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1 Introduction

From heavy ion collision experiments to astroparticle physics and cosmology, there is a need

for theoretical predictions from finite temperature gauge theories within and beyond the

standard model. Since Monte Carlo simulations of lattice gauge theories do not work for fi-

nite baryon densities or dynamical problems involving real time, analytical approaches are

warranted as well. Perturbation theory for equilibrium quantities of non-Abelian gauge

theories at finite temperature T features three scales: a hard scale πT of the non-zero

Matsubara modes related to the compactified Euclidean time direction, the soft and ultra-

soft scales gT, g2T , with gauge coupling g, which are associated with the screening of

colour-electric and colour-magnetic gauge fields, respectively. Since the dimensionless ex-

pansion parameter for the latter features a mass (or momentum) scale in the denominator,

∼ g2T/E(p), prohibitive infrared divergences occur in the perturbative series when bare,

massless propagators are used. This is known as the Linde problem [1, 2]. Since the dy-

namically generated magnetic screening mass is itself m ∼ g2T , the problem cannot be

cured to any finite order in ordinary perturbation theory. On the other hand, evidence

from gauge fixed lattice simulations (see [3] and references therein) as well as gauge in-

variant simulations of field strength correlators [4] is consistent with an effectively massive
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gluon propagator. Moreover, a dynamically generated gauge boson mass plays a prominent

role in a Hamiltonian description of three-dimensional Yang-Mills theory [5, 6] and is of

renewed interest in the context of a Higgs-less electroweak gauge sector, see e.g. [7].

In this work we systematise a resummation method for 3d Yang-Mills theory, viz. the

magnetic sector of finite T gauge theories, which has been proposed some time ago [8, 9].

The general idea is to screen the infrared divergences by adding a gauge invariant mass

term, which gets subtracted again at higher order, resulting in a resummation of the loop

expansion. The mass term is not unique and several possibilities have been tried at one-

loop [10–12]. Under the name of screened perturbation theory similar techniques have been

applied to scalar theories [13, 14] and to the colour-electric sector ∼ gT of gauge theories in

a dimensionally reduced setting [15] as well as in four dimensions [16]. There, a screening

mass is generated in ordinary perturbation theory and the resummation of its corrections

is merely used as a means to improve the convergence. By contrast, the magnetic mass

∼ g2T is entirely non-perturbative. It has to be generated by an infinite resummation and

evaluated self-consistently by a gap equation. Since the gauge coupling drops out of the

effective expansion parameter, there is no parameter to tune and hence no regime where

the resummation is guaranteed to work. Its convergence properties can be judged only

after explicit calculations.

In this paper we present a systematic derivation of a gauge invariant resummation

scheme using auxiliary fields based on the non-linear sigma model. In particular, we discuss

the BRS invariance of the resummation scheme which ensures that the symmetries of the

theory are maintained throughout a modified perturbative treatment. We compute the

gap equation for the magnetic screening mass through two loops in general Rξ gauges and

duly find it to be gauge parameter independent, thus correcting an error in an earlier two-

loop investigation [17]. The two-loop result amounts to a ∼ 15% correction to the leading

one-loop result, thus pointing at a reasonable convergence of the resummation scheme.

2 Resummation based on a non-linear sigma model

Let us now focus on Euclidean Yang-Mills theory,

L(A) = − 1

2g2
TrF 2

µν , (2.1)

where we use a matrix notation,

Fµν = [Dµ, Dν ] , Dµ = 1∂µ −Aµ(x) , Aµ(x) = igT aAa
µ(x) , (2.2)

with hermitean SU(N) generators T a, a = 1 . . . N2−1. We are interested in three di-

mensions, µ, ν = 1 . . . 3, where the coupling constant g2 carries dimension of mass and

is to be identified with g2 = g24dT , if the action is viewed as the magnetic part of hot

Yang-Mills theory.

The general idea of a resummation is to sum up higher order contributions (infinitely

many in our case) into a given order of a perturbative expansion. In order to avoid double

counting, these contributions must then be left out at the higher order where they naturally
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occur, such that the perturbative scheme gets reorganised in some systematic way. (For a

discussion of various schemes used in the context of thermal field theory, see [18]). This can

be formalised by rewriting the Lagrangian serving for the perturbative expansion as [11]

Leff =
1

ℓ

[

L(
√
ℓX) + ∆L(

√
ℓX)− ℓ∆L(

√
ℓX)

]

, (2.3)

whereX generically stands for the fields. The modification ∆L contains fields of the original

Lagrangian and possibly auxiliary fields. In particular, if ∆L is chosen to represent a mass

term for the gluon, this will regulate the infrared divergences. The counting parameter

ℓ in which one expands is to be set to ℓ = 1 at the end of a calculation, for which the

Lagrangian is identical to the original one. However, in a perturbative evaluation to finite

order the results will differ from the unresummed ones, the original theory being recovered

exactly only at asymptotically high orders. Whether low order calculations are a good

approximation to the full answer has to be judged from the apparent convergence of the

series and may depend on the observable, just as in ordinary perturbation theory.

