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ABSTRACT: In this paper, we shall study the dynamical behavior of the universe accelerated
by the so called Veneziano ghost dark energy component locally and globally by using
the linearization and nullcline method developed in this paper. The energy density is
generalized to be proportional to the Hawking temperature defined on the trapping horizon
instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also
give a prediction of the fate of the universe and present the bifurcation phenomenon of the
dynamical system of the universe. It seems that the universe could be dominated by dark
energy at present in some region of the parameter space.
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1 Introduction

Currently, lots of theoretical models were proposed to explain the accelerating of the uni-
verse, which is convinced by many observations. In some of the models, people proposed
a new kind of dark energy component with negative pressure in our universe, which will
drive the acceleration, and the simplest dark energy model is the cosmological constant,
but it suffers fine-tuning and coincidence problems. While, in other models, people try to
modify the Einstein gravity at large scale in the universe, e.g. f(R), DGP, etc. model, then
the universe can be accelerated without introducing dark energy.

Recently, a very interesting dark energy model called Veneziano ghost dark energy has
been proposed [1-4], and in this model, one can obtain a cosmological constant of just
the right magnitude to give the observed expansion from the contribution of the ghost
fields, which are supposed to be present in the low-energy effective theory of QCD without
introducing any new degrees of freedom. The ghosts are needed to solve the U(1) problem,
but they are completely decoupled from the physical sector [5]. The ghosts make no
contribution in the flat Minkowski space, but make a small energy density contribution to
the vacuum energy due to the off-set of the cancellation of their contribution in curved space
or time-dependent background. For example, in the Rindler space, the contribution of high
frequency modes is suppressed by the factor e~ 2™/97 and the main contribution comes from
k ~ ar, where ar is the temperature on the horizon seen by the Rindler observer [6, 7]. In
the cosmological context, one can choice ap ~ H, which corresponds to the temperature
on the Hubble horizon. Then, in the context of strongly interacting confining QCD with
topological nontrivial sector, this effect occurs only in the time direction and their wave



function in other space directions is expected to have the size of QCD energy scale. Thus,
this ghost gives the vacuum energy density proportional to A%CDHO. With Hy ~ 10733 eV,
it gives the right order of observed magnitude ~ (3 x 1072 eV)* of the energy density.

It should be emphasized that the Veneziano ghost from the ghost dark energy model
is not a new propagating physical degree of freedom and the description of dark energy in
terms of the Veneziano ghost is just a matter of convenience to describe very complicated
infrared dynamics of strongly coupled QCD and it does not violate unitarity, causality,
gauge invariance and other important features of renormalizable quantum field theory,
see [8-11].

Generally, it is very difficult to accept the linear behavior that the energy of FRW
universe is linear in Hubble constant “H”, because QCD is a theory with a mass gap de-
termined by the energy scale 100 MeV. So, it is generally expected that there should be
an exponentially small corrections rather than that linear corrections H. However, as the
arguments discussed in refs. [8-11] that the linear scaling H is due to the complicated topo-
logical structure of strongly coupled QCD, not related to the physical massive propagating
degree of freedom. Therefore, the linear in Hubble constant H scaling has a strong theo-
retical support tested in a number of models. For recent paper on fitting the ghost dark
energy model with current observational data including Snla, BAO, CMB, BBN, Hubble
parameter and growth rate of matter perturbation, see [12] and also see [13]. For recent
progress on dark energy, see [14-23].

Einstein equations can be written in a form called “unified first law” based on the
general definition of black hole dynamics on trapping horizon, which was proposed by
Hayward [24]. There are some other horizons in the context of the FRW universe, such
as the future inner trapping horizon defined in the next section, while the outer one is
used to define black holes in a general spacetime including time-dependent spacetime [24].
So, in this paper, we will choice ar ~ T}, where T; is the temperature defined on the
trapping horizon of the FRW universe instead to study its dynamical behavior locally and
globally. In addition, we also study the bifurcation phenomenon in this dynamical system
and predict the fate of the universe.

This paper is organized as follows: in section 2, we shall derive the equations of the
autonomous system of the universe with ghost dark energy component, and investigate its
properties and solutions qualitatively and numerically in section 3. The global behavior
of this system will be presented in section 4, and we also make a prediction of the fate of
the universe in section 5 and study its bifurcation phenomenon in section 6. In the last
section, we will give some discussions and conclusions.

