
J
H
E
P
0
5
(
2
0
1
2
)
0
7
9

Published for SISSA by Springer

Received: February 20, 2012

Accepted: May 7, 2012

Published: May 21, 2012

Holographic studies of entanglement entropy in

superconductors

Tameem Albash and Clifford V. Johnson

Department of Physics and Astronomy, University of Southern California,

920 Bloom Walk, Los Angeles, CA, U.S.A.

E-mail: albash@usc.edu, johnson1@usc.edu

Abstract: We present the results of our studies of the entanglement entropy of a super-

conducting system described holographically as a fully back-reacted gravity system, with a

stable ground state. We use the holographic prescription for the entanglement entropy. We

uncover the behavior of the entropy across the superconducting phase transition, showing

the reorganization of the degrees of freedom of the system. We exhibit the behaviour of

the entanglement entropy from the superconducting transition all the way down to the

ground state at T = 0. In some cases, we also observe a novel transition in the entangle-

ment entropy at intermediate temperatures, resulting from the detection of an additional

length scale.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, Holography and

condensed matter physics (AdS/CMT)

ArXiv ePrint: 1202.2605

c© SISSA 2012 doi:10.1007/JHEP05(2012)079

mailto:albash@usc.edu
mailto:johnson1@usc.edu
http://arxiv.org/abs/1202.2605
http://dx.doi.org/10.1007/JHEP05(2012)079


J
H
E
P
0
5
(
2
0
1
2
)
0
7
9

Contents

1 Introduction 1

2 Gravity background 3

2.1 High temperature phase 5

2.2 Intermediate temperature phase 6

2.3 Zero temperature phase 6

2.4 Thermodynamics 6

3 Entanglement entropy 7

3.1 O1 superconductor 9

3.2 O2 Superconductor 10

3.3 Multivaluedness of the entanglement entropy 14

3.4 Domain wall behaviour 16

4 Concluding remarks 17

1 Introduction

Given a quantum system, the entanglement entropy of a subsystem A and its complement

B is defined as follows:

SA = −TrA (ρA ln ρA) , (1.1)

where ρA is the reduced density matrix of A given by tracing over the degrees of freedom

of B, ρA = TrB(ρ), where ρ is the density matrix of the system.

The entanglement entropy is understood as an important probe of physics in various

domains, and for systems at strong coupling it is looked upon as a robust tool for keeping

track of the degrees of freedom when other traditional probes (such as an order parameter)

might not be available. However, it is often difficult to compute the entanglement entropy

in such systems, especially outside 1+1 dimensions.

Two developments in the field have made the work in this paper possible. The first is

that the entanglement entropy has a natural geometrical definition [1, 2] (proposed but only

partially proven.1) in the context of gauge/gravity duals, where a wide class of strongly

coupled theories in d dimensions can be defined holographically as dual to a theory of

gravity (plus other degrees of freedom) in d + 1 dimensions, which is in turn ultimately

embedded into a 10 dimensional superstring theory or an 11 dimensional supergravity

background as a means of ensuring full quantum consistency. Of course, holography is also

not fully proven, but there is a large body of evidence for it in numerous examples, starting

1See e.g., refs. [3–10].
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with the AdS/CFT correspondence and deformations and generalizations thereof [11–14].

In this paper we shall assume that holography is robust, and that the holographic formula

(reviewed below) for the entanglement entropy is also correct.

The second development is that some of the strongly coupled physics of interest, super-

conducting2 phases that share various features with certain exotic phases of experimentally

studied strongly coupled quantum systems, can not only be modelled holographically as

an effective model of gravity plus a scalar (see e.g. ref. [16]), not only be embedded consis-

tently into the parent superstring theory and/or 11D supergravity to get access to the back

reactions of the scalar dynamics on the geometry (see e.g. ref. [17]), but can be embedded

in a manner that appears to be highly stable3 (i.e., refs. [19] and [20] have shown that the

ground states of an infinite subset of the family of superconductors defined by the embed-

dings in ref. [17] are in fact unstable in maximal N = 8 supergravity in 4D and it remains

to be shown whether any of the others in the family are stable). In other words, there is a

holographic superconductor model (presented recently in ref. [21]) that has a ground state

that, thought of as a holographic flow [22] is a stable4 non-supersymmetric vacuum of the

full theory. This suggests that the complete theory of gravity plus all the attendant fields

is without pathological physics that might obscure the lessons to be learned from it about

strongly coupled phenomena pertinent to the superconductivity.

