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1 Introduction

Since the early days of the holographic correspondence [1–3], (2 + 1)-dimensional gravi-

tational systems have played a central role in testing and exploring the ideas behind the

duality. In fact, with the benefit of hindsight, one can see that the work of Brown and

Henneaux on the asymptotic symmetries of three-dimensional spacetimes with a negative

cosmological constant [4] displayed some basic features of the correspondence as early as

a decade before it was proposed. The 3d gravitational systems of interest in the frame-

work of holography are special in that their field theory duals enjoy an infinite-dimensional

(local) conformal symmetry; via the powerful techniques of conformal field theory (CFT),

one then has a better grasp of the boundary theory structure which is often lacking in

higher-dimensional examples. A beautiful example of this fact is the precise connection

between the CFT spectrum and retarded Green’s functions, and black hole quasinormal

modes in the bulk [5].

The feature that makes the gauge/gravity correspondence outstanding is that it postu-

lates the equivalence between gravitational weakly-coupled degrees of freedom propagating

in the bulk spacetime, and strongly-coupled degrees of freedom in a dual quantum field

theory in one less dimension (“the boundary”). A pivotal ingredient in the proposal is

the dilatation symmetry of the boundary CFT; broadly speaking, using this symmetry one

can relate the masses of the bulk fields to the conformal dimensions of operators in the

quantum theory on the boundary, as first established in [2]. However, for a given bulk

field, the spectrum of conformal dimensions in the dual quantum field theory is not en-

tirely determined by the masses of the fields. This is intimately related to the fact that

the boundary conditions that yield well-defined dynamics are not unique. In fact, in the

so-called “bottom-up” holography where the bulk theory is phenomenologically devised,

the operator content of the possible dual theories is completely specified only after the

boundary conditions for bulk fields have been properly chosen.

In the present article, we will focus on the study of the Abelian Maxwell-Chern-Simons

(MCS) theory, frequently referred to as “Topologically Massive Electrodynamics” [6, 7], in

three-dimensional asymptotically-AdS spacetimes. The emphasis will be on determining a

set of “admissible” boundary conditions, in a sense that will be made precise below; this

is crucial to the dictionary problem in the context of the AdS/CFT correspondence, as

discussed above. One of the motivations to study Chern-Simons terms in the bulk is that

these arise naturally in the context of string theory compactifications, and endow the bulk

black hole solutions with U(1) charge (see [8, 9], for example). It is worth mentioning,

however, that the MCS system plays a central role in condensed matter physics as well, in

particular in the study of fermionic systems in two spatial dimensions, where it describes

the low-energy effective theory of the Fractional Quantum Hall Effect (FQHE). Further-

more, even in flat space the MCS theory is often said to be holographic, albeit in a different

sense from the above: in the topological limit (where the bulk quasiparticles become in-

finitely massive), the degrees of freedom are effectively localized on the boundary [10].1

1The key difference being that the AdS/CFT correspondence is an equivalence between bulk and bound-

ary degrees of freedom, while in the topological theory the bulk degrees of freedom are gapped, and the

low-energy excitations propagate exclusively on the boundary.
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From a mathematical point of view, this is the well-known correspondence between three-

dimensional Chern-Simons gauge theory and a chiral rational CFT [11–17]. More recently,

the latter correspondence has been refined to reconcile the modular transformation proper-

ties of the string theory partition function on AdS3 and those of the Chern-Simons theory

which dominates its infrared dynamics [18], and the potential relevance of these obser-

vations for condensed matter physics was also pointed out. This provides yet another

motivation to carefully study the holographic dictionary of the full (finite coupling) MCS

theory; here we will do so from a bottom-up perspective, in the hope that our results

could be useful in the study of other models which might be interesting for applications of

holography to condensed matter physics.

Our analysis starts by determining a broad set of boundary conditions under which

the bulk theory is expected to have well-posed dynamics. We find it convenient to ap-

proach this problem using the covariant phase space formalism, along the lines of [19–21].

Within this framework, the first requirement on the boundary conditions is that they lead

to a conserved symplectic structure (in the sense of timelike evolution). In the context of

holography, this condition can be conveniently rephrased as the vanishing of the symplectic

flux on the (radial) boundary. Roughly speaking, the bulk gauge field splits into a “mas-

sive”, gauge-invariant piece, and the flat connections. Accordingly, the boundary theory

operators organize themselves into two sectors: a vector operator dual to the massive part

of the connection, and the well-known U(1) chiral currents (which also arise in the pure

Chern-Simons theory). We will obtain a variety of boundary conditions that correspond

to double-trace deformations from the dual field theory perspective. In particular, we shall

note the possibility of coupling the vector operator and the chiral currents via this mecha-

nism. To our knowledge, these “hybrid” boundary conditions intertwining the massive and

topological sectors have not been discussed in the literature; their existence was anticipated

in [18], however, where the topology of the spacetime manifold was chosen in such a way

that the two sectors effectively decouple.

It is worth emphasizing that all of this physics occurs at finite Maxwell coupling. It

is often argued in the literature that the Maxwell coupling should be irrelevant in the

infrared; this is certainly true from the bulk perspective. However, the Maxwell coupling

is not irrelevant in the UV, and so is an important parameter holographically. One also

notes in parallel that in condensed matter systems such as quantum Hall, the Maxwell

coupling sets the cut-off scale where quasi-particle excitations live, going away only in the

topological limit. It seems quite plausible that such excitations will exist in the holographic

theory as well, a subject that we will explore elsewhere.

Having obtained the class of boundary conditions that lead to a conserved symplectic

structure, one can examine in detail which of these are consistent with unitarity. Our moti-

vation to consider this restriction comes primarily from the existence of the unitarity bound

in conformal field theories (see [22, 23], for example), which dictates that the presence of

operators whose dimension is “too low” leads to negative norm states (ghosts). Via the

holographic correspondence, this fact should manifest in the bulk physics as well, which

is the question we address. As first noted in [24, 25], a closely analogous concern arises

when considering bulk scalar fields with sufficiently high masses if one imposes boundary
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conditions that allow the slow-decaying branch to fluctuate. As a result of this choice, the

conformal dimension of the dual operator lies below the unitarity bound and one expects

the bulk theories to be ill-defined. Recently, these setups were considered in [26], which

confirmed that such bulk theories are indeed pathological and that, generically, they suffer

from ghosts.

We will address the question of unitarity by studying the dynamics of the MCS system

in AdS3 in both global and Poincaré coordinates; in particular, we will discuss the result-

ing spectrum and symplectic products for the various boundary conditions for which the

symplectic structure is conserved. Our main result is that the only boundary conditions

consistent with unitarity do not mix the massive and topological sectors, and in particular

they require to hold fixed the slower fall-off of the massive mode (i.e. they are of Dirich-

let type). In short, the class of permissible boundary conditions is severely restricted by

unitarity considerations. Interestingly, we will also find additional ghosts in the flat sector

whose presence cannot be linked to unitarity bounds in an obvious way. We will also in-

clude an analysis of the symmetries we expect to be present in the dual theory as a result

of various choices of boundary conditions.

The three-dimensional MCS theory has been previously considered in the context of

AdS/CFT. We refer the reader to [8, 9, 18, 27] for work which focuses on the flat (topo-

logical) sector of the theory. The massive sector has also received some attention and

the holographic dictionary problem has been studied to some extent [28–30]. Our results

agree with the references above as far as the operator content is concerned. The nov-

elty of our analysis lies in the fact that we have considered a wider class of boundary

conditions, including “hybrid” boundary conditions that mix the massive and topological

sectors, and analyzed their consistency with unitarity in detail. Additional related work

includes [31–34].

This paper is organized as follows. In section 2 we review the MCS system, the so-

lution of the asymptotic equations of motion on asymptotically AdS3 backgrounds, and

the corresponding conformal dimensions of dual operators. In section 3 we briefly describe

the covariant phase space formalism, and use the conservation of the symplectic struc-

ture as a criterion to determine a wide class of a priori admissible boundary conditions

in the holographic setup. For all the boundary conditions of interest, we construct the

appropriate action principles and compute the one-point functions of the dual operators

holographically. We also review the notion of symplectic product, which will play a central

role in the analysis of unitarity. In section 4 we discuss the spectrum of excitations in the

dual field theory for the class of boundary conditions previously found, and discuss the

normalizability of the various bulk modes. In section 5 we present the calculation of the

symplectic product for the various normalizable modes, focusing on the existence of ghosts;

the requirement of unitarity in the dual theory then leads to a restricted class of permissi-

ble boundary conditions, which constitutes our main result. We conclude in section 6 with

a discussion of our findings, along with possible extensions and applications. Some useful

results used in the body of the paper have been collected in the appendices, as well as a

brief discussion of the U(1) symmetries in the dual field theory for the different boundary

conditions under consideration.
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2 The Maxwell-Chern-Simons system

We consider the Maxwell-Chern-Simons (MCS) system in (2 + 1) spacetime dimensions,

I = − 1

4q2

∫
M
d3x

√
|g|FµνFµν −

α̂

4

∫
M
d3x εµνρAµFνρ , (2.1)

where q2 is the gauge coupling (with units of [length−1]) and α̂ is the (dimensionless)

Chern-Simons (CS) coupling. Throughout this paper we work in a fixed background in

which we neglect the backreaction of the gauge field on the metric, i.e. GN/q
2 → 0, where

GN is the three dimensional gravitational coupling (which has units of [length]). Where

appropriate, we will occasionally comment on issues of backreaction, and will consider

them in a subsequent publication. The background metrics we consider are solutions of

the Einstein equations in the presence of a negative cosmological constant Λ = −1/L2,

and the normalization is chosen such that pure AdS3 space is a vacuum solution of the

decoupled gravitational sector with radius L and scalar curvature R = −6/L2. As usual, in

a holographic context the action (2.1) must be supplemented by a collection of boundary

terms that render the variational problem well defined and remove divergent contributions;

these will be fully specified later on in the paper.

The equations of motion that follow from (2.1) are2

∇νF νµ +
α

2L
εµνρFνρ = 0 , (2.2)

where we have defined the rescaled CS coupling α as

α = q2Lα̂ , (2.3)

which is also dimensionless. Without loss of generality, we will assume α > 0. When taking

backreaction on the metric into account, asymptotically AdS solutions exist only for α < 1,

and we will restrict our discussions in the present paper to that range.

In form language, the Maxwell-CS equation (2.2) can be written as3

d†F =
α

L
∗ F (2.4)

where d† is the adjoint exterior derivative, which in our conventions acts on F as d†F =

− ∗ d(∗F ) = −∇µFµν dxν . Hence, the equation of motion implies

A = A(0) +B , (2.5)

where A(0) is a flat connection and we have defined

B ≡ −L
α
∗ F . (2.6)

2Our convention for the Levi-Civita tensor is εµνρ = − 1√
|g|
εµνρ, where εµνρ is the Levi-Civita symbol.

3On a D-dimensional spacetime, our convention for the Hodge dual is ∗(dxν1 ∧ · · · ∧ dxνr ) =
1

(D−r)! ε
ν1...νr

µ1...µD−r
dxµ1 ∧ · · · ∧ dxµD−r .
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We note that B is, by definition, invariant under the U(1) gauge symmetry of the theory.

In a later section we will study the consequences of the splitting (2.5) at the level of the

symplectic structure and the boundary conditions in a holographic context.

Since dB = dA = F , the equation of motion (2.4) becomes a first order equation for B:

∗ dB +
α

L
B = 0 , (2.7)

which is the familiar equation for a massive vector field. In components, this equation

reads

εµνρ∂νBρ +
α

L
Bµ = 0 . (2.8)

Notice also that the definition (2.6) implies a consistency condition:

d†B = 0 , (2.9)

i.e. B is a co-closed form (∇µBµ = 0); naturally, this also follows from the equation of

motion (2.7). Acting on (2.7) with ∗d we can write a second-order equation for B,

0 = d†dB +
α2

L2
B = ∆B +

α2

L2
B , (2.10)

where ∆ = d†d+ dd† is the Laplacian.

2.1 Asymptotic solutions

For the sake of concreteness, we will write the metric of the asymptotically AdS spacetimes

we are interested in as

ds2 −−−→
r→∞

L2dr
2

r2
+
r2

L2
g

(0)
ij (x)dxidxj + . . . (2.11)

Restricting ourselves to flat connections which are finite at the conformal boundary, the

asymptotic form of the solution for the gauge field is then of the form4

A(r, x) −−−→
r→∞

A(0)(x) + rα
(
B(+)(x) +O(r−2)

)
+ r−α

(
B(−)(x) +O(r−2)

)
, (2.12)

where A(0) is flat, i.e. F (0) = dA(0) = 0. Similarly, solving the equations of motion asymp-

totically one finds that the radial component Br of the gauge-invariant mode is subleading

with respect to the Bi components, which are moreover constrained by

P ij±B
(∓)
j = 0 , where P ij± =

1

2

(
g(0)ij ± εij

)
. (2.13)

We have adopted the convention that εij = −εij/
√
|g(0)|, where εij is the two-dimensional

Levi-Civita symbol, related to its three-dimensional counterpart by εij = εrij . Notice

that the projectors P ij± satisfy the usual properties: (P+P−)ij = P ik+ g
(0)
kl P

lj
− = 0, (P 2

±)ij =

P ik± g
(0)
kl P

lj
± = P ij± .

