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1 Introduction

In recent years the D3-D7’ system has been put forward as a top-down holographic model

for fermions in 2+1 dimensions strongly interacting with gauge fields in 3+1 dimensions [1–

3]. This system has gapped quantum Hall states [4] in the presence of magnetic fields as

well as a rich structure of gapless, metallic states. The stabilized D3-D7’ system [4] has a

large number of parameters: the fluxes f1 and f2 on the two internal spheres, the fermion

massm, the charge density d, the temperature T , and the background electric and magnetic

fields. At T = 0, m = 0, and without any charges or background fields, for any choice of

fluxes, the system is described by a conformal field theory (CFT) and correlation functions

have the structure consistent with conformal invariance [5]. As shown in [6], as we turn on

charge and temperature, the system becomes unstable to form an inhomogeneous phase

if |d|
T 2 is sufficiently large. There is, therefore, a quantum critical point (QCP) at the

origin of the (T, d)-plane. When m 6= 0 the theory is not conformal and so does not have

a quantum critical point; however, the structure of its phases and their properties are

qualitatively similar.

In this paper we explore two issues. One is the effect of an external magnetic field on

the gapless phase. In particular, we find that the magnetic field mitigates the instability

of the homogeneous phase in the presence of charges and gives a mass to the zero sound
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mode. The second issue is the property of the system above the quantum critical point. We

find that the homogenous state exhibits interesting behavior at nonzero m: an anomalous

Hall effect (AHE), resistivity saturation, and ferromagnetism. It is interesting to note that

the instability, the anomalous Hall effect, and the ferromagnetism all arise from the same

Chern-Simons term in the effective action.

2 The D3-D7’ model

2.1 Background

We begin with the near-horizon background of the non-extremal D3-branes:

L−2ds210 = r2
(

−h(r)dt2 + dx2 + dy2 + dz2
)

+ r−2

(

dr2

h(r)
+ r2dΩ2

5

)

(2.1)

F5 = 4L4
(

r3dt ∧ dx ∧ dy ∧ dz ∧ dr + dΩ5

)

, (2.2)

where h(r) = 1− r4T /r
4 and L2 =

√
4πgsN3 α

′. For convenience, we work in dimensionless

coordinates, e.g., r = rphys/L. This background is dual to N = 4 super Yang-Mills theory

at a temperature T = rT /(πL). We parameterize the five-sphere as an S2×S2 fibered over

an interval:

dΩ2
5 = dψ2 + cos2 ψ(dΩ

(1)
2 )2 + sin2 ψ(dΩ

(2)
2 )2

(dΩ
(i)
2 )2 = dθ2i + sin2 θidφi , (2.3)

where 0 ≤ ψ ≤ π/2, 0 ≤ θi ≤ π, and 0 ≤ φi < 2π. As ψ varies, the sizes of the two S2’s

change. At ψ = 0 one of the S2’s shrinks to zero size, and at ψ = π/2 the other S2 shrinks.

The S2 × S2 at ψ = π/4 is the “equator”.

2.2 Probe

The D7-brane extends in t, x, y, and r and wraps the two two-spheres. The D7-brane

embedding is then characterized by ψ(r) and z(r). However, excitations around this em-

bedding are tachyonic. This instability can be cured by turning on an internal flux [4, 7].

In our case we turn on fluxes through the two two-spheres labeled by the parameters f1 and

f2. With the correct choice of f1 and f2, one gets a stable embedding. We also consider

a nonzero charge density, by including the time component of the worldvolume gauge field

a0(r), and a background magnetic field b. The D7-brane action has a Dirac-Born-Infeld

(DBI) term given by

SDBI = −T7
∫

d8x e−Φ
√

−det(gµν + 2πα′Fµν)

= −N
∫

dr r2
√

(

4 cos4 ψ + f21
) (

4 sin4 ψ + f22
)

×

×
√

(

1 + r4hz′2 + r2hψ′2 − a′0
2
)

(

1 +
b2

r4

)

(2.4)
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and a Chern-Simons (CS) action given by

SCS = −(2πα′)2T7
2

∫

P [C4] ∧ F ∧ F

= −N f1f2

∫

dr r4z′(r) + 2N
∫

dr c(r)ba′0(r) , (2.5)

where N ≡ 4π2L5T7V2,1 and

c(r) = ψ(r)− 1

4
sin (4ψ(r))− ψ∞ +

1

4
sin(4ψ∞) . (2.6)

Note that c(r), and therefore ψ(r), plays the role of an axion in this model. One also

needs to include boundary terms for the action (see [4]), but they do not play any role in

this paper.

