ + ℓ)

D(∆ + ℓ+ 2)
K∆+ℓ U

mn
ℓ+1,d,±(∆ + 1)

+
(∆− ℓ− 2)

4(∆− ℓ− 1)

D(∆− ℓ− 2)

D(∆− ℓ)
K∆−ℓ−2 U

mn
ℓ−1,d,±(∆ + 1)

+
(∆ + ℓ)(∆− ℓ− 2)

16(∆ + ℓ+ 1)(∆− ℓ− 1)

D(∆ + ℓ)D(∆− ℓ− 2)

D(∆ + ℓ+ 2)D(∆− ℓ)
K∆+ℓK∆−ℓ−2 U

mn
ℓ,d,±(∆ + 2)

]
,

(A.14)

where

Kβ ≡ β

β + 2

k′β+2(1/2)

k′β(1/2)
. (A.15)

We can then use the fact that Kβ can be arbitrarily well approximated by a rational

function

Kβ ≃ (12− 8
√
2)
(β + 1)

∏
i(β + 2− si)∏

j(β − sj)
. (A.16)

Again, the approximation improves as more roots are included, and converges after only a

few terms. Thus, by isolating the polynomial numerator and denominator of the quantity

β

4(β + 1)

D(β)

D(β + 2)
Kβ ≡ N (β)

D(β)
, (A.17)

we can write the derivatives as a positive function times a polynomial in ∆:

χℓ(∆)

D(∆ + ℓ)D(∆− ℓ− 2)
×
[

D(∆ + ℓ)D(∆− ℓ− 2) Umn
ℓ,d,±(∆)

+N (∆ + ℓ)D(∆− ℓ− 2) Umn
ℓ+1,d,±(∆ + 1)

+D(∆ + ℓ)N (∆− ℓ− 2) Umn
ℓ−1,d,±(∆ + 1)

+N (∆ + ℓ)N (∆− ℓ− 2) Umn
ℓ,d,±(∆ + 2)

]
. (A.18)

Finally, let us note that the results for F̃∆,ℓ(z, z) and H̃∆,ℓ(z, z) are identical, but with

odd-spin terms having the opposite sign. Thus, we see that we can reformulate any of the

sum rules appearing in SCFTs as a semidefinite program, following the logic described in

section 2.5.
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B Implementation in SDPA-GMP

In this appendix we’ll give further details of our implementation of the SDP. As we described

in section 2.5 and appendix A, the general problem (phrased as a SDP) is to minimize

−aiV S+,i
0 (0), subject to the constraints

aiV
I0,i
ℓ0

(∆0) = 1,

aiP
I,i
ℓ (∆ℓ(1 + x)) = [x]TdℓA

I
ℓ [x]dℓ + x([x]Td′ℓ

BI
ℓ [x]d′ℓ) for 0 ≤ ℓ ≤ L,

AI
ℓ , B

I
ℓ � 0 for 0 ≤ ℓ ≤ L. (B.1)

For brevity we here we use the index i = 1, . . . , k(k + 1)/2 × dim(V I
∆,ℓ) to run over all

of the z and z derivatives under consideration, as well as the components of the vector

V I
∆,ℓ. I runs over possible global symmetry representations, and AI

ℓ and BI
ℓ are positive

semidefinite matrices. We recall that [x]d is the vector with entries (1, x, . . . , xd), and if the

polynomial P I,i
ℓ has degree 2γℓ + 1− ǫℓ (with ǫℓ = 0, 1), then dℓ = 2γℓ and d

′
ℓ = 2γℓ − 2ǫℓ.

The middle constraint is an equality between polynomials in x, so in practice we will

implement it by matching each polynomial coefficient:

0 = coeffsx

[
−aiP I,i

ℓ (∆ℓ(1 + x)) + Tr(Xdℓ(x)A
I
ℓ ) + xTr(Xd′ℓ

(x)BI
ℓ )
]
. (B.2)

In this expression we have also defined the matrix Xd(x) ≡ [x]d[x]
T
d . Since many SDP

solvers only allow positive variables, in practice it will additionally be convenient to intro-

duce a ‘slack variable’ s, where without loss of generality we can replace ai → ai− s in the

above expressions and require ai, s ≥ 0.

We solve the above semidefinite program using SDPA-GMP 7.1.2 [83], which utilizes

the GNU Multiple Precision Arithmetic Library (GMP). We use Mathematica 7.0 to

compute the vectors V I,i
ℓ and polynomials P I,i

ℓ , performing all computations using 100

digits of precision. When using the approximations of eqs. (A.6) and (A.16) we keep four

roots, leading to approximations that differ from the exact functions by ∼ 10−8 − 10−10,

depending on the value of β. In our computations we have found it sufficient to take

L = 20; in addition we add constraints for ℓ = 1000, 1001 in order to effectively include the

asymptotic constraints at large ℓ. After setting up the problem in Mathematica, we write

the SDP to a file using the SDPA sparse data format.

When running SDPA-GMP, we use the parameters:
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SDPA-GMP Parameter Value

maxIteration 1000

epsilonStar 10−10

lambdaStar 1020

omegaStar 1020

lowerBound −1020

upperBound 1020

betaStar 0.1

betaBar 0.3

gammaStar 0.9

epsilonDash 10−10

precision 200

To make our plots, we run data points in parallel using the Odyssey computing cluster at

Harvard University. In the majority of our plots we use a horizontal spacing of δd = 10−2,

supplemented by a higher resolution scan with δd = 10−3 for d < 1.01 (δd → δ∆0 in

figure 10). To compute dimension bounds, we vary ∆0 using a binary search, terminating

at a vertical resolution of 10−3. In all cases that we have checked, increasing L or including

more roots in the polynomial approximation leads to a completely negligible (. 10−4)

change in the computed bound.
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