4As we will see in appendix C, any finite r-dependent piece in the near-boundary behavior of the flat

connection can be removed with the appropriate gauge transformation.
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2.2 Conformal dimensions

Given the asymptotic expansion (2.12) and noting that the pullback to the boundary of the

bulk vector field is simply a boundary vector, we conclude that the standard AdS/CFT

dictionary relates B(+) and B(−) with vector operators of dimensions ∆− = 1 − α and

∆+ = 1+α, respectively. On the other hand, the components of A(0) have scaling dimension

one. As we shall review below, the components of A(0) along the boundary directions

correspond to chiral currents that live on the boundary theory, [10–17]. We note that the

lower scaling dimension is positive as long as α < 1, which implies that we can allow both

fall-offs to fluctuate while preserving locally AdS asymptotics5 if α < 1. We have verified

this statement explicitly by studying the effect of backreaction on a general asymptotically

locally AdS metric of the form (2.11).

It should be noted that the operator of dimension ∆− violates the unitarity bound

∆V = 1 for vector operators in two dimensions for all α > 0 [22, 23], see also [36] for

the explicit expression. This suggests that boundary conditions that allow this degree of

freedom to fluctuate should yield pathologies in the bulk; in subsequent sections we shall

verify that this is indeed the case.

3 Symplectic structure and boundary conditions

In the present section we study the issue of boundary conditions in the holographic descrip-

tion of the MCS system. We find it convenient to work within the covariant phase space

formalism, which we will review shortly. The motivation for employing this formalism is

two-fold: first, the classification of the allowed boundary conditions is nicely encoded in a

simple vanishing-flux condition; and second, it allows us to classify the spectrum of excita-

tions in a clean way. We emphasize however that this decision is just a matter of personal

preference, and the results obtained within this framework should indeed be equivalent to

the ones arrived at by more familiar, say canonical, methods.

We now proceed to briefly review the covariant phase space techniques; more detailed

discussions can be found in [37–41]. First, we stress that the construction is inherently

Lorentzian, so we shall assume that the spacetime is endowed with a Lorentzian metric.

Now, the ingredient that lies at the heart of this construction is the identification of the

phase space with the space of solutions of the equations of motion which satisfy certain

boundary conditions. This is possible since in any well-defined setup the specification of a

point in canonical phase-space, i.e. of initial data, completely determines the subsequent

evolution of the system. The other main ingredient is an algebraic structure that determines

the dynamics once a Hamiltonian function is given, or crudely speaking, something that

contains information about the Poisson brackets. This is nothing but the pre-symplectic

structure of the theory, Ω, which can be thought of as a (possibly degenerate) two-form

in the tangent space of (linearized) solutions. In other words, Ω maps a pair of tangent

vectors in the space of solutions to the real numbers. Given a background solution s̄ and

5Here we use the terminology of [35], i.e., we mean that the curvature near the conformal boundary is

that of AdS plus subleading corrections.
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two linearized solutions δ1s and δ2s, we denote the symplectic product of δ1s with δ2s by

Ω(δ1s, δ2s; s̄). Quite conveniently, this object can be constructed algorithmically given a

Lagrangian [37], and we will illustrate this below.

From the discussion above, it follows that the pre-symplectic structure must indeed

be conserved in order for the identification of the initial data with the space of solutions

to be independent of the surface on which the initial data is specified. This conservation

condition is what we shall take as a guiding principle to classify the allowed boundary

conditions for the MCS system. It is worth emphasizing here that the boundary conditions

are in fact a crucial part of the definition of the phase space of a given theory. As pointed

out above, the covariant phase space formalism also provides a useful way to classify the

spectrum of excitations of the theory. In particular, we mention that in the presence

of gauge symmetries the pre-symplectic structure is degenerate, the gauge orbits being

precisely its null directions. Thus, we shall refer to any solution of the equations of motion

whose symplectic product with an arbitrary solution vanishes as “pure gauge”.6 Further

nomenclature will be discussed in section 3.4.

After taking the quotient by the gauge directions, the symplectic structure has a unique

inverse and this corresponds to the Poisson bracket defined for gauge-invariant quantities.

As discussed in detail in [38], this relation can be written succinctly as

{Ω(δ1s, ·; s̄),Ω(δ2s, ·; s̄)}PB = −Ω(δ1s, δ2s; s̄) . (3.1)

Here Ω(δ1s, ·; s̄) is to be understood as a linear function in covariant phase space. Then,

the fact that the Poisson bracket and Ω are the inverse of each other follows trivially by

writing (3.1) in component notation. Finally, we mention that, at the classical level, one can

construct conserved charges directly in terms of Ω. More precisely, given an infinitesimal

transformation δλs and an arbitrary linearized solution δs, the infinitesimal variation of

the generator Qλ along δs is given by

δQλ = Ω(δλs, δs; s̄) , (3.2)

which, once again, is most easily visualized by translating (3.2) into component notation.

We stress that the charge Qλ is only defined if (3.2) is finite and satisfies the appropriate

integrability conditions, see e.g. [42]. Expression (3.2) also makes it clear that gauge

transformations, i.e. null directions of Ω, have a vanishing generator. This is just the

familiar statement that the generators of gauge symmetries are constraints, and as such

vanish on-shell. On the other hand, global symmetries are associated to a non-zero charge.

3.1 The symplectic flux

In this section we apply the method of [37] to construct the symplectic structure of the

MCS theory and determine the expression for the symplectic flux, which serves as a first

step in classifying the allowed boundary conditions. Under an infinitesimal variation δAµ

6We mention that the prefix “pre” makes reference to the degeneracy of Ω: by definition, a symplectic

structure is non-degenerate. In a slight abuse of notation we drop the prefix from now on, even when the

kernel of Ω is non-empty.
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of the gauge field (and assuming a fixed background metric), the first order variation of

the bulk action7 is

δI =

∫
M
d3x
√
|g|EOM(A)µδAµ −

∫
∂M

d2x
√
|γ| ρµ

(
1

q2
Fµν +

α̂

2
εµρνAρ

)
δAν , (3.3)

where EOM(A)µ = 0 is the equation of motion of the background gauge field, γ is the

determinant of the induced metric on the timelike boundary (a “constant radius” slice),

and ρµ denotes the corresponding unit normal. From the above variation we read off the

symplectic 1-form (see [37, 43])

θµ = −
(

1

q2
Fµν +

α̂

2
εµρνAρ

)
δAν . (3.4)

Next, denoting by δ1A and δ2A two independent solutions of the linearized equations of

motion8 we define the symplectic 2-form

ωµ(δ1A, δ2A; Ā) ≡ δ1θ[δ2A]− δ2θ[δ1A]

= − 1

q2
(δ1F

µνδ2Aν − δ2F
µνδ1Aν)− α̂ εµρνδ1Aρδ2Aν . (3.5)

Using the equation of motion for δFµν (which is the same as (2.2), because we are ignoring

backreaction on the metric) one can then show the crucial property

∇µωµ = 0 . (3.6)

As stated above, we assume that the (2 + 1) manifold is Lorentzian, with the topology

X × R, where the R factor is parameterized by the timelike coordinate (t, say). The

boundary ∂M is a surface of constant r. We now define the symplectic structure by

Ω(δ1A, δ2A; Ā) =

∫
Σ
d2x
√
hnµω

µ, (3.7)

where Σ is a spacelike hypersurface (a t = constant slice, for example) with unit normal nµ

and induced metric determinant h. Since the theory under consideration is linear, we can

take the background to be the trivial configuration, i.e. Ā = 0, without loss of generality.

We shall do so henceforth and omit the explicit reference to the background as an argument

of the symplectic structure. We mention that, in principle, the bulk expression (3.7) may

require renormalization; the appropriate counterterms can be read off from a well-defined

action principle as explained in [43]. However, working in the range 0 < α < 1, no (UV)

divergences arise in (3.7) even if we allow the slow fall-off of the field to fluctuate, as we

will verify by explicit computation in section 5. This is intimately related to the fact that,

for 0 < α < 1, the counterterms that render the variational principle well-defined do not

include derivatives along the timelike direction, see section 3.3.

7Note that we have not included the boundary terms in the action here. We will come back to them

later, and confirm that they do not contribute to the symplectic structure.
8We note that in the probe approximation the equations of motion for the background gauge field and

its fluctuation have the same form, because the MCS system is linear.
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Σ1

Σ2

R ⊂ ∂M

t r = ∞

Figure 1. The symplectic structure is conserved, i.e. Ω(Σ1) = Ω(Σ2), when the symplectic flux

through the region R ⊂ ∂M vanishes.

As discussed above, in order to obtain a well-defined phase space it is necessary to

impose boundary conditions on our solutions in such a way that the symplectic structure

is conserved (i.e. independent of Σ). Integrating equation (3.6) over a “pillbox” bounded

by two spacelike hypersurfaces Σ1 and Σ2 and a region R ⊂ ∂M (i.e. R is an open subset

of the boundary slice at constant r, see figure 1), one learns that the symplectic structure

is independent of Σ provided the symplectic flux Φ through R vanishes, i.e.

Φ =

∫
R
d2x
√
|γ| ρµωµ = 0 , (3.8)

where, as before, ρµ and γ are the unit normal and the determinant of the induced metric

on R, respectively. We suppose that this is attained locally, so that the flux through

the boundary vanishes through any open subset R. We mention that, from the point of

view of the dual theory, these local boundary conditions correspond to the insertion of

local operators. In the presence of additional boundaries, e.g. the Poincaré horizon, one

must also require the flux to vanish there. Given our assumption of locality, the boundary

conditions at the extra boundaries are of course independent of the ones at the conformal

boundary. It is worth noting that, for black hole spacetimes, the phase space is typically

defined including the interior of the black hole, so a non-vanishing flux through the horizon

is not in conflict with conservation of Ω.

In the coordinates introduced in (2.11) the only non-vanishing component of ρ is ρr =√
grr = Nr, where Nr is the lapse in a radial foliation. Since

√
|g| = Nr

√
|γ|, we have

Φ =

∫
R
d2x
√
|g| ρ̄µωµ, (3.9)

where ρ̄µ dx
µ = dr and g is the determinant of the full (2 + 1) metric, as before. If we now

split the connection as in (2.6), so that in an obvious notation the gauge field fluctuation

is δA = δB + δA(0), we find

ωµ = ωµB + ωµ0 + ωµmix , (3.10)
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where we have defined

ωµB ≡ −
1

q2

(
fµν1 δ2Bν − fµν2 δ1Bν

)
− α̂ εµρνδ1Bρδ2Bν (3.11)

ωµ0 ≡ −α̂ εµρνδ1A
(0)
ρ δ2A

(0)
ν (3.12)

ωµmix ≡ −
1

q2

(
fµν1 δ2A

(0)
ν − fµν2 δ1A

(0)
ν

)
− α̂ εµρν

(
δ1A

(0)
ρ δ2Bν + δ1Bρδ2A

(0)
ν

)
(3.13)

with f the field strength of δB. We now notice that contracting equation (2.8) with the

Levi-Civita tensor results in 0 = Fµν − q2α̂ εµνρB
ρ. Consequently, the fluctuations of the

gauge-invariant mode satisfy

fµν = q2α̂ εµνρδBρ . (3.14)

Using this on-shell condition in the above expression for ωµ we find

ωµB = α̂ εµνρδ1Bνδ2Bρ , ωµ0 = −α̂ εµνρδ1A
(0)
ν δ2A

(0)
ρ , ωµmix = 0 . (3.15)

As a result of the splitting (3.15), the symplectic structure can be written as

Ω =

∫
Σ
d2x
√
hnµω

µ
B +

∫
Σ
d2x
√
hnµω

µ
0 . (3.16)

This suggests that the space of solutions is a direct product of the flat and non-flat sectors.

However, a more detailed analysis reveals that this is only true if the boundary conditions

do not mix modes in the various sectors, see section 3.2.

