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Abstract: The origin of R-parity in supersymmetric models can be explained if B−L is

part of the gauge group. We discuss the mass spectrum of the minimal U(1)Y × U(1)B−L
model based on a GUT implementation using CMSSM-like boundary conditions. Here

we focus in particular on the Higgs and neutralino sectors in this class of models. While

the neutralinos can have masses as low as 100 GeV, we show that the requirement of being

consistent with existing bounds on the Z ′ implies that in general the sfermions have masses

in the multi-TeV range. In the extended Higgs sector we show the existence of a second

light state which, however, will be difficult to observe, while having at the same time a

SM-like Higgs in a mass range of 123-126 GeV. Moreover, we propose a set of benchmark

scenarios for phenomenological studies. On the technical side we demonstrate that gauge

kinetic mixing effects can be quite important, affecting in particular the Higgs and the

neutralino sectors. Not only can they shift the mass of the lightest neutralino by about

10 per-cent but also they can change the nature of neutralinos and Higgs bosons in a

significant way.
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1 Introduction

Models with an additional U(1)B−L gauge symmetry at the TeV scale have recently received

considerable attention. On one hand, they are among the simplest extensions of Standard

Model (SM) gauge group with observable consequences at the LHC [1–4]. On the other, this

class of models can help to understand the origin of R-parity and its possible spontaneous

violation in supersymmetric models [5–7], as well as the mechanism of leptogenesis [8, 9].

It has been shown that a gauge sector containing U(1)Y × U(1)B−L can be a result of

an E8 × E8 heterotic string theory (and hence M-theory) [10]. While most studies of

supersymmetric variants have so far focused on the effects of the additional gauge group

far below the GUT scale, the questions arise of whether this group can be unified at the

high scale with the SM gauge group and what the phenomenological consequences are. A

renormalization group equation (RGE) analysis of such a model, assuming the unification

of the gauge groups, has been performed in [7, 11]. However, the effects of possible mixing

between the two Abelian groups have been neglected so far: it is well known that in models

with several U(1) gauge groups, kinetic mixing terms

− χabF̂ a,µνF̂ bµν , a 6= b (1.1)

between the field strength tensors are allowed by gauge and Lorentz invariance [12], as

F̂ a,µν and F̂ b,µν are gauge invariant quantities by themselves, see e.g. [13]. Even if these

terms are absent at tree level at a particular scale, they might be generated by RGE

effects [14, 15].

The impact of gauge kinetic mixing in generic extensions of the standard model (SM)

and the MSSM has been studied so far in several aspects. For instance, one can show that

the dark matter of the universe can be charged with respect to an additional U(1) but

neutral with respect to the SM gauge group. However, here one can show that there is a

residual SM gauge interaction of the dark matter particles due to the gauge kinetic mixing.

The consequences for the relic density and the cross sections concerning direct as well as

indirect detection of dark matter have been analyzed [16–18]. It has been shown that

these cosmological bounds are sometimes more severe than the bounds from electroweak

precision data if the dark matter candidate interacts dominantly due to kinetic mixing.

Moreover, the kinetic mixing in the context of supersymmetric hidden sector dark matter

has been considered in [19] and the LHC phenomenology of a nearly decoupled sector only

interacting with the visible sector due to kinetic mixing has been elaborated in [20].

In this work, we discuss the mass spectrum of the model presented in [5, 7]. This

minimal B − L extension of the Minimal Supersymmetric Standard Model (MSSM) has a

U(1)B−L gauge group tensored to the SM gauge groups and two bileptonic chiral superfields

which are gauge singlets under the SM gauge groups. In addition, three right-handed neu-

trinos are needed to ensure that the U(1)B−L is anomaly-free, which provide the necessary

ingredients to explain neutrino data. We refer to this model as the BLSSM.

The focus of this paper is on the mass spectrum of this model and resulting phe-

nomenological aspects assuming mSUGRA-like boundary conditions at the GUT scale and

unification of the B−L coupling with the SM couplings. In particular we will demonstrate
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that gauge kinetic mixing effects are particularly important in the Higgs and neutralino

sectors. These effects do not only change the masses of these particles but have quite some

impact on their nature, e.g. they induce tree-level mixing which would be absent if these

effects were to be neglected. We will show that new light Higgs states are possible without

being in conflict with current data while having at the same time a SM-like Higgs in the

range close to 120 GeV. We will focus here on the case of R-parity conservation and discuss

the case of broken R-parity in a subsequent paper [21].