The asymptotic behaviors of the fields are given by

ψ(r) ∼ ψ∞ +mr∆+ − cψr
∆− (2.7)

z(r) ∼ z0 +
f1f2
r

(2.8)

a0(r) ∼ µ− d

r
, (2.9)

where the boundary value ψ∞ and the exponents ∆± are fixed by the fluxes f1 and f2:

(f21 + 4 cos4 ψ∞) sin2 ψ∞ = (f22 + 4 sin4 ψ∞) cos2 ψ∞ (2.10)

∆± = −3

2
± 1

2

√

9 + 16
f21 + 16 cos6 ψ∞ − 12 cos4 ψ∞

f21 + 4 cos6 ψ∞
. (2.11)

The parameters m and cψ correspond to the “mass” and “condensate” of the fun-

damental fermions, respectively, and µ and d to the chemical potential and charge

density, respectively.1

The conductivities for the black hole embedding are given by

σxx =
N3

2π2
r2T

b2 + r4T

√

d̃(rT )2 + (f21 + 4 cos4 ψ(rT ))(f22 + 4 sin4 ψ(rT ))(b2 + r4T ) (2.12)

σxy =
N3

2π2
jy
e

=
N3

2π2

(

b

b2 + r4T
d̃(rT ) + 2c(rT )

)

, (2.13)

where c(r) is given by equation (2.6) and d̃(r) ≡ d− 2bc(r).

Recall that at b = d = m = T = 0, the system has a quantum critical point. This is

reflected by the fact that the induced metric on the D7’ brane is that of AdS4 × S2 × S2

(see also [5]) with the AdS radius given by:

RAdS = L

√

(f21 + 4 cos4 ψ∞)(f22 + 4 sin4 ψ∞)
√

(f21 + 4 cos4 ψ∞)(f22 + 4 sin4 ψ∞)− f21 f
2
2

. (2.14)

1The physical charge density is given by dphysical = 8π3L4α′T7d.
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Throughout the paper we will choose for definiteness to present the figures with the

fluxes f1 = f2 = 1√
2
such that ∆+ = −1, ∆− = −2, and ψ∞ = π

4 . We will keep the

formulas in their general form, however.

3 Properties of the Fermi-like liquid

In this section, we further explore the properties of the homogeneous phase away from the

quantum critical point, at nonzero T , d, and m. In particular, we study the response to

background electric and magnetic fields.

3.1 Magnetization

The D3-D7’ system has some interesting magnetic properties, primarily stemming from

the second term in the Chern-Simons action (2.5):

2N
∫

drc(r)ba′0(r) . (3.1)

At the QCP, i.e., b = d = m = T = 0, the system is diamagnetic. The combination

m = d = b = 0 gives a semi-trivial2 embedding: ψ(r) = ψ∞ and (3.1) vanishes. Applying

a magnetic field, the dominant contribution to the free energy is the DBI term, and the

magnetization M = −∂F
∂b

is negative.

Moving away from the QCP, the combination of a nonzero charge and background

magnetic field generates a non-trivial embedding, even for m = 0, implying c(r) 6= 0 and

a non-trivial CS term (3.1). There are two competing contributions coming from the DBI

and CS parts of the action. For small b, the DBI contributes a negative magnetization while

the CS part is positive. The relative size of these contributions is temperature-dependent,

and as a result, the system is paramagnetic at small temperature and diamagnetic at large

temperature. For larger magnetic fields, the CS contribution becomes negative; the system

is then diamagnetic for all temperatures. The magnetization as a function of magnetic field

and temperature is shown in figure 1.

If we further generalize to nonzero m, the D3-D7’ system becomes ferromagnetic. In

this case, even for b = 0, the embedding is necessarily non-trivial, implying that c(r) 6= 0.