Let us now find an expression for the symplectic flux that will allow us to determine

the allowed boundary conditions. In order to do so, it is important to keep in mind that

the modes δB(±) are constrained by the asymptotic equations of motion, and therefore

obey (2.13). For example, in light-cone coordinates (u, v) in which the boundary metric

takes the form

g
(0)
ij =

(
0 2

2 0

)
(3.17)

these lead to

δB(+)
v = δB(−)

u = 0 . (3.18)

Taking the asymptotic constraints (2.13) into account then, we find that the symplectic

flux through R is given by

Φ = α̂

∫
R
d2x εrνλ

(
δ1A

(0)
ν δ2A

(0)
λ − δ1B

(+)
ν δ2B

(−)
λ + δ2B

(+)
ν δ1B

(−)
λ

)
= α̂

∫
R
d2x εij

(
δ1A

(0)
i δ2A

(0)
j − δ1B

(+)
i δ2B

(−)
j + δ2B

(+)
i δ1B

(−)
j

)
. (3.19)

3.2 Boundary conditions

As discussed above, demanding the vanishing of the symplectic flux gives us a useful way

of classifying the boundary conditions. Momentarily giving up covariance in the boundary

directions, in light-cone coordinates (3.17) we find that possible local boundary conditions

include

A(0)
u = W

[
A(0)
v

]
, B(+)

u = V
[
B(−)
v

]
. (3.20)
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For general “potentials” W and V , such boundary conditions would correspond to multi-

trace deformations in the dual CFT. For simplicity, let us focus on the linear case

δA(0)
u = β̄ δA(0)

v , δB(+)
u = β δB(−)

v , (3.21)

for any constants β, β̄. Note that β = 0,∞ correspond to chiral boundary conditions,

while other values mix the modes and break covariance. We will refer to δB
(+)
u = 0 as

Dirichlet and to δB
(−)
v = 0 as Neumann boundary conditions, in close analogy to the

terminology commonly used for scalar fields in AdS. We will term the boundary condition

δB
(+)
u = β δB

(−)
v as “mixed” when β is finite. As usual, the boundary conditions with

finite β and β̄ are related to double-trace deformations of the boundary theory [25, 44],

as we will review later on. Furthermore, we notice that, because B
(+)
u and B

(−)
v have

scaling dimensions ∆− = 1−α and ∆+ = 1+α, respectively, the constant β has dimension

∆β = −2α. The RG flow interpretation of double-trace deformations has been discussed in,

for example, [25, 45–48].9 On the other hand, since A
(0)
u and A

(0)
v both have dimension one,

the constant β̄ is dimensionless. Interestingly, we also note the possibility of a “hybrid”

boundary condition

δA(0)
u = κ δB(+)

u and δA(0)
v =

1

κ
δB(−)

v , (3.22)

that mixes the flat connections with the massive sector. Here, κ is a constant of scaling

dimension ∆κ = α. Notice that, in view of the flatness condition on δA(0), (3.22) implies

κ2 ∂vδB
(+)
u = ∂uδB

(−)
v . (3.23)

In analogy with the linear boundary conditions discussed above, this hybrid boundary

condition has the interpretation of a double-trace deformation. To our knowledge, the

possibility of such boundary conditions has not been explicitly discussed in the literature.

It is now clear from the decomposition (3.16) and the analysis of the boundary condi-

tions above that, as anticipated in [18], the flat and massive sectors do not always decouple.

In fact, for our hybrid boundary conditions (3.22) both sectors indeed interact with one

another. The decoupling only occurs if one imposes boundary conditions which do not mix

both sectors, i.e. if we impose boundary conditions like those in (3.21). This is because it

is only in this case that the symplectic structure effectively splits as a direct sum of two

independent pieces.

3.3 One-point functions

As usual in the context of holography, the Maxwell-Chern Simons action (2.1) must be sup-

plemented by a series of boundary terms that serve two purposes: achieving a well-defined

variational principle for a chosen set of boundary conditions, and removing divergences.

9This interpretation requires both end points of the RG flow to be well-defined, e.g. as in the case of

scalar fields with masses close to Breitenlohner-Freedman bound in AdS. We shall see below that in the

present case the Neumann theories are ill-defined so this picture does not strictly hold.
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We will refer to the latter as counterterms. We recall now that the first variation of the

bulk action is given by (3.3). Evaluating this expression on-shell we find

δI|os =
α̂

2

∫
∂M

d2x
√
|γ| ρµεµρν

(
Bρ −A(0)

ρ

)
δAν , (3.24)

where the gauge field fluctuations are understood to be evaluated on the solution of the

linearized equations of motion.10 Employing the notation established above, we find

δI|os = − α̂
2

∫
∂M

d2x εij
(
Bi −A(0)

i

)(
δA

(0)
j + δBj

)
= − α̂

2

∫
∂M

d2x εij
(
B

(+)
i δB

(−)
j +B

(−)
i δB

(+)
j −A(0)

i δA
(0)
j

)
− α̂

2
lim
r→∞

∫
∂M

d2x εijrα
(
B

(+)
i δA

(0)
j +A

(0)
j δB

(+)
i

)
, (3.25)

where in the last equality we used the restrictions placed by the asymptotic equations

of motion on the B(±), δB(±) modes (cf. section 2.1). We note the presence (for any

finite Maxwell coupling q2) of the divergent term, which we cancel by the addition of a

counterterm. Noticing that εijrα
(
B

(+)
i δA

(0)
j +A

(0)
j δB

(+)
i

)
= δ
(
rαεijA

(0)
j B

(+)
i

)
it is easy to

check that the desired counterterm is given by the covariant expression

Ict =
1

2q2

∫
∂M

d2x
√
|γ|F iAi , (3.26)

where, as before, γ is the determinant of the induced metric on the r = constant surface,

and we have defined

F i ≡ ρµFµi, (3.27)

with ρµ the unit normal 1-form on the radial slices. Therefore, we have that

δ(I + Ict)
∣∣
os

= − α̂
2

∫
∂M

d2x εij
(
B

(+)
i δB

(−)
j +B

(−)
i δB

(+)
j −A(0)

i δA
(0)
j

)
(3.28)

is finite as r →∞.

3.3.1 Covariant boundary conditions

In order to proceed further we need to discuss the additional finite boundary terms needed

in order to enforce different boundary conditions of interest. Confining ourselves to covari-

ant terms for the moment, we consider the following quantities:

B± = ∓ 1

4q4α̂

∫
∂M

d2x
√
|γ|F iγijF j , (3.29)

B(0) =
1

2q2

∫
∂M

d2x εijFiAj +
1

4

∫
∂M

d2x
√
|γ|γij

(
1

q4α̂
FiFj − α̂AiAj

)
. (3.30)

10Since we are ignoring backreaction, the various metric quantities are always understood to be evaluated

on their (fixed) background values.
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Evaluating on-shell we find

B±
∣∣
os

= ± α̂
2

∫
∂M

d2x
√
|g(0)|g(0)ijB

(−)
i B

(+)
j

= ± α̂
2

∫
∂M

d2x εijB
(+)
i B

(−)
j (3.31)

B(0)

∣∣
os

= − α̂
4

∫
∂M

d2x
√
|g(0)|g(0)ijA

(0)
i A

(0)
j . (3.32)

By taking linear combinations of these finite boundary terms we can achieve a variational

principle well-suited for the various boundary conditions (3.21) of interest in the flat and

gauge-invariant (massive) sectors. For example, we find

δ
(
I + Ict ±B(0) +B+

)∣∣
os

= α̂

∫
∂M

d2x
√
|g(0)|

[
εijB

(−)
i δB

(+)
j ∓A(0)

i P ij± δA
(0)
j

]
, (3.33)

and

δ
(
I + Ict ±B(0) +B−

)∣∣
os

= α̂

∫
∂M

d2x
√
|g(0)|

[
εijB

(+)
i δB

(−)
j ∓A(0)

i P ij± δA
(0)
j

]
. (3.34)

Now that we have identified the sources for the covariant boundary conditions, i.e. δB
(±)
i

and
(
P±δA

(0)
)
i

= g
(0)
ij P

jk
± δA

(0)
k , we write the variation of the renormalized action Iren

generically as

δIren

∣∣
os

=

∫
∂M

d2x
√
|g(0)|

[
〈O(±)i〉δB(±)

i + 〈O(0) i
± 〉

(
P±δA

(0)
)
i

]
. (3.35)

Comparing with (3.33) and (3.34) and using the properties of P± we can read-off the

one-point functions of the dual operators, and we obtain

〈O(±)i〉 = ±α̂ g(0)ijB
(∓)
j , (3.36)

〈O(0) i
± 〉 = ∓α̂P ij∓A

(0)
j . (3.37)

Since A
(0)
i is constrained by the flatness condition, the variational derivatives with re-

spect to its components are ill-defined, and, as a consequence, the one-point functions (3.37)

suffer from an ambiguity. However, this ambiguity is nothing but the one associated to the

U(1) gauge transformations. In other words, (3.37) are only defined up to the transforma-

tions δAi = ∂iλ that preserve the boundary conditions in the variational principle. See [19]

for a related discussion in the context of (pure) Maxwell fields.

3.3.2 Symmetry-breaking boundary conditions

Let us now turn to the less symmetric scenarios. First, we consider the case of “mixed”

boundary conditions, i.e. B
(+)
u − βB(−)

v = 0, where β is a finite dimensionful constant. It

is clear that this requirement breaks both conformal and Poincaré symmetry, so we are

allowed to write down the appropriate boundary terms simply in terms of the coefficients
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of the asymptotic expansion. As we shall see shortly, it is useful to generalize the above

boundary condition and consider instead

B(+)
u − βB(−)

v = Jβ , (3.38)

where Jβ is an arbitrary fixed function of the boundary coordinates. We ignore the con-

tribution from the flat sector momentarily. Starting from the Neumann theory, i.e. the

theory in which B
(−)
i is fixed and whose action we denote by IN , the boundary term we

need to add in order to attain the mixed boundary condition is

Idef,β = − α̂

4β

∫
∂M

d2x
√
|g(0)|

(
B(+)
u

)2
. (3.39)

In fact, using the variation of the Neumann action (3.34) and the explicit boundary

term (3.39), we obtain

δ(IN + Idef,β) =
α̂

2β

∫
∂M

d2x
√
|g(0)|B(+)

u

(
β δB(−)

v − δB(+)
u

)
, (3.40)

which is finite and stationary when the boundary condition (3.38) holds. Comparing (3.40)

with (3.38), we note that the quantity that is being held fixed in the variational principle

is in fact Jβ. This means that Jβ is to be interpreted as the source for the dual operator

in the boundary theory. Given this, it follows from (3.40) that the one-point function in

the presence of sources for the dual operator in the deformed theory is given by

〈O(−)
u 〉β = − α̂

2β
B(+)
u , (3.41)

where, as usual, B
(+)
u must be thought of as a function of the source Jβ defined in (3.38).

Before constructing variational principles suitable for the remaining boundary conditions,

we comment that the computation above provides a simple illustration of the well-known

fact that linear boundary conditions of the form (3.38) correspond to double-trace deforma-

tions in the dual theory. The argument is as follows. First, we recall that in AdS/CFT the

Neumann action IN is interpreted as the generating function for the operator associated to

B
(+)
u in the dual CFT. Then, the boundary term (3.39) is transparently identified with a

double-trace deformation for this operator. Moreover, the inclusion of (3.39) implies that

the original Neumann boundary condition needs to be shifted in such a way that the the

modified action has an extremum. As noted above, the new boundary condition is nothing

but the linear relation (3.38), which completes the argument. It is worth commenting on

the possibility of thinking of the (3.38) as a deformation of the Dirichlet theory. In such

case, the boundary term that implements the shift in the boundary condition is quadratic

in B
(−)
v , so it has dimension 2(1 + α). We see that the deformation is then irrelevant.

We now construct an appropriate action for the boundary condition

A(0)
u − β̄A(0)

v = Jβ̄ (3.42)

where β̄ is a non-zero dimensionless constant and Jβ̄ is a fixed arbitrary function of the

boundary coordinates. In analogy with the previous case, Jβ̄ corresponds to the source
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of the dual operator. Note that since β̄ is dimensionless the boundary condition (3.42)

for Jβ̄ = 0 preserves scale invariance, yet it breaks Lorentz invariance. Once again, as a

consequence of this, it is licit to write extra boundary terms which are not Lorentz densities.

Moreover, because this boundary condition does not mix the flat and massive sectors, we

concentrate on the flat connections and temporarily drop the contribution from the massive

modes. Now, assuming that we start with an action I
(1)
ren which attains an extremum when

P−A
(0) is fixed, we find

δI(1)
ren = α̂

∫
∂M

d2x
√
|g(0)|〈O(0) i

− 〉(P−δA(0))i =
α̂

2

∫
∂M

d2x
√
|g(0)|A(0)

u δA(0)
v (3.43)

as follows from (3.35) and (3.37). In this case, the boundary term that we need to add to

I
(1)
ren in order for (3.42) to hold can be written as

Idef,β̄ = − α̂

4β̄

∫
∂M

d2x
√
|g(0)|

(
A(0)
u

)2
. (3.44)

In fact, with this choice the on-shell variation of the action reads

δ
(
I(1)

ren + Idef,β̄

)
=

α̂

2β̄

∫
∂M

d2x
√
|g(0)|A(0)

u

(
β̄δA(0)

v − δA(0)
u

)
, (3.45)

as desired. As discussed above, the boundary condition (3.42) is in one-to-one correspon-

dence with the inclusion of the double-trace deformation (3.44) in the dual theory. The

relevant one-point function is given by

〈O(0)
+u〉β̄ = − α̂

2β̄
A(0)
u . (3.46)

Once again, we mention that the one-point function (3.46) is only defined up to the appro-

priate U(1) transformation.