A valid resummation scheme has to maintain the symmetries of our gauge theory at

every order, for general ℓ. Clearly, this leaves many conceivable choices for ∆L, several of
which have been tried at one-loop level in the literature [8–12]. An optimal choice would be

based on convergence properties in higher orders. Here we work with a gauged non-linear

sigma model, coupling a field Φ ∈ U(N) as

∆L(A, π) = m2

g2
Tr [(DµΦ)

†DµΦ] , Φ†Φ = 1 , Φ(x) = eπ(x) , π(x) = i
g

m
T aπa(x) ,

(2.4)

where the πa(x) ∈ R are auxiliary would-be Goldstone boson fields1 with the same mass

dimension as the gauge fields Aa
µ(x). Under gauge transformations, Φ′ = UΦ and (DµΦ)

′ =

U(DµΦ), with the unitary matrix U = eΛ(x) and corresponding real coefficients Λa(x), with

Λ(x) = iT aΛa(x). Thus, ∆L provides a mass term for the gauge fields at tree-level while

maintaining gauge invariance.

3 Gauge fixing and BRS-invariance

In order to do perturbative calculations, a gauge needs to be fixed. It is well known that

in Higgs and sigma models the standard covariant gauges lead to non-diagonal or mixing

terms in scalar and gauge fields, ∼ (∂µπ)Aµ. This can be avoided by choosing Rξ gauges.

In the case of a resummed calculation, however, additional choices have to be made.

We can either take the point of view that our starting point is the resummed theory

before gauge fixing as in eq. (2.3), and then add gauge fixing and ghost terms to that

1Note that it is the π and not the Φ who get rescaled as π →
√
ℓπ for the purpose of resummation,

eq. (2.3).
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expression,

Leff,A =
1

ℓ

{

L(
√
ℓA) + (1− ℓ)

[

∆L(
√
ℓA,

√
ℓπ)

+Lgf,A(
√
ℓA,

√
ℓπ) + LFP,A(

√
ℓA,

√
ℓπ,

√
ℓc)

]}

, (3.1)

Lgf,A(A, π) = − 1

g2ξ
Tr

{

(

(∂µAµ)− ξm2Tr
(

(Φ− Φ†)T a
)

T a
)2

}

, (3.2)

LFP,A(A, π, c) =
1

g2
Tr

{

2(∂µc̄) ((∂µc)− [Aµ, c]) + ξm2c̄
(

Φ†c+ cΦ
)}

, (3.3)

with ghost fields c = igT aca and anti-ghost fields c̄ = −igT ac̄a. We refer to this gauge

fixing procedure as A. For ℓ = 1 we obtain Yang-Mills theory without gauge fixing, as in

eq. (2.3). This invokes the following Feynman rules for the counter term two-point vertices,

: Γab
µν,A(A

2) =

(

pµpν
ξ

+m2δµν

)

ℓδab , (3.4)

: Γab
A (π2) = (p2 + ξm2)ℓδab , (3.5)

: Γab
A (c2) = (p2 + ξm2)ℓδab . (3.6)

Alternatively, we may consider Yang-Mills theory in a covariant gauge and then resum

the gauge fixed theory, a strategy which we refer to as procedure B,

Leff,B =
1

ℓ

{

L(
√
ℓA) + (1− ℓ)∆L(

√
ℓA,

√
ℓπ)

+Lgf,B(
√
ℓA,

√
ℓπ) + LFP,B(

√
ℓA,

√
ℓπ,

√
ℓc)

}

, (3.7)

Lgf,B(A, π) = − 1

g2ξ
Tr

{

(

(∂µAµ)− (1− ℓ)ξm2Tr
(

(Φ− Φ†)T a
)

T a
)2

}

, (3.8)

LFP,B(A, π, c) =
1

g2
Tr

{

2(∂µc̄) ((∂µc)− [Aµ, c]) + (1− ℓ)ξm2c̄
(

Φ†c+ cΦ
)}

. (3.9)

The corresponding counter term two-point vertices read

: Γab
µν,B(A

2) = (m2δµν)ℓδ
ab , (3.10)

: Γab
B (π2) = (p2 + ξ(2− ℓ)m2)ℓδab , (3.11)

: Γab
B (c2) = (ξm2)ℓδab . (3.12)

The two formulations feature non-trivial differences. Note that eq. (3.11) contributes

to both, order ∼ ℓ1 and ∼ ℓ2. Let us remark here that the gauge fixing and corresponding

counter terms used in [8, 9, 17] work only for the gluon pole mass to leading and next-to-

leading order, but require generalisation (as above) for higher orders and other observables.

