
J
H
E
P
0
5
(
2
0
1
2
)
0
9
2

Published for SISSA by Springer

Received: March 19, 2012

Accepted: May 5, 2012

Published: May 21, 2012

Two-loop corrections to the B → π form factor from

QCD sum rules on the light-cone and |Vub|

Aoife Bharucha

II. Institut für Theoretische Physik, Universität Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany

E-mail: aoife.bharucha@desy.de

Abstract: We calculate the leading-twist O(α2
sβ0) corrections to the B → π transition

form factor f+(0) in light-cone sum rules. We find that, as expected, there is a cancellation

between the O(α2
sβ0) corrections to fBf+(0) and the large corresponding corrections to fB,

calculated in QCD sum rules. This suggests the insensitivity of the form factors calculated

in the light-cone sum rules approach to this source of radiative corrections. We further

obtain an improved determination of the CKM matrix element |Vub|, using latest results

from BaBar and Belle for f+(0)|Vub|.

Keywords: Quark Masses and SM Parameters, B-Physics, Sum Rules

ArXiv ePrint: 1203.1359

c© SISSA 2012 doi:10.1007/JHEP05(2012)092

mailto:aoife.bharucha@desy.de
http://arxiv.org/abs/1203.1359
http://dx.doi.org/10.1007/JHEP05(2012)092


J
H
E
P
0
5
(
2
0
1
2
)
0
9
2

Contents

1 Introduction 1

2 Set-up of the calculation 3

3 Radiative corrections at order α2

s
β0 5

3.1 Calculation of the fermion bubble diagrams 5

3.2 Structure of the divergences 7

3.3 Convolution and scale dependence 7

4 Results 9

4.1 Spectral density 9

4.2 Decay constant fB 10

4.3 Numerical analysis 11

4.4 Determination of |Vub| 14

5 Summary 14

A Two-loop correction to spectral density 15

1 Introduction

In the last decade we have witnessed major advances in the efforts to overconstrain the

sides of the unitarity triangle, in order to test the CKM (Cabibbo-Kobayashi-Maskawa)

mechanism of the Standard Model (SM). However, one side of the common parameterisa-

tion of this triangle is given by |Vub|/|Vcb|, where Vij are elements of the CKM matrix, and

recent determinations of |Vub| have uncertainties of approximately 10% [1], as opposed to

the error on measurements of |Vcb| from the inclusive channel B → Xclν which is below

2% [2]. Since the inclusive channel b→ ulν is dominated by the large b→ clν background,

a competitive determination of |Vub|, promising both theoretically and experimentally, is

found via the exclusive semi-leptonic decay B → πlν. This requires information about the

relevant hadronic matrix element, parameterised by the form factors f+(q
2) and f−(q

2),

〈π(p)|ūγµb|B(pB)〉 = (pB + p)µf+(q
2) + (pB − p)µf−(q

2), (1.1)

where pB and p are the momenta of the B and π mesons respectively and q2 = (pB − p)2.

The beauty of this channel lies in the fact that in the limit of massless leptons, applicable

to l = e and µ, only f+(q
2) is required [3],

dΓ

dq2
(B0 → π−l+νl) =

G2
F |Vub|

2

192π3m3
B

λ3/2(q2)|f+(q
2)|2, (1.2)
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where GF is the Fermi coupling constant and λ(q2) = (m2
B + m2

π − q2)2 − 4m2
Bm

2
π for

masses mB and mπ of the B and π mesons respectively. Therefore the extraction of

|Vub| relies on the theoretical prediction for a single hadronic quantity f+(q
2), possible via

non-perturbative techniques such as Lattice quantum chromodynamics (QCD) (see e.g.

refs. [4, 5]) or QCD sum rules on the light-cone (LCSR).

Theoretical predictions are usually confined to a particular region of q2, for example

LCSR are restricted to large recoil energies of the pion, corresponding to q2 . 6− 7GeV2,

and Lattice results to small values of the pion momentum,1 i.e. q2 & 15GeV2. Experi-

mentally the q2 distribution has been measured with increasing accuracy at CLEO [7, 8],

BaBar [1, 9–12] and Belle [13, 14]. In order to maximally exploit these theoretical and

experimental results, one requires a well motivated parameterisation for the q2 dependence

of f+(q
2). There are a number of approaches, either simple pole-type parameterisations as

in refs. [15, 16], using dispersive bounds to constrain the coefficients of a series expansion

as in refs. [17, 18] or using the Omnès representation as in refs. [19, 20]. In all these, the

normalisation provided by the LCSR prediction at q2 = 0GeV2 plays a crucial role. In

fact, one can obtain |Vub| directly from the model independent result for |Vub|f+(0), first

calculated in ref. [21] by fitting such shape parameterisations to BaBar data [10].

Light-cone sum rules are an adaptation of the traditional QCD sum rules approach [22,

23], considering instead the correlator of the T product of two quark currents sandwiched

between a final on-shell meson and the vacuum [24, 25]. This can be expanded about the

light-cone, in terms of perturbatively calculable hard scattering kernels convoluted with

non-perturbative, universal light-cone distribution amplitudes. The correlator can also

be expressed as the sum over excited states, the first being the B meson which is then

followed by a continuum of states. Then assuming quark hadron duality above a certain

continuum threshold, one can subtract this continuum contribution from both sides. Borel

transforming this relation then ensures that this assumption, and the truncation of the

series, have a minimal effect on the resulting sum rule.