Finally, we consider the “hybrid” boundary conditions defined in (3.22), which admit

the obvious generalization

A(0)
u − κB(+)

u = Jκ , A(0)
v − κ−1B(−)

v = J̃κ , (3.47)

where we take Jκ, J̃κ to be the sources of the dual operators. It is convenient to start with

a renormalized action I
(2)
ren such that

δI(2)
ren =

α̂

2

∫
∂M

d2x
√
|g(0)|

(
A(0)
u δA(0)

v +B(−)
v δB(+)

u

)
. (3.48)

With I
(2)
ren as a starting point, the boundary term that implements hybrid boundary condi-

tions is given by

Idef,κ = − α̂

2κ

∫
∂M

d2x
√
|g(0)|B(−)

v A(0)
u , (3.49)

as it follows from

δ
(
I(2)

ren + Idef,κ

)
=
α̂

2

∫
∂M

d2x
√
|g(0)|A(0)

u

(
δA(0)

v − κ−1δB(−)
v

)
− α̂

2

∫
∂M

d2x
√
|g(0)|κ−1B(−)

v

(
δA(0)

u − κ δB(+)
u

)
. (3.50)

– 16 –



J
H
E
P
0
5
(
2
0
1
2
)
0
7
1

As pointed out before, the hybrid boundary conditions correspond to a double-trace defor-

mation in the dual theory. Note that, in this case, the deformation (3.49) explicitly mixes

the flat and massive sectors, so indeed these do not decouple in the theory defined by the

hybrid boundary conditions. It follows from (3.50) that the one-point functions in the dual

theory are given by

〈O(0)
+u〉κ =

α̂

2
A(0)
u and 〈O(0)

−v〉κ = − α̂

2κ
B(−)
v . (3.51)

It is worthwhile noting that, since the U(1) transformations do not preserve the boundary

conditions (3.22), the one-point functions (3.51) are unambiguously defined.

Before closing this section, we emphasize that, provided 0 < α < 1, the boundary terms

involved do not contain derivatives along the timelike direction. Given the results of [43],

this strongly suggests that the bulk symplectic structure does not need to be supplemented

by additional boundary contributions. This is indeed the case, as we will explicitly verify

below. Specifically, we will check that, for 0 < α < 1, the bulk symplectic structure is

finite and conserved for all the boundary conditions under scrutiny.

3.4 The symplectic product

Recall that the symplectic structure is given by (3.16) with (3.15), i.e.

Ω = α̂

∫
Σ
d2x
√
hnµε

µνρδ1Bνδ2Bρ − α̂
∫

Σ
d2x
√
hnµε

µνρδ1A
(0)
ν δ2A

(0)
ρ . (3.52)

As mentioned above, it turns out that the restriction 0 < α < 1 ensures that (3.52) is finite

for all the boundary conditions of interest, provided one imposes additional requirements

on the solutions in the deep interior.

Quite generally, given a symplectic structure it is possible to endow the space of so-

lutions with an inner product defined in terms of Ω, as we now review briefly. A more

detailed discussion can be found in [38], for example. We start by complexifying the space

of solutions and consider11

(A1, A2) = −iΩ(A∗1, A2) . (3.53)

We will refer to (3.53) as the symplectic product of the theory. One can verify that (3.53)

satisfies the expected properties of bi-linearity and Hermiticity, although in general it fails

to be positive definite.

The inner product (3.53) allows us to introduce some useful terminology. First, we

shall term a given solution A0 as normalizable if (A0, A) is finite for all A. As stated above,

in our particular setup this translates into a requirement on the fields in the deep interior.

Second, we define a ghost to be an excitation of definite positive(negative) frequency with

negative(positive) norm. Here, we will use the definition of positive frequency associated to

the timelike Killing vector of the relevant background geometry under consideration. For

example, if ∂t is a vector field which is timelike everywhere, the solution A is said to be a

11The reader uneasy with the use of the complex conjugates in (3.53) can think of using a basis of solutions

in momentum space in which the modes are generically complex despite the fact that the field is real.
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positive frequency solution if ∂tA = −iωA with ω > 0. Third, we will refer to a solution

Agauge as pure gauge if (Agauge, A) = 0 for all A.

It should be noted that the presence of ghosts in a given system is correlated with the

lack of unitarity in the associated quantum theory. At the classical level, the presence of

ghosts also signals pathologies since these give negative contributions to the energy.

4 The dual field theory spectrum

In this section we determine the spectrum of normalizable solutions of the MCS system

in AdS3, in both global and Poincaré coordinates, for the various boundary conditions of

interest. As explained in section 3.4, by “normalizable” we mean excitations that have

finite symplectic product with all the modes. We mention that, while normalizability

at the conformal boundary is guaranteed by restricting the coupling α defined in (2.3)

to satisfy 0 < α < 1, normalizability at the interior is achieved by restricting the wave

functions appropriately. More precisely, when the geometry is global AdS we shall require

the wave functions to be smooth at the origin, as is customary. In the Poincaré AdS case,

in addition to smoothness in the interior, we restrict the wave functions in such a way that

no symplectic flux can leak through the Poincaré horizon.

As explained in section 2, the connection splits into flat and “massive” pieces, and

we can solve the bulk equations of motion separately for each sector. Moreover, as dis-

cussed in section 3.2, these sectors decouple unless we impose the “hybrid” boundary

condition (3.22). Our strategy to find the spectrum will be to focus on the massive and

flat sectors separately, and incorporate the effects of the mixing only when we discuss the

hybrid boundary conditions. For the sake of simplifying the exposition, we display the

general solution to the equations of motion of the massive mode in appendix A, while here

we focus exclusively on imposing the appropriate boundary conditions.

4.1 Global AdS3

We first consider the MCS theory in global AdS3, whose line element is given by (A.17).

Since the spacetime is topologically trivial, there is no room for holonomies and the connec-

tion must be smooth at the origin, where the vector field ∂x = (1/L)∂ϕ becomes singular.

As a result, in addition to normalizability we must impose A[∂x] = Ax = 0 at ρ = 0. It

should be stressed that setting A
(0)
ρ = 0 everywhere in the bulk is generically in conflict

with smoothness. To see why, we note that this implies that the components of A(0) along

the boundary directions are independent of ρ everywhere, so any boundary condition other

than A
(0)
x |∂M = 0 would yield singular configurations. Having said this, we initiate the

study of the spectrum for all the boundary conditions of interest.

4.1.1 Flat sector

We first consider the flat sector. Since there are no holonomies, the flat connections can

be written as

δA(0)
µ = ∂µλ , (4.1)
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where λ is smooth everywhere, with ∂xλ = 0 at ρ = 0. Recall that in our analysis of the

symplectic flux, we encountered the allowed boundary condition (3.21), which in terms of

the (t, x) coordinates defined in appendix A takes the form(
δA

(0)
t − β̂ δA(0)

x

)∣∣
∂M

= 0 , (4.2)

where β̂ = (β̄−1)/(β̄+1) is a (possibly vanishing or infinite) constant. Fourier-decomposing

λ as λ = e−iωt+ikxλ̂(k, ω) with k ∈ Z, and using (4.1) in (4.2), we learn that the frequencies

must satisfy

ω = −β̂k , (4.3)

which determines the spectrum of the flat sector. As is well-known [10–17], the degrees of

freedom of the flat sector reside exclusively on the spacetime boundary,12 a fact that we

will briefly review in appendix C. We will consider the flat solutions for hybrid boundary

conditions in the next subsection.

4.1.2 Massive sector

Focusing now on the massive sector we use the ansatz (A.18), in which case the solution

is given by (A.21)–(A.26) in terms of functions F (ω,±k,±α; ρ). We observe that only the

F (ω, |k|, α; ρ) profiles are regular in the interior (ρ → 0). Hence, for k < 0, we take the

F (ω,−k, α; ρ) solution. Consequently, we will write the general solution which is smooth

in the interior of AdS3 as

bu = CuF (ω, |k|, α; ρ) (4.4)

bv = CvF (ω, |k|,−α; ρ) , (4.5)

where (u, v) are the light-cone coordinates defined in (A.4), F (ω, k, α; ρ) is defined as

in (A.23), and
Cv
Cu

=
k + ω − s(k)α

k − ω + s(k)α
. (4.6)

Here, s denotes the sign function, i.e. s(k) = 1 for k ≥ 0 and s(k) = −1 for k < 0. The

bρ component is obtained from bu and bv via (A.24) and it is subleading with respect to

them near the conformal boundary of AdS3. Expanding F (ω, k, α; ρ) near ρ = ∞ and

using (4.4)–(4.6), we learn that the relevant coefficients in the asymptotic expansion are

b(+)
u = CuC(α, |k|, ω) , b(+)

v = 0 , (4.7)

b(−)
v = Cu

k + ω − s(k)α

k − ω + s(k)α
C(−α, |k|, ω) , b(−)

u = 0 , (4.8)

where

C(α, k, ω) =
Γ(k + 1)Γ(1 + α)

Γ

(
1 +

k + α− ω
2

)
Γ

(
1 +

k + α+ ω

2

) . (4.9)

12In particular, if λ goes to zero at the boundary the flat connections are pure gauge.
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A choice of asymptotic boundary conditions will constrain the allowed values of (ω, k),

corresponding to the normal modes of the system. In the Dirichlet case (β = 0) the source

is identified with b
(+)
u and the normal modes are given by the zeros of C(α, |k|, ω), located at

ω±nk = ±(2n+ |k|+ α) , n = 1, 2, . . . (4.10)

and the zeros of the denominator in (4.6), located at

ω+
0k = +(|k|+ α) for k > 0 (4.11)

ω−0k = −(|k|+ α) for k < 0 . (4.12)

We notice that the normal modes with n ≥ 1 are doubly degenerate, with each frequency

attained for both k and −k, while ω±0k occur only once.

Similarly, for Neumann boundary condition (b
(−)
v = 0) we find the eigenfrequencies

ω±nk = ±(2n+ |k| − α) , n = 1, 2, . . . (4.13)

in addition to

ω−0k = α− |k| for k > 0 (4.14)

ω+
0k = |k| − α for k < 0 . (4.15)

More generally, the boundary condition b
(+)
u = β b

(−)
v for finite β gives

C(α, |k|, ω)− βk + ω − s(k)α

k − ω + s(k)α
C(−α, |k|, ω) = 0 . (4.16)

For generic β, we will proceed numerically, examining the structure of the solutions of (4.16)

in the complex-ω plane as a function of k, β and α. For β > 0 and all values of k, we

find an infinite discrete set of real frequency solutions, in analogy to the Dirichlet and

Neumann cases. Now, while for β < 0 and k > 0 all frequencies are real, for β < 0 and

k < 0 a pair of complex solutions occurs in addition to the series of real solutions. Notice

that, with the exception of ω, all the parameters in (4.16) are real, which implies that

complex solutions must appear in complex conjugate pairs. These complex solutions go off

to ±i∞ as β → 0, in agreement with our analysis for Dirichlet boundary conditions. See

figures 2(a) and 2(b). The complex frequency solutions signal an instability of the system,

since some perturbations can grow exponentially with time. This instability is associated

with ghosts, as we will see in section 5.2. We stress that, aside from the existence of

complex frequencies, there is nothing particularly special about β < 0. In fact, we will see

below that all values of β 6= 0 are qualitatively equivalent, since they all yield ghosts.

Finally, we consider the hybrid boundary conditions (3.22). As noted in section 3.2,

the condition (3.22) along with the flatness of δA(0) imply the extra requirement (3.23),

which in view of our mode decomposition translates into

κ2k + ω

k − ωC(α, |k|, ω)− k + ω − s(k)α

k − ω + s(k)α
C(−α, |k|, ω) = 0 . (4.17)
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Figure 2. 2(a): we plot in red/blue the solution of the real/imaginary part of equation (4.16) in

the complex-ω plane for {k = 2, α = 0.2, β = 1.7}. We observe that these solutions only intersect

for Im(ω) = 0, which illustrates the fact that (4.16) has only real solutions for β > 0. 2(b): for

{k = −2, α = 0.2, β = −1.7}, we plot in red/blue the solution of the real/imaginary part of

equation (4.16) in the complex-ω plane. We note that in this case there are complex frequency

solutions.

Thus, the spectrum of frequencies is given by the solutions of (4.17) provided the flat com-

ponents of the connection are related to the massive ones by (3.22). Lacking an analytic

solution of (4.17) for finite κ, we proceed numerically. Studying (4.17) for various values

of the parameters, we find that generically there is an infinite set of real solutions. Ad-

ditionally, a pair of complex solutions occurs when k > 0 and |κ| > |κc|, where κc is an

increasing function of α and k. See figures 3(a), 3(b) for an illustration of this fact. We

have also verified numerically that the complex solutions go off to ±i∞ as |κ| approaches

infinity, consistent with the Dirichlet result. As in the case of mixed boundary conditions,

the complex frequency solutions correspond to a dynamical instability of the system that

is associated to ghosts. We shall also find that the all finite values of κ yield ghosts, in

agreement with the CFT unitarity bound.

As mentioned above, given a solution of (4.17) the components of the flat connection

are uniquely determined by (3.22). It is worth mentioning that with these boundary

conditions the chiral currents acquire a non-vanishing expectation value. See section 3.3.