In order to provide gauge invariant results for physical observables order by order in

perturbation theory, it is necessary and sufficient that the gauge fixed Lagrangian Leff is

invariant under BRS-transformations [19, 20]. Note that in the resummed theory with
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general ℓ all fields get rescaled by
√
ℓ, and so do the gauge transformations. A BRS-

transformation now corresponds to the special choice Λ = ω
√
ℓc. The variations of fields

and Faddeev-Popov ghosts under infinitesimal BRS-transformations are

δBAµ = ω(∂µc) + ω
√
ℓ (cAµ −Aµc) ,

δBΦ = ω
√
ℓcΦ

⇒ δBπ = ω
∞
∑

n=0

Bn ℓ
n

2

n!

n
∑

j=0

(−1)j
(

n

j

)

πn−jcπj +O(ω2)

≈ ωc− ω
√
ℓ

2
(πc− cπ) +

ωℓ

12
(ππc− 2πcπ + cππ) +O(π4, ω2) ,

δBc = ω
√
ℓcc ,

δBc̄ = −ω

ξ

(

(∂µAµ)− (1− ℓ)ξm2Tr
(

(e
√
ℓπ − e−

√
ℓπ)T a

)

T a/
√
ℓ
)

, (3.13)

where Bn are the Bernoulli numbers. The above transformation refers to Leff,B; for formu-

lation A, the factor (1− ℓ) in δBc̄ is absent.

As a non-trivial check we have performed our calculations in both ways, obtaining

identical gauge invariant results for both setups. We present our results according to setup

B, as it is closer to the standard perturbative treatment.

4 Relation to SU(2) calculations

Here, we connect our general SU(N) parametrisation of the scalar field, eq. (2.4), to the

special case of SU(2) treated in [8, 9, 17]. Using Tr (T a) = 0, Tr (T aT b) = 1
2δ

ab and

Tr 1 = N , one gets for the product of two generators the standard expression

T aT b =
δab

2N
1 +Tr ({T a, T b}T c)T c +Tr ([T a, T b]T c)T c

≡ δab

2N
1 +

1

2
dabc T c +

1

2
i fabc T c . (4.1)

Note that for the special case of SU(2), where T a ∼ σa and the Pauli matrices anticommute

as {σa, σb} = 2δab1, the totally symmetric structure constants vanish, dabc = 0. Hence, in

SU(2) the product of two of our scalar fields is diagonal,

π π = (ig/m)2πaπb 1

2

(

δab

N
1 + dabc T c

)

SU(2)
= (ig/2m)2πaπa

1 , (4.2)

and therefore the field Φ can be expressed as

Φ = eπ = cos
π

i
+ i sin

π

i

SU(2)
= σ 1 + i π̄a T a (4.3)

with σ ≡ cos
g
√
πaπa

2m
≈ 1 +O(π2) , (4.4)

and π̄a ≡ 2πa

√
πaπa

sin
g
√
πaπa

2m
≈ g

m
πa +O(π3) . (4.5)
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Hence, for N = 2 our model can be recast into the form of the model considered in [8, 9].

For general N , however, the coefficients on the right-hand side of Φ = TrΦ
N 1+2Tr (ΦT a)T a

can not be expressed in a closed form in terms of the real fields πa. The traceless part

of Φ is part of our construction for the gauge fixing term, see eqs. (3.2) and (3.8), which

represents a non-trivial generalisation of Rξ gauges to SU(N).