2 Autonomous system

The spacetime of our universe is described by the FRW metric, which could be written in
the form of

ds? = hgyda®da® + 7FdQ?, (2.1)



where 2° = ¢, 2! = r and 7 = a(t)r, which is the radius of the sphere while a(t) is the scale
factor. Defining

+_ L a
det = ﬂ(dtzp mdr), (2.2)

where k is the spacial curvature, the metric could be rewritten as a double-null form
ds® = —2d¢Tde™ + #2d0?, (2.3)

then we get the trapping horizon 77 by solving the equation 04 7|p—#, = 0 as

k —1/2
fT—<H2+ ) : (2.4)

a2

which coincides with the apparent horizon [25, 26]. The surface gravity is given by

=——|H+2H — | =—(1-— 2.
K 5 < + + a2> fT( €), (2.5)
where .
fT (ln ’FT),
= = 2.
‘= 9Hrr 2 (2:6)

where dot and prime denote the derivative with respect to ¢t and In a, respectively. Here,
we assume € < 1 so that x < 0 corresponding to inner trapping horizon.

As we mentioned before, one can simply choice the temperature on the horizon as
T ~ H in the cosmological context, but this is a special choice and generally, in the
context of dynamical spacetime, the temperature is well-defined on the trapping horizon,
which is proportional to the surface gravity on that horizon, namely 7} = |x|/27. Actually,
it will reduce to T' ~ H in the de Sitter spacetime when we neglect the spatial curvature,
because the trapping horizon is coincident with the Hubble horizon in this situation. In the
following, we will also take the idea of the ghost dark energy model, in which the vacuum
energy density is proportional to the temperature defined on the trapping horizon ppg ~ T3.
Therefore, the energy density of the Veneziano ghost dark energy is then given by

-0, 27)

PDE = ——
rT

where C'is a constant and here we have used eq. (2.5). The Friedmann equation now reads

Eoo1
H? + 3= g(pDE + pm) (2.8)

where p,, is the energy density of dark matter, and by solving the Friedmann equation,
we get
C?(1 —€)? 12pm,

; [1 +/1+ e (2.9)

PDE =

Usually, people also consider case that dark energy and dark matter are coupled to
each other by adding a interaction term in the conservation equations [27, 28]. Of course,



the entirely independent evolution of the dark energy is a special case with a vanished
interaction term. Furthermore, the microphysics seems to allow enough room for the
coupling between the two components. At leat, before drawing a definitely conclusion,
the interaction case is still deserved to study. However, once a generic interaction term is
introduced, the dynamical equations would become much more complicated and can not
be solved analytically. As we known, by using the locally dynamical analysis, one can get
the future behavior of the nonlinear system and know whether the system is stable or not
near the critical points. But, this method can only give the neighborhood properties of the
critical points. So, in the following, we will develop a global method to study the global
behavior of the nonlinear dynamical system, as well as its bifurcation phenomenon. As we
known, the conservation equations including a general interaction between the dark energy
and dark matter is described by

pm +3Hpm = Q, (2-10)
ppE + 3H(1 + wpg)ppE = —Q, (2.11)

where @ is the interacting term, and we will take its form as @ = 3H (appg + 8pm) in the
following. Here av and (8 are some constants. Usually, the existing literature only consider
a simple case a = 0 or § = 0, as well as the case a = 3, see refs. [29, 30] and references
therein. We will see that, once we have developed a global analysis method, it would
be unnecessarily to set these special values, and there would be a interesting bifurcation
phenomenon when one leaves these parameters free.

The equation of state parameter of dark energy then be derived as

wDE:;(le_/6+26—pDCE2H>—1. (2.12)

By using egs. (2.8), (2.10) and (2.11), we can obtain
H- % = —%(PDE(l +wpE) + Pm) , (2.13)

and we also have the relation . . o
H- =% (2.14)

By using the following set of dimensionless variables

PDE Pm —k
PE= 32 ™ 3H2’ R a2H? (2.15)
then, the Friedmann equation (2.8) can be written as
Qpg + QL + Q. =1, (216)

which indicates that all terms in the above equation take values in the interval [0, 1]. The
equation of state parameter (2.12) could be rewritten in terms of new variables as

/
2
I a-Bu-1, (2.17)
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C.P. L €c P.C. (n>0)