4.2 Poincaré patch of AdS3

We now carry out the study of the spectrum of normalizable excitations for the boundary

conditions of interest in the Poincaré patch of AdS3. As in the global AdS case, normal-

izability at the conformal boundary is guaranteed by the restriction 0 < α < 1. On the

other hand, the treatment of the Poincaré horizon turns out to be more delicate as we will

discuss in detail below.
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Figure 3. 3(a): we plot in red/blue the solution of the real/imaginary part of equation (4.17) in

the complex-ω plane for {k = 1, α = 0.8, κ = 1.0}. We note that there are real solutions but also

a pair of complex solutions near |ω| = 0. 3(b): solutions for {k = 1, α = 0.8, κ = 0.9}. We observe

that the complex solutions become real, which shows that for α = 0.8 the critical value of κ is near

|κc| = 0.95.

4.2.1 Flat sector

Let us first consider the flat sector. As mentioned in section 3.1, when the geometry is

the Poincaré patch of AdS3, symplectic flux can generically leak through the Poincaré

horizon. In the flat sector, the easiest way to see this is to note that in this sector the

theory is actually topological, so there is no difference between the Poincaré horizon and

the conformal boundary. From our experience with the latter, we conclude that good

boundary conditions in the flat sector correspond to fixing half of the connection on the

Poincaré horizon. We will impose the condition

δA(0)
x

∣∣
z=∞ = 0 . (4.18)

As reviewed in appendix C, when fixing the spatial part of A
(0)
i , the degrees of freedom

that reside at the Poincaré horizon become pure gauge, which allows us to focus on the

physics at the boundary. Note however that (4.18) can be generalized in the same way as

the boundary conditions discussed in section 3.2. Also, in analogy with the global case, we

see that U(1) transformations that set Az = 0 everywhere in the bulk generically do not

preserve the boundary condition (4.18), so they are not allowed symmetries of the system.

From the above discussion, it is clear that the spectrum of the flat connections in the

Poincaré case is analogous to the one in global AdS discussed in section 4.1. In particular,

the frequencies are fixed as (4.3) as a consequence of the boundary conditions at the

conformal boundary, which are identical to the ones we consider in the Poincaré patch.

Note however that in the present case the spatial momentum k is not quantized, so the

spectrum of eigenfrequencies is continuous.
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4.2.2 Massive sector

Let us now focus on the massive sector. In order to solve the equations of motion, we use

the mode decomposition δBµ = ei(kuu+kvv)bµ ; see appendix A.1 for the explicit solutions.

We classify the modes according to the value of m2 := −kukv = ω2 − k2 as: timelike

(m2 > 0), lightlike (m2 = 0), and spacelike (m2 < 0).

From (2.12) it follows that the asymptotic expansion of the solution for the massive

mode reads (after noting that near the boundary we have r = 1/z)

bµ = z−αb(+)
µ + zαb(−)

µ +O(z1−α) . (4.19)

Here z is the radial variable defined in (A.2). Note that under the isometry (A.3), the

coefficients in (4.19) scale as

b(+)
µ → cα−1b(+)

µ , b(−)
µ → c−α−1b(−)

µ , (4.20)

in agreement with our discussion of section 2.2 regarding the conformal dimensions of the

dual operators.

Having said this, let us consider the spectrum of timelike modes, whose radial profile

is given by (A.13). Comparing (A.13) with (4.19), we read-off

b(+)
u = kuC(~k)

21+αm−(α+1)

Γ(−α)
, b(+)

v = b(+)
z = 0 , (4.21)

b(−)
v = kvA(~k)

21−αmα−1

Γ(α)
, b(−)

u = b(−)
z = 0 . (4.22)

Thus, C(~k) = 0 corresponds to Dirichlet and A(~k) = 0 to Neumann boundary conditions.

We also find that mixed boundary conditions imply

C(~k) = β
kv
ku

Γ(−α)

4αΓ(α)
m2αA(~k) , (4.23)

while hybrid boundary condition translate into

C(~k) = κ−2 Γ(−α)

4αΓ(α)
m2αA(~k) . (4.24)

We stress that the timelike modes above oscillate rapidly near z =∞. As a result, one

can construct wave packets that behave smoothly near the Poincaré horizon. Alternatively,

one can work with the modes as they stand and treat their symplectic products in the

appropriate distributional sense, and this is the strategy we adopt below. More precisely,

in section 5.3 we find that the timelike modes are in fact (plane wave-)normalizable for all

the boundary conditions of interest.

We now study the existence of spacelike solutions, whose profiles are given by (A.14).

Taking Re(p) > 0 by convention, we see that unless we set C(~k) = 0 in (A.14), the solutions

blow up exponentially at the horizon (z = ∞) and are thus non-normalizable. Therefore,
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Figure 4. 4(a): we plot in red the real solutions of (4.27) in the (k, ω) plane for {β̃ = 0.5, α = 0.6}.
The dashed line corresponds to the light-cone in momentum space. 4(b): for {β̃ = −0.5, α = 0.6,

k = −1}, we plot in red/blue the solutions to the real/imaginary part of (4.27) in the complex-ω

plane. Complex solutions are given by the intersection of both lines at ω ≈ 1.45 ± i2.01. This

implies p ≈ 2.18 − i1.34 so Re(p) > 0, consistent with the assumption under which the solution is

regular at the Poincaré horizon.

we set C(~k) = 0 which implies that the coefficients of the asymptotic expansion for the

spacelike solution can be written as

b(+)
u = A(~k)ku2αp−α−1Γ(1 + α) , b(+)

v = b(+)
z = 0 , (4.25)

b(−)
v = A(~k)kv2

−αpα−1Γ(1− α) , b(−)
u = b(−)

z = 0 . (4.26)

Both Dirichlet and Neumann boundary conditions require A(~k) = 0, so in these cases

spacelike solutions do not exist. Mixed boundary conditions b
(+)
u = βb

(−)
v , in turn, imply

the relation

β̃ =
(k − ω)1−α

(k + ω)1+α
, (4.27)

where we have defined β̃ = 4−α Γ(1−α)
Γ(1+α)β. Spacelike solutions are then in one-to-one cor-

respondence with the solutions of (4.27), which we now study. First, we observe that

regularity at transverse infinity, |x| → ∞, requires k ∈ R. On the other hand, recall that

we derived (4.27) only under the assumption Re(p) > 0, so in principle complex frequency

solutions are allowed and their existence is exclusively dictated by (4.27). Examining (4.27)

it is not hard to conclude that for all β > 0 there are real solutions in the region k−ω > 0,

k + ω > 0; see figure 4(a). On the other hand, if β < 0 real solutions are ruled out, but

we find instead a pair of complex-frequency solutions that are conjugate to each other, see

figure 4(b). The fact that our results depend on the sign of β only can be easily understood

in terms of the scaling symmetry (A.3), which acts non-trivially on β.
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Similarly, for spacelike solutions satisfying the “hybrid” boundary condition (3.23)

we have

κ̃2 = (k2 − ω2)α, (4.28)

where we defined κ̃2 = 4α Γ(1+α)
Γ(1−α)κ

2. Since κ̃2 > 0, it follows that ω2 = k2 − κ̃2/α. Now,

because k can be arbitrarily small, we find real as well as imaginary frequency solutions

for all values of κ. In analogy to the mixed boundary conditions studied above, we can use

the scaling symmetry (A.3) to set κ to any desired value. Furthermore, in this case the

spectrum is insensitive to the sign of κ due to the structure of the boundary condition (3.23).

Finally, we discuss the lightlike modes. For the right-moving modes, i.e. those with

kv = 0, the general solution is given in (A.15). Examining the expression for the inner

product, we conclude that the norm of the right-moving modes diverges if bz 6= 0. There-

fore, we find that right-moving modes are only allowed for Neumann boundary conditions.

In this case, they read

δB = A(ku)z−αeikuudu . (4.29)

We emphasize that the solution (4.29) is smooth at the Poincaré horizon. Similarly, the

left-moving modes (A.16) are only normalizable only for Dirichlet boundary conditions, in

which case they can be written as

δB = C(kv)z
αeikvvdv . (4.30)

Note however that in this case they fail to be smooth at z =∞, which removes them from

the spectrum.

5 Evaluating the symplectic product

Next, we compute the symplectic product of the various solutions found in section 4.

The emphasis will be on determining the existence of ghosts, which, as stated above,

correspond to positive (resp. negative) frequency modes having negative (resp. positive)

norm. According to CFT considerations regarding unitarity bounds for vector operators,

we expect the theories in which B(+) fluctuates to contain ghosts. Up to certain subtleties

present in the Poincaré patch, we will verify that the expected ghosts arise in the bulk,

consistent with the field theory result. In addition, we will also find ghosts in the flat

sector for a certain class of double-trace boundary conditions; the latter are not related to

unitarity bounds of the kind mentioned above. The presence of these ghosts should not

be at all surprising, however, since the symplectic structure restricted to the flat sector is

not manifestly positive definite, see e.g. (3.16). We find it convenient to study first the flat

sector separately, assuming that we have chosen boundary conditions which decouple this

sector from the massive one. The results for the massive sector and the mixed hybrid case

will be presented later in this section.

5.1 Flat sector

We start by discussing the case of global AdS. The symplectic product is evaluated on a

slice of constant t, so we have
√
hnµ =

√
gδtµ. Then, using (3.52) and (3.53) the symplectic
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product reads

(A1, A2) = −iα̂
∫
d2x εtλν

(
δ1A

(0)
λ

)∗
δ2A

(0)
ν . (5.1)

Using the solution (4.1) and the mode decomposition λ = e−iωt+ikxλ̂, it is straightforward

to arrive at

(A1, A2) = −2πα̂ δk1,k2k1e
it(ω1−ω2)

∫ ∞
0

dρ
(
λ̂2∂ρλ̂

∗
1 − λ̂∗1∂ρλ̂2

)
. (5.2)

Upon using (4.3) in (5.2) we see that the time dependence in the symplectic product cancels

out, as required by conservation of the symplectic structure. Finally, integrating by parts

the first term in (5.2) and using the smoothness condition δA
(0)
x = 0 at ρ = 0, we conclude

(A1, A2) = 2πα̂ δk1,k2
ω1

β̂

∣∣λ̂1,∂

∣∣2, (5.3)

where λ̂∂ = λ̂
∣∣
∂M

are the (finite) boundary values of the Fourier components of λ. Note

that (5.3) is manifestly finite and conserved, as promised. We observe that the symplectic

product is local on the boundary values of λ, as expected in a topological theory with

a boundary. In other words, flat connections for which λ vanishes on the boundary are

pure gauge degrees of freedom. Moreover, for the boundary condition δA
(0)
x

∣∣
∂M

= 0,

i.e. k = 0, we also find that the flat sector becomes pure gauge. We refer the reader

to appendix C for a discussion on gauge symmetries. Recall that ghost excitations are

defined as positive(negative) frequency solutions with negative(positive) norm. Thus, with

the assumption that α̂ > 0, we conclude that there are ghosts in the flat sector for β̂ < 0.

Although in this case there is no obvious violation of unitarity bounds (recall that A(0)

has scaling dimension one), the mere fact that the symplectic product (5.1) is not positive

definite is an indication that such ghosts might occur.

Let us now focus on the case of Poincaré coordinates. As discussed in section 4.2, with

our choice of boundary conditions at the Poincaré horizon, the flat sector largely resembles

that of global AdS3. Carrying out a calculation analogous to the one above we find that

the symplectic product for flat modes in the Poincaré patch is given by (5.3), with the

replacement of the Kronecker-δ by a Dirac δ-function since k is no longer quantized.

5.2 Massive sector in global AdS

Next we evaluate the symplectic products (3.53) for the positive frequency modes found in

section 4.1. We first focus on the non-flat sector, and at the end of this section we consider

the hybrid boundary conditions which introduce a mixing with the flat sector. We choose

to evaluate the symplectic product on a surface Σ in which t = const, in which case we

obtain

(A1, A2) = iα̂

∫
dzdx εtλνδ1B

∗
λδ2Bν . (5.4)

Using the mode decomposition δBµ = e
i
L

(−ωt+kx)bµ(k) in (5.4) and computing the integral

over x, we get

(A1, A2) = −2πiα̂ δk1,k2e
i t
L

(ω1−ω2)

∫ ∞
0

(b∗1ρb2x − b∗1xb2ρ)dρ . (5.5)
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It will prove convenient to express (5.5) in terms of bu and bv. To do so, we recall that

bx = 1
2(bu + bv) along with the fact that the first order equation for b yields

bρ =
iαρ

2k(1 + ρ2)
(bu − bv)−

i

2k
(bu + bv)

′. (5.6)

Therefore, we have

−i
∫ ∞

0
dρ(b∗1ρb2x − b∗1xb2ρ) =

α

2k1

(
〈b1v, b2v〉 − 〈b1u, b2u〉

)
+

1

4k1

[
(b1u + b1v)(b2u + b2v)

]∣∣∣∣∞
0

=
αρ(1 + ρ2)

2k1(ω1 − ω2)

[
(b1vb

′
2v − b2vb′1v)− (b1ub

′
2u − b2ub′1u)

]∣∣∣∣∞
0

+
1

4k1

[
(b1u + b1v)(b2u + b2v)

]∣∣∣∣∞
0

. (5.7)

Here, 〈·, ·〉 is the Sturm-Liouville (SL) product defined in appendix B. It is straightforward

to verify that regularity of the modes at the origin guarantees that the contribution to (5.7)

from ρ = 0 vanishes, so the solutions found in 4.1 are indeed normalizable, as promised.