5 Pole mass from a gauge invariant gap equation

Having designed a general gauge invariant resummation scheme for 3d Yang-Mills theory,

we now apply it to a calculation of the gluon self-energy. Its transverse and longitudinal

parts ΠT/L are defined as

Πab
µν(p) ≡ δab

{(

δµν −
pµpν
p2

)

ΠT(p
2) +

pµpν
p2

ΠL(p
2)

}

. (5.1)

The self-energy itself generally is a gauge dependent quantity. However, the pole of

the transverse part of a gauge boson propagator, DT, is known to be gauge invariant order

by order in perturbation theory [21, 22], and we may employ our resummation scheme to

evaluate it. (The longitudinal degrees of freedom with a gauge dependent pole correspond

to unphysical would-be Goldstone bosons as usual in Higgs-like theories, and can be gauged

away in unitary gauge.) Without resummation the pole of the bare transverse propagator

is at p2 = 0, whereas in the resummed theory it gets shifted to p2 = −m2. Identifying m

with the pole of the full propagator, we require that the pole stays at p2 = −m2 to any loop

order. Taylor expanding the self-energy about the pole, the transverse propagator reads

DT =
1

p2 +m2 −ΠT(p2)

p2=−m2+δp2
=

1
1−Π′

T
(−m2)

− ΠT(−m2)

1−Π′

T
(−m2)

+ δp2 +O((δp2)2)
, (5.2)

where Π′
T(−m2) ≡ ∂p2ΠT(p

2)|p2=−m2 . Near the pole it then corresponds to a massive

propagator with residue Z(m2),

DT ∝ Z(m2)

p2 +m2
, Z(m2) =

1

1−Π′
T(−m2)

, (5.3)

provided the first term in the denominator of eq. (5.2) vanishes. This leads to the

gap equation

0
!
=

ΠT(−m2)

1−Π′
T(−m2)

. (5.4)

Introducing the ℓ-expansion of the self-energy, ΠT =
∑

n≥1 ℓ
nΠ

(n)
T (p2), we now expand

the gap equation to the desired order in ℓ and evaluate it after setting ℓ = 1. Note that,

to every order in ℓ, the gap equation receives different kinds of self-energy contributions

to order ℓn. In order to list these separately, we introduce Π
(n−k),k
T to denote the sum of

diagrams with (n− k) loops and k counter term insertions,

Π
(n)
T =

n
∑

k=0

Π
(n−k),k
T . (5.5)
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Figure 1. The self-energy diagrams contributing to order ℓ1. Wiggly/dotted/full lines denote

gluons/ghosts/scalars, respectively. In the notation of eq. (5.5), the first four diagrams give Π
(1),0

T ,

while the last is Π
(0),1

T .

The corresponding gap equation combines gauge dependent contributions of different self-

energies Π
(n−k),k
T into a gauge invariant quantity.

We perform our calculations using dimensional regularisation, working in d dimensions

and with generic gauge fixing parameter ξ. Details and intermediate results are relegated

to the appendix, from which we collect the results in the following sections.

5.1 One-loop gap equation

To leading order ℓ1, the gap equation eq. (5.4) is simply

0 = Π
(1)
T (−m2) = Π

(1),0
T (−m2) + Π

(0),1
T (−m2) . (5.6)

The five diagrams shown in figure 1 have been computed in a general Rξ-gauge in [8, 9]

and lead to a ξ-independent gap equation when evaluated on the pole. From appendix A,

we reproduce these results for SU(N) as

Π
(1),0
T (−m2)

d=3−2ǫ≈ g2Nm

8π

(

3

4
− 63

16
ln 3

)

+O(ǫ) , (5.7)

Π
(0),1
T (p2) = m2 . (5.8)

Solving the quadratic one-loop gap equation eq. (5.6) then yields the well-known solutions

m1−loop = 0 or m1−loop =

(

63

16
ln 3− 3

4

)

g2N

8π
= 0.142276 g2N . (5.9)

5.2 Two-loop gap equation

At order ℓ2, the gap equation eq. (5.4) reads

0 = Π
(1)
T (−m2)

(

1 + ∂p2Π
(1)
T (p2)|p2=−m2

)

+Π
(2)
T (−m2) (5.10)

=
(

Π
(0),1
T +Π

(1),0
T

)(

1 + ∂p2Π
(1),0
T + ∂p2Π

(0),1
T

)

+Π
(2),0
T +Π

(1),1
T

= m2 +Π
(1),0
T +

(

Π
(1),1
T +m2∂p2Π

(1),0
T

)

+
(

Π
(2),0
T +Π

(1),0
T ∂p2Π

(1),0
T

)

,

where in the last line we have used eq. (5.8) and grouped together terms which will prove to

be gauge invariant. There are 38 genuine two-loop diagrams contributing to Π
(2),0
T , shown

in figure 2. These can be expressed in terms of six scalar master integrals. Note that in

unitary gauge (ξ → ∞, to be taken before regularisation) the ghosts and pseudo-goldstones

– 7 –
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+
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−1
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+