We are interested in calculating the subset of two-loop radiative corrections to f+(0)

proportional to β0, assuming, as discussed in section 3.1, that this is a good approximation

to the complete next-to-next-to-leading order (NNLO) result. In addition to allowing an

improved determination of |Vub|, our calculation will enable us to investigate the size of

these radiative corrections in view of the sizeable two-loop contribution to fB in QCD

sum rules [26, 27]. The magnitude of this contribution is thought to be due to coulombic

corrections, as explored in e.g. ref. [28]. The LCSR approach to form factors involves taking

the ratio of fBf+(q
2), also affected by such coulombic corrections, to fB. We therefore test

the argument that radiative corrections should cancel in this ratio, provided both quantities

are calculated in sum rules.

The current status of the LCSR calculation of f+(q
2) is as follows. The next-to-leading

order (NLO) twist-2 corrections to f+(q
2) were first calculated in LCSR in ref. [29, 30] and

the leading order (LO) corrections up to twist-4 were calculated in ref. [31]. Since the LO

1Note that the form factor at q2 = 0GeV2 was recently obtained in a quenched calculation on a very

fine lattice [6].
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twist-3 contribution was found to be large, further improvements were made by calculating

the smaller NLO corrections [16]. A more recent update where the MS mass is used in

place of the pole mass for mb can be found in ref. [32, 33].

The following paper is structured as follows: in section 2 we introduce the necessary

notation and establish the framework required for the calculation, including the expression

for the one-loop correction at leading-twist; in section 3 we present details of the two-

loop calculation and describe the structure of the divergences of the bare result and the

renormalisation procedure; a detailed analysis of our numerical results, with predictions

for |Vub|, can be found in section 4; finally we summarise in section 5.

2 Set-up of the calculation

Such as to briefly introduce the LCSR approach to the calculation of f+(q
2), and the

notation which will later be required, we consider the correlator of two quark currents

sandwiched between the vacuum and pion,

Πµ = imb

∫

dDxe−i pB ·x〈π(p)|T{ū(0)γµb(0)b̄(x)iγ5d(x)}|0〉, (2.1)

= (pB + p)µΠ+(p
2
B, q

2) + (pB − p)µΠ−(p
2
B, q

2). (2.2)

In the region around the pole at p2B = m2
B, Π+(p

2
B, q

2) can be expressed in terms of f+(q
2)

and the B meson decay constant fB, where

mb〈0|d̄iγ5b|B〉 = m2
BfB. (2.3)

Above the B meson pole the contribution of the hadronic states can be described by the

spectral density ρhad, leading to an expression for the correlator of the form

Π+(p
2
B, q

2) = fBm
2
B

f+(q
2)

m2
B − p2B

+

∫

s>m2
B

ds
ρhad
s− p2B

. (2.4)

Alternatively, in the Euclidean region where p2B −m2
B is large and negative, using a light-

cone expansion about x2 = 0, the correlator can be collinearly factorised into perturbatively

calculable hard kernels T
(n)
+ (u, µ2) and non-perturbative light-cone distribution amplitudes

(DAs) φ(n)(u, µ2) for a given twist n, via

Π+(p
2
B, q

2) =
∑

n

∫

du T+
(n)(u, p2B, q

2, µ2)φ(n)(u, µ2), (2.5)

where u is the momentum fraction of the quark in the pion, and µ is the factorisation or

renormalisation scale. This factorisation theorem is not proved to all orders, but can be

verified at a given order in twist or perturbation theory by the cancellation of IR and soft

divergences, the latter arising when the convolution does not converge at the endpoints.

The leading-twist pion distribution amplitude, φ(u, µ2), contains the distribution of the

momentum fraction u in the pion’s infinite momentum frame for the lowest Fock state. We

– 3 –
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postpone the discussion of DAs to section 3.3, and here simply state the definition, in the

Fock-Schwinger or light-cone gauge, to be

〈π(p)|ū(0)γµγ5 d(x)|0〉 = −ifπpµ

∫ 1

0
du eiūp·xφ(u, µ2) + . . . , (2.6)

where fπ is the decay constant of the pion, ū = 1 − u is the momentum fraction of

the antiquark, and the ellipsis indicates the contributions at higher-twist. Making the

substitution u = (m2
b − q2)/(s − q2) in the leading twist contribution to eq. (2.5), and

taking the imaginary part, we can define the spectral density ρT2 at twist-2,

Π+(p
2
B, q

2) =

∫ ∞

0
ds

ρT2

s− p2B
+ . . . , (2.7)

where again the ellipsis indicates the contributions at higher-twist. Equating the expres-

sions for Π+(p
2
B, q

2) in eqs. (2.4) and (2.7) results in

fBm
2
B

f+(q
2)

m2
B − p2B

+

∫

s>m2
B

ds
ρhad
s− p2B

=

∫ ∞

0
ds

ρT2

s− p2B
. (2.8)

Above the continuum threshold s0, a continuum of states contributes and the approxima-

tion of quark-hadron duality is thought to be reasonable, such that

ρhad = ρT2Θ(s− s0). (2.9)

Subtracting the continuum contribution and Borel transforming both sides results in the

sum rule for f+(q
2),

f+(q
2) =

1

fBm2
B

∫ s0

m2
b

ds ρT2 e
−(s−m2

B
)/M2

, (2.10)

whereM2 is the Borel parameter. The uncertainty introduced in making the quark-hadron

duality approximation is reduced by Borel transforming, and further by choosing s0 and

M2 appropriately such that the result for f+(q
2) is flat with respect to these parameters.