The Chern-Simons action (3.1) then has a linear term in b, which generates a positive

magnetization at zero field. The DBI action (2.4) also contributes to the spontaneous

magnetization, despite lacking an explicitly linear term; the source for the worldvolume

gauge field a0 is not d but rather d̃ = d− 2bc(r) which, once a0 is integrated out, leads to

terms linear in b and, as it turns out, a negative contribution to M at b = 0.

Figure 2 shows a numerical computation of the magnetization as a function of temper-

ature and magnetic field. Except for the spontaneous magnetization, i.e. M(b = 0) 6= 0,

the behavior is qualitatively similar to the m = 0 case illustrated in figure 1.

2By semi-trivial we mean a solution to the equations of motion for which ψ′ = 0. The function z′,

however, is non-trivial as long as both f1 and f2 are nonzero.
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Figure 1. Left: The magnetization M versus rT for m = 0, d = 1, and b = 0.1. Right: The

magnetization versus b for m = 0, d = 1, and rT = 0.1. Top curve (dotted red) is the CS

contribution, lowest curve the DBI contribution (dashed blue) and the middle curve (solid black)

is the total result.
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Figure 2. Left: The spontaneous magnetization versus rT for m = 1, d = 1, and b = 0. Right:

The magnetization versus b for m = 1, d = 1, and rT = 0.1. Top curve (dotted red) is the CS

contribution, lowest curve the DBI contribution (dashed blue) and the middle curve (solid black)

is the total result.

3.2 Conductivity

The longitudinal and transverse electrical conductivities were given in general by (2.12)

and (2.13). Here we discuss these results in some particular limits.

At the QCP, the embedding is trivial, implying c(rT ) = 0 and so σxy = 0 as well.

However, σxx is nonzero, which is possible at the QCP, given by

σxx =
N3

2π2

√

(f21 + 4 cos4 ψ∞)(f22 + 4 sin4 ψ∞) . (3.2)

If we allow m 6= 0, we find that the Hall conductivity becomes nonzero, even without

a magnetic field. The non-trivial embedding implied by m 6= 0 leads to a nonzero c(rT );

at b = 0, the transverse conductivity is then

σxy =
N3

π2
c(rT ) . (3.3)

Numerical computations of the Hall conductivity and resistivity are shown in figure 3. Such

a nonzero transverse Hall conductivity at zero magnetic field is called an anomalous Hall

effect3 and is closely tied to the ferromagnetism noted in section 3.1.

3See [8] for a review of theoretical and experimental results.
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Figure 3. Left: The transverse conductivity σxy at b = 0 and m = 1 as a function of temperature

rT for various d = 0.1, 0.5, 1, 2, 5, 10 (from bottom to top). Right: The transverse resistivity ρxy
versus the temperature rT for b = 0, d = 1, and m = 1.

The semiclassical description of the anomalous Hall effect uses transport theory includ-

ing coherent band mixing. This results in a modification for the velocity of the wave packets

dxi

dt
=

1

~

[

∂ǫn(k)

∂ki
+ eF ij

n Ej

]

, (3.4)

where ǫn(k) is the energy of a Bloch electron in band n and F ij
n is the Berry curvature in

momentum space. The second contribution on the right hand side gives an extra contri-

bution to the velocity resulting in a possible nonzero Hall conductivity called the intrinsic

anomalous Hall conductivity:4

σxyintrinsic =
e2

~(2π)2

∑

n

∫

d2kFxy
n (k)nn(k, µ) , (3.5)

where nn(k, µ) are the ground state occupation functions at chemical potential µ and

the integral is over the Brillouin zone. If a band is completely below the Fermi level it

contributes an integer to the “filling fraction” but a non-quantized contribution can come

when a band intersects the Fermi surface. In fact, the non-quantized part of the Berry

phase contribution to the intrinsic Hall conductivity can be written as an integral over the

Fermi surface [9].

We see that this is very similar to what happens in the D3-D7’ model. Here, the CS

term contributes an extra term to the definition of the current, resulting in the anomalous

contribution to the Hall conductivity, and m 6= 0 breaks the time-reversal symmetry.5

Indeed, the expression in our brane model for the conductivity at b = 0, see eq. (3.3), is

the same expression as for the Hall conductivity in the case of a quantum Hall state. The

only difference is that here c(ψT ) can take a continuous set of values, while in the quantum

Hall state ψT could only be π/2, so that c(ψT = π/2) was fixed.