1

2
+

1

2
− 1 − 1

2
− 1

2

+
1

2
+

1

2
+

1

2
+

1

2
− 1 − 1

−1 − 1 − 1 − 1 +
1

2
+

1

2

+1 − 1 − 1 − 1 − 1 − 1 − 1

Figure 2. The 38 diagrams contributing to Π
(2),0

T . Notation as in figure 1.

decouple leaving only nine diagrams (see also [17]). The one-loop diagrams with one counter

term insertion are shown in figure 3. A tree-level diagram with two counter term insertions

is not one-particle-irreducible and hence does not contribute. From appendix A (where the

renormalised 3d coupling g2(µ) = µ−2ǫg2bare was introduced), the different contributions to

the two-loop gap equation are

Π
(2),0
T +Π

(1),0
T ∂p2Π

(1),0
T

d=3−2ǫ≈
(

g2N

8π

)2(
3

20ǫ
− 10.6452 +

9

10
+

3

10
ln

µ̄2

4m2

)

+O(ǫ) ,

Π
(1),1
T

d=3−2ǫ≈ g2Nm

8π

(

21

8
ln 3− 9

2
+

1− 4ξ

8
ln

2
√
ξ + 1

2
√
ξ − 1

+
3

2

√

ξ

)

+O(ǫ) ,

∂p2Π
(1),0
T

d=3−2ǫ≈ g2N

8πm

(

−21

32
ln 3 +

33

8
− 1− 4ξ

8
ln

2
√
ξ + 1

2
√
ξ − 1

− 3

2

√

ξ

)

+O(ǫ) ,

(5.11)

where all quantities are understood on-shell (p2 = −m2) and for an analytic expression

of the two-loop constant 10.6452 we refer to eq. (A.28). Note that in general the on-shell

self-energy is gauge dependent. However, the parts of the gap equation pertaining to the

non-linear sigma model without counter terms, i.e. the first of eqs. (5.11), as well as the

sum of all counter term contributions are separately gauge invariant, thus leading to a

gauge invariant solution for the pole mass in the resummed theory. Our result for the

second line of eq. (5.11) corrects an error in an earlier calculation for SU(2) [17], which

led to a ξ-dependent pole.
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Figure 3. The 7 diagrams contributing to Π
(1),1

T . Notation as in figure 1.

µ̄
g2N

0.1 0.3 1 3 10

C1 0.1692 0.1651 0.1605 0.1562 0.1512

C2 4.4 · 10−9 1.3 · 10−8 4.4 · 10−8 1.3 · 10−7 4.4 · 10−7

Table 1. Scale-dependent solutions of the two-loop gap equation eq. (5.12), m = Ci g
2N .

The first of eqs. (5.11) features a divergence as d → 3, which is removed by mass

renormalisation according to m2
bare = m2(µ) + δm2, where δm2 = −3x2ǫ

20ǫ

(

g2(µ)N
8π

)2
with

x = 1 (x = 4πe−γ) specifying the MS (MS) scheme, respectively, and m2(µ) denotes the

renormalised mass. The renormalised two-loop gap equation reads (with µ̄2 = 4πe−γµ2)

0 = m2 +
g2Nm

8π

1

2

(

3

4
− 63

16
ln 3

)

+

(

g2N

8π

)2(

−10.6452 +
9

10
+

3

10
ln

µ̄2

4xm2

)

. (5.12)

Note that the renormalisation prescription has introduced scheme as well as scale de-

pendence. In the following we pick the MS scheme (x = 1). The scale dependence is

formally of higher order: since the bare mass is scale independent, the renormalised mass

reacts to a scale variation as m2(µ) = m2(µ0) − 3
5

(

g2N
8π

)2
ln(µ/µ0). In a truncated per-

turbative series, however, this scale dependence remains and can be taken as an estimate

for the size of higher order corrections. For a particular choice of scale, µ = m, the

logarithm can be absorbed into the pole mass, such that the gap equation reduces to

0 = m2 − 0.07114g2Nm− 0.01516g4N2, with positive solution m2−loop = 0.1637 g2N .

Eq. (5.12) possesses non-trivial, real solutions which are listed in table 1 (again in the

MS scheme, x = 1; the second solution, C2, is almost always close to zero, and we shall

hence still call it trivial). Since the gluon does not correspond to an asymptotic particle

state, the scale dependence of its pole mass is expected and in complete analogy to the two-

loop pole masses of the electroweak gauge bosons [22]. Note that the pole mass changes by
<∼ 10% only as the renormalisation scale is varied over two orders of magnitude. Together

with the fact that the two-loop contribution constitutes a ∼ 15% correction to the leading

order one-loop result, this points to a reasonable convergence of the resummation scheme.