In the usual CMSSM with the MSSM particle content, the lightest neutralino is mainly

bino-like. We show that in our model the nature of this particle can be quite different and

identify regions where it is either mainly a SU(2)L-doublet Higgsino, a U(1)B−L-gaugino

which we dub the BLino, or a fermionic partner of the U(1)B−L-breaking scalar which

we dub the bileptino, since we call the scalar the bilepton for reasons given below. In

the next section we introduce the model and focus in particular on aspects related to the

spectrum. In section 3 we present our numerical results and provide benchmark points with

distinct features and in section 4 we draw our conclusions. In the appendices we collect

supplementary formulas for mass matrices, anomalous dimensions and β-functions at lowest

order needed for the discussion of the main features in section. The corresponding formulas

including higher order effects can be easily computed using the input files for SARAH given

in appendix C.

2 The model

In this section we present the particle content of the model considered. An important aspect

is the U(1) gauge kinetic mixing which is discussed in some detail as it leads to significant

changes in the spectrum. Although we include loop corrections for the numerical analysis

when calculating the masses, we restrict ourselves in this section to tree-level expressions,

as this is sufficient for discussing the main differences with respect to the MSSM.

2.1 Particle content and superpotential

The model consists of three generations of matter particles including right-handed neutrinos

which can, for example, be embedded in SO(10) 16-plets. Moreover, below the GUT scale

the usual MSSM Higgs doublets are present as well as two fields η and η̄ responsible for the

breaking of the U(1)B−L. Furthermore, η is responsible for generating a Majorana mass

term for the right-handed neutrinos and thus we interpret the B−L charge of this field as

its lepton number, and likewise for η̄, and call these fields bileptons since they carry twice

the lepton number of (anti-)neutrinos. We summarize the quantum numbers of the chiral

superfields with respect to U(1)Y × SU(2)L × SU(3)C ×U(1)B−L in table 1.

The superpotential is given by

W =Y ij
u Ûi Q̂j Ĥu − Y ij

d D̂i Q̂j Ĥd − Y ij
e Êi L̂j Ĥd + µ Ĥu Ĥd

+ Y ij
ν L̂i Ĥu ν̂j − µ′ η̂ ˆ̄η + Y ij

x ν̂i η̂ ν̂j (2.1)
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Superfield Spin 0 Spin 1
2 Generations (U(1)Y ⊗ SU(2)L ⊗ SU(3)C ⊗ U(1)B−L)

Q̂ Q̃ Q 3
(

1
6 ,2,3,

1
6

)
D̂ d̃c dc 3

(
1
3 ,1,3,−1

6

)
Û ũc uc 3

(
− 2

3 ,1,3,−1
6

)
L̂ L̃ L 3

(
− 1

2 ,2,1,−1
2

)
Ê ẽc ec 3 (1,1,1, 1

2)

ν̂ ν̃c νc 3 (0,1,1, 1
2)

Ĥd Hd H̃d 1
(
− 1

2 ,2,1, 0
)

Ĥu Hu H̃u 1
(

1
2 ,2,1, 0

)
η̂ η η̃ 1 (0,1,1,−1)

ˆ̄η η̄ ˜̄η 1 (0,1,1, 1)

Table 1. Chiral superfields and their quantum numbers.

and we have the additional soft SUSY-breaking terms:

LSB =LMSSM − λB̃λB̃′MBB′ −
1

2
λB̃′λB̃′MB′ −m2

η|η|2 −m2
η̄|η̄|2 −m2

ν,ij(ν̃
c
i )
∗ν̃cj

− ηη̄Bµ′ + T ijν Huν̃
c
i L̃j + T ijx ην̃

c
i ν̃
c
j (2.2)

i, j are generation indices. Without loss of generality one can take Bµ and Bµ′ to be real.

The extended gauge group breaks to SU(3)C ⊗ U(1)em as the Higgs fields and bileptons

receive vacuum expectation values (vevs):

H0
d =

1√
2

(σd + vd + iφd) , H0
u =

1√
2

(σu + vu + iφu) (2.3)

η =
1√
2

(ση + vη + iφη) , η̄ =
1√
2

(ση̄ + vη̄ + iφη̄) (2.4)

We define tanβ′ = vη
vη̄

in analogy to the ratio of the MSSM vevs (tanβ = vu
vd

).

2.2 Gauge kinetic mixing

As already mentioned in the introduction, the presence of two Abelian gauge groups in

combination with the given particle content gives rise to a new effect absent in the MSSM

or other SUSY models with just one Abelian gauge group: the gauge kinetic mixing. This

can be seen most easily by inspecting the matrix of the anomalous dimension, which at

one loop is given by

γab =
1

16π2
TrQaQb , (2.5)

where the indices a and b run over all U(1) groups and the trace runs over all fields charged

under the corresponding U(1) group.