These two developments come together nicely since to employ the holographic defini-

tion of the entanglement entropy in a study of superconductivity, we need the complete

(back-reacted-upon and stable) geometry to perform the computation. In this paper we

carry out the study of the entanglement entropy in holographic superconductivity for the

first time using these methods, and uncover some very interesting phenomena.

The entropy is holographically computed as follows [1, 2]. In an asymptotically Anti-de

Sitter (AdS) geometry, consider a slice at constant AdS radial coordinate z = a. Recall

that this defines the dual field theory (with one dimension fewer) as essentially residing

on that slice in the presence of a UV cutoff set by the position of the slice. Sending the

slice to the AdS boundary at infinity removes the cutoff (see ref. [23] for a review). On our

z = a slice, consider a region A. Now find the minimal-area surface γA bounded by the

perimeter of A and that extends into the bulk of the geometry. (Figure 1 shows examples

of the arrangement we will consider in this paper.) Then the entanglement entropy of

region A with B is given by:

SA =
Area(γA)

4GN
, (1.2)

where GN is Newton’s constant in the dual gravity theory.

2To be precise, the physics breaks a global, not local, symmetry, but it is close to being gauged, in a

sense [15]. So rather than using the term superfluidity, we will continue with the common usage.
3Strictly speaking, the stability is typically studied in various truncations of 11D supergravity to lower

dimensions. We mean here full perturbative stability of the ground state in maximal N = 8 supergrav-

ity in 4D. There remains the possibility of instabilities arising upon uplift to the full 11D supergravity,

non-perturbative instabilities, and parts of the phase diagram being modified at higher temperatures by

instabilities of the sort discussed in e.g. ref. [18].
4Subject to the caveats in the previous footnote.
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Figure 1. Diagram of the strip shape we will consider for region A. This is the case of a dual

geometry that is asymptotically AdS4, and here, z denotes the radial direction in AdS4. The

quantity ℓ sets the size of region A, and L is a regulator that is understood to be taken to infinity.

In the next section, we will review the four dimensional model of gravity plus scalars

and a gauge field that was presented in ref. [21], and review and re-derive the properties

of the solutions we need.

2 Gravity background

The Lagrangian of ref. [21] arises as an SO(3) × SO(3) invariant truncation of four-

dimensional N = 8 gauged supergravity:

L√
−G

=
1

16πG4

(

R− 1

4
FµνF

µν− 2∂µλ∂
µλ− sinh2 (2λ)

2

(

∂µϕ− g

2
Aµ

)(

∂µϕ− g

2
Aµ
)

−P
)

,

(2.1)

where the potential P is given by:

P = −g2
(

6 cosh4 λ− 8 cosh2 λ sinh2 λ+
3

2
sinh4 λ

)

. (2.2)

We use a different notation from ref. [21]. We first reintroduced the dimensionful constant

8πG4 and then made the following field redefinitions:

Aµ → 1√
16πG4

Aµ , g → g√
2
, P → P

2
. (2.3)

Note that the gauge field Aµ and the (real) scalar fields λ and ϕ are dimensionless in

this framework.

The metric and other fields of interest are parameterized as follows:

ds2 = −R
2

z2
f(z)e−χ(z)dt2 +

R2

z2
(

dx21 + dx22
)

+
R2

z2
dz2

f(z)
, At = Ψ(z) , λ = λ(z) , (2.4)

and the scalar ϕ will be set to zero. Defining a useful dimensionless coordinate:

z = Rz̃ , (2.5)

– 3 –
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the equations of motion can be reduced to:

χ′ − 2z̃
(

λ′
)2 − z̃eχ sinh2 (2λ)Ψ2

8f2
= 0 , (2.6)

(

λ′
)2 −

(

f ′

z̃f

)

+
z̃2eχ (Ψ′)2

4f
+
R2P
2z̃2f

+
3

z̃2
+
eχ sinh2 (2λ)Ψ2

16f2
= 0 , (2.7)

Ψ′′ +

(

χ′

2

)

Ψ′ − sinh2 (2λ)Ψ

4z̃2f
= 0 , (2.8)

λ′′ +

(

−χ
′

2
+
f ′

f
− 2

z̃

)

λ′ − R2

4z̃2f

dP
dλ

+
eχ sinh (4λ)Ψ2

16f2
= 0 . (2.9)

The ultraviolet (UV) asymptotic behavior (near the AdS boundary z = 0):