Another notable feature of the D3-D7’ model is that in the high-temperature limit the

conductivity approaches that of the QCP. The high-temperature limit of (2.12) and (2.13)

4For a nonzero result after summation over bands one needs a breaking of time reversal symmetry.
5In the case m = 0 but b 6= 0, the breaking of time-reversal symmetry induces an anomalous term in the

Hall conductivity as well, as can be seen in (2.13).
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Figure 4. The longitudinal resistivity ρxx as a function of temperature rT with d = 1, m = 1, and

b = 0. Although ρxx initially rises with rT , it eventually saturates at a finite value.

are

σxx → N3

2π2

√

(f21 + 4 cos4 ψ(rT ))(f22 + 4 sin4 ψ(rT )) (3.6)

σxy → N3

π2
c(rT ) . (3.7)

Furthermore, at high temperature ψT → ψ∞, so the Hall conductivity drops to zero and

the longitudinal conductivity assumes the QCP form (3.2).

One consequence of this is that at high temperature the longitudinal resistivity is

bounded from above as illustrated in figure 4. This behavior is known as resistivity satura-

tion.6 In the usual semiclassical picture, resistivity saturation results from a lower bound

on the mean free path of the charge carriers. In this holographic model, it is instead

due to an enhanced pair production rate offsetting the usual temperature suppression of

the conductivity.

4 Quasi-normal mode analysis

In this section we analyze the fluctuations for the massless m = 0 background, and, as

mentioned before, for the fluxes f1 = f2 = 1/
√
2. We did not encounter any qualitative

modifications upon taking m 6= 0 and thus will not present any pictures for the massive

background.

To enter the discussion of the quasi-normal modes, it is convenient to switch to a

compact radial coordinate. We do so here by inverting it and at the same time scaling out

the dependence of the temperature:

u ≡ rT
r
. (4.1)

The addition of a background magnetic field to the setup of [6] does not break the rotational

symmetry in the (x, y)-plane, so we can still restrict to fluctuations propagating in the x-

direction, which schematically take the form f(u)e−iωt+ikx.

6See [10] for more on the theory and experimental status of the resistivity saturation.
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We further define hatted variables and functions such that the temperature is scaled

out of all the equations. Most importantly,

d̂ ≡ d

r2T
(4.2)

b̂ ≡ b

r2T
. (4.3)

We mention in passing that limits b→ 0 and T → 0 do not commute, as is common. This

noncommutativity manifests itself here in the following way. If one wishes to consider the

zero magnetic field case, b = 0, then the zero-temperature limit is nothing but b̂→ 0 (and

d̂→ ∞), and the results in [6] follow. However, if one wishes to keep the physical magnetic

field finite and nonzero, the zero temperature limit corresponds to b̂→ ∞.

The original equations of motion for the background fields can be found in [4]. The

rescaled equations are [6]:

z̄′ = − f1f2h

ĝ(1 + b̂2u4)
(4.4)

ā′0 =
ˆ̃
dh

ĝ(1 + b̂2u4)
(4.5)

u6∂u

(

ĝ(1 + b̂2u4)ψ′
)

= −16u4b̂ā′0 cos
2 ψ sin2 ψ +

h

2ĝ
∂ψG , (4.6)

where

ĝ ≡ h

1 + b̂2u4

√

ˆ̃
d2u4 + (1 + b̂2u4)G− hf21 f

2
2

1 + hu2ψ′2 (4.7)

G ≡
(

f21 + 4 cos4 ψ
) (

f22 + 4 sin4 ψ
)

(4.8)

A ≡ 1 + hu2ψ′2 + hu−4z̄′2 − ā′20 , (4.9)

where the prime denotes differentiation with respect to u, ā′0 ≡ ∂ra0 = − u2

rT
∂ua0, and

ˆ̃
d ≡ d̂− 2c(u)b̂. Finally

m̂ ≡ mr
∆+

T = u∆+ (ψ(u)− ψ∞)
∣

∣

∣

u→0
, (4.10)

though we will focus here just on massless backgrounds.