For our model we obtain

γ =
1

16π2
N

(
11 4

4 6

)
N. (2.6)
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and we see that there are sizable off-diagonal elements. N contains the GUT normalization

of the two Abelian gauge groups. We will take as in ref. [7]
√

3
5 for U(1)Y and

√
3
2 for

U(1)B−L, i.e. N = diag
(√

3
5 ,
√

3
2

)
. Hence, we obtain finally

γ =
1

16π2

 33
5 6

√
2
5

6
√

2
5 9

 . (2.7)

Therefore, even if at the GUT scale the U(1) kinetic mixing terms are zero, they are

induced via RGE evaluation at lower scales. In practice it turns out that it is easier to

work with non-canonical covariant derivatives instead of off-diagonal field-strength tensors

such as in eq. (1.1). However, both approaches are equivalent [22]. Hence in the following,

we consider covariant derivatives of the form

Dµ = ∂µ − iQTφGA (2.8)

where Qφ is a vector containing the charges of the field φ with respect to the two Abelian

gauge groups, G is the gauge coupling matrix

G =

(
gY Y gY B
gBY gBB

)
(2.9)

and A contains the gauge bosons A = (AYµ , A
B
µ )T .

As long as the two Abelian gauge groups are unbroken, we have still the freedom to

perform a change of basis: A = (AYµ , A
B
µ ) → A′ = ((AYµ )′, (ABµ )′) = RA where R is an

orthogonal matrix. It is possible to absorb this rotation of the gauge fields completely in

the definition of the gauge couplings without the necessity of changing the charges, which

can easily be seen using eq. (2.8)

QTφGA = QTφG(RTR)A = QTφ (GRT )A′ = QTφ G̃A
′ (2.10)

This freedom can be used to choose a basis such that electroweak precision data can be

accommodated in an easy way. A convenient choice is the basis where gBY = 0 as in this

basis only the Higgs doublets contribute to the entries in the gauge boson mass matrix of

the U(1)Y ⊗ SU(2)L sector and the impact of η and η̄ is only in the off-diagonal elements

as discussed in section 2.4. Therefore we choose the following basis at the electroweak

scale [23]:

g′Y Y =
gY Y gBB − gY BgBY√

g2
BB + g2

BY

= g1 (2.11)

g′BB =
√
g2
BB + g2

BY = gBL (2.12)

g′Y B =
gY BgBB + gBY gY Y√

g2
BB + g2

BY

= g̃ (2.13)

g′BY = 0 (2.14)
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This also leads to our condition for finding the GUT scale in the numerical analysis:

g2 ≡
gY Y gBB − gY BgBY√

g2
BB + g2

BY

(2.15)

This is equivalent to a rotation of the general 2× 2 gauge coupling matrix at each energy

scale to the triangle form and using g1 = g2 as the GUT condition. Neglecting threshold

corrections, this leads in the case of kinetic mixing to exactly the same GUT scale as in

the MSSM [24].

Immediate interesting consequences of the gauge kinetic mixing arise in various sectors

of the model as discussed in the subsequent sections: (i) it induces mixing at tree level

between the Hu, Hd and η, η̄; (ii) additional D-terms contribute to the mass matrices of

the squarks and sleptons; (iii) off-diagonal soft SUSY-breaking terms for the gauginos are

induced via RGE evolution [22, 25] with important consequences for the neutralino sector

as discussed in section 3.4, even if at some fixed scale Mab = 0 for a 6= b.

2.3 Tadpole equations

We find for the four minimization conditions at tree level

td = vd

(
m2
Hd

+ |µ|2 +
1

8

(
g2

1 + g2
2 + g̃2

) (
v2
d − v2

u

)
+

1

4
g̃gBL

(
v2
η − v2

η̄

))
− vuBµ = 0 (2.16)

tu = vu

(
m2
Hu + |µ|2 +

1

8

(
g2

1 + g2
2 + g̃2

) (
v2
u − v2

d

)
+

1

4
g̃gBL

(
v2
η̄ − v2

η

))
− vdBµ = 0 (2.17)

tη = vη

(
m2
η + |µ′|2 +

1

4
g̃gBL

(
v2
d − v2

u

)
+

1

2
g2
BL

(
v2
η − v2

η̄

))
− vη̄Bµ′ = 0 (2.18)

tη̄ = vη̄

(
m2
η̄ + |µ′|2 +

1

4
g̃gBL

(
v2
u − v2

d

)
+

1

2
g2
BL

(
v2
η̄ − v2

η

))
− vηBµ′ = 0 (2.19)