P ﬁ 0 a>0,<lora<0,p>1

P —ﬁ% 1 a<0,>-1/3ora>0,8<-1/3
3

P -1 M always unphysical

P, -1 1 always unphysical

Table 1. All the critical points (C.P.) and their physical conditions (P.C.).

where p is the ratio of energy density of dark energy to dark matter, i.e. u = Q,,/Qpg,
and the deceleration parameter ¢ = —a/(H>2a) is given by

g=—14Q + 21+ 1)Qp = —(1 — 26)(1 + 11)ps (2.18)

where we have used the constraint (2.16) to get the last equality of the above equation.
By using eq. (2.13) and (2.14), one can get the relation

4de WDE

=1 . 2.19
3 * 1+p ( )
Thus, the dynamical equations can be written in the following form
, 4e
uw =3 B—1+§ w+al(p+1), (2.20)
, 4e
€ =(1—€)|2¢+3a+3 5—1+§ wl (2.21)

The egs. (2.20) and (2.21) constitute an autonomous system and we shall study the proper-
ties of its solutions qualitatively and numerically, for some recent works on locally dynamic
analysis see ref. [31-40], and also see [41] for a review.

Before ending this section, we would like to point out that the computation of the speed
of sound should not be treated as a signal for instability of the theory as the Veneziano ghost
is not a propagating physical degree of freedom. Such an “apparent signal for instability”
is in fact a result of treatment of the Veneziano ghost as the conventional physical degree
of freedom satisfying classical equation of motion. Appropriate interpretation is that a
notion of the speed of sound does not exist for a non-physical, non-propagating degree of
freedom. This viewpoint was adapted in recent paper, see [13].

3 The picture of two-dimensional parameter plane

The critical points of the autonomous system can be obtained by setting x4/ = 0 and ¢ = 0.
All the critical points are listed in coordinate (y.,é€.) in table 1. And one can see that
ifa>0,<1lora<0,8 >1,then P; is accepted from physical condition, namely,
@ > 0 by definition, and if « < 0, 8 > —1/3 or a« > 0, < —1/3, then P» is accepted
physically. To investigate the property of these critical points and the bifurcation of two-
parameter family o and /3, we can write the variables near these critical points (fic, €.) in



Figure 1. The two-parameter plane is divided into 11 domains in accordance with the type of
critical point and the physical condition p < 0. All the critical points have same property in each
domain.

the form pu = p. + dp and € = €. + de with the perturbations du and de, and thus we get
the perturbation equations at the critical points P; as follows

o | on
(56’) =4 (56)’ (3:1)

where A; are the Jacobian matrices evaluated at the corresponding critical point P;, see
appendix A for explicit forms of these matrices.
The character equation of A; can be written as

M — (trA)\ +det A; =0, (3.2)

and the location of (trA;,det A4;) relative to the parabola (trd;)? — 4det A; = 0 in the
trace-determinant plane determines the property of critical points P;. A 2 x 2 matrix can
be regarded as a 4-dimensional space determined by 4 elements of the matrix. The trace-
determinant plane is a 2-dimensional representation of the 4-dimensional space. Thus,
there are infinite different matrices corresponds to each point in the trace-determinant
plane. Furthermore, each point in the a—f plane corresponds to some point in the trace-
determinant plane, since A; depends on the parameters o and 3. In other words, the
property of critical points P; may change with the parameters « and 3, because the family
of dynamical system (2.20) and (2.21) depends on « and . By using a lengthy and
straight computing, we can divide the a—f plane into 11 domains (see figure 1) where all
the critical points have same type in each domain. In table 2, all the critical points and
their properties are listed. Noteworthily, the property of critical point is obtained from the
linearized system of the nonlinear system near the critical point in the table 2. We say



Domain P, Py Py Py

I source (p.c.p) | source (p.c.p) | saddle | saddle
1I no physical critical point

I11 sink saddle (p.c.p) | saddle | saddle
v spiral sink saddle (p.c.p) | saddle | saddle
\Y% saddle saddle (p.c.p) | sink | saddle
VI saddle saddle (p.c.p) | saddle | sink
VII saddle (p.c.p) saddle sink | saddle
VIII saddle (p.c.p) saddle saddle | sink
IX saddle (p.c.p) sink saddle | saddle

X no physical critical point
XI saddle (p.c.p) ‘ sink (p.c.p) ‘ saddle ‘ saddle

Table 2. The critical points of the autonomous system (2.20) and (2.21) and their type in each
domain of the a—f plane.

that a critical point P; of a nonlinear system is hyperbolic if the eigenvalues of linearized
system have nonzero real parts. The linearization theorem show that the nonlinear flow is
conjugate to the flow of the linearized system in a neighborhood of P;. Therefore, there
properties are preserved for the nonlinear system (2.20) and (2.21). In the domains I
and XI, there are two physical critical points P; and P,, and there is a physical point
Py(Py) in the domain ITI-VI (VI-IX). II and X are domains without physical points.