λ(z̃) = λ1z̃ + λ2z̃
2 + . . . ,

χ(z̃) = χ0 + λ20z̃
2 + . . . ,

f(z̃) = 1 + λ20z̃
2 + f3z̃

3 + . . . ,

Ψ(z̃) = Ψ0 +Ψ1z̃ + . . . . (2.10)

Generically we will be at finite temperature, to which there will be associated an event

horizon in the geometry. We assume the event horizon occurs at z̃ = z̃H , and near there

the fields have an expansion:

λ(z̃) = λ(0) + λ(1)
(

1− z̃

z̃H

)

+ . . . ,

χ(z̃) = χ(0) + χ(1)

(

1− z̃

z̃H

)

+ . . . ,

f(z̃) = f (1)
(

1− z̃

z̃H

)

+ . . . ,

Ψ(z̃) = Ψ(1)

(

1− z̃

z̃H

)

+ . . . . (2.11)

There are only three independent parameters here, which we choose to be λ(0), χ(0), Ψ(1).

There are three scaling symmetries of the equations of motion given by [21]:

t→ γ−1
1 t , χ→ χ− 2 ln γ1 , Ψ → γ1Ψ , (2.12)

t→ γ−1
2 t , z → γ−1

2 z , R→ γ−1
2 R , (2.13)

xµ → γ−1xµ , f(z) → f(z) , Ψ(z) → γΨ(z) , λ(z) → λ(z) , χ(z) → χ(z) . (2.14)

Using these scaling symmetries, we can choose any value for the position of the event

horizon and the asymptotic value of the field χ(z). We choose to fix λ(0) and χ(0), and

tune Ψ(1) to either have λ1 or λ2 be zero. These asymptotic values of the field λ in the

UV define the vacuum expectation value (vev) of charged operators in the theory that are

either of dimension 1 or 2, and we correspondingly call them O1 and O2. We will explicitly

identify the correctly normalized relationship below. The UV asymptotics of the electric

– 4 –
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gauge field component Ψ(z̃) defines a chemical potential and charge density that will be

explicitly identified below.

Generically, a solution will have χ0 non-zero. To recover pure AdS, we use the scaling

symmetry in equation (2.12) to shift χ(z) as:

χ̃(z) = χ(z)− χ0 , (2.15)

which can be accomplished by rescaling the time coordinate:

t̃ = e−χ0/2t , (2.16)

which in turn means:

At̃ = eχ0/2At . (2.17)

The temperature of the system is then given by [21]:

T =
1

4πRz̃H

e−(χ
(0)−χ0)/2

32

(

61 + 36 cosh
(

2λ(0)
)

− cosh
(

4λ(0)
)

− 8z̃2He
χ(0)
(

Ψ(1)
)2
)

, (2.18)

and the chemical potential µ and charge density ρ go as:

µ =
eχ0/2

√
16πG4

Ψ0 , ρ = − eχ0/2

R
√
16πG4

Ψ1 , (2.19)

and the vevs of the two operators are defined as:

O1 =
2λ1√
16πG4

, O2 =
2λ2√

16πG4R
. (2.20)

Using the scaling symmetry in equation (2.14), the relevant quantities for us scale as:

T → γ3T , ρ→ γ23ρ , O1 → γ3O1 , O2 → γ23O2 . (2.21)

Therefore, we will use the following dimensionless quantities to examine the physics:

T√
ρ
,

O1√
ρ
,

O2

ρ
. (2.22)

2.1 High temperature phase

At high temperature, the solution is simply the Reissner-Nordström AdS solution. The

scalar profile λ(z) being zero means that there is no condensate, i.e., the operators O1 and

O2 vanish. The solution is given by taking (we restore dimensionful z for now):

λ(z) = 0 , χ(z) = 0 , Ψ(z) =
2QR

zH

(

1− z

zH

)

, f(z) = 1+Q2 z
4

z4H
− z3

z3H

(

1+Q2
)

. (2.23)

So we read off the temperature, chemical potential, and density as:

T =
1

4πzH
(3−Q2) , µ =

R√
16πG4

2Q

zH
, ρ =

R√
16πG4

2Q

z2H
. (2.24)
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Figure 2. Plots of operator versus temperature for scalar charged black hole solutions with either

O1 or O2 non-zero. The vertical dotted line on the O2 plot denotes the transition temperature.

See text.

2.2 Intermediate temperature phase

At low enough temperatures, a new type of solution is available that is a charged black hole

with a non-zero charged scalar profile. We have non-zero λ(z) and χ(z), and we require

either λ1 = 0 or λ2 = 0, corresponding to having either O2 or O1 turned on respectively.

