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the linearization and nullcline method developed in this paper. The energy density is

generalized to be proportional to the Hawking temperature defined on the trapping horizon

instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also
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dynamical system of the universe. It seems that the universe could be dominated by dark

energy at present in some region of the parameter space.
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1 Introduction

Currently, lots of theoretical models were proposed to explain the accelerating of the uni-

verse, which is convinced by many observations. In some of the models, people proposed

a new kind of dark energy component with negative pressure in our universe, which will

drive the acceleration, and the simplest dark energy model is the cosmological constant,

but it suffers fine-tuning and coincidence problems. While, in other models, people try to

modify the Einstein gravity at large scale in the universe, e.g. f(R), DGP, etc. model, then

the universe can be accelerated without introducing dark energy.

Recently, a very interesting dark energy model called Veneziano ghost dark energy has

been proposed [1–4], and in this model, one can obtain a cosmological constant of just

the right magnitude to give the observed expansion from the contribution of the ghost

fields, which are supposed to be present in the low-energy effective theory of QCD without

introducing any new degrees of freedom. The ghosts are needed to solve the U(1) problem,

but they are completely decoupled from the physical sector [5]. The ghosts make no

contribution in the flat Minkowski space, but make a small energy density contribution to

the vacuum energy due to the off-set of the cancellation of their contribution in curved space

or time-dependent background. For example, in the Rindler space, the contribution of high

frequency modes is suppressed by the factor e−2πk/aT and the main contribution comes from

k ∼ aT , where aT is the temperature on the horizon seen by the Rindler observer [6, 7]. In

the cosmological context, one can choice aT ∼ H, which corresponds to the temperature

on the Hubble horizon. Then, in the context of strongly interacting confining QCD with

topological nontrivial sector, this effect occurs only in the time direction and their wave
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function in other space directions is expected to have the size of QCD energy scale. Thus,

this ghost gives the vacuum energy density proportional to Λ3
QCDH0. With H0 ∼ 10−33 eV,

it gives the right order of observed magnitude ∼ (3× 10−3 eV)4 of the energy density.

It should be emphasized that the Veneziano ghost from the ghost dark energy model

is not a new propagating physical degree of freedom and the description of dark energy in

terms of the Veneziano ghost is just a matter of convenience to describe very complicated

infrared dynamics of strongly coupled QCD and it does not violate unitarity, causality,

gauge invariance and other important features of renormalizable quantum field theory,

see [8–11].

Generally, it is very difficult to accept the linear behavior that the energy of FRW

universe is linear in Hubble constant “H”, because QCD is a theory with a mass gap de-

termined by the energy scale 100MeV. So, it is generally expected that there should be

an exponentially small corrections rather than that linear corrections H. However, as the

arguments discussed in refs. [8–11] that the linear scaling H is due to the complicated topo-

logical structure of strongly coupled QCD, not related to the physical massive propagating

degree of freedom. Therefore, the linear in Hubble constant H scaling has a strong theo-

retical support tested in a number of models. For recent paper on fitting the ghost dark

energy model with current observational data including SnIa, BAO, CMB, BBN, Hubble

parameter and growth rate of matter perturbation, see [12] and also see [13]. For recent

progress on dark energy, see [14–23].

Einstein equations can be written in a form called “unified first law” based on the

general definition of black hole dynamics on trapping horizon, which was proposed by

Hayward [24]. There are some other horizons in the context of the FRW universe, such

as the future inner trapping horizon defined in the next section, while the outer one is

used to define black holes in a general spacetime including time-dependent spacetime [24].

So, in this paper, we will choice aT ∼ Tt, where Tt is the temperature defined on the

trapping horizon of the FRW universe instead to study its dynamical behavior locally and

globally. In addition, we also study the bifurcation phenomenon in this dynamical system

and predict the fate of the universe.