In general, a bifurcation occurs when there is a remarkably change in the structure
of the solutions of the dynamical system as the parameters o and . The simplest types
of bifurcation occurs when the property of equilibrium solutions changes as a and 3 vary.
Thus, a bifurcation may be appearance when the parameters vary from some domain into
neighbor one. For example, the structure of Pj—FP, changes from saddle-saddle to saddle-
sink and the structure of P3—P; changes from sink-saddle to saddle-saddle when the location
of (a, ) crosses the line 3o — 38 — 1 = 0, namely, («, ) moves from domain VIII to IX in
the a—f plane.

4 Global behavior of the nonlinear system

In the section 3, we have used the technique of linearization to determine the behavior of
solutions near physical points. In this section, we use the qualitative technique of nullcline
for analyzing the global behavior of nonlinear system, which is one of the most useful tools
for analyzing solutions of nonlinear planar system. For our system, the p-nullclines are the
set of points determined by

pw=—1; (B—l%—%)u:—a. (4.1)
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u
Figure 2. The p—e plane are divided into 13 basic regions by the nullclines as «, 8 € Domain 1.
The direction of the vector field at all points in the basic region are determined.

Similarly, the e-nullclines are the set of points determined by

e=1; (5—1+t€><u+;>:;(5—1)—a. (4.2)

It is worth noting that the nullclines consist of lines and hyperbolas. The asymptotes of
hyperbola in eq. (4.1) are p = 0 and € = 1 — 3, which is interesting to determine the fate
of universe.

On the p-nullclines, we have ' = 0, the vector field points (u/,€’) are vertical, so
p-nullclines divide p—e plane into regions where the vector field points either to the left
or to the right. Similarly, the e-nullclines separate the plane into regions where the vector
field points either upward or downward. If we determine all of the nullclines, then this
allows us to decompose p—€ plane into a collection of basic regions. The vector field must
point in one of 4 directions (northeast, northwest, southeast or southwest) for any of the
basic regions between the nullclines, since it is neither vertical nor horizontal. In each of
basic regions, the vector field points are provided with a certain direction. Therefore, the
basic regions allow us to understand the phase portrait from a qualitative point of view.
Furthermore, the nullclines are depending on the parameters o and g in our dynamical
system, so we have to discuss each of domains [-XI separately.

Here, we discuss domain I and XI in detail, since there are two physical critical points
P and P, in these domains. In the case of o, § € Domain I, the nullclines divide u—e plane
into 13 basic regions in figure 2. By taking one point in each of these regions firstly and
then deciding the direction of the vector field at that point, we can determine the direction
of the vector field at all points in the basic region. Similarly, the nullclines also divide p—e
plane into 13 basic regions for the case of o, € Domain XI, see figure 3, and we can decide
the direction of the vector field at all points in the basic region. Especially, we can find out



Figure 3. The p— plane are divided into 13 basic regions by the nullclines as «, § € Domain XI.
We can decide the direction of the vector field at all points in the basic region.

the approximate behavior of solutions everywhere in the plane, which has interest for the
discussion of physical significance. For example, we will know that the matter component
is a dominant position at late evolution if any solution tends toward infinity in the basic
region marked A(B) in figure 3 with the northeast (southeast) direction. In other words,
we will know the fate of universe and its initial conditions.

By using above analysis and the numerical calculation, we can show the global behavior
of the nonlinear system exactly. In figure 4, we plot evolution trajectories in the pu—e plane
where we have chosen the parameters «, 5 € Domain XI. We also plot evolution trajectories
when «a, 8 € Domain I in figure 5. It is worth noting that the physical admissible range
is the only right-half plane (1 > 0), so we must choose initial conditions at the right-half
plane. The detailed discussion of the physical arguments will appear in section 5.