4.1 Fluctuation equations of motion

In order to obtain the linearized equations of motion for all the fluctuations, one needs

to expand the action to second order in fields and their derivatives. We only consider

parametric dependence on the AdS directions. The fluctuations are rescaled as follows [6]:

δẑ ≡ rT δz, δât,x,y ≡
δat,x,y
rT

, δêx ≡ δex
r2T

≡ kδat + ωδax
r2T

, (4.11)
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and the rescaled energy and momentum are defined as ω̂ ≡ ω/rT and k̂ ≡ k/rT . The

equations of motion for the fluctuations can be worked out as in [6], and we will just report

the results. In fact, including a magnetic field just adds some extra terms to the equations,

and in the b̂→ 0 limit the equations here collapse to those in [6].

First, for convenience, let us define the function

Ĥ ≡ ĝu2

Ah

(

1 + b̂2u4
)

(

1 + hu−4z̄′2 + hu2ψ′2) δâ′t

−
(

4b̂ sin2(2ψ) +
ĝ

2h
ā′0
(

1 + b̂2u4
)

∂ψ logG

)

δψ

+
ĝu2

A

(

1 + b̂2u4
)

ā′0ψ
′δψ′ − ĝ

Au2

(

1 + b̂2u4
)

ā′0z̄
′δẑ′ . (4.12)

The δψ equation of motion reads:

(

− h

2ĝu4

(

∂2ψG− 1

2G
(∂ψG)

2

)

+8b̂ā′0 sin(4ψ)+
u2

2
∂u

(

ĝψ′
(

1+b̂2u4
)

∂ψ logG
)

)

δψ

= −u2∂u
(

ĝ

A

(

1 + b̂2u4
)

(

1 + hu−4z̄′2 − ā′20
)

δψ′
)

+
ĝu2

h2

(

−
(

1 + b̂2u4
)

(

1 + hu−4z̄′2
)

ω̂2 +
(

1 + hu−4z̄′2 − ā′20
)

hk̂2
)

δψ

− ĝ

2u2

(

1 + b̂2u4
)

∂ψ logGz̄
′δẑ′ +

ĝ

h
z̄′ψ′

(

−
(

1 + b̂2u4
)

ω̂2 + hk̂2
)

δẑ

−u2∂u
(

ĝh

Au2

(

1+b̂2u4
)

z̄′ψ′δẑ′
)

+

(

4b̂ sin2(2ψ) +
ĝ

2h
ā′0
(

1+b̂2u4
)

∂ψ logG

)

u2δâ′t

+u2∂u

(

ĝu2

A
ā′0ψ

′
(

1 + b̂2u4
)

δâ′t

)

− ĝu4

h
ā′0ψ

′k̂δêx

−ik̂
(

4ā′0 sin
2(2ψ) +

hb̂

2ĝ
(

1 + b̂2u4
)∂ψG− b̂u2∂u

(

ĝu4ψ′)
)

δây . (4.13)

The δz equation of motion reads:

0 =
ĝ

h
z̄′ψ′

(

−
(

1 + b̂2u4
)

ω̂2 + hk̂2
)

δψ

−u2∂u
(

ĝh

Au2

(

1 + b̂2u4
)

z̄′ψ′δψ′ − ĝ

2u4
∂ψ logGz̄

′δψ

)

−u2∂u
(

(

1 + b̂2u4
) 1 + hu2ψ′2 − ā′20

Au2
ĝδẑ′

)

+
ĝ

h2

(

−
(

1 + b̂2u4
)

(

1 + hu2ψ′2) ω̂2 +
(

1 + hu2ψ′2 − ā′20
)

hk̂2
)

δẑ

+
ĝ

h
ā′0z̄

′k̂δêx − u2∂u

(

ĝ

Au2

(

1 + b̂2u4
)

ā′0z̄
′δâ′t

)

−ik̂b̂u2δây∂u
(

ĝz̄′
)

. (4.14)
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The δat equation of motion reads:

0 = u2Ĥ − ĝ

h
u4ā′0ψ

′k̂2δψ +
ĝ

h
ā′0z̄

′k̂2δẑ

−k̂ ĝ
h2
u4
(

1 + hu−4z̄′2 + hu2ψ′2) δêx − ik̂δâyu
2∂u

(

2c(u)− b̂ĝ

h
u4ā′0

)