Returning to the original definition of the correlator in eq. (2.1), we consider the

NLO corrections to the leading-twist term in the expansion about the light-cone x2 = 0,

calculated in ref. [29, 30]. In analogy to eq. (2.5), we express the correlator in the collinearly

factorised form,

Πµ(p
2
B, q

2) =
∑

n

∫

du T (n)
µ (u, µ2)φ(n)(u, µ2). (2.11)

We perturbatively expand the leading-twist contribution to the correlator,

ΠT2
µ =

∫

du T (2)
µ (u, µ2)φ(u, µ2) (2.12)

= Π(0)
µ +

αs

4π
Π(1)

µ +

(

αs

4π

)2

Nf Π
(2)
µ . . . , (2.13)

– 4 –
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where the tree-level term Π
(0)
µ is

Π(0)
µ = −

1

4
fπmb

∫ 1

0
duφ(u, µ2) tr{γµ

6 pB − ūp/+mb

(pB − ūp)2 −m2
b

p/}. (2.14)

Although the O(αs) radiative corrections to the correlator, involving six further diagrams,

were calculated in ref. [29, 30], we include the following expressions here as they will be

useful in presenting the NNLO results,

Π(1)
µ =

N

4

∫ 1

0
duφ(u, µ2)

∫

dDk

(2π)D
gαβ

k2
FT
µ , (2.15)

where the normalisation N is defined as

N = −i (4π)2CF fπmb, (2.16)

for CF = 4/3. FT
µ contains the total contribution of the traces and fermionic propagators

for the weak vertex correction, B vertex correction, box, b quark self-energy and light quark

self-energy diagrams. We factorise the gluon propagator out of FT
µ so that our notation

can be adapted to the NNLO calculation more easily. Defining FT
µ to be

FT
µ = FWV

µ + FBV
µ + FBX

µ + F SE
µ + FLSE

µ , (2.17)

the contribution of individual diagrams in Feynman gauge can be expressed as

FWV
µ = tr

{

γα
k/− up/

(k − up)2
γµ

q/− k/+ up/+mb

(q − k + up)2 −m2
b

γβ
p/B − ūp/+mb

(pB − ūp)2 −m2
b

p/

}

(2.18)

FBV
µ = tr

{

γµ
p/B − ūp/+mb

(pB − ūp)2 −m2
b

γα
−p/B − k/+ ūp/−mb

(pB + k − ūp)2 −m2
b

k/− ūp/

(k − ūp)2
γβ p/

}

(2.19)

FBX
µ = tr

{

γα
up/− k/

(up− k)2
γµ

p/B − ūp/− k/+mb

(pB − ūp− k)2 −m2
b

k/+ ūp/

(k + ūp)2
γβ p/

}

(2.20)

F SE
µ = tr

{

γµ
p/B − ūp/+mb

(pB − ūp)2 −m2
b

γα
−p/B + ūp/+ k/−mb

(pB − ūp− k)2 −m2
b

γβ
p/B − ūp/+mb

(pB − ūp)2 −m2
b

p/

}

. (2.21)

As in previous calculations, we work in the limit that the light quarks are massless, i.e.

p2 = 0. Therefore FLSE
µ , the contribution of the self-energy diagrams for the external

light quarks, vanishes as discussed in section 3.2. In this paper, to avoid repeating what

already exists in the literature, we will only concentrate on the technical details for the

O(α2
sβ0) corrections. Details of the NLO and higher twist contributions incorporated into

our numerical analysis are as given explicitly in ref. [16].

3 Radiative corrections at order α2

s
β0

3.1 Calculation of the fermion bubble diagrams

In analogy to QED, where the running of the β-function is connected to the photon polari-

sation, Brodsky, Lepage and Mackenzie had the idea of associating the running of the QCD

– 5 –
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u · p

pB

ū · p

q

u · p

pB

ū · p

q

u · p

pB

ū · p

q

u · p

pB

ū · p

q

Figure 1. Feynman diagrams for O(α2
sβ0) corrections to ΠT2

µ . From left to right, the B vertex

correction, weak vertex correction, box and b quark self-energy diagrams are shown. The external

quarks are on-shell with momenta as indicated and the dashed line represents the B meson.

β-function with fermion loop insertions in the lowest order corrections [34]. The scale for a

given process can then be set by demanding that this contribution to the two-loop correc-

tions vanishes, a procedure known as BLM scale setting. Physically, such a renormalisation

scale reflects the mean virtuality of the gluon propagator [35].