For generic frequencies ω1 and ω2 , the contribution from ρ =∞ is finite and it evaluates to

− i
∫ ∞

0
dρ(b∗1ρb2x − b∗1xb2ρ) =

b
(+)
2u b

(−)
1v − b

(+)
1u b

(−)
2v

2(ω1 − ω2)
. (5.8)

It is not hard to see that (5.8) vanishes for Dirichlet, Neumann and mixed boundary

conditions if ω1 6= ω2. Using this fact in (5.5) we conclude that the inner product is

conserved (i.e. independent of t) for all of the above boundary conditions, in agreement

with our analysis of the symplectic flux. In order to calculate the norms, we take the limit

ω2 = ω1 in (5.8) and set ω1 to its quantized value at the end of the calculation. Since (5.8)

vanishes for ω1 6= ω2, we can write

− i
∫ ∞

0
dρ(b∗1ρb2x − b∗1xb2ρ) = δω1,ω2

1

2

(
b
(+)
1u ∂ω1b

(−)
1v − b

(−)
1v ∂ω1b

(+)
1u

)
. (5.9)

Plugging (5.9) into (5.5) we find the following general expression for the symplectic

products:

(A1, A2) = πα̂δ~k1,~k2

(
b
(+)
1u ∂ω1b

(−)
1v − b

(−)
1v ∂ω1b

(+)
1u

)
. (5.10)

We now specialize to the various boundary conditions of interest. For Dirichlet bound-

ary conditions, the spectrum of eigenfrequencies is given by (4.10), (4.11). The positive

frequency solutions can be expressed more succinctly as

ω+
n,k = 2[n+ θ(−k)] + |k|+ α n = 0, 1, 2, . . . , (5.11)

where θ(x) is the Heaviside function, defined as θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0.

Using (5.11) in (5.10) we find

(A1, A2) = πα̂
(−1)nπα csc(πα)n! Γ

(
2θ(−k) + |k|+ n

)
Γ
(
− s(−k)− n− α

)
4Γ(1− α)2 Γ(1 + |k|+ n+ α)

, (5.12)
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where n is a non-negative integer. Here we have normalized the modes in such a way that

the leading term has coefficient 1. We shall continue to do so henceforth, unless explicitly

otherwise stated. Similarly, the spectrum of positive frequency solutions for Neumann

boundary conditions can be written as

ωN = 2[n+ θ(k)] + |k| − α n = 0, 1, 2, . . . (5.13)

as it follows from (4.13) and (4.15). Inserting (5.13) in (5.10) we conclude that the Neumann

norms read

(A1, A2) = πα̂
(−1)n+1πα csc(πα)n!Γ

(
2θ(k) + |k|+ n

)
Γ
(
− s(k)− n+ α

)
4Γ(1 + α)2 Γ(1 + |k|+ n− α)

, (5.14)

where n is a non-negative integer. Inspecting (5.12) and (5.14), we note that all the modes

have positive norm with the exception of the Neumann modes characterized by n = 0,

k < 0, whose frequencies are given by (4.15). Therefore, we conclude that the theory

contains ghosts for Neumann boundary conditions, as expected.

Let us now focus on mixed boundary conditions. In this case, the lack of a closed

expression for the frequencies prevents us from displaying the norm explicitly. However, we

find substantial evidence that ghosts must be present in the system for generic values of the

deformation parameter β. For β < 0, the existence of ghosts follows immediately from the

existence of complex frequency solutions, see for example [26]. The argument is as follows.

First we recall that, as all the parameters are real, the complex frequencies always occur

in pairs of complex conjugate values; cf. figure 2(b). Second, denoting the aforementioned

solutions by ψ1, ψ2, we can verify that (ψ1, ψ1) = (ψ2, ψ2) = 0. A simple way to see this is

to note that the norms have the overall time-dependent factor exp(−2t Im(w)). Since this

is in conflict with conservation, the norms must vanish. Third, the definition of the norm

guarantees that cross-terms satisfy (ψ1, ψ2) = (ψ2, ψ1)∗, and we can explicitly verify that

they are non-vanishing. Finally, diagonalizing the symplectic structure we find that one of

the excitations has negative norm, signaling the presence of ghosts. We turn now to the

case β > 0. In this situation we did not find evidence of complex frequency solutions, so

we need to examine the norms in more detail. Indeed, we found numerical evidence that

ghosts should be present for this case as well, cf. figure 5.

Finally, we consider the hybrid boundary conditions. Recall that in section 4.1 we

found that there is a pair of complex frequency solutions if the absolute value of the

deformation parameter κ is large enough. Following the conventions in section 4.1, we

denote the critical value by |κc|. As mentioned above, these complex frequency solutions

correspond to ghost/anti-ghost pairs, so we do not discuss this case any further. Let us

now examine the norms of the real frequency solutions. We expect the pair of complex

frequency solutions that occur for |κ| > |κc| to remain as a ghost/anti-ghost pair when we

tune |κ| below |κc|. We will exhibit ample numerical evidence that this is indeed the case,

and thus conclude that ghosts are present for all values of κ.

Recall that the symplectic structure splits into the contributions from the flat and non-

flat sectors as in (3.52), and that the symplectic product is given in terms of the symplectic
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Figure 5. For {α = 0.7, k = −2, β = 1.1}, we plot the formal expression for the norm (5.10) with a

red dashed line and the left hand side of (4.16), whose zeroes correspond to the allowed frequencies,

with a red solid line. Note that the smallest frequency corresponds to a ghost. Exploring the norm

numerically for various values of the parameters, we find that this behavior is generic.

structure by (3.53). Choosing the Cauchy slice Σ on which we evaluate the product to be

a surface of constant t, we can write the inner product as

(A1, A2) = (A1, A2)nf + (A1, A2)f , (5.15)

where

(A1, A2)nf = −iα̂
∫

Σ
d2x
(
δB∗1ρδB2x − δB∗1xδB2ρ

)
(5.16)

(A1, A2)f = iα̂

∫
Σ
d2x
(
δ1A

(0)∗
ρ δ2A

(0)
x − δ1A

(0)∗
x δ2A

(0)
ρ

)
. (5.17)

Next, we introduce Fourier decompositions as δBµ = e
i
L

(−ωt+kx)bµ(k), δA
(0)
µ =

e
i
L

(−ωt+kx)a
(0)
µ and proceed as above by computing (5.16) and (5.17) for generic frequen-

cies ω1 and ω2. The expression (5.16) is then given by (5.8) and it only remains to com-

pute (5.17). We manipulate (5.17) noting that the flatness condition implies that the modes

satisfy

a(0)
ρ = − i

k

(
a(0)
x

)′
, (5.18)

where the prime denotes a radial derivative. Using (5.18) in (5.17) we thus find

(A1, A2)f = −2πα̂ δk1,k2 k
−1a

(0)
1x a

(0)
2x

∣∣∣ρ=∞

ρ=0
. (5.19)

From the regularity condition a
(0)
x = 0 at ρ = 0 we conclude that only the term at ρ =∞

contributes to (5.19). Thus, gathering the results (5.8) and (5.19) we find for generic

frequencies

(A1, A2) = 2πα̂ eit(ω1−ω2)δk1,k2

[
b
(+)
2u b

(−)
1v − b

(+)
1u b

(−)
2v

2(ω1 − ω2)
−
(
a

(0)
1u + a

(0)
1v

)(
a

(0)
2u + a

(0)
2v

)
4k

]
. (5.20)
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Figure 6. 6(a): for {α = 0.8, k = 1, κ = 0.9} we plot the left hand side of (4.17) (solid line),

whose zeros correspond to the allowed frequencies, and the expression for the norm (5.21) (dashed

line). We notice that the second to lowest frequency solution is a ghost. By slightly increasing

the value of κ the solutions move to the complex plane, as seen in figures 3(a) and 3(b). 6(b): for

{α = 0.8, k = 1, κ = 0.1}, we plot the left hand side of (4.17) (solid line) and the expression for

the norm (5.21) (dashed line). We observe that the lowest frequency mode found for higher values

of |κ| disappears, but there is still a ghost in the system.

We can readily verify that the symplectic structure is conserved by noting that (5.20)

vanishes for ω1 6= ω2 when the boundary conditions (3.22), (3.23), hold. Therefore, the

symplectic product can be written in terms of the coefficients of the asymptotic expansion as

(A1, A2) = πα̂ δ~k1,~k2

[
b(+)
u ∂ω1b

(−)
v − κ2

(
k + ω

k − ωb
(+)
u ∂ω1b

(+)
u +

2k

(k − ω)2
(b(+)
u )2

)]
, (5.21)

where ω is implicitly given by the solutions of (4.17). Studying (5.21) numerically, we find

that there is always a ghost among the lowest real frequency modes that occur for |κ| < |κc|;
see figures 6(a), 6(b). Furthermore, we find that this picture continues to hold true for all

|κ| in the range 0 ≤ |κ| < |κc|. This must indeed be the case since κ = 0 corresponds to

Neumann boundary conditions, which were found above to induce violations of unitarity

in the bulk.

5.3 Massive sector in Poincaré AdS

We now proceed to compute the symplectic product for the Poincaré AdS modes, focusing

on the non-flat piece of the connection. We start with the timelike modes. It should be

noted that, since the spectrum is continuous, the products should be understood in the

sense of distributions. As usual, in order to evaluate (3.53) we choose Σ to be a surface of

t = const, so we have

(A1, A2) = iα̂

∫
dzdx εtλνδ1B

∗
λδ2Bν . (5.22)

We find it convenient to use the mode decomposition δBµ = ei(−ωt+kx)bµ(k) in (5.22) and

computing the integral over x we get

(A1, A2) = 2πiα̂ δ(k1 − k2)eit(ω1−ω2)

∫ ∞
0

dz(b∗1zb2x − b∗1xb2z) , (5.23)
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where we have used εztx = −1, in consistency with the convention εzuv = −1 employed in

appendix A.1. It is convenient to express (5.23) in terms of the components bu and bv. To

this end we note that the first order equation for b implies

bz = − iα

2kz
(bu − bv)−

i

2k
(bu + bv)

′, (5.24)

and we recall bx = 1
2(bu + bv), bt = 1

2(bu − bv). It follows that we can write

i

∫ ∞
0
dz(b∗1zb2x − b∗1xb2z) =

α

2k

∫
dz z−1(b∗1vb2v − b∗1ub2u)− 1

4k

[
(b1u + b1v)

∗(b2u + b2v)
]∣∣∣∞

0
.

(5.25)

The first two terms in (5.25) correspond to the SL inner product associated to (A.12)

and (A.11), respectively. Thus, from the results of appendix B it follows that

i

∫ ∞
0
dz(b∗1zb2x − b∗1xb2z) =

αz−1

2k(m2
1 −m2

2)

[
(b1vb

′
2v − b2vb′1v)− (b1ub

′
2u − b2ub′1u)

]∣∣∣∞
0

− 1

4k

[
(b1u + b1v)

∗(b2u + b2v)
]∣∣∣∞

0
, (5.26)

where we have used the explicit form of the SL coefficients (B.4) and (B.5). Next, using the

near-boundary expansion one can readily verify that the contribution from z = 0 to (5.26)

vanishes for Dirichlet, Neumann and mixed boundary conditions. The contribution at the

Poincaré horizon can be evaluated by introducing a regulator z∞ at large z and using

Jν(x)→
√

2

πx
cos

(
x− νπ

2
− π

4

)
for x� 1 . (5.27)

From this point on the calculation proceeds in close analogy to that for a scalar field in

Poincaré AdS. We refer the reader to [26] for details.13 Up to terms that vanish in the

distributional sense, we find that the general expression for the inner product (5.23) reads

(A1, A2) = 2πα̂ δ(2)(ki1 − ki2)Q(α, k) , (5.28)

where

Q(α, ki) = 2α
∣∣A(~k) + eiπαC(~k)

∣∣2. (5.29)

Here we have used that C and A satisfy the relation (4.23). Clearly, the norm (5.28) is

manifestly positive definite for Dirichlet, Neumann and mixed boundary conditions.

Let us now calculate the products of the spacelike excitations that are present for mixed

boundary conditions. As discussed in section 4.2, their radial profile is given by (A.14) with

C(~k) = 0, which ensures normalizability since they vanish exponentially at the horizon.

Furthermore, the mixed boundary condition holds provided the frequencies satisfy (4.27).

Recall also that for all β < 0 the spectrum contains a pair of solutions ψ1, ψ2 whose

13The present calculation exhibits one additional complication: roughly speaking, the third term in (5.26)

has the structure ∼ (m1m2)−1/2z∞ cos[(m1−m2)z∞], so it is indeed power-counting divergent as z∞ →∞.

However, integrating this against test functions f(m1) and f(m2) of compact support, one can show that

the contribution from this type of terms vanishes as we remove the regulator.
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frequencies are complex conjugate to each other. As argued above, there is always a ghost

among these degrees of freedom, so we do not consider this case any further. For β > 0 we

found real frequency spacelike solutions, whose norm we now compute.