. (4.15)

The δax equation of motion reads:

0 = − ĝ
h
u4ψ′ā′0k̂ω̂δψ + k̂ω̂

ĝ

h
ā′0z̄

′δẑ − ω̂
ĝ

h2
u4
(

1 + hu−4z̄′2 + hu2ψ′2) δêx

−iω̂δâyu2∂u
(

2c(u)− b̂ĝ

h
u4ā′0

)

+
u2

ω̂
∂u

(

ĝu2
(

−δê′x + k̂δâ′t
))

. (4.16)

The δay equation of motion reads:

0 = ik̂b̂δψu2∂u
(

ĝu4ψ′)+ 4ik̂ā′0 sin
2(2ψ)δψ + ik̂

hb̂∂ψG

2ĝ
(

1 + b̂2u4
)δψ

+ik̂b̂δẑu2∂u
(

ĝz̄′
)

+ iδêxu
2∂u

(

2c(u)− b̂ĝ

h
u4ā′0

)

− u2∂u
(

ĝu2δâ′y
)

− ĝ

h2
u4
(

1 + hu−4z̄′2 + hu2ψ′2) ω̂2δây +
ĝ

h
u4Ak̂2δây . (4.17)

And finally, the constraint coming from δau equation of motion, i.e., maintaining the

gauge au = 0, reads:

− ω̂Ĥ +
k̂

ω̂
u2ĝ

(

−δê′x + k̂δâ′t
)

= 0 . (4.18)

4.1.1 Decoupling limits

In general, the equations of motion are completely coupled. They partially decouple,

however, in several different limits. For the purposes of this paper, the following cases

are relevant:7

• m̂ = 0 and d̂ = 0

In this case ψ′ = 0 and also ∂ψG = 0. The system of equations decouple as follows:

k̂ 6= 0 : (δêx, δψ, δâ
′
t) ⊥ (δẑ, δây) (4.19)

k̂ = 0 : δêx ⊥ (δψ, δâ′t) ⊥ δẑ ⊥ δây . (4.20)

• m̂ = 0 and b̂ = 0

Again, ψ′ = 0 and ∂ψG = 0. The system of equations now decouple as follows:

k̂ 6= 0 : (δẑ, δêx, δâ
′
t) ⊥ (δψ, δây) (4.21)

k̂ = 0 : δêx ⊥ (δẑ, δâ′t) ⊥ δψ ⊥ δây . (4.22)

7Note that our list of decoupling limits is not exhaustive. For example, if either of the internal fluxes

f1, f2 is set to zero, which is the case for Minkowski embeddings, the Chern-Simons term sourcing z̄′ vanishes

(the first term in (2.5)) and δẑ decouples.

– 10 –



J
H
E
P
0
5
(
2
0
1
2
)
1
0
5

• k̂ = 0 with d̂ 6= 0 6= b̂

In this case we no longer have a semi-trivial background (i.e., ψ′ 6= 0), but the scalars

decouple from the vectors at vanishing momentum:

(δψ, δẑ, δâ′t) ⊥ (δêx, δây) . (4.23)

4.1.2 Method of solution

In this subsection we will briefly recall how the equations of motion are solved to find

quasi-normal modes. The methodology described here does not essentially differ from that

presented in [6], so for more details, we refer the reader to [6] and especially to [11, 12],

where the so-called determinant method is explained in depth. The references [13, 14]

consider MN backgrounds, where slight modifications are needed.

Our goal is to find normalizable solutions to the fluctuation equations of motion that

have infalling boundary conditions. Near the horizon, all the fields have the same singular

leading-order behavior, (1−u)±i ω̂4 (although δât has an extra factor of (1−u) to guarantee

that it vanishes). We separate out this leading singular behavior and choose the minus

sign in the exponent to obtain the infalling solution. For example, δψ = (1 − u)−i
ω̂

4 δψreg,

where δψreg is regular at the horizon.