This paper is organized as follows: in section 2, we shall derive the equations of the

autonomous system of the universe with ghost dark energy component, and investigate its

properties and solutions qualitatively and numerically in section 3. The global behavior

of this system will be presented in section 4, and we also make a prediction of the fate of

the universe in section 5 and study its bifurcation phenomenon in section 6. In the last

section, we will give some discussions and conclusions.

2 Autonomous system

The spacetime of our universe is described by the FRW metric, which could be written in

the form of

ds2 = habdx
adxb + r̃dΩ2, (2.1)
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where x0 = t, x1 = r and r̃ = a(t)r, which is the radius of the sphere while a(t) is the scale

factor. Defining

dξ± = − 1√
2

(

dt∓ a√
1− kr2

dr

)

, (2.2)

where k is the spacial curvature, the metric could be rewritten as a double-null form

ds2 = −2dξ+dξ− + r̃2dΩ2, (2.3)

then we get the trapping horizon r̃T by solving the equation ∂+r̃|r̃=r̃T = 0 as

r̃T =

(

H2 +
k

a2

)−1/2

, (2.4)

which coincides with the apparent horizon [25, 26]. The surface gravity is given by

κ = − r̃T
2

(

Ḣ + 2H2 +
k

a2

)

= − 1

r̃T
(1− ǫ) , (2.5)

where

ǫ ≡
˙̃rT

2Hr̃T
=

(ln r̃T )
′

2
, (2.6)

where dot and prime denote the derivative with respect to t and ln a, respectively. Here,

we assume ǫ < 1 so that κ < 0 corresponding to inner trapping horizon.

As we mentioned before, one can simply choice the temperature on the horizon as

T ∼ H in the cosmological context, but this is a special choice and generally, in the

context of dynamical spacetime, the temperature is well-defined on the trapping horizon,

which is proportional to the surface gravity on that horizon, namely Tt = |κ|/2π. Actually,
it will reduce to T ∼ H in the de Sitter spacetime when we neglect the spatial curvature,

because the trapping horizon is coincident with the Hubble horizon in this situation. In the

following, we will also take the idea of the ghost dark energy model, in which the vacuum

energy density is proportional to the temperature defined on the trapping horizon ρDE ∼ Tt.

Therefore, the energy density of the Veneziano ghost dark energy is then given by

ρDE =
C

r̃T
(1− ǫ) , (2.7)

where C is a constant and here we have used eq. (2.5). The Friedmann equation now reads

H2 +
k

a2
=

1

3
(ρDE + ρm) , (2.8)

where ρm is the energy density of dark matter, and by solving the Friedmann equation,

we get

ρDE =
C2(1− ǫ)2

6

[

1 +

√

1 +
12ρm

C2(1− ǫ)2

]

. (2.9)

Usually, people also consider case that dark energy and dark matter are coupled to

each other by adding a interaction term in the conservation equations [27, 28]. Of course,
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the entirely independent evolution of the dark energy is a special case with a vanished

interaction term. Furthermore, the microphysics seems to allow enough room for the

coupling between the two components. At leat, before drawing a definitely conclusion,

the interaction case is still deserved to study. However, once a generic interaction term is

introduced, the dynamical equations would become much more complicated and can not

be solved analytically. As we known, by using the locally dynamical analysis, one can get

the future behavior of the nonlinear system and know whether the system is stable or not

near the critical points. But, this method can only give the neighborhood properties of the

critical points. So, in the following, we will develop a global method to study the global

behavior of the nonlinear dynamical system, as well as its bifurcation phenomenon. As we

known, the conservation equations including a general interaction between the dark energy

and dark matter is described by

ρ̇m + 3Hρm = Q , (2.10)

ρ̇DE + 3H(1 + wDE)ρDE = −Q , (2.11)

where Q is the interacting term, and we will take its form as Q = 3H(αρDE + βρm) in the

following. Here α and β are some constants. Usually, the existing literature only consider

a simple case α = 0 or β = 0, as well as the case α = β, see refs. [29, 30] and references

therein. We will see that, once we have developed a global analysis method, it would

be unnecessarily to set these special values, and there would be a interesting bifurcation

phenomenon when one leaves these parameters free.