5 Fate of universe

From figure 4, one can see that if «, 8 belongs domain I, and the initial values of p and €
satisfy the following condition

4
(B—1+§)>uo+a>0, (5.1)
4eg
(81457 Juo +2¢0 +3a >0, (5.2)

i.e. the initial point (g, €9) belongs to A | J B (A denotes the yellow region, while B denotes
the green region), the universe will evolve to matter dominate finally, which suggests that
the expansion will asymptotically come to a halt. If «;, 8 belongs domain I, and the initial



Figure 4. Choosing «a, 5 in domain XI, the evolution trajectories in the p—e plane are plotted.

value of i and e satisfy the following condition

4
(6—1+§)>M0+a<0, (5.3)
4eg
3(8 =14+ = o +2e0 +3a <0, (5.4)

the dynamical evolution will be in unphysical region, so such kind of initial values are
excluded by the physical condition u > 0.

From figure 5, one can see that if «, 5 belongs domain XI, and if not only the initial
value of satisfies the physical condition p > 0, but also satisfies ¢g > 1, then, the system
will evolute to P» finally, namely, the fate of universe will be

Qn, o ( 1>
=— , a>0,0<—=|. 5.5
Qpe B+1 3 (5:5)
If we assumed that we have get the above limit at present, then, we can choose o and 3 as
1 QpEo
N —— — = 5.6
Br g age, (56)

where Qpg o and 2,0 denote the present values of energy density of dark energy and
matter respectively. If «, 8 belongs to domain XI, and the initial values satisfy ¢ < 0 with
physical condition p > 0, the dynamical system will tend to be g — 0, namely, the universe
will be dominated by dark energy, and will be accelerating eternally.

6 Bifurcation

The bifurcation phenomenon occurs when there is a remarkable change in the structure of
the solutions of the dynamical system as the parameter o and 3. Here, we consider that
the structure of the solutions makes a change as the parameter 5 crosses line § = 1.

,10,



Figure 6. As o = —1.485 and 3 = 1, we plot the evolution trajectories in the u—e plane.

Now, we consider the case a < 0 and 5 = 1. The system is simplified to

1= (dep+3a)(p+1), (6.1)
€ = (2 +3a+4ep)(1 —¢). (6.2)
In this case, there are only three critical points: Po(—3a/4,1), P3(—1,3c/2) and Py(—1,1)
are all saddle points, and the physical discussion is not change except losing physical point
Py. In figure 6, we plot evolution trajectories in the u—e plane for « = —1.485 and 5 = 1.

For the parameters «, § € Domain III, we also plot evolution trajectories in the p—e plane
for « = —4 and f = 0.217 in figure 7. Obviously, P; changes into a sink from a source as

— 11 —



Figure 7. Fixing o = —4 and = 0.217, we plot the evolution trajectories in the u—e plane.

the parameters «, 8 run in Domain II from Domain I, and P; also becomes a non-physical
point. Therefore, one can say that this is a typical bifurcation for the nonlinear system.
However, the physical arguments of evolution have not remarkable change.

7 Conclusion

In conclusion, we have studied the dynamical behavior of the universe accelerated by the
generalized Veneziano ghost dark energy component locally and globally. We have found
that in this system, there are four critical point but only two of them have physical meaning
when the parameters are chosen in some proper regions to satisfy the physical conditions.
We have used the technique of linearization to determine the behavior of solutions near
physical points and used the qualitative technique of nullcline for analyzing the global
behavior of this nonlinear system, which is one of the most useful tools for analyzing
solutions of nonlinear planar system. We have shown that the universe could be dominated
by the dark energy at present if we choice a set of suitable parameters. We also give an
example to show the bifurcation phenomenon in this interesting dynamical system. Before
ending the paper, we would like to emphasis that the qualitative technique of nullcline we
developed in this paper is very powerful and could be used in any nonlinear dynamical
system, especially in the planar system, so it deserves further studying.
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A Jacobian matrixes

A — —3(1 +a— /8) 40‘((111?‘);5) A
L= 2(8—2a—1) |- (A1)
3(8-1) R

1—-3a+3p8 Lh(figﬁ?»)g 1) )

(e
Ay = 31 +a=p) 0 . (A.3)
%14—304—36)(14—204—5) 1+ 3a—33
( —1

+3a—36 0
—1-3a+38/"
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