We solve them with respect to µ,Bµ, µ
′ and Bµ′ as these parameters do not enter any of

the RGEs of the other parameters. Using x2 = v2
η + v2

η̄ and v2 = v2
d + v2

u we obtain

|µ|2 =
1

8

((
2g̃gBLx

2 cos(2β′)− 4m2
Hd

+ 4m2
Hu

)
sec(2β)− 4

(
m2
Hd

+m2
Hu

)
−
(
g2

1 + g̃2 + g2
2

)
v2
)

(2.20)

Bµ =− 1

8

(
− 2g̃gBLx

2 cos(2β′)+ 4m2
Hd
− 4m2

Hu+
(
g2

1 +g̃2+g2
2

)
v2 cos(2β)

)
tan(2β) (2.21)

|µ′|2 =
1

4

(
− 2
(
g2
BLx

2 +m2
η +m2

η̄

)
+
(

2m2
η − 2m2

η̄ + g̃gBLv
2 cos(2β)

)
sec(2β′)

)
(2.22)

Bµ′ =
1

4

(
− 2g2

BLx
2 cos(2β′) + 2m2

η − 2m2
η̄ + g̃gBLv

2 cos(2β)
)

tan(2β′) (2.23)

M ′Z ' gBLx as we will show in section 2.4 and, thus, we find an approximate relation

between M ′Z and µ′

M2
Z′ ' −2|µ′|2 +

4(m2
η̄ −m2

η tan2 β′)− v2g̃gBL cosβ(1 + tanβ′)

2(tan2 β′ − 1)
(2.24)
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A closer inspection of the system shows that either m2
η̄ or m2

η has to become negative to

break U(1)B−L. For both parameters, gauge couplings enter the RGEs, increasing their

values when evolving from the GUT scale to the electroweak scale. The Yukawa couplings

Yν and Yx as well as the trilinear couplings Tν and Tx lead to a decrease, but at the one-loop

level they only affect the RGE for m2
η. However, neutrino data require |Yν,ij | to be very

small in this model and thus they can be neglected for these considerations. Therefore, mη̄

will always be positive whereas m2
η can become negative for sufficient large Yx and Tx.

We can roughly estimate the contribution of these couplings to the running value of

m2
η by a one-step integration assuming mSUGRA-like GUT conditions (see section 2.8) to

∆m2
η ' −

1

4π2
Tr(YxY

†
x )(3m2

0 +A2
0) log

(
MGUT

MSUSY

)
(2.25)

with Tx ' A0Yx. Therefore, we expect that large values of m0 and A0 will be preferred,

implying heavy sfermions. Moreover, tanβ′ has to be small and of O(1) in order to get a

small denominator in the second term of eq. 2.24. One last comment concerning the effect

of gauge kinetic mixing: gY B is always negative below the GUT scale if it is zero at the

GUT scale as can be seen by the following: for vanishing off-diagonal gauge couplings, the

β-functions eqs. (B.17) and (B.16) will always be positive, i.e. gBY and gY B are driven

negative. Using eq. (2.13), one can see that this also drives g̃ negative. Therefore, the

second term will give a positive contribution. From this point of view, one might expect

that small m0 for given tanβ′ would be sufficient to get the same size of |µ′|. However, as

can been seen in figure 1, where we plot the tree-level value of µ′ in the (m0, tanβ′)-plane for

the cases with and without kinetic mixing, the opposite effect takes place. The reason is the

contribution of the kinetic mixing to the evaluation of m2
η and m2

η̄. One can also see in this

figure that the upper limit of tanβ′ for a given value of m0 decreases with increasing MZ′

as expected. Even if one might get the impression from this figure that the effects of kinetic

mixing are in general small as they slightly shift the region where breaking of U(1)B−L can

occur, it will be shown later that it can have a significant impact on the masses.

For the numerical results we include one-loop corrections to eqs. (2.16)–(2.23) as well

as for all masses. This is done by using the DR scheme and extending the MSSM results

given in ref. [26] in a similar manner to the NMSSM case discussed in ref. [27]. We

denote the one-loop contributions to the tadpole equations (2.16)–(2.19) by δt
(1)
i . The

requirement of keeping the values of tanβ and tanβ′ after including the loop corrections

as well as the conditions

ti + δt
(1)
i = 0 for i = d, u, η, η̄ (2.26)

lead to shifts of µ, Bµ, µ′ and Bµ′ compared to the values obtained by eqs. (2.20)–(2.23).