The equation of state parameter of dark energy then be derived as

wDE =
1

3

(

ǫ′

1− ǫ
+ 2ǫ− Q

ρDEH

)

− 1 . (2.12)

By using eqs. (2.8), (2.10) and (2.11), we can obtain

Ḣ − k

a2
= −1

2

(

ρDE(1 + wDE) + ρm
)

, (2.13)

and we also have the relation

Ḣ − k

a2
= − 2ǫ

r̃2T
. (2.14)

By using the following set of dimensionless variables

ΩDE =
ρDE

3H2
, Ωm =

ρm
3H2

, Ωk =
−k

a2H2
, (2.15)

then, the Friedmann equation (2.8) can be written as

ΩDE +Ωm +Ωk = 1 , (2.16)

which indicates that all terms in the above equation take values in the interval [0, 1]. The

equation of state parameter (2.12) could be rewritten in terms of new variables as

wDE =
ǫ′

3(1− ǫ)
+

2ǫ

3
− α− βµ− 1 , (2.17)
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C.P. µc ǫc P.C. (µ > 0)

P1
α

1−β 0 α > 0, β < 1 or α < 0, β > 1

P2 − α
β+ 1

3

1 α < 0, β > −1/3 or α > 0, β < −1/3

P3 −1 3(α−β+1)
2 always unphysical

P4 −1 1 always unphysical

Table 1. All the critical points (C.P.) and their physical conditions (P.C.).

where µ is the ratio of energy density of dark energy to dark matter, i.e. µ = Ωm/ΩDE,

and the deceleration parameter q ≡ −ä/(H2a) is given by

q = −1 + Ωk + 2ǫ(1 + µ)ΩDE = −(1− 2ǫ)(1 + µ)ΩDE , (2.18)

where we have used the constraint (2.16) to get the last equality of the above equation.

By using eq. (2.13) and (2.14), one can get the relation

4ǫ

3
= 1 +

wDE

1 + µ
. (2.19)

Thus, the dynamical equations can be written in the following form

µ′ = 3

[(

β − 1 +
4ǫ

3

)

µ+ α

]

(µ+ 1) , (2.20)

ǫ′ = (1− ǫ)

[

2ǫ+ 3α+ 3

(

β − 1 +
4ǫ

3

)

µ

]

, (2.21)

The eqs. (2.20) and (2.21) constitute an autonomous system and we shall study the proper-

ties of its solutions qualitatively and numerically, for some recent works on locally dynamic

analysis see ref. [31–40], and also see [41] for a review.

Before ending this section, we would like to point out that the computation of the speed

of sound should not be treated as a signal for instability of the theory as the Veneziano ghost

is not a propagating physical degree of freedom. Such an “apparent signal for instability”

is in fact a result of treatment of the Veneziano ghost as the conventional physical degree

of freedom satisfying classical equation of motion. Appropriate interpretation is that a

notion of the speed of sound does not exist for a non-physical, non-propagating degree of

freedom. This viewpoint was adapted in recent paper, see [13].

3 The picture of two-dimensional parameter plane

The critical points of the autonomous system can be obtained by setting µ′ = 0 and ǫ′ = 0.

All the critical points are listed in coordinate (µc, ǫc) in table 1. And one can see that

if α > 0, β < 1 or α < 0, β > 1, then P1 is accepted from physical condition, namely,

µ ≥ 0 by definition, and if α < 0, β > −1/3 or α > 0, β < −1/3, then P2 is accepted

physically. To investigate the property of these critical points and the bifurcation of two-

parameter family α and β, we can write the variables near these critical points (µc, ǫc) in
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Figure 1. The two-parameter plane is divided into 11 domains in accordance with the type of

critical point and the physical condition µ ≤ 0. All the critical points have same property in each

domain.

the form µ = µc + δµ and ǫ = ǫc + δǫ with the perturbations δµ and δǫ, and thus we get

the perturbation equations at the critical points Pi as follows

(

δµ′

δǫ′

)

= Ai

(

δµ

δǫ

)

, (3.1)

where Ai are the Jacobian matrices evaluated at the corresponding critical point Pi, see

appendix A for explicit forms of these matrices.