Furthermore, we demand that the solutions are normalizable near the AdS bound-

ary. Here we have five equations of motion (4.13)–(4.17) to solve for five fluctuations

(δψreg, δẑreg, δêx,reg, δây,reg, δât,reg), but they are subject to a constraint (4.18). Because

the equations of motion preserve the gauge condition, as long as they are all satisfied,

imposing the constraint is equivalent to imposing it just at the horizon. Thus, there are

two alternative routes one can choose for implementing the constraint: 1) make use of the

constraint to solve for δâ′t in terms of all the other fields, leaving four equations for the

four remaining fields, or 2) impose the constraint only on the horizon boundary conditions

for δâ′t and solve all five field equations. Both of the routes are equivalent, but we found

it numerically faster to follow the second path. Therefore, we will not lose any equations

but make sure to take the constraint into account. According to the determinant method,

we choose a set of linearly independent boundary conditions at the horizon, namely,

{δψreg, δẑreg, δêx,reg, δây,reg} = {(1, 1, 1, 1), (1, 1, 1,−1), (1, 1,−1, 1), (1,−1, 1, 1)} . (4.24)

The derivatives at the horizon are set by the equations of motion. They have lengthy

expressions, so we do not present them here.

Finally, for any given momentum we solve the set of differential equations four times,

corresponding to the four different boundary conditions in (4.24). The interesting object

to look at is the determinant

det











u∆+δψI
reg u

∆+δψII
reg u

∆+δψIII
reg u

∆+δψIV
reg

δẑIreg δẑIIreg δẑIIIreg δẑIVreg
δêIx,reg δêIIx,reg δêIIIx,reg δêIVx,reg
δâIy,reg δâIIy,reg δâIIIy,reg δâIVy,reg











∣

∣

∣

∣

∣

∣

∣

∣

∣

u→0

(4.25)
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Figure 5. Left: The minimum k̂min (blue) and maximum k̂max (red) momentum for the tachyonic

instability to occur for the massless embedding m̂ = 0 as a function of the magnetic field for various

densities d̂ = 6, 10, 15, 20, 25, 30, 50 (inside-out). Right: The boundary in (b̂, d̂) plane, for m̂ = 0,

separating the stable homogeneous state (above) from the unstable state (below) where a spin and

charge density wave is expected to be the ground state. Notice the linear behavior of the critical

magnetic field for d̂≫ 1.

at the AdS boundary. For a given k̂, one then begins to scan over the complex valued

energy ω̂ until a zero of the determinant is found. Once this is the case, one concludes

that a normalizable solution has been found; there is a linear combination of the boundary

conditions giving the desired normalizable solution, for which all fluctuations vanish at the

AdS boundary.

In practice, we start with a limit of the parameters such that the equations decouple

and consider separately the different fluctuations. The quasi-normal modes are identified as

the values of (ω̂, k̂) where the contribution to the determinant changes sign. The accuracy

of these positions is therefore determined by the resolution of the scan, which in our case

is at least 10−3. Away from this limit the determinant is complex in general, and we find

the zero of the determinant using Newton’s method.

4.2 Instability at nonzero b

In [6] it was shown that in the absence of a magnetic field, the D3-D7’ system is unstable

if d̂ = d
r2
T

& 5.5. The true ground state is believed to be a striped phase, resembling

a spin and charge density wave. The instabilities associated with nonzero momenta are

quite generic and stem from a Chern-Simons term in the gravitational action. Indeed,

many other systems with instabilities occuring at some nonzero momentum have been

constructed; see [15–24].

In this section we explore the effect of a perpendicular magnetic field, i.e., Fxy ∝ b.

We find that as the magnetic field is increased, stability is enhanced, in the sense that for

a fixed charge density the system is stable at a lower temperature. The stabilizing effect

of the magnetic field can also be seen by looking at the range (k̂min, k̂max) where a tachyon

appears; as b̂ is increased, this range narrows, as shown in figure 5. For a given density

d at large enough magnetic field b, the homogeneous state of the system is stable to an

arbitrarily low temperature. Figure 5 shows the boundary separating the unstable region

(below the curve) from the stable region (above the curve).
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Figure 6. The dispersions for the modes closest to the real axis for various b̂ = 0.05 (left), 0.1

(middle), and 0.22 (right) for massless background m̂ = 0 and d̂ = 5. The purely imaginary

hydrodynamical mode is solid blue, and the other purely imaginary modes are solid red and solid

magenta. The complex modes are black, with Im ω̂ solid and Re ω̂ dashed. The crossover from

hydrodynamical to collisionless regime, which corresponds to the merging point of the two lowest

purely imaginary modes at nonzero momentum k̂ ∼ 0.23 . . . 0.25, is roughly constant as b̂ is varied.