The solutions can only be exhibited numerically, and we display the resulting plots of

temperature versus operator vev for each case of O2 and O1 in figure 2. Below a critical

temperature Tc, this type of solution is thermodynamically favored over the Reissner-

Nordström case, and represents the superconducting phase, with non-zero condensate.

These thermodynamics will be reviewed in the next section.

2.3 Zero temperature phase

The zero temperature solution is an RG flow between two AdS spaces [21]. In the IR, the

fields have the behaviour:

λ(z̃)=ln
(

2+
√
5
)

+ λ1z̃
−α+ . . . , ψ(z̃) = ψ1z̃

−β + . . . , f(z̃)=
7

3
+ . . . , χ(z̃)=χ0 + . . . ,

(2.25)

where

α =

√

303

28
− 3

2
, β =

√

247

28
− 1

2
. (2.26)

2.4 Thermodynamics

The on-shell regularized action is given by:

I = IEH + I∂ + ICT , with

IEH =− 1

16πG4

∫

d4x
√
G

(

P+
1

2
F 2
t̃z
|GzzGt̃t̃|

)

=
V βR2eχ0/2

16πG4

∫ zH

ǫ
dz

(

−2∂z

(

f(z)e−χ/2

z3

))

,

I∂ =− 1

8πG4

∫

d3x
√
hK ,

ICT =
1

8πG4

∫

d3x
√
h
2

R
− 1

16πG4

∫

d3x
√
h
2

R
λ(ǫ)2 . (2.27)
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where we have used the equations of motion to simplify the on-shell action. The quantity

V is the volume of the R
2 upon which the field theory resides. Putting everything in

we get [21]:

I =

(

β

R

V

16πG4
(f3 − 4λ1λ2)

)

= βV G , (2.28)

where G is the Gibbs energy density. So we define the free energy density as:

F = G + ρµ =
1

16πG4R
(f3 − eχ0ψ0ψ1) . (2.29)

The Reissner-Nordström free energy density is given by:

FRN =
1

16πG4R

(

− 1

z̃30

(

1 +Q2
)

+ 4
Q2

z̃30

)

, (2.30)

where (z0, Q) are found by solving:

1

4πz̃0

(

3−Q2
)

= RT ,
2Q

z̃20
= −ψ1e

χ0/2 . (2.31)

We define the difference of the free energy densities:

∆F = FRN −F . (2.32)

We show the free energy density difference as function of temperature in figure 3, for each

case of O1 and O2. When ∆F > 0, there is a transition from Reissner-Nordström to the

black hole with scalar profile, representing the superconducting phase. This defines the

phase transition temperature, Tc.

Note that in the case of O2, it is the upper branch (the choice with higher vev for O2)

that is favoured. Here, in contrast to the O1 case where the vev rises continuously from

zero at Tc, the O2 operator has a jump in the vev at Tc. The physics of these cases is

described more in ref. [21].

It is worth noting here that while the phase structure in the O2 case seems strikingly

different from that of O1, we are aware of another model in the literature that shows

how the two can be connected, although using an apparently different mechanism. In

refs. [24, 25], the introduction of a background current in the R
2 can continuously deform

the solution space of the O1 into that of the O2 case. Here, instead of a current, the unusual

behaviour of the metric function f(z) is responsible for the multivaluedness of available

scalar black holes for some ranges of temperatures. In either way of thinking about it,

there is a new length scale in the theory that manifests itself as a finite value in the jump

of the free energy and of O2 as the transition temperature is crossed. As we will see, the

entanglement entropy will be able to detect this new length scale.

3 Entanglement entropy

With a complete supergravity solution in hand, we are ready to study the entanglement

entropy at each temperature and study the physics. . .We use a strip geometry, as outlined

in the introduction. We choose the following embedding:

ξ1 = x , ξ2 = y , z = z(x) . (3.1)

– 7 –
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Figure 3. Free energy density difference. When ∆F > 0, the superconductor is thermo-

dynamically favored. This occurs at Tc ≈ 0.1199
√
ρ(16πG4)

1/4

R1/2 for the O1 case and 100Tc ≈
0.3638

√
ρ(16πG4)

1/4

R1/2 for the O2 case.