Since the real frequency spacelike solutions form a discrete set, we compute their norms

in analogy to the calculation of the inner product in global coordinates. Our starting

point is the general expression (5.26). Because the radial profiles decay exponentially

at the horizon, the only non-vanishing contribution to (5.26) comes from the boundary

asymptotics. A simple computation reveals that the norm of the real frequency spacelike

solutions can be written in terms of the coefficients of the asymptotic expansion as

(A1, A2)T = πα̂ δ(k1 − k2)
(
b(+)
u ∂ωb

(−)
v − b(−)

v ∂ωb
(+)
u

)
, (5.30)

where ω satisfies (4.27). Plugging in (5.30) the explicit expressions for the coefficients b(±)

found previously in (4.25) and (4.26), we find that the norm of the spacelike solution is

(A1, A2)T = πα̂ δ(k1 − k2)|A|2πα(k − αω) csc(πα)

p2
. (5.31)

Note that the sign of the norm (5.31) is controlled by the factor (k − αω). Now, it follows

from (4.27) that positive norm solutions occur for positive and negative frequencies, see

also figure 4(a). Thus, we conclude that there are ghosts in the theory for mixed boundary

conditions and β > 0.

It only remains to discuss hybrid boundary conditions. In this case, the spectrum

consists of both real and imaginary frequencies, regardless of the value of the deformation

parameter κ. As argued above, the existence of non-real frequencies is associated with

ghosts on general grounds. Therefore, no detailed calculation of the norms is required to

show that this class of theories violate unitarity in the bulk.

As pointed out in [26], bulk theories dual to CFT’s in which the unitarity bound is

violated do not necessarily contain ghosts when the geometry is that of Poincaré AdS.

Alternatively, the two-point function suffers from a divergence near the light-cone, which

implies that the theory does not exist. This motivates us to inspect the near light-cone

structure of the Neumann correlators.

The boundary (Wightman) two-point function can be easily computed given the matrix

of symplectic products, see e.g. [26]. For the timelike modes in the Neumann theory we find

〈0|b(+)
u (−ki)b(+)

u (ki)|0〉 = (A1, A2)−1
∣∣
Neumann

=
4αq2L

πα2Γ(−α)2

(ω − k)1−α

(ω + k)1+α
. (5.32)

In order to obtain (5.32) we have normalized the radial profiles such that the leading

term is 1. As expected, the Fourier transform does not converge due to the behavior near

ω = −k; this behavior is to be contrasted with the Dirichlet case, in which we find

〈0|b(−)
v (−ki)b(−)

v (ki)|0〉 = (A1, A2)−1
∣∣
Dirichlet

=
4−αq2L

πα2Γ(α)2

(ω + k)1+α

(ω − k)1−α . (5.33)

This is clearly finite as we approach ω = −k. In the parameter range of interest, namely

0 < α < 1, the divergence near ω = k is mild enough so that the Fourier transform of (5.33)

converges.
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The parallel with [26] extends beyond the existence of the light-cone divergence dis-

cussed above, in that this divergence can be related to the appearance of lightlike gauge

modes. In fact, recall that in section 4.2 we found that the Neumann theory admits the

lightlike solution (4.29), which in position space can be written as

δB = f(u)z−αdu , (5.34)

where f is an arbitrary function of u. From (5.23), it is clear that the aforementioned

solution has zero norm since its z-component vanishes. Moreover, it is straightforward to

verify that the inner product of (5.34) with the timelike modes vanishes in the distributional

sense. Thus, assuming that the spectrum of the Neumann theory we found in 4.2 is

complete,14 i.e. that there are only timelike and lightlike modes, we conclude that the

lightlike solution (5.34) is a null direction of the symplectic structure and is thus pure

gauge. The reader might be somewhat puzzled by the fact that there is a gauge mode

which is not flat. However, one can argue that this must be the case by noting the large

arbitrariness in (5.34) parametrized by the function f(u), which is unconstrained by the

equations of motion.

6 Discussion

By studying the bulk symplectic structure, we have obtained a class of admissible boundary

conditions for the MCS system in asymptotically-AdS spaces. According to the holographic

dictionary, these boundary conditions determine the operator content in the possible dual

theories. In agreement with the existing literature, we find that there is a vector operator

of conformal dimension 1 ± α, in addition to the well-known chiral currents which are

also present in the pure Chern-Simons theory. The vector operator is associated with the

Hodge dual of the bulk field strength, which behaves as a massive vector with a mass

proportional to the Chern-Simons coupling. It is worth mentioning that the components

of these operators satisfy a constraint, so they have less degrees of freedom than naively

expected. This feature is reminiscent of the situation in topologically massive gravity,

where similar constraints exist [49]. The chiral currents, on the other hand, are associated

to the flat piece of the connection, and are in that sense topological.

Our analysis reveals that, whereas it is possible to impose boundary conditions such

that the topological and massive sectors decouple, it is also in principle valid to introduce

a mixing between them. In particular, we studied a class of boundary conditions that

corresponds to double-trace deformations that couple the chiral currents with the vector

operators. Regarding the boundary conditions in which both sectors decouple, we have also

considered boundary conditions that yield double-trace deformations within each sector.

In this case, it is even possible to generalize these to incorporate multi-trace deformations

in the usual way. Our main result is that this apparently large freedom in the choice of

boundary conditions is severely restricted once we impose unitarity as an extra requirement.

14In principle, there could be solutions with anharmonic time dependence, which lie outside of the class

of modes we consider here. Although we have not studied this possibility in detail, the present setup is

self-consistent in that it provides the correct physical results, namely that the Neumann theory is sick.
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We have addressed the issue of unitarity by studying the MCS theory both in Poincaré

and global AdS. In these setups, the violations of unitarity generically manifest themselves

as ghost excitations in the spectrum of the theories defined with given boundary conditions.

The boundary conditions that pass the test of unitarity correspond to fixing the leading

behavior of the massive sector (Dirichlet boundary conditions), while separately specifying

a linear relation between the two components of the flat connection along the boundary

directions. It is worth mentioning that the latter also requires a specific choice of sign in

the proportionality constant. Furthermore, we mention that for boundary conditions that

fix the spatial part of the boundary connection, the topological degrees of freedom become

pure gauge (in the absence of holonomies).

For the boundary conditions corresponding to double-trace deformations which involve

the massive sector, we contented ourselves with numerical results and the reader may

wonder whether our analysis was exhaustive enough to rule out the existence of a non-

trivial phase diagram. In particular, since the Dirichlet theory is well defined and we can in

principle approach it by continuously tuning the deformation parameters, it is reasonable to

ask whether there is an open set of unitarity-preserving values near the Dirichlet point. The

answer to this question is negative, as it is most easily seen when the geometry is taken to be

the Poincaré patch of AdS3. In this case, the presence of a scaling symmetry dictates that,

up to sign changes, all non-zero values of the coupling constants are equivalent. One can

use this fact to draw conclusions regarding the mixed boundary condition δB
(+)
u = β δB

(−)
v .

For the reason we just mentioned, it suffices to study the cases β = 0, ∞, ±1, where β = 0

corresponds to Dirichlet boundary conditions. Then, finding ghosts for β = ±1 implies that

these remain for all non-zero β, forbidding a non-zero critical value. Moreover, noting that

the Poincaré patch theory captures the high-momentum dynamics of the theory in global

AdS,15 one can extend this result to the global case. Clearly, the analogous statement

holds true for our hybrid boundary conditions parametrized by the constant κ.

In many scenarios, the presence of the ghosts is in one-to-one correspondence with

violations of the unitarity bound in the dual theory, which establishes that the scaling

dimension of vector operators must be greater than one. In fact, the operator of dimen-

sion 1 − α violates the bound for all α and, accordingly, we find ghosts whenever the

corresponding slow-decaying branch fluctuates. The only exception are the conformally

invariant Neumann boundary conditions in the Poincaré patch, which set to zero the faster

fall-off. In analogy with the scalar case discussed in [26], we have found in this case that

the spectrum is ghost-free, and that the expected pathologies arise instead in the 2-point

function, which is ill-defined even at large distances. Interestingly, we also found ghosts

in the flat sector, which occur for some choices of the parameter that controls the double-

trace deformation. Since the chiral currents have dimension one, these unitarity violations

cannot be linked to the bound on the scaling dimension. These pathologies are indeed to

be expected, however, because the expression for the symplectic product restricted to the

flat sector is not positive definite in any obvious way.

15This is most easily seen by noting that, for short characteristic lengths, a cylinder is equivalent to a

plane.
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It is worth commenting in more detail on the mixed boundary conditions in relation to

the unitarity bound. Above, we obtained these as a deformation of the Neumann theory,

as it is customary for bulk scalars whose mass lies in the Breitenlohner-Freedman window.

Had the Neumann theory been well defined, the inclusion of the relevant double-trace

operator could have been thought of as triggering an RG flow towards the Dirichlet theory.

However, as we have seen, the Neumann theory is sick, and inclusion of the double-trace

operator does not cure its pathologies. Thus, the aforementioned flow is not well defined.

Attempting to remedy this, one might try to understand the mixed boundary conditions

as triggering a flow from the Dirichlet theory. In this case, unfortunately, the deformation

term one needs to add is of the form ∼
(
B

(−)
v

)2
, so it corresponds to an irrelevant operator

of dimension 2(1 + α). It follows that the resulting theory is non-renormalizable and the

ghosts that arise can be understood as being the result of our loss of control of the theory

in the UV.

It is interesting to contrast our results with those of [29], in which the authors found an

effective three-dimensional MCS theory in the context of holographic RG flows. More pre-

cisely, they constructed five-dimensional solutions in the Einstein-Maxwell-Chern-Simons

theory which have the interpretation of magnetic branes. Perturbations around these back-

grounds turn out to describe RG flows from four-dimensional field theories in the UV to

two-dimensional ones in the IR, and the dynamics of the latter are captured by a 3d MCS

theory. Requiring the usual Dirichlet boundary conditions in the UV and imposing match-

ing conditions in the bulk, the effective IR theory contains a double-trace for the vector

operators which we denoted by B(±). Our analysis reveals that this theory must contain

ghosts, and indeed, the results of [29] indicate that violations of unitarity are present if

one tries to extend the domain of validity of the IR description to the entire bulk. Then,

what saves the theory is the existence of an effective cut-off associated to the domain wall

solution, whose presence implies that the IR description breaks down at some intermediate

value of the radial coordinate. This is to be expected since Dirichlet boundary conditions

were imposed in the UV, and these respect the dual unitarity bounds. The issue of re-

moving the bulk ghosts by introducing the appropriate cut-offs will be discussed in an

upcoming publication [50].

We now briefly comment on the implications of our results in the context of potential

condensed matter applications. For illustrative purposes, we first review the relevant results

of the pure Maxwell theory and then move on to describe how the addition of the Chern-

Simons term changes the picture. In terms of the radial variable of (A.17), the asymptotics

of the gauge field in the pure Maxwell theory are of the form

Ai = log rA
(1)
i +A

(0)
i + . . . with ∇(0)

i A(1)i = 0 , (6.1)

where i is a boundary index and ∇(0) is the covariant derivative associated with the confor-

mal boundary metric. The conservation equation satisfied by the coefficient A
(1)
i indicates

that it should be interpreted as the U(1) current. This fact was overlooked in [51–54], in

which the authors discussed the construction of a holographic 1 + 1 dimensional super-

fluid/superconductor incorrectly interpreting A(0) as the boundary current. We mention

that this confusion was resolved in [27] using the conservation argument given above.
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However, there is still an obstruction to the study of such holographic theory, since the

boundary conditions that allow for a fluctuating current yield ghosts [26]. Thus, the ap-

plicability of the by now standard procedure [55, 56] to the study of holographic 1 + 1

superconductors remains, at least, unclear. Given this, it is compelling to ask ourselves

what are the implications of adding the Chern-Simons term to the Maxwell theory and the

possible AdS/CMT applications of the resulting setup.16 As we have seen, the inclusion

of the Chern-Simons term drastically modifies the scenario, as the U(1) vector current is

replaced by the topological chiral currents associated to the flat connections, and one can

imagine introducing an order parameter (dual to a minimally coupled bulk charged scalar,

say) which could potentially break the associated symmetry spontaneously.17 We leave the

exploration of this line of research for future work.
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A Solutions to the equations of motion on AdS3

Here we consider the MCS equation (2.2) on a fixed background geometry. We remark that

since the MCS system is linear, in the probe approximation both the background gauge

field and its fluctuations satisfy the same equation. Splitting the gauge field fluctuation as

in (2.6), i.e. δA = δB + δA(0), we have that δA(0) is flat and δB satisfies

0 = εµνρ∂νδBρ +
α

L
δBµ, (A.1)

where εµνρ = −1/
√
|g|εµνρ and g is the determinant of the background metric. In what

follows we present the general solution of this equation for the backgrounds of interest,

namely AdS3 in both the Poincaré patch and global coordinates.