The character equation of Ai can be written as

λ2 − (trAi)λ+ detAi = 0 , (3.2)

and the location of (trAi, detAi) relative to the parabola (trAi)
2 − 4 detAi = 0 in the

trace-determinant plane determines the property of critical points Pi. A 2× 2 matrix can

be regarded as a 4-dimensional space determined by 4 elements of the matrix. The trace-

determinant plane is a 2-dimensional representation of the 4-dimensional space. Thus,

there are infinite different matrices corresponds to each point in the trace-determinant

plane. Furthermore, each point in the α–β plane corresponds to some point in the trace-

determinant plane, since Ai depends on the parameters α and β. In other words, the

property of critical points Pi may change with the parameters α and β, because the family

of dynamical system (2.20) and (2.21) depends on α and β. By using a lengthy and

straight computing, we can divide the α–β plane into 11 domains (see figure 1) where all

the critical points have same type in each domain. In table 2, all the critical points and

their properties are listed. Noteworthily, the property of critical point is obtained from the

linearized system of the nonlinear system near the critical point in the table 2. We say
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Domain P1 P2 P3 P4

I source (p.c.p) source (p.c.p) saddle saddle

II no physical critical point

III sink saddle (p.c.p) saddle saddle

IV spiral sink saddle (p.c.p) saddle saddle

V saddle saddle (p.c.p) sink saddle

VI saddle saddle (p.c.p) saddle sink

VII saddle (p.c.p) saddle sink saddle

VIII saddle (p.c.p) saddle saddle sink

IX saddle (p.c.p) sink saddle saddle

X no physical critical point

XI saddle (p.c.p) sink (p.c.p) saddle saddle

Table 2. The critical points of the autonomous system (2.20) and (2.21) and their type in each

domain of the α–β plane.

that a critical point Pi of a nonlinear system is hyperbolic if the eigenvalues of linearized

system have nonzero real parts. The linearization theorem show that the nonlinear flow is

conjugate to the flow of the linearized system in a neighborhood of Pi. Therefore, there

properties are preserved for the nonlinear system (2.20) and (2.21). In the domains I

and XI, there are two physical critical points P1 and P2, and there is a physical point

P2(P1) in the domain III–VI (VI–IX). II and X are domains without physical points.

In general, a bifurcation occurs when there is a remarkably change in the structure

of the solutions of the dynamical system as the parameters α and β. The simplest types

of bifurcation occurs when the property of equilibrium solutions changes as α and β vary.

Thus, a bifurcation may be appearance when the parameters vary from some domain into

neighbor one. For example, the structure of P1–P2 changes from saddle-saddle to saddle-

sink and the structure of P3–P4 changes from sink-saddle to saddle-saddle when the location

of (α, β) crosses the line 3α− 3β − 1 = 0, namely, (α, β) moves from domain VIII to IX in

the α–β plane.

4 Global behavior of the nonlinear system

In the section 3, we have used the technique of linearization to determine the behavior of

solutions near physical points. In this section, we use the qualitative technique of nullcline

for analyzing the global behavior of nonlinear system, which is one of the most useful tools

for analyzing solutions of nonlinear planar system. For our system, the µ-nullclines are the

set of points determined by

µ = −1 ;

(

β − 1 +
4ǫ

3

)

µ = −α . (4.1)
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Figure 2. The µ–ǫ plane are divided into 13 basic regions by the nullclines as α, β ∈ Domain I.

The direction of the vector field at all points in the basic region are determined.