The resulting entanglement entropy is given by:

4G4S = L

∫ ℓ/2

−ℓ/2
dx
R2

z2

(

1 +
z′(x)2

f(z)

)1/2

. (3.2)

The extremization problem has a constant of the motion given by:

1

z2∗
=

1

z2
1

√

1 + z′(x)2

f(z)

, (3.3)

where z∗ is the location in z of the bottom of the extremal surface. This allows us to write

the entanglement entropy as:

4G4S = 2LR2

∫ z∗

ǫ
dz
z2∗
z2

1
√

(z4∗ − z4) f(z)
= 2LR2

(

s+
1

ǫ

)

, (3.4)

where s has dimensions of inverse length with no divergences. The length ℓ is given in

terms of z∗:
ℓ

2
=

∫ z∗

ǫ
dz

z2
√

(z4∗ − z4) f(z)
. (3.5)

Under this scaling of equation (2.14), ℓ and s scale as:

ℓ→ γ−1
3 ℓ , s→ γ3s , (3.6)

– 8 –
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Figure 4. Entanglement entropy vs. strip width ℓ for the O1 case. The solid blue curve is the

superconductor solution, and the red dashed curve is the Reissner-Nordström solution.

so we will focus on the following dimensionless quantities:

√
ρ ℓ ,

s√
ρ
. (3.7)

We are now ready to explore the results.

3.1 O1 superconductor

We show in figure 4 the results for s obtained by fixing the temperature and varying ℓ,

the width of the strip. Larger ℓ probes more deeply into the infra-red. We show cases

with temperature below the transition temperature Tc. (At the transition temperature,

the curves for the Reissner-Nortström case and the scalar charged black hole (representing

the superconducting phase) are identical.) In all cases, the curves go linearly with ℓ for

large ℓ as is expected from the area law. As the temperature is lowered, the slope of the

curve for large ℓ (still linear) is smaller for the superconducting background, and continues

to flatten out as we approach zero temperature. This is expected since for T = 0, the

background is an RG flow from one AdS vacuum to another, and this flattening out of

the entanglement entropy at some finite value was observed in our studies of entanglement

entropy along RG flow presented in ref. [26].
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Figure 5. The entanglement entropy in the O1 case, as a function of temperature, for fixed ℓ. (We

choose
√
ρ(16πG4)

1/4R−1/2ℓ/2 = 2.5) The solid blue curve is from the superconductor solutions,

while the red dashed curve is from the Reissner-Nordström solutions. Trace the physical curve

by always choosing the lowest entropy at a given T . There is a discontinuity in the slope of the

decreasing entanglement entropy at the transition temperature Tc, indicated by the vertical dotted

line. (While we do not plot all the superconductor points, due to lack of numerical control at low

temperature, we display the zero temperature solution, since the solution is known exactly there.)

The fact that for a particular ℓ, the superconducting solution exhibits a lower entropy

than the Reissner-Nordström solution fits with the expectation that degrees of freedom

have condensed and so there should be fewer of them.

It is instructive to slice the data differently, fixing a strip width ℓ and studying how the

entropy of the system changes with temperature. We present this in figure 5. In reading

the figure, determine the physical curve by always choosing the point of lowest entropy

at a given T . A discontinuity in the slope of the decreasing entanglement entropy can be

observed at the transition temperature (indicated by the vertical dotted line), showing its

utility as an independent probe of the phase structure of the superconductor.

The slope may be thought of as a sort of response function characterizing the system,

roughly analogous to a specific heat. It is natural for it to be positive, since increasing

temperature should indeed promote entanglement entropy. A discontinuous change in the

slope at the transition temperature Tc signifies a significant reorganization of the degrees

of freedom of the system. Since there is a condensate generated, it is also to be expected

that there is a reduction in the number of degrees of freedom as well, although precisely

at T = Tc, the condensate value only just begins to rise from zero. We will see something

more dramatic in the O2 case, by way of contrast.

3.2 O2 Superconductor

We show in figure 6 the results for s obtained by fixing the temperature and varying ℓ, the

width of the strip. As before, larger ℓ probes more deeply into the infra-red. We again

show cases with temperature below the transition temperature Tc, although in this case,

at Tc, the Reissner-Nordström curve lies above that of the superconductor curve. This will
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Figure 6. The entanglement entropy for the O2 case. The solid blue curve is the superconductor

solution, red dashed curve is the Reissner-Nordström solution. There is a multivaluedness at finite

ℓ in the shape of a swallowtail curve. At lower T , it occurs at lower ℓ, and at T = 0 the swallowtail

region persists at finite ℓ.

mean a discontinuous jump in the value of the entropy, as we will see below, in contrast

to the O1 case. For all cases, the typical behavior of the curve initially resembles that of

the O1 case, in that the curve of the superconducting solution has a lower slope. However,

for T < Tc, we find multiple solutions for a given range of strip widths ℓ, which form a

swallowtail shape in our curves. This means there is a kink in the physical curve for the

entanglement entropy, since we must choose the lowest value. For future reference, we will

refer to the two parts of such kinked (s, ℓ) curves as the “small ℓ” branch and the “large

ℓ” branch, respectively, going from small to large ℓ.