6 Conclusions

We have generalised a non-perturbative resummation scheme for three-dimensional Yang-

Mills theory based on the non-linear sigma model [8, 9] to SU(N). Adding and subtracting

a covariantly coupled scalar field allows for a gauge invariant gluon mass term regulating

infrared divergences encountered in bare perturbation theory. We have established that

– 9 –
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this leads to gauge invariant physical results by analysing the BRS-invariance of the re-

summed theory. As an application, we have calculated the transverse gluon propagator

and evaluated its pole mass by means of a gap equation, which we explicitly verified to be

gauge invariant through two loops, thus correcting an error in [17]. The pole mass requires

normalisation. We have employed the minimal subtraction (MS) scheme, through which

it acquires a weak scale dependence. We find the two-loop correction to be ∼ 15% of the

leading one-loop result, and the scale dependence ∼ 10% of the two-loop result when the

renormalisation scale is varied over two orders of magnitude. Together, these two features

might be indicative of a reasonable convergence behaviour of our resummation scheme.

As a further application, the scheme lends itself to an evaluation of the g6-contribution

to the thermodynamic pressure in four-dimensional gauge theories. Preliminary investiga-

tions up to two loops have been reported in [23], a three-loop calculation is currently

under way.
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A Details of the calculation

Due to the somewhat non-standard action with potentially high-order vertices, we au-

tomatically generate Feynman rules as well as a model file directly from eq. (3.7). For

two-loop self-energies, we potentially need vertices with up to six legs.

For notational simplicity, let us write the loop expansion of the bare on-shell transverse

self-energy as defined in eq. (5.1) as well as its derivatives as

∂ a
p2 ∂

b
m2 Π

bare
T (p2)

∣

∣

∣

p2=−m2

=
(

m2
)1−a−b ∑

n≥1

[

g2bareN J(d,m)

m2(1− d)

]n

Π̂
(n)
ab , (A.1)

where the Π̂(n) are dimensionless functions of d, ξ and N only which are computed from

n-loop Feynman diagrams, and J(d,m) is the massive one-loop tadpole integral defined by

eq. (B.1). Note that the square bracket in dimensional regularisation expands as

[

g2bareN J(d,m)

m2(1− d)

]

d=3−2ǫ≈ g2N

8πm

(

µ̄

2m

)2ǫ
(

1 + 3ǫ+O(ǫ2)
)

, (A.2)

with renormalised coupling (note that Zg2 = 1 in 3d) g2 = µ−2ǫg2bare and the usual MS

– 10 –
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scale µ̄2 = 4πe−γµ2. From eq. (A.1) we explicitly have, in the notation of the main text,2

Π
(1),0
T (−m2) = m2

[

g2bareN J(d,m)

m2(1− d)

]

Π̂
(1)
00 , (A.3)

Π
(2),0
T (−m2) = m2

[

g2bareN J(d,m)

m2(1− d)

]2

Π̂
(2)
00 , (A.4)

∂p2Π
(1),0
T (p2)

∣

∣

∣

p2=−m2

=

[

g2bareN J(d,m)

m2(1− d)

]

Π̂
(1)
10 , (A.5)

Π
(1),1
T (−m2) = −m2

[

g2bareN J(d,m)

m2(1− d)

]

Π̂
(1)
01 . (A.6)

From here, the calculation proceeds via standard methods. All diagrams that we need

are generated with QGRAF [24, 25]. We then shift momenta to our conventions, apply

colour and Lorentz projectors, perform colour traces via the Fierz-identity, rewrite scalar

products in terms of inverse propagators, and perform derivatives for Π̂ab on the integrand

level. Using finally the on-shell condition p2 = −m2, we obtain an intermediate result for

the Π̂ in terms of dimensionless one- and two-loop on-shell integrals Î, defined as

Î(s1, . . . , s4) ≡ 1

J(d, 1)

∫

ddk

(2π)d
1

[k2 + s3]s1
1

[(k − p)2 + s4]s2

∣

∣

∣

∣

p2=−1

(A.7)

Î(s1, . . . , s10) ≡ 1

[J(d, 1)]2

∫

ddk1
(2π)d

∫

ddk2
(2π)d

1

[k21 + s6]s1
1

[k22 + s7]s2
×

× 1

[(k1 − k2)2 + s8]s3
1

[(k1 − p)2 + s9]s4
1

[(k2 − p)2 + s10]s5

∣

∣

∣

∣

p2=−1

,(A.8)

where the normalisation factor J is a one-loop massive tadpole as defined in eq. (B.1).