In ref. [36], the technique of näıve non-abelianisation (NNA) was proposed, where the

complete NNLO result is approximated by calculating fermion loop insertions, as for BLM

scale setting, and replacing Nf by its non-abelian counterpart −(3/2)β0. This idea was

supported by the observation that in a number of cases where the remaining part of the

two-loop corrections could be calculated e.g. higher order corrections to observables from

hadronic vacuum polarisation and to the pole mass, it was found to be small in comparison

to the O(αsβ0) contribution.
2 Using the NNA technique, we calculate the O(α2

sβ0) twist-

2 contribution to f+(0), keeping in mind that the NLO corrections to the higher twist

contributions have been found to be comparatively small.3 The expression to be calculated

takes the form,

Π(2)
µ = N

∫ 1

0
duφ(u, µ2)

∫

dDk

(2π)D
Γ(ǫ)Γ(2− ǫ)2

Γ(4− 2ǫ)

(

−k2

4πµ2

)−ǫ
1

k2

(

gαβ −
kαkβ

k2

)

FT
µ , (3.1)

where FT
µ is as defined in eq. (2.17). The relevant Feynman diagrams are shown in figure 1.

The calculation is similar to the one-loop case, however, the additional fermion loop

induces two important changes. Firstly, the tensor structure of the gluon propagator

changes from the form

−igαβ

k2
→

−i

k2

(

gαβ −
kαkβ

k2

)

(3.2)

resulting in additional terms in the trace (although these cancel in the sum of all diagrams

due to gauge invariance [39], serving as an additional check of the calculation). Secondly,

the factor Γ(ǫ) means that the integrals must be expanded to a higher order in ǫ. The

increased complexity of the calculation is slightly compensated by the fact that we set

2Further, in refs. [37, 38], this idea was used to extend the BLM scale setting, by resumming fermion

loop insertions in the lowest order corrections to all orders.
3Note that the various contributions to f+(0) were studied in ref. [32] in the pole and MS schemes,

and while at LO the twist-3 are comparable to the LO twist-2 contributions (∼ 40 − 50%), at NLO, in

comparison to the twist-2 (∼ 10− 20%), the twist-3 contributions are better under control (∼ 2− 4%).
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q2 = 0, however two scales (p2B and mb) and one dimensionless parameter (u) remain.

We perform the traces using the package FeynCalc [40], and expand the hypergeometric

functions using the Mathematica package HypExp [41]. The resulting analytic expression

must then be simplified and rearranged into a form facilitating the convolution with the

distribution amplitude.

3.2 Structure of the divergences

The bare O(α2
sNf ) results for Π

(2)
µ , contain both infra-red (IR) and ultra-violet (UV)

divergences. These are treated in näıve dimensional regularisation (NDR), with totally

anti-commuting γ5 due to the presence of two γ5 matrices in the trace, renormalising the

UV divergences in the MS scheme. As mentioned earlier, in NDR the light quark self energy

diagrams vanish, as the UV and IR divergences arising from these diagrams cancel. On

adding all the diagrams together, we first perform the gluon self-energy renormalisation

using the O(αsNf ) contribution, Z
(1)
3YM, to the corresponding renormalisation constant

Z3YM [42],

Z
(1)
3YM = −CF

(

2

3ǫ

)

, (3.3)

multiplied by Π
(1)
µ . The left-over UV poles are completely removed by mass renormalisation,

using the O(α2
sNf ) contribution, Z

(2)
m , to the renormalisation constants Zm,

Z(2)
m = CF

(

−
1

ǫ
+

5

6ǫ

)

, (3.4)

multiplied by Π
(0)
µ . Collecting what we assume to be the remaining IR divergences in

Π
(2),TIR
µ and subtracting this quantity,

Π(2),ren.
µ = Π(2)

µ − Z
(1)
3YMΠ(1)

µ − Z(2)
m Π(0)

µ −Π(2),TIR
µ , (3.5)

leaves Π
(2),ren.
µ UV and IR finite, however we are still to determine the origin of the IR

divergences contained in Π
(2),TIR
µ .

3.3 Convolution and scale dependence

The leading-twist pion DA defined in eq. (2.6) can be expanded in a series of Gegenbauer

polynomials,

φ(u, µ2) = 6u(1− u)
∞
∑

n=0

an(µ
2)C3/2

n (2u− 1). (3.6)

Here an are known as Gegenbauer moments, and in the case of the pion the odd moments are

zero by G-parity. The expansion is usually truncated, as the higher moments are suppressed

due to the highly oscillatory behaviour of the Gegenbauer polynomials. However, the

truncation is only justified if the hard scattering kernel T
(n)
µ is slowly varying and non-

singular for all u [43]. We include terms for n ≤ 4 up to O(αs), but we assume that at

– 7 –
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γan γη3 γω3
γη4 γω4

4CF

(

ψ(n+ 2)+γE−
3
4 − 1

2(n+1)(n+2)

)

16
3 CF + CA −25

6 CF + 7
3CA

8
3CF −8

3CF + 10
3 CA

Table 1. One-loop anomalous dimensions of the parameters an, η3,4 and ω3,4 describing the

DAs [16, 44].

O(α2
sNf ) the effect of a2,4(µ) is negligible,

4 and adopt the asymptotic DA (i.e. φ(u,∞) =

6u(1− u)) to simplify the convolution.