However, above a critical magnetic field b̂m ≈ 0.22 (right panel), the hydrodynamical mode never

merges and the zero sound is massive.

4.3 Fate of zero sound at nonzero b

At zero magnetic field but at nonzero temperature the excitation with the smallest damping

at low momentum is the purely imaginary hydrodynamical mode. As shown in [6] this mode

meets another purely imaginary longitudinal gauge mode at some nonzero momentum, and

they become a pair of complex modes which are identified with the positive-temperature

zero sound modes propagating in opposite directions.8

At small enough b̂ this picture persists, except that the non-hydrodynamical mode

mixes with another purely imaginary transverse gauge mode at small momentum to form

two complex modes. At larger momentum these modes merge and become two purely

imaginary modes, one of which merges at still larger momentum with the hydrodynamical

mode to become the positive-temperature zero sound modes. All this can be seen in

figure 6. As b̂ is increased further, the merging points get closer together and at some

critical b̂m, they coincide. From this point on the so-called zero sound mode is lifted and

acquires a mass.

The real part of the now massive sound mode is well approximated by ω̂2 = m̂2
0 + k̂2.

The critical b̂m above which the zero sound becomes massive as a function of d̂, is shown in

figure 7. It is well approximated by b̂m ∼ 0.18+ 0.30
d̂
, and a typical dispersion of the massive

zero sound for b̂ > b̂c > b̂m is shown in the middle panel of figure 7. At even larger k̂ (not

displayed in figure 7) the massive zero sound ends up having the smallest imaginary part,

becoming the dominant mode. The dominance will be slightly more enhanced for larger

magnetic fields, where the imaginary parts of the zero sound and the hydrodynamical mode

only cross once.

In figure 7 we also display the real part (the mass of the zero sound) and the imaginary

part of the massive zero sound mode at zero momentum.

8For a complementary discussion in the supersymmetric D3-D7-brane setup, see [25].
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Figure 7. Left: The critical magnetic field b̂m separating the region with massive zero sound

(b̂ > b̂m) and massless zero sound (b̂ < b̂m) plotted versus d̂. The dots are data for the massless

background m̂ = 0, and the solid curve is the fit b̂m = 0.18 + 0.30

d̂
. Middle: A typical dispersion of

the massive zero sound (Im ω is solid black, Re ω is dashed black) and the hydrodynamical mode

(solid blue) for m̂ = 0, d̂ = 5, and b̂ = 0.6 > b̂c > b̂m. Right: The real part (dashed black) and the

imaginary part (solid blue) of ω̂(k̂ = 0) for the mode that will become a part of the massive sound

mode as a function of b̂ for d̂ = 5 and m̂ = 0. The vertical dotted line represents b̂m.

5 Conclusion

In this paper, we have continued our study of the holographic D3-D7’ model by investigating

the magnetic properties of the ungapped, Fermi-like liquid phase. At nonzero mass, the

system displays ferromagnetism and an anomalous Hall effect. We also found that the

longitudinal resistivity saturated at a finite value at high temperature. We observed that

an applied magnetic field has two important effects on the fluctuation spectrum. Adding

a magnetic field mitigates the modulated instability found at nonzero charge density. For

given charge density, there is a sufficiently large magnetic field which will render the system

stable. Furthermore, the magnetic field alters the mixing of the quasi-normal modes and,

if it is large enough, causes the zero sound mode to acquire a mass.

One missing element of our investigations is the approach towards the quantum Hall

phase. If one of the internal fluxes f1 and f2 vanishes, for a specific ratio of the magnetic

field to the charge density, there is a Minkowski embedding of the D-brane and the fermions

become a quantum Hall fluid. The quantum Hall fluid is stable and does not suffer from the

type of modulated instabilities suffered by the ungapped phase [13], but it is unclear how

this stabilization comes about. In this paper, we have worked with generic internal fluxes,

so the quantum Hall phase was absent. However, an upcoming work [26] will extensively

address these issues in the context of the related D2-D8’ model [27].
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