In a next step, using symmetries and reduction relations following from systematic

use [26, 27] of integration-by-parts (IBP) identities [28, 29], we arrive at d-dimensional

expressions in terms of a few master integrals, as listed below.

A.1 One-loop computations

Applying the necessary projectors on the sum of diagrams depicted in figure 1 as well as its

p2-derivative (which we take at the integrand level) and performing a reduction to master

integrals, we obtain the d-dimensional results

Π̂
(1)
00 = a1K1 + a2K2 , (A.9)

Π̂
(1)
10 = b1K1 + b2K2 + b3K

′
1 + b4K

′
2 , (A.10)

2The last of the four relations is non-trivial and follows from realising the mass-shift m2 → (1 − ℓ)m2

needed for the resummed theory eq. (3.7) by a translation operator exp(p2ℓ∂
m

2) followed by the on-shell

condition.

– 11 –
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with master integrals Ki listed in appendix B and coefficients

a1 =
9

8
(4d− 5) , a2 =

1

4
(2d− 3)(2d− 5) , (A.11)

b1 =
3

16
(d− 2)(4d− 5) , b2 =

1

8
(12d2 − 31d+ 18) , (A.12)

b3 =
1

4
(1− 4ξ) , b4 =

1

2
(3− 2d) . (A.13)

Similarly, either from the diagrams of figure 3 and using eq. (A.6) in reverse, or directly

from the m2-derivative (easily taken at the integrand level) of the first four diagrams of

figure 1,

Π̂
(1)
01 = 4b1K1 + b5K2 + b3K

′
1 + b4K

′
2 , (A.14)

b5 =
1

2
(d3 − 3d2 + 4d− 3) . (A.15)

Note that Π̂
(1)
00 is gauge parameter independent, while Π̂

(1)
10 and Π̂

(1)
01 are not. However,

their difference Π̂
(1)
10 − Π̂

(1)
01 = −d−2

2 Π̂
(1)
00 is gauge invariant. Let us remark that this relation

between the three Π̂(1) is not just a coincidence, but the one-loop on-shell case of a general

relation which follows from using that dimensional analysis gives ΠT ∼ mass2 and g2 ∼
mass4−d, such that

(

p2∂p2 +m2∂m2 +
4− d

2
g2∂g2

)

ΠT(p
2,m2, g2) = 1 ·ΠT(p

2,m2, g2) . (A.16)

A.2 Two-loop computations

Applying the necessary projectors on the sum of diagrams depicted in figure 2 and per-

forming a reduction to master integrals, we obtain the d-dimensional result

Π̂
(2)
00 = c1K3 + c2K4 + c3K5 + c4K6 + c5K1K1 + c6K1K2 + c7K2K2

− a1 b3K1K
′
1 − a2 b3K2K

′
1 − a1 b4K1K

′
2 − a2 b4K2K

′
2 , (A.17)

with master integrals Ki listed in appendix B and coefficients

c1 =
3

64
(d− 1)(176d− 245) , (A.18)

c2 = − 3

64
(144d3 − 712d2 + 1241d− 760) , (A.19)

c3 = −10800d4 − 70632d3 + 165227d2 − 166654d+ 61752

192(3d− 4)
, (A.20)

c4 = − 3

64
(d− 2)(32d3 − 312d2 + 656d− 405) , (A.21)

c5 =
3

128
(32d2 − 148d+ 155) , (A.22)

c6 = − 3

16
(16d4 − 188d3 + 668d2 − 940d+ 465) , (A.23)

c7 = − 1

32

2d− 3

3d− 4
(24d5 − 164d4 + 452d3 − 680d2 + 597d− 242) . (A.24)

– 12 –



J
H
E
P
0
5
(
2
0
1
2
)
0
5
8

Individual diagrams do have contributions to Π̂
(2)
00 that are proportional to 1/N4 or 1/N2,

but these cancel in the sum, leaving Π̂
(2)
00 N -independent.

Note that Π̂
(2)
00 + Π̂

(1)
00 Π̂

(1)
10 as well as Π̂

(2)
00 + Π̂

(1)
00 Π̂

(1)
01 are gauge parameter independent.