The kink moves to lower strip widths ℓ as the temperature is decreased (for fixed charge

density), and persists at zero temperature. Another interesting point is that the leveling

off of the curve at zero temperature occurs at a positive finite value. This is interesting

since in ref. [26], only negative finite values were observed. Furthermore, the O1 case of

the previous subsection also exhibits a negative finite value. In ref. [26], we predicted from

our sharp domain wall analysis that a positive finite value would develop if the domain

wall was sufficiently sharp and near the UV. We will explore this in subsection 3.4.

It is also interesting to track, as a function of temperature, the strip width value, ℓk,

at which the kink appears in the entanglement entropy. We do this in figure 7. (Note also
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Figure 7. The position of the kink in the entanglement entropy as a function of temperature.

The red dashed line is the best fit curve given by aebx + c, with a = 0.00553, b = 12.9848, and

c = 2.25678. The curve exists between an ℓmin ≃ 2.27 and an ℓmax ≃ 2.70, discussed in the text.

The vertical line indicates the position of Tc, above which there is no kink.

that, for fixed temperature, ℓk ∝ ρ−1/2.) From this curve we can read off an interesting

piece of information. If we pick a specific strip width value ℓ between an ℓmin ≃ 2.27 and

an ℓmax ≃ 2.70 we can read off a specific temperature at which the entanglement entropy

is crossing over from the “small ℓ” branch of an (s, ℓ) curve to the “large ℓ” branch of the

(s, ℓ) curve, the branches being separated by a kink. The significance of this temperature

will be apparent shortly.

A swallowtail multivaluedness in the entanglement entropy, showing multiple extremal

surface solutions at a given ℓ, was first observed and characterized in our studies, presented

in ref. [27], of the evolution of the entanglement entropy after a quenching process.5 We

will discuss the origins of the multivaluedness of the present case in the next subsection.

Physically, the appearance of a kink in the entanglement entropy as we go to larger

ℓ can be attributed to sensitivity to a new scale in the theory, and the entanglement

entropy is a good probe of its presence. In contrast to the O1 case, the transition at Tc
was associated with a finite jump in the free energy F , and also a jump in the the vev

of the operator O2. This sets and additional scale in the O2 theory that distinguishes it

from the O1 case. (See also our discussion, near the end of section 2.4, of this scale and

how it can arise from the addition of a background current in the probe limit.) The basic

scale, which we can denote ξ̃, is set by the inverse of the discontinuity of the vev of O2 at

T = Tc. For subsequent temperature T < Tc an effective scale ξ < ξ̃ follows from this, by

RG flow. For very small strip size ℓ, the entanglement entropy will not be sensitive to ξ,

but when ℓ becomes comparable to ξ, our results suggest that correlations between quanta

on these scales effectively reduce the number of effective degrees of freedom, reducing the

contributions to the entanglement entropy, resulting in a kink to change of the slope of the

(s, ℓ) curve for larger ℓ. The details of how this works from the field theory perspective,

and the kink’s fate away from the large N limit, would be interesting to explore further,

in future work.

5Refs. [28, 29] have also since observed this phenomenon.
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Figure 8. The entanglement entropy in the O2 case, as a function of temperature, for fixed ℓ.

(We choose
√
ρ(16πG4)

1/4R−1/2ℓ/2 = 3 here.) The solid blue curve is from the superconductor

solutions, red dashed curve (decreasing in slope, but only slowly on this scale) is from the Reissner-

Nordström solutions. Trace the physical curve by choosing the red curve for T > Tc, indicated by

the vertical dotted line, and for T < Tc, always choosing the lowest entropy. There is therefore a

discontinuous jump in s and its slope at Tc. (While we do not plot all the superconductor points,

due to lack of numerical control at low temperature, we display the zero temperature solution, since

the solution is known exactly there.)

As was done for the case of O1, it is instructive to study the entropy for fixed ℓ as the

temperature varies. There are in fact three distinct situations, giving rise to three different

types of curve. The distinguishing issue is whether the choice of fixed ℓ can ever become a

kink value, ℓk, at some temperature. As we saw, figure 7 has the answer to this.