As the previously calculated twist-3 and 4 contributions are included in our numerical

analysis, the corresponding DAs are also required, as defined in ref. [16]. In the same

reference it was shown that, for a given twist, the two and three particle distribution

amplitudes can be related by an equation of motion, resulting in a reduced number of

independent parameters: η3,4 and ω3,4. These parameters, as well as the moments an, are

known to renormalise multiplicatively to leading log accuracy [43],

c(µ2) = c(µ20)

(

αs(µ
2)

αs(µ20)

)γc/β0

, (3.7)

where µ0 is the initial scale at which the parameter was calculated and γc are the one-loop

anomalous dimensions defined in table 1 for c = an, η3,4 or ω3,4.

Coming back to the renormalisation of our NNLO result, the UV structure of the

asymptotic DA can be factorised into the function Zφ(u, v) [39]. This can be related to

V (u, v), the evolution kernel governing the renormalisation group (RG) running of the

asymptotic DA, via

V (u, v) = −
1

Zφ(u, v)

(

µ2
∂

∂µ2
Zφ(u, v)

)

. (3.8)

V (u, v) is defined in refs. [45, 46], where it was first calculated to two-loop accuracy, and

is given to O(α2
sNf ) by,

V (u, v) =
αs

2π
V0(u, v) +

(

αs

2π

)2 1

2
Nf CF VN (u, v) + . . . . (3.9)

Explicit expressions for V0(u, v) and VN (u, v) can be found in ref. [46], and the ellipsis

indicates other O(α2
s) and higher order terms. Z

(2)
φ (u, v), i.e. the O(α2

sNf ) contribution to

Zφ(u, v), can then be reconstructed from the evolution kernel, and expressed in terms of

V0(u, v) and VN (u, v),

Zφ(u, v) = δ(u, v) +
αs

4π

1

ǫ
2V0(u, v) +

(

αs

4π

)2 1

ǫ2
NfCF

(

1

2
V0(u, v) + ǫ VN (u, v)

)

+ . . . .

(3.10)

On convolution with the tree-level hard scattering kernel T
(2,0)
µ (u, µ2), i.e. the leading

contribution to T
(2)
µ (u, µ2) in eq. (2.13), the divergence up to O(α2

sNf ) takes the form

Π(2),φUV
µ =

∫

du

∫

dv
1

ǫ
CFVN (u, v)T (2,0)

µ (u, µ2)φ(v, µ2). (3.11)

4This can be inferred from figure 1 of ref. [3], where the respective size of different contributions in an

to f+(q
2) were shown as a function of q2.
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Note that the terms in V0(u, v) are symmetric in u, v, and therefore vanish since we use the

asymptotic DA. The UV divergence of the DA cancels the IR divergence of the hard scat-

tering kernel exactly at O(α2
sNf ), i.e. Π

(2),φUV
µ = −Π

(2),TIR
µ . Therefore the IR divergences

associated with the hard-scattering kernel can be absorbed into the DA, as discussed in

detail in ref. [47] for the case of the pion transition form-factor, leaving us with a result for

Π
(2),ren.
µ which is completely finite. Convoluting this renormalised hard-scattering kernel

with the asymptotic DA results in an expression including terms involving L4 and gener-

alised Nielsen polylogarithms. Since we calculate the hard scattering kernel to O(α2
sNf ),

we should take the scale dependence of the twist-2 DA to the same order, which involves

adding the term 2CFVN (u, v) ln(µ2/µ20)Π
(0)
µ to the result for Π

(2)
µ .

4 Results

Before coming to our numerical analysis, we must first extract the spectral density from

the correlation function Πµ, and obtain the O(α2
sβ0) QCD sum rules result for the B meson

decay constant fB.

4.1 Spectral density

As in eq. (2.2), we define ΠT2
+ in terms of ΠT2

µ via

ΠT2
µ = (pB + p)µΠ

T2
+ (p2B, q

2) + (pB − p)µΠ
T2
− (p2B, q

2). (4.1)

One can then extract the relevant spectral density by taking the imaginary part of the

calculated correlator,

ρT2 =
1

π
ImΠT2

+ . (4.2)

An expression for the NNLO correction to ρT2 is given explicitly in the appendix. As we

will employ the pole mass for mb in our numerical analysis, we have rewritten the MS mass

in terms of the pole mass. At O(α2
SNf ), this involved adding the term

∆ρ
(2)
T2 = −Cffπ

m3
b

s3
(3m2 − 2s)

(

1

2
(71 + 8π2) + 26 log

µ2

m2
+ 6 log2

µ2

m2

)

(4.3)

to ρ
(2)
T2 . Finally, in order to obtain the O(α2

Sβ0) result, Nf in ρT2 should be replaced by

−3/2β0. Including the contributions at twist-3 to one-loop accuracy and twist-4 to leading

order accuracy,

ρΠ+
(s, 0) = lim

q2→0
(ρT2 + ρT3 + ρσ + ρp + ρ2pT4 + ρ3pT2), (4.4)

where ρT3, ρσ and ρp are contributions at twist-3 and ρ
2(3)p
T4 are contributions at twist-4 as

defined in ref. [16]. An additional twist-4 term, T4c, cannot be expressed via a dispersion

relation so must be included separately. Therefore, on taking the Borel transformation of