16This possibility was suggested in [54], with a different motivation.
17We thank Per Kraus for pointing out this possibility.
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A.1 Poincaré patch of AdS3

We first consider the background geometry to be the Poincaré patch of AdS3, with line

element given by

ds2 =
L2

z2
(dz2 − dt2 + dx2) . (A.2)

We remind the reader that the line element (A.2) posses the symmetry

z → λz , t→ λt , x→ λx , (A.3)

which corresponds to dilations in the dual theory. This symmetry play an important role

in the analysis of the spectrum, as discussed in the main text. It will prove convenient to

introduce null coordinates

t = u− v , x = u+ v , (A.4)

so that the line element reads

ds2 =
L2

z2
(dz2 + 4dudv) . (A.5)

By convention, we take εzuv = −1. We Fourier-decompose the fluctuations of the gauge-

invariant (massive) mode as

δBµ(u, v; z) = ei(kuu+kvv)bµ(z) , (A.6)

where ku = k − ω and kv = k + ω. Inserting (A.5) and (A.6) in (A.1) we find

0 = 2α bz + iz(kubv − kvbu) , (A.7)

0 = α bv + z(ikvbz − b′v) , (A.8)

0 = α bu + z(−ikubz + b′u) . (A.9)

The above equations can be decoupled by going to second order in derivatives, obtaining

0 = z2b′′z − zb′z − [α2 − 1−m2z2]bz , (A.10)

0 = z2b′′u − zb′u − [α(α+ 2)−m2z2]bu , (A.11)

0 = z2b′′v − zb′v − [α(α− 2)−m2z2]bv , (A.12)

where m2 ≡ −kukv = ω2−k2 is the eigenvalue of the Laplacian associated to the conformal

boundary metric. Once the general solution to the second order equations has been found,

the first order equations provide relations among the various integration constants.

A.1.1 Timelike modes (m2 > 0)

For timelike momenta and α /∈ Z we can write the general solution of (A.7)–(A.12) as

bz = imz
[
A(~k)Jα(mz) + C(~k)J−α(mz)

]
bu = kuz

[
−A(~k)J1+α(mz) + C(~k)J−1−α(mz)

]
(A.13)

bv = kvz
[
A(~k)J−1+α(mz)− C(~k)J1−α(mz)

]
,

where Jν is the Bessel function of the first kind.
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A.1.2 Spacelike modes (m2 < 0)

In this case we define m2 ≡ −p2, so that p2 > 0. The general solution is then

bz = ipz
[
A(~k)Kα(pz) + C(~k)Iα(pz)

]
bu = kuz

[
A(~k)K1+α(pz)− C(~k)I1+α(pz)

]
(A.14)

bv = kvz
[
A(~k)K−1+α(pz)− C(~k)I−1+α(pz)

]
,

where Iν and Kν are the modified Bessel functions of the first and second kind, respectively.

A.1.3 Lightlike modes (m2 = 0)

• Right-moving (kv = 0):

bz = −C iku
2α

z1+α, bu = Az−α + C
k2
u

4α(1 + α)
z2+α, bv = C zα. (A.15)

• Left-moving (ku = 0):

bz = A
ikv
2α

z1−α, bu = Az−α, bv = A
k2
v

4α(α− 1)
z2−α + Czα. (A.16)

A.2 Global AdS3

We now consider the global AdS3 metric written as

ds2 =
dr2

1 +
r2

L2

−
(

1 +
r2

L2

)
dt2 +

r2

L2
dx2, (A.17)

where we have defined x ≡ Lϕ. We will use the dimensionless radial coordinate ρ = r/L,

so we write

δB = e
i
L

(−ωt+kx)
[
L bρ(ρ) dρ+ bt(ρ) dt+ bx(ρ) dx

]
. (A.18)

Single-valuedness of the solution demands that we identify x ∼ x+2πL, so the dimensionless

momentum k is an integer, k ∈ Z. Following the same steps as before to decouple the

equations we find

0 = ρ2(1 + ρ2)b′′u + ρ(1 + 3ρ2)b′u +

(
ρ2

1 + ρ2
ω2 − α(α+ 2)ρ2 − k2

)
bu (A.19)

0 = ρ2(1 + ρ2)b′′v + ρ(1 + 3ρ2)b′v +

(
ρ2

1 + ρ2
ω2 − α(α− 2)ρ2 − k2

)
bv , (A.20)

where bv = bx − bt and bu = bt + bx as before. Notice that the equations are related by

α↔ −α. When k 6= 0, their solution is

bu = C(+)
u F (ω, k, α; ρ) + C(−)

u F (ω,−k, α; ρ) (A.21)

bv = C(+)
v F (ω, k,−α; ρ) + C(−)

v F (ω,−k,−α; ρ) (A.22)
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with

F (ω, k, α; ρ) = ρk(1 + ρ2)ω/2 2F1

(
1

2
(k − α+ ω),

1

2
(2 + k + α+ ω); 1 + k;−ρ2

)
, (A.23)

where 2F1 is the Gauss Hypergeometric function. We can obtain bρ from the ρ component

of (2.8), which reads

0 = α bρ +
i

ρ(1 + ρ2)
(ωbx + kbt)

= α bρ +
i

2ρ(1 + ρ2)

[
(k + ω)bu + (ω − k)bv

]
. (A.24)

Finally, inserting our solution back into the first order equation (2.8) we find the relations

C(+)
v =

k − α+ ω

k + α− ωC
(+)
u (A.25)

C(−)
v =

k + α+ ω

k − α− ωC
(−)
u , (A.26)

so there are only two independent degrees of freedom.

When k = 0, the basis of solutions (A.21) is no longer valid. Instead, one can use

bu = (1 + ρ2)ω/2
[
C̃(+)
u F̃1(ω, α; ρ) + C̃(−)

u F̃2(ω, α; ρ)
]

(A.27)

bv = (1 + ρ2)ω/2
[
C̃(+)
u F̃1(ω,−α; ρ) + C̃(−)

u F̃2(ω,−α; ρ)
]
, (A.28)

where

F̃1(ω, α; ρ) = 2F1(a, b; 1;−ρ2) , (A.29)

F̃2(ω, α; ρ) = 2F1(a, b; 1;−ρ2) log(−ρ2)

+

∞∑
n=1

(a)n(b)n
(n!)2

(−ρ2)n
[
ψ(a+ n)− ψ(a) + ψ(b+ n)− ψ(b)− 2ψ(n+ 1) + 2ψ(1)

]
.

(A.30)

Here a = (ω − α)/2, b = (2 + α + ω)/2 and (a)n is the Pochhammer symbol defined by

(a)n = Γ(a + n)/Γ(a). The presence of the logarithm in (A.30) makes the solution non-

normalizable at the origin. Therefore, we set C̃
(−)
u = C̃

(−)
u = 0, and will not consider the

profile (A.30) in the body of the paper. Once again, bρ can be obtained using (A.24). The

full solution is then obtained noting that the first order equations require

C̃(+)
v = −C̃(+)

u . (A.31)

B Sturm-Liouville problem

The Sturm-Liouville eigenvalue problem in the interval x ∈ (a, b) is characterized by the

second order ODE

Lψ = λψ , where L =
1

w(x)

[
− d

dx

(
p(x)

d

dx

)
+ q(x)

]
. (B.1)
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For given boundary conditions at x = a and x = b, the solution of the problem corresponds

to a given set of eigenfunctions ψλ with eigenvalue λ. We can define an associated inner

product as

〈ψ1, ψ2〉 =

∫ b

a
dxw(x)ψ∗1ψ2 . (B.2)

If the boundary conditions are such that the operator L is self-adjoint, it follows that the

eigenvalues are real. In addition, eigenfunctions with different eigenvalue are orthogonal

with respect to (B.2). Moreover, integrating by parts in the expression 〈Lψ1, ψ2〉 one

can show

〈ψ1, ψ2〉 =
p(x)

λ1 − λ2

[
ψ∗1

d

dx
ψ2 − ψ2

d

dx
ψ∗1

]∣∣∣∣b
a

, (B.3)

which reduces the calculation of the integral in the l.h.s. to a simple expression that only

involves the asymptotics of ψ. In order to apply (B.3) to the computation of symplectic

products, we write the integrals of interest in terms of variables which satisfy decoupled

equations of the form (B.1) for some λ, p, w, q. In particular, we note that (A.11) adopts

the SL form with λ = m2 and

p = z−1, w = z−1, q = α(α+ 2)z−3, (B.4)

while for (A.12) we have λ = m2 in addition to

p = z−1, w = z−1, q = α(α− 2)z−3. (B.5)

Similarly, equation (A.19) can be written as a SL problem with λ = ω2 and

p = ρ(1 + ρ2) , w =
ρ

1 + ρ2
, q =

k2

ρ
+ α(α+ 2)ρ , (B.6)

while for (A.20) we have λ = ω2 and

p = ρ(1 + ρ2) , w =
ρ

1 + ρ2
, q =

k2

ρ
+ α(α− 2)ρ . (B.7)

C U(1) symmetries

The goal of this appendix is to study the character of the U(1) transformations from the

point of view of possible boundary field theory duals. We recall that these transformations

act on the fields as

δλAµ = ∂µλ , (C.1)

where λ is a single-valued arbitrary function of spacetime. By considering only single-

valued functions we are ruling out “large” gauge transformations, which are not connected

with the identity. Our approach will be to note that symmetries of the bulk theory that

have a non-trivial action on the boundary data (i.e. the boundary sources and operators)

are naturally interpreted as symmetries of the boundary theory. Our analysis follows that

of [43, 57, 58] regarding boundary diffeomorphisms. For the sake of concreteness, we shall
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assume in this section that the background geometry is global AdS. Analogous results

apply to the Poincaré case.

Quite generally, a symmetry is a transformation that preserves the phase space of

the theory. As a consequence, it follows that such a transformation must leave both the

action and the boundary conditions invariant. From the boundary point of view, this

ensures that the quantum generating functional is invariant under the symmetry of interest.

Obviously, the U(1) is a symmetry of the equations of motion (2.2). However, if this

transformation acts non-trivially on the boundary, it may or may not preserve the boundary

conditions and the action functional. In fact, depending on the boundary conditions, the

U(1) transformation could be a global symmetry, a gauge symmetry or might not even

be a symmetry at all. By a gauge symmetry we mean a transformation whose generator

(i.e. the associated charge) vanishes on shell. Global symmetries, on the other hand, have

non-zero charge. It should be noted that this charge ought to be integrable and finite for

the corresponding transformation to be properly implemented in phase space.

Let us first establish the fact that the U(1) symmetries that act trivially on the bound-

ary are pure gauge (in the sense that they are null directions of Ω). First, we note that

these are in fact symmetries since they leave both the action and the boundary conditions

invariant. Furthermore, by a calculation identical to the one in section 5.1, we conclude

that the symplectic product of δλA = ∇λ with an arbitrary configuration δA is given by

Ω(δλA, δA) = α̂

∫
∂Σ
dxλ δA(0)

x , (C.2)

where δA
(0)
x is the flat piece of δA and ∂Σ corresponds to the intersection of the boundary

with a t = const. slice. Comparing (C.2) with (3.2), we conclude that the U(1) transfor-

mations that leave the boundary invariant have vanishing charge and are thus pure gauge.

As mentioned above, since these transformations leave the boundary data invariant, they

do not manifest in the dual theory.

We now consider transformations whose action on the boundary data is non-trivial, and

examine their action on the various boundary conditions under consideration. We begin

with hybrid boundary conditions. Since these mix the flat connections with the massive

sector, and the U(1) acts only on the former, it is clear that the U(1) transformations are

not symmetries of the theory. Let us now focus on boundary conditions which do not mix

the flat and massive sectors. Since the U(1) transformations only affect the flat piece of

the connection, we concentrate our attention in the flat sector. It follows from (C.2) that

theories in which A
(0)
x is fixed have the residual gauge symmetry associated with λ|∂M =

λ(t). Since this acts non-trivially at the boundary, we conclude that the gauge symmetry is

also present in the dual theory. Consider now the boundary condition δA
(0)
t = 0, in which

case the residual symmetry corresponds to λ|∂M = λ(x). We see from (C.2) that there is

an associated non-vanishing infinitesimal charge, given by the right hand side of (C.2) (see

section 3, in particular eq. (3.2)). We notice that (C.2) is trivially integrable, so we can

write an expression for the total charge as

Qλ = α̂

∫
∂Σ
dxλ(x)A(0)

x . (C.3)
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The existence of the well-defined non-vanishing charge (C.3) implies that the associated

symmetry is global. Once again, this transformation acts non-trivially on the boundary

so it is present in the boundary theory. It is worth emphasizing that the aforementioned

symmetry is in fact infinite dimensional, and that the charges (C.3) correspond to the

chiral currents discussed previously in the literature. This can be seen by computing the

Poisson bracket {Qλ, Qσ}. The easiest way to proceed is to note that the charges are the

generators of the associated symmetry, so it must be the case that

{Qλ, Qσ} = δσQλ , (C.4)

where δσ is an infinitesimal U(1) transformation with parameter σ. Using the explicit

expression for Qλ in (C.3), we can compute the variation of the right hand side in (C.4)

and conclude

{Qλ, Qσ} = α̂

∫
∂Σ
dxλ(x)∂xσ(x) , (C.5)

which is the algebra of the chiral currents. By a calculation similar to the one above, we can

show that analogous global symmetries are present in theories defined with the boundary

condition (4.2) with finite β̂.
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