The first case is to have a fixed ℓ that is greater than ℓmax. Then, at successively lower

temperatures than Tc, the entropy will always come from points on “large ℓ” branches of

(s, ℓ) curves, since the kink moves to smaller ℓ as T is reduced. We show the resulting

(s, T ) type of curve in figure 8. In this and the next two figures, the red curve is always

favoured for T > Tc, indicated by the vertical dotted line. Below Tc, one should determine

the physical curve by always choosing the point of lowest entropy at a given T . Notice

how the region of negative slope is nicely avoided. This will be the case in our subsequent

curves as well.

The second case is to have a fixed ℓ that is smaller than ℓmin. There is no temperature

at which this would become a kink value, since although the kink moves to smaller ℓ with

smaller T , it stops at ℓmin at T = 0. So the contributions to the entropy come entirely

from points on “small ℓ” branches of (s, ℓ) curves. We show the resulting (s, T ) type of

curve in figure 9.

The final case is to have a fixed ℓ such that ℓmin ≤ ℓ ≤ ℓmax. Then, as we reduce the

temperature from Tc, entropy contributions are from “large ℓ” branches until a tempera-

ture is reached such that our chosen ℓ is a kink value ℓk. This temperature can be read

off from figure 7. For lower temperatures, the entropy will be from points on “small ℓ”
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Figure 9. The entanglement entropy in the O2 case, as a function of temperature, for fixed ℓ.

(We choose
√
ρ(16πG4)

1/4R−1/2ℓ/2 = 2.2 here.) The solid blue curve is from the superconductor

solutions, red dashed curve (decreasing in slope, but only slowly on this scale) is from the Reissner-

Nordström solutions. Trace the physical curve by choosing the red curve for T > Tc, indicated by

the vertical dotted line, and for T < Tc, always choosing the lowest entropy. There is therefore a

discontinuous jump in s and its slope at Tc. (While we do not plot all the superconductor points,

due to lack of numerical control at low temperature, we display the zero temperature solution, since

the solution is known exactly there.)

branches. Consequently, the superconductor phase of the (s, T ) curve in this case will be

a combination of two types of curve, connected by a new discontinuity in the derivative

where they join. We show the resulting (s, T ) type of curve in figure 10.

In all the curves in figures 8, 9 and figure 10, we see that in addition to the slope having

a discontinuity at the transition temperature Tc (shown by the vertical dotted line), the

value of the entropy drops discontinuously as well, as we earlier anticipated. Then, when

ℓmin ≤ ℓ ≤ ℓmax, we have the additional feature of a discontinuity in the slope at some

lower temperature, generated (as discussed above) by the sensitivity to the length scale

ξ. Note that for fixed ℓ with a value close to the edges (but outside) of this interval, the

resulting (s, T ) curves will appear to have a locally smoothed out discontinuity. The cases

displayed here are far away enough from the interval that the smoothing is spread out.

3.3 Multivaluedness of the entanglement entropy

As stated already, we’ve seen a multivaluedness of the entanglement entropy before, in a

study of its evolution after a quench [27]. This resulted in a kink representing the change

in the saturation rate of the entropy as it evolved. To understand the reason for the

appearance of the multivaluedness in this case, we study the behavior of the function f(z),

which we show examples of in figure 12 (we show the behavior for the O1 function in

figure 11 for comparison purposes). Slightly before the rightmost point in the vev curve of

figure 2(b), f(z) develops two new extrema, a minimum and a maximum. The maximum

grows higher in value and the minimum becomes sharper (i.e. greater second derivative) as
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Figure 10. The entanglement entropy in the O2 case, as a function of temperature, for fixed ℓ.

(We choose
√
ρ(16πG4)

1/4R−1/2ℓ/2 = 2.5 here.) The solid blue curve is from the superconductor

solutions, red dashed curve (decreasing in slope, but only slowly on this scale) is from the Reissner-

Nordström solutions. Trace the physical curve by choosing the red curve for T > Tc, indicated by

the vertical dotted line, and for T < Tc, always choosing the lowest entropy. There is therefore

a discontinuous jump in s and its slope at Tc. There is an additional jump in the slope at a

lower temperature. (While we do not plot all the superconductor points, due to lack of numerical

control at low temperature, we display the zero temperature solution, since the solution is known

exactly there.)
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Figure 11. The metric function f(z) for the O1 superconductor. For (a), red dashed
(

R1/2

(16πG4)
1/2

T
√
ρ = 0.11993

)

, green dot-dashed
(

R1/2

(16πG4)
1/2

T
√
ρ = 0.10309

)

, cyan dotted
(

R1/2

(16πG4)
1/2

T
√
ρ = 0.02990

)

, solid blue
(

R1/2

(16πG4)
1/2

T
√
ρ = 0.00932

)

.

the temperature decreases. Both extrema move toward the AdS boundary at ẑ = 0 (the

UV) as the temperature decreases.