Π+, we have

B̂Π+ =

∫ ∞

m2
b

ds ρΠ+
(s, 0)e−s/M2

+T4(0)c , (4.5)

– 9 –
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where we have defined T4
(0)
c via

T4(0)c = lim
q2→0

T4c. (4.6)

4.2 Decay constant fB

Expressing the sum rule as

f+(0) =
1

m2
BfB

(

∫ s0

m2
b

ds ρΠ+
(s, 0)e(m

2
B
−s)/M2

+T4c e
m2

B
/M2

)

, (4.7)

we see that a numerical result for f+(0) requires the decay constant fB as input. For

consistency we use the QCD sum rules result also calculated to O(α2
sβ0). Although the full

O(α2
s) corrections are sizeable [26, 27], this is thought to be due to the effect of the classical

Coulomb interaction [28], such that the perturbative expansion is under control. Moreover,

the same coulombic corrections would also affect the correlator for f+(0)fB. This implies

that by employing the sum rules result for fB there should be a cancellation between these

radiative corrections, as well as between the dependence on input parameters such as mb

and µ, in f+(0)fB and fB. The QCD sum rules result for fB takes the form

fB =
1

m2
B

(

∫ s0

m2
b

ds ρpert(s)e
(m2

B
−s)/M2

+ Cq̄q〈q̄q〉+ Cq̄Gq〈q̄σgGq〉

)
1

2

, (4.8)

where Cq̄q and Cq̄Gq are Wilson coefficients for the operator product expansion (OPE) in

terms of the quark and mixed condensates respectively [28, 48]. The spectral density for

the perturbative contribution ρpert(s) can be expanded in αs,

ρpert(s) = ρ
(0)
pert(s) +

αs

4π
ρ
(1)
pert(s) +

(

αs

4π

)2

Nfρ
(2)
pert(s) . . . , (4.9)

where the tree level contribution takes the simple form

ρ
(0)
pert(s) =

Nc

8π2
m2

b s

(

1−
m2

b

s

)2

. (4.10)

The O(αs) result ρ
(1)
pert(s) was obtained from ref. [49]. The O(α2

s) corrections to ρpert(s),

in the case that the light quark is massless, were calculated using Padé approximations

and conformal mapping and used to obtain semi-numerical results [50, 51], as an analytical

calculation of all diagrams was not feasible. We can express ρ
(2)
pert(s) in terms of the quantity

R
(2),s
FL (s), kindly provided by the authors of ref. [50] in publically available code, via

ρ
(2)
pert(s) = CF m

2
b sR

(2),s
FL (s). (4.11)

To obtain the O(α2
sβ0) result, Nf in ρpert(s) should be replaced by −3/2β0. The result

for R
(2),s
FL (s) is given at the scale mb, and the pole mass is used for the b quark. We

must therefore include the O(α2
sβ0) corrections which arise on rescaling αs from mb to the

factorisation scale µ, which take the form

∆ρ
(2)
pert(s) = CF ln

mb

µ
ρ
(1)
pert(s). (4.12)

– 10 –



J
H
E
P
0
5
(
2
0
1
2
)
0
9
2

Parameter Value Ref. Parameter Value Ref.

mπ 139.6MeV [64] fπ 130.4MeV [64]

mB 5.28GeV [64] αs(MZ) 0.118 [64]

η3 0.015 [44] ω3 -3 [44]

η4 10 [44] ω4 0.2 [44]

〈q̄q〉 (−0.246+0.028
−0.019)

3GeV3 [32] 〈q̄σgGq〉 (0.8± 0.2) 〈q̄q〉 [65, 66]

Table 2. Summary of values of parameters used in the numerical analysis. Note the quark con-

densate is given at the scale 1GeV.

4.3 Numerical analysis

From eq. (3.6) it is clear that making numerical predictions for the twist-2 pion DA comes

down to determining the Gegenbauer moments. This is only possible via non-perturbative

methods e.g. QCD sum rules [52–54] or Lattice QCD [55–57]. Recently, the UKQCD and

RBC collaborations computed a2(2GeV), using Nf = 2+1 domain-wall fermions [58]. By

combining results for a2(µ) with experimental constraints, i.e. measurements of the γγ∗π

form factor at CLEO [59] and CELLO [60], an estimate for a4(µ) can be obtained [61].

However, as this is a LCSR calculation, we accordingly adopt a2,4(1GeV) from ref. [33]

where the LCSR result for the pion electro-magnetic form factor [62] is fitted to experimen-

tal data [63]. The extracted values, a2(1GeV) = 0.17± 0.08 and a4(1GeV) = 0.06± 0.10,

where the errors reflect both experimental and theoretical uncertainties, are consistent with

other sum rules and Lattice QCD predictions. The parameters describing twist-3 and 4

DAs, namely η3, ω3, η4 and ω4, introduced in section 3.3, were first calculated in QCD

sum rules [53] using non-local operator product expansion and conformal expansion. We

use the updated results calculated in ref. [44], as summarised in table 2. The error on

these parameters is taken to be 50%. The condensates are also required as input; we use

〈q̄q〉 and 〈q̄σgGq〉 as given in table 2, neglecting the gluon condensate as its contribution

is comparably small.