A.3 Results in 3d

Let us here collect the expansions around d = 3− 2ǫ of eqs. (A.9), (A.10) and (A.14)

Π̂
(1)
00

d=3−2ǫ≈ −63

16
ln 3 +

3

4
+O(ǫ) ≈ −3.57579 +O(ǫ) (A.25)

Π̂
(1)
10

d=3−2ǫ≈ −21

32
ln 3 +

33

8
− 1− 4ξ

8
ln

2
√
ξ + 1

2
√
ξ − 1

− 3

2

√

ξ +O(ǫ) (A.26)

Π̂
(1)
01

d=3−2ǫ≈ −21

8
ln 3 +

9

2
− 1− 4ξ

8
ln

2
√
ξ + 1

2
√
ξ − 1

− 3

2

√

ξ +O(ǫ) (A.27)

satisfying Π̂
(1)
10 − Π̂

(1)
01

d=3−2ǫ≈ − 1
2Π̂

(1)
00 + O(ǫ), as well as of eq. (A.17) (subtracting ξ-

dependence)

Π̂
(2)
00 + Π̂

(1)
00 Π̂

(1)
10

d=3−2ǫ≈ 3

20ǫ
+

849

32

f(1/3)− f(7/9)√
2

− 1329

512

(

−π2

6
+6Li2(1/3)−2Li2(1/9)

)

+
17069

4800
+

16761

320
ln 2− 369

8
ln 3− 9

512
ln2 3 +O(ǫ) (A.28)

≈ 3

20ǫ
− 10.6452 +O(ǫ) . (A.29)

For comparison, Π̂
(1)
10 = 4πf2(ξ) + O(ǫ) in the notation of eq. (21) in [17], but Π̂

(1)
01 6=

−4πf1(ξ) +O(ǫ), pointing to an error in that reference.

B Master integrals

We like to work with dimensionless and measure independent integrals, so let us normalise

each loop by the massive one-loop tadpole integral J(d,m), which for our choice of mea-

sure reads

J(d,m) ≡ J ≡
∫

ddk

(2π)d
1

k2 +m2
=

1

m2

(

m2

4π

)d/2

Γ(1− d/2)

d=3−2ǫ≈ −m

4π

(

πe−γ

m2

)ǫ
(

1 + 2ǫ+O(ǫ2)
)

. (B.1)

From reference [30] (and using eq. (1) therein as well as eqs. (1), (3), (9)–(11), (14)

of [31] for K3), we get expansions around d = 3 − 2ǫ for all on-shell master integrals that

– 13 –
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we need:

K1 =
[

m2 /J
]

os
= Î(1, 1, 1, 1) (B.2)

d=3−2ǫ≈ − ln 3

2
+O(ǫ) , (B.3)

K ′
1 =

[

m2 ξm2

ξm2 /J
]

os
= Î(1, 1, ξ, ξ) (B.4)

d=3−2ǫ≈ −1

2
ln

2
√
ξ + 1

2
√
ξ − 1

+O(ǫ) , (B.5)

K ′′
1 =

[

m2
ξm2 /J

]

os
= Î(1, 1, 1, ξ) (B.6)

d=3−2ǫ≈ −1

2
ln

√
ξ + 2√
ξ

+O(ǫ) , (B.7)

K3 =
[

m6 /J2
]

os
= Î(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (B.8)

d=3−2ǫ≈ f(1/3)− f(7/9)√
2

+O(ǫ) with f(x) ≡ ℑLi2(x+ i
√

1− x2) (B.9)

≈ 16π2 × 0.000245310499 · · ·+O(ǫ) , (B.10)

K4 =
[

m4 /J2
]

os
= Î(1, 1, 1, 0, 1, 1, 1, 1, 0, 1) (B.11)

d=3−2ǫ≈ 1

8

[

ln2 3− π2

6
+ 6Li2(1/3)− 2Li2(1/9)

]

+O(ǫ) (B.12)

≈ 16π2 × 0.00121156 · · ·+O(ǫ) , (B.13)

K5 =
[

m2 /J2
]

os
= Î(1, 0, 1, 0, 1, 1, 0, 1, 0, 1) (B.14)

d=3−2ǫ≈ 1

4ǫ
+

(

1

2
− 2 ln 2

)

+O(ǫ) . (B.15)

Two trivial one-loop massive vacuum master integrals read

K2 =
[

/J
]

= Î(1, 0, 1, 0) = 1 , (B.16)

K ′
2 =

[

ξm2

/J
]

= Î(1, 0, ξ, 0) = ξ(d−2)/2 . (B.17)

One non-trivial fully massive vacuum master integral, expanded around d = 3 − 2ǫ,

reads (cf. reference [32, 33]):

K6 =
[

m2 /J2
]

= Î(1, 1, 1, 0, 0, 1, 1, 1, 0, 0) (B.18)

d=3−2ǫ≈ 1

4ǫ
−
(

1

2
+ ln

3

2

)

+O(ǫ) ≈ 1

4ǫ
− 0.9054651081 +O(ǫ) . (B.19)
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