We show the behavior of the function f(z) at zero temperature in figure 12(b). As for

the finite (but low) temperature case, the function has a minimum. This minimum is now

a finite distance from the UV boundary, and the maximum we saw at finite temperature

has now smoothed out to a constant as we go toward the IR. It is the non-monotonic

behavior of f(z) that generates the multivaluedness, as illustrated in figure 13. When
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Figure 13. A comparison of where the minimal surface corresponding to the entanglement

entropy ends and the multivaluedness of the entanglement entropy. The colored and numbered

dots correspond to where the surface used to calculated the entanglement entropy ends in the bulk.

z∗, the location of the lowest point of the extremal surface, is in the neighborhood of the

minimum of f(z̃), the entanglement entropy becomes multivalued. Only when relatively

far from the minimum does the entanglement entropy become single-valued again.

3.4 Domain wall behaviour

The non-monotonic behavior of f(z̃) suggests that the behavior of the domain wall that

interpolates between the two AdS vacua (at zero temperature) is also not monotonic. In

addition, we’d also like to compare the domain wall features of the cases O1 and O2,

to see if we can understand the differences between the large ℓ saturation values of the

entanglement entropy observed in sections 3.1 and 3.2 (negative versus positive) in the

terms discussed in our RG flow studies of ref. [26]. To study this, we first write the metric

in the following form:

ds2 = −e2A(r)e−χ(z)+χ(0)dt2 +
R2

z(r)2
d~x2 + dr2 . (3.8)
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Figure 14. The domain wall for (a) the O1 case and (b) the O2 case. The UV is at r̂ → ∞, and

the results have been shifted such that the IR results are at finite values of the radial coordinate.

The function A(r) encodes the domain wall, and the coordinate r can be determined via:

r(z)− r0 = −
∫ z

∞

dz′

z′f(z′)
. (3.9)

Note that technically r0 is actually at −∞ since that corresponds to the IR of the theory.

So to circumvent this issue, we can define a variable r̂ such that:

r̂(z) = −
∫ z̃

z̃max

dz′

z′f(z′)
, (3.10)

and simply shift our result for A(r̂) by a constant A0 such that the ratio (A(r̂) − A0)/r̂

does not diverge at r̂ = 0. We show the behavior of A(r̂) in figure 14. Indeed, as expected,

it is non-monotonic for the O2 case, and indeed the domain wall is much sharper for this

case than it is for the O1 case, confirming our observations made in section 3.2 and ref. [26]

about the saturation of the entanglement entropy at large ℓ at T = 0. The multivaluedness

feeds nicely into the swallowtail structure, as we saw in the previous section by looking

directly at f(z).

4 Concluding remarks

Since we have carefully unpacked and discussed our results during our presentation of them,

we will be brief in this section.

We have presented a study, using holography, of the entanglement entropy of a certain

type of strongly coupled superconductor. Since the background is fully backreacted and

highly stable (in the sense outlined in footnote 3), we can be confident that the results

are robust.

This is the first such study of its type, and the results may well be of interest beyond

the confines of holography, since it is of interest in the condensed matter physics community

to use entanglement entropy as a probe of new physics of experimental relevance. Indeed,

we have found that the entanglement entropy is a very sharp probe of the physics at
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the transition temperature Tc, the ground state of the system at T = 0, and also at

intermediate temperatures, where, in mapping out the full temperature range, we identified

a novel6 transition in the entropy. Some of the novel physics (arising from multiple extremal

solutions for the entropy at a given point in parameter space) recalled phenomena observed

in our earlier studies of the time evolution of entanglement entropy [27]. The origins of the

transition from a field theory perspective would be very interesting to study, and we leave

that for future work. It would also be of value to study the fate of the physics away from

the strict large N limit we have been working in here.

The study presented here also served as another holographic example of the behaviour

of entanglement entropy along an RG flow, which we studied in ref. [26], and in fact we

were able to confirm some more of our predictions from that paper using phenomena ob-

served here.

We expect that this is just the beginning of a series of fruitful investigations of this type,

shedding more light on a wide variety of strongly coupled quantum phenomena of interest.
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