Our main numerical analysis is performed using the pole mass mb as input, which we

calculate to O(α2
sβ0) from the running quark mass. This improves the scale dependence of

the final result, and avoids any ambiguity in the definition of the lower limit of the integral in

eq. (4.7). The RG improved b quark mass, in the potential subtraction scheme (see ref. [67])

was calculated at NNLO from sum rules in ref. [68] to be mPS
b (2GeV) = 4.52± 0.06GeV,

as in table 2. This results in a pole mass of 4.8GeV at O(α2
sβ0) (and at O(α2

s)), and

in order not to underestimate the uncertainty on the pole mass we conservatively adopt

mb = 4.8± 0.1GeV.

The LCSR approach requires a careful choice of numerical values for the continuum

limit s0 and the Borel parameterM2. We treat the sum rules for fBf+(0) and fB separately,

obtaining independent values of s0 and M2 for both. These should be chosen such that

the following conditions are met:

• the sum rule exhibits little dependence on, but a clear extremum as a function of

these parameters;

– 11 –
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0.14

0.16

0.18

0.20

0.22

M 2

f B

Figure 2. fB(0) at O(α2
sβ0) as a function of the Borel parameter M2, for central values of input

parameters (solid) with uncertainties (dotted) calculated as described in the text for f+(0). This

is compared to the O(αs) result calculated using s0 = 34.2GeV2 (dashed).

• the corresponding sum rule for mB, which can be obtained by differentiating the sum

rule for fB or f+(0)fB by 1/M2, is fulfilled to 0.1%, as in ref. [16];

• the continuum contribution is under control, i.e. we impose that the integral of the

spectral density between s0 and ∞ should be approximately 25-30% of the B contri-

bution, between m2
b and s0, for f+(0)fB, and 50% for fB;

• as far as possible, the contributions of higher orders in perturbation theory and twists

should be suppressed.

Note that we rescale the Borel parameter by 〈u〉−1 as defined in ref. [16], as the effective

Borel parameter in the tree-level sum rule is uM2
LC rather than M2

LC corresponding to M2

in eq. (4.7). In our numerical analysis we find that s0 = 34.2GeV2 and M2 = 3.6GeV2 for

fB, and s0 = 34.3GeV2 and M2 = 8.1GeV2 for f+(0)fB, meet the above requirements.

The factorisation or renormalisation scale µ is chosen to be the typical virtuality of the

b quark,
√

m2
B −m2

b , as this has previously been found to be an optimal scale [16, 29–

31]. In figure 2 we show fB as a function of M2 and compare this to the corresponding

result at O(αs).

We find that the dominant uncertainties on f+(0) arise due to varying the following:

• the condensates as indicated in table 2;

• the twist-3 parameter η3 by ±50%;

• the b quark mass by ±0.1GeV;

• the continuum threshold s0 by ±0.5GeV2 and the Borel parameterM2 by ±1.2GeV2

for both f+(0)fB and fB;

• the factorisation scale in the range µ2 ± 2GeV2.
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0.22

0.24

0.26

0.28
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0.32

M 2

f +
H0
L

Figure 3. f+(0) at O(α2
sβ0) for central values of input parameters (solid) with uncertainties

(dotted), compared to the O(αs) result calculated using s0 = 34.3GeV2 (dashed), as a function of

the Borel parameter M2.

The uncertainties arising from each of the above are calculated independently and added

in quadrature, and we obtain f+(0) = 0.261+0.020
−0.023. The uncertainties are less than 9%, and

could be further reduced by better determining the condensates and the twist-3 parameters

via, for example, Lattice QCD. Comparing our result for f+(0) to the O(αs) result in

figure 3 shows that, despite the ∼ 9% O(α2
sβ0) corrections to fB mentioned earlier, there

is little change in f+(0) ∼ 2%. This observation indicates the reliability of the light-cone

sum rule approach to the calculation of form factors, as it seems that the results are stable

with respect to higher order corrections. This could further be taken as confirmation that

the QCD sum rules result for fB should indeed be used in preference to the Lattice QCD

result in LCSR calculations of the form factors.

In ref. [32, 33], f+(0) was calculated using the b quark mass in the MS scheme. Here

it was argued that this is a natural scheme for the calculation of scattering amplitudes

involving a virtual b quark at large space-like momentum scales ∼ mb. As there are

arguments in favour of both schemes, we also calculate our result using the MS mass for

the b quark. This involves replacing the pole mass by the MS mass at the scale µ, adding

NLO corrections found in the appendix of ref. [32] for both twist-2 and 3 scattering kernels.

At NNLO translating back to the MS scheme for the b mass means removing the correction

given in eq. (4.3). As for fB, we take the expressions given in ref. [26] up to O(α2
sβ0). For

the value of the mass, we use mb(mb) = 4.19+0.18
−0.06 [69]. Note that, as in ref. [26], we use

the pole mass for the continuum cut-off, although using the running mass here instead

would change our result negligibly. Imposing the same requirements as for the pole-mass

scheme, we find s0 = 35.3GeV2 and M2 = 3.7GeV2 for fB, and s0 = 35.7GeV2 and

M2 = 7.8GeV2 for f+(0)fB, and obtain f+(0) = 0.252+0.019
−0.028. This is ∼ 3% below the

result in the pole-mass scheme.
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Exp. No. of bins Ref. f+(0)|Vub| |Vub|

BaBar 6 [1] (1.08± 0.06)10−3 (4.13+0.36
−0.32|th. ± 0.23|exp.)10

−3

BaBar 12 [12] (8.6± 0.3stat ± 0.3syst)10
−4 (3.29+0.29

−0.26|th. ± 0.16|exp.)10
−3

Belle 13 [14] (9.24± 0.18stat ± 0.21syst)10
−4 (3.54+0.31

−0.28|th. ± 0.11|exp.)10−3

Table 3. Predictions of |Vub| using f+(0)|Vub| from analyses in 2010 of B → πlν data.