Similarly, the ǫ-nullclines are the set of points determined by

ǫ = 1 ;

(

β − 1 +
4ǫ

3

)(

µ+
1

2

)

=
1

2
(β − 1)− α . (4.2)

It is worth noting that the nullclines consist of lines and hyperbolas. The asymptotes of

hyperbola in eq. (4.1) are µ = 0 and ǫ = 1 − β, which is interesting to determine the fate

of universe.

On the µ-nullclines, we have µ′ = 0, the vector field points (µ′, ǫ′) are vertical, so

µ-nullclines divide µ–ǫ plane into regions where the vector field points either to the left

or to the right. Similarly, the ǫ-nullclines separate the plane into regions where the vector

field points either upward or downward. If we determine all of the nullclines, then this

allows us to decompose µ–ǫ plane into a collection of basic regions. The vector field must

point in one of 4 directions (northeast, northwest, southeast or southwest) for any of the

basic regions between the nullclines, since it is neither vertical nor horizontal. In each of

basic regions, the vector field points are provided with a certain direction. Therefore, the

basic regions allow us to understand the phase portrait from a qualitative point of view.

Furthermore, the nullclines are depending on the parameters α and β in our dynamical

system, so we have to discuss each of domains I–XI separately.

Here, we discuss domain I and XI in detail, since there are two physical critical points

P1 and P2 in these domains. In the case of α, β ∈ Domain I, the nullclines divide µ–ǫ plane

into 13 basic regions in figure 2. By taking one point in each of these regions firstly and

then deciding the direction of the vector field at that point, we can determine the direction

of the vector field at all points in the basic region. Similarly, the nullclines also divide µ–ǫ

plane into 13 basic regions for the case of α, β ∈ Domain XI, see figure 3, and we can decide

the direction of the vector field at all points in the basic region. Especially, we can find out
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Figure 3. The µ–ǫ plane are divided into 13 basic regions by the nullclines as α, β ∈ Domain XI.

We can decide the direction of the vector field at all points in the basic region.

the approximate behavior of solutions everywhere in the plane, which has interest for the

discussion of physical significance. For example, we will know that the matter component

is a dominant position at late evolution if any solution tends toward infinity in the basic

region marked A(B) in figure 3 with the northeast (southeast) direction. In other words,

we will know the fate of universe and its initial conditions.

By using above analysis and the numerical calculation, we can show the global behavior

of the nonlinear system exactly. In figure 4, we plot evolution trajectories in the µ–ǫ plane

where we have chosen the parameters α, β ∈ Domain XI. We also plot evolution trajectories

when α, β ∈ Domain I in figure 5. It is worth noting that the physical admissible range

is the only right-half plane (µ ≥ 0), so we must choose initial conditions at the right-half

plane. The detailed discussion of the physical arguments will appear in section 5.

5 Fate of universe

From figure 4, one can see that if α, β belongs domain I, and the initial values of µ and ǫ

satisfy the following condition

(

β − 1 +
4ǫ0
3

)

µ0 + α > 0 , (5.1)

3

(

β − 1 +
4ǫ0
3

)

µ0 + 2ǫ0 + 3α > 0 , (5.2)

i.e. the initial point (µ0, ǫ0) belongs to A
⋃

B (A denotes the yellow region, while B denotes

the green region), the universe will evolve to matter dominate finally, which suggests that

the expansion will asymptotically come to a halt. If α, β belongs domain I, and the initial

– 9 –
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Figure 4. Choosing α, β in domain XI, the evolution trajectories in the µ–ǫ plane are plotted.

value of µ and ǫ satisfy the following condition
(

β − 1 +
4ǫ0
3

)

µ0 + α < 0 , (5.3)

3

(

β − 1 +
4ǫ0
3

)

µ0 + 2ǫ0 + 3α < 0 , (5.4)

the dynamical evolution will be in unphysical region, so such kind of initial values are

excluded by the physical condition µ ≥ 0.

From figure 5, one can see that if α, β belongs domain XI, and if not only the initial

value of satisfies the physical condition µ ≥ 0, but also satisfies ǫ0 ≥ 1, then, the system

will evolute to P2 finally, namely, the fate of universe will be

Ωm

ΩDE
= − α

β + 1
3

,

(

α > 0 , β < −1

3

)

. (5.5)

If we assumed that we have get the above limit at present, then, we can choose α and β as

β ≈ −1

3
− α

ΩDE,0

Ωm,0
, (5.6)

where ΩDE,0 and Ωm,0 denote the present values of energy density of dark energy and

matter respectively. If α, β belongs to domain XI, and the initial values satisfy ǫ ≤ 0 with

physical condition µ ≥ 0, the dynamical system will tend to be µ → 0, namely, the universe

will be dominated by dark energy, and will be accelerating eternally.

6 Bifurcation

The bifurcation phenomenon occurs when there is a remarkable change in the structure of

the solutions of the dynamical system as the parameter α and β. Here, we consider that

the structure of the solutions makes a change as the parameter β crosses line β = 1.
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Figure 5. We plot the evolution trajectories in the µ–ǫ plane as α, β are in domain XI.

Figure 6. As α = −1.485 and β = 1, we plot the evolution trajectories in the µ–ǫ plane.

Now, we consider the case α < 0 and β = 1. The system is simplified to

µ′ = (4ǫµ+ 3α)(µ+ 1) , (6.1)

ǫ′ = (2ǫ+ 3α+ 4ǫµ)(1− ǫ) . (6.2)

In this case, there are only three critical points: P2(−3α/4, 1), P3(−1, 3α/2) and P4(−1, 1)

are all saddle points, and the physical discussion is not change except losing physical point

P1. In figure 6, we plot evolution trajectories in the µ–ǫ plane for α = −1.485 and β = 1.

For the parameters α, β ∈ Domain III, we also plot evolution trajectories in the µ–ǫ plane

for α = −4 and β = 0.217 in figure 7. Obviously, P1 changes into a sink from a source as

– 11 –
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Figure 7. Fixing α = −4 and β = 0.217, we plot the evolution trajectories in the µ–ǫ plane.

the parameters α, β run in Domain II from Domain I, and P1 also becomes a non-physical

point. Therefore, one can say that this is a typical bifurcation for the nonlinear system.

However, the physical arguments of evolution have not remarkable change.

7 Conclusion

In conclusion, we have studied the dynamical behavior of the universe accelerated by the

generalized Veneziano ghost dark energy component locally and globally. We have found

that in this system, there are four critical point but only two of them have physical meaning

when the parameters are chosen in some proper regions to satisfy the physical conditions.

We have used the technique of linearization to determine the behavior of solutions near

physical points and used the qualitative technique of nullcline for analyzing the global

behavior of this nonlinear system, which is one of the most useful tools for analyzing

solutions of nonlinear planar system. We have shown that the universe could be dominated

by the dark energy at present if we choice a set of suitable parameters. We also give an

example to show the bifurcation phenomenon in this interesting dynamical system. Before

ending the paper, we would like to emphasis that the qualitative technique of nullcline we

developed in this paper is very powerful and could be used in any nonlinear dynamical

system, especially in the planar system, so it deserves further studying.
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A Jacobian matrixes

A1 =





−3(1 + α− β) 4α(1+α−β)
(1−β)2

3(β − 1) 2(β−2α−1)
β−1



 . (A.1)

A2 =

(

1− 3α+ 3β 12α(3α−3β−1)
(1+3β)2

0 −2

)

. (A.2)

A3 =

(

−3(1 + α− β) 0

−3
2(1 + 3α− 3β)(1 + 2α− β) 1 + 3α− 3β

)

. (A.3)

A4 =

(

−1 + 3α− 3β 0

0 −1− 3α+ 3β

)

. (A.4)
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