4.4 Determination of |Vub|

As mentioned in the introduction, it is possible to predict |Vub| using the experimental de-

termination of f+(0)|Vub| and f+(0) from LCSR. In ref. [21] f+(0)|Vub| was first obtained

by fitting various form-factor shape parameterisations to BaBar data [10]. It was observed

that the results for f+(0)|Vub| were independent of the parameterisation method chosen.

Recently BaBar and Belle quote results for f+(0)|Vub|, extracted by fitting binned data to

a Boyd-Grinstein-Lebed [17] or Becirevic-Kaidalov [15] parameterisation respectively, as

summarised in table 3 along with the corresponding value of |Vub|. Where necessary, the

statistical and systematic uncertainties are added in quadrature. We find that although

there is a slight tension between refs. [1] and [12], these predictions are on the whole in keep-

ing with the CKMFitter result [70], |Vub| = (3.501+0.196
−0.087)10

−3 and the UTFit result [71],

|Vub| = (3.64 ± 0.11)10−3. They are also in good agreement with the most recent LCSR

value [33], |Vub| = (3.50+0.38
−0.33|th. ± 0.11|exp.)10

−3, obtained by integrating f+(q
2) over the

region q2 = 1− 12GeV2 and comparing to the corresponding partially integrated branch-

ing fraction. The advantage of this determination of |Vub| is that it can be calculated

independent of the form factor parameterisation, however at NNLO, calculating the q2

dependence of the form factor becomes complicated and is beyond the scope of this work.

We look forward to the results from SuperB and Super-KEKB which should enable further

improvements on the precision of the exclusive determination of |Vub|.

5 Summary

We have calculated the O(α2
sβ0) corrections to f+(0) at leading-twist in QCD sum rules on

the light-cone, and performed a comprehensive numerical analysis of the result, including

NLO twist-3 and LO twist-4 contributions, leading to a new determination of Vub. We

have found that in spite of ∼ 9% positive NNLO corrections to the QCD sum rules result

for fB seen in figure 2, the LCSR prediction for f+(0) is stable, increasing by ∼ 2% to

f+(0) = 0.261+0.020
−0.023, as shown in figure 3. This increases our confidence in the stability of

LCSR calculations for form factors with respect to this source of radiative corrections, and

provides further indication that in the calculation of the form factors in LCSR, fB should

be taken from sum rules rather than Lattice QCD. We find that on inclusion of our NNLO

correction, the scale dependence is reduced, and the main sources of theoretical uncertainty

are due to a2 and mb. The total uncertainty of ∼ 9% could be reduced in the future by the

determination of the condensates and twist-3 parameters on the Lattice. We also evaluate
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f+(0) using the MS mass for the b quark and find f+(0) = 0.252+0.019
−0.028, in agreement with

the result obtained using the pole mass. Finally predictions for |Vub| were obtained in the

range (3.29− 4.13) · 10−3, making use of f+(0)|Vub| from BaBar and Belle, in table 3. We

stress that our approach to f+(0) in LCSR is complementary to Lattice QCD calculations

of f+(q
2) as the latter technique is more applicable to the region of large q2. Therefore

the determination of |Vub| by fitting both our result along with Lattice predictions to the

combined experimental results [18, 19] would also be of great interest.
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A Two-loop correction to spectral density

In analogy to eq. (2.13), we can perturbatively expand the twist-2 spectral density,

ρT2 = ρ
(0)
T2 +

αs

4π
ρ
(1)
T2 +

(αs

4π

)2
Nf ρ

(2)
T2 . . . . (A.1)

Our NNLO correction ρ
(2)
T2 then takes the form,

ρ
(2)
T2 =fπCF

{

5m3
b(m

2
b − s)

3s3
log3

(

1−
m2

b

s

)

+

(

9m3
b(m

2
b − s)

s3
log

(

s

m2
b

)

−
mb(m

2
b−s)(20m

4
b−42sm2

b+7s2)

2s4

)

log2
(

1−
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b

s

)

+

(

9m3
b(m
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log2

(
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2mb(36m
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b − 47sm4
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log

(

s

m2
b

)

+
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b − s)(32m4

b − 10π2sm2
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b + 79s2)

6s4

−
14m3

b(m
2
b − s)

s3
Li2

(

m2
b

s

))

log

(

1−
m2

b

s

)
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m3

b(m
2
b − s)

3s3
log3

(

s

m2
b
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6s4
log2

(

s

m2
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)
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2
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s3
log2
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− 1
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+ log
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)(

−
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b(m
2
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s3
log2
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1−
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(
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, (A.2)

where µ0 is the scale at which the DA moments are calculated.
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