2.4 Gauge boson mixing

Due to the presence of the kinetic mixing terms, the B′ boson mixes at tree level with

the B and W 3 bosons. Requiring the conditions of eqs. (2.11)–(2.14) means that the

– 7 –
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Figure 1. Contour plots of µ′ at tree-level in the (m0, tanβ′)-plane for MZ′ = 2000 GeV (left) and

MZ′ = 4000 GeV (right). The other parameters are M1/2 = 0.5 TeV, tan(β) = 10, A0 = 1.5 TeV,

Yx,ii = 0.42. The full lines correspond to the case including gauge kinetic mixing, the dashed lines

are without kinetic mixing.

corresponding mass matrix reads, in the basis (B,W 3, B′), 1
4g

2
1v

2 −1
4g1g2v

2 1
4g1g̃v

2

−1
4g1g2v

2 1
4g

2
2v

2 −1
4 g̃g2v

2

1
4g1g̃v

2 −1
4 g̃g2v

2
(
g2
BLx

2 + 1
4 g̃

2v2
)
 (2.27)

In the limit g̃ → 0 both sectors decouple and the upper 2 × 2 block is just the standard

mass matrix of the neutral gauge bosons in EWSB. This mass matrix can be diagonalized

by a unitary mixing matrix to get the physical mass eigenstates γ, Z and Z ′. The rotation

matrix can be expressed by two mixing angles ΘW and Θ′W as B

W

B′

 =

 cos ΘW cos Θ′W sin ΘW − sin ΘW sin Θ′W
sin ΘW − cos ΘW cos Θ′W cos ΘW sin Θ′W

0 sin Θ′W cos Θ′W


 γ

Z

Z ′

 (2.28)

The third angle is zero due to the special form of this matrix. Θ′W can be approximated

by [28]

tan 2Θ′W '
2g̃
√
g2

1 + g2
2

g̃2 + 16
(
x
v

)2
g2
BL − g2

2 − g2
1

(2.29)

The exact eigenvalues of eq. (2.27) are given by

Mγ = 0 (2.30)

M2
Z,Z′ =

1

8

(
(g2

1 + g2
2 + g̃2)v2 + 4g2

BLx
2∓√

(g2
1 + g2

2 + g̃2)2v4 − 8(g2
1 + g2

2)g2
BLv

2x2 + 16g2
BLx

4
)

(2.31)
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Expanding these formulas in powers of v2/x2, we find up to first order:

M2
Z =

1

4

(
g2

1 + g2
2

)
v2 , M2

Z′ = g2
BLx

2 +
1

4
g̃2v2 (2.32)

All parameters in eqs. (2.16)–(2.19) as well as in the following mass matrices are understood

as running parameters at a given renormalization scale Q. Note that the vevs vd and vu
are obtained from the running mass MZ(Q) of the Z boson, which is related to the pole

mass MZ through

M2
Z(Q) =

g2
1 + g2

2

4
(v2
u + v2

d) = M2
Z + Re

{
ΠT
ZZ(M2

Z)
}
. (2.33)

Here, ΠT
ZZ is the transverse self-energy of the Z. See ref. [26] for more details.

The mass of an additional vector boson as well as its mixing with the SM Z boson,

which implies for example a deviation of the fermion couplings to the Z boson compared

to SM expectations, is severely constrainted by precision measurements from the LEP

experiments [29–31]. The bounds are on both the mass of the Z ′ and the mixing with the

standard Z boson, where the latter is constrained by | sin(ΘW ′) < 0.0002|. Using eq. (2.29)

together with eq. (2.32) as well as the values of the running gauge couplings, a limit on

the Z ′ mass of about 1.2 TeV is obtained. Taking in addition the bounds obtained from U ,

T and S parameters into account [32] one gets
MZ′

QB−Le gB−L
> 7.1 TeV which for gBL ' 0.52

implies MZ′ >∼ 1.8 TeV. Therefore we have taken always MZ′ ≥ 2 TeV. In this way we have

also satisfied the most recent bounds obtained by the ATLAS and CMS [33].

2.5 The Higgs sector

In this section we present the tree-level formulas for the Higgs sector and we briefly discuss

the main steps to include the one-loop corrections. The one-loop formulas and further

details will be presented elsewhere [34].

2.5.1 Pseudoscalar Higgs bosons

It turns out that in this sector there is no mixing between the SU(2) doublets and the

bileptons at tree level and we obtain in the basis (φd, φu, φη, φη̄):

m2
A,T =


Bµ tanβ Bµ 0 0

Bµ Bµ cotβ 0 0

0 0 Bµ′ tanβ′ Bµ′

0 0 Bµ′ Bµ′ cotβ′

 . (2.34)

Obviously, both sectors decouple at tree level. This is a consequence of the fact that

we assume that there is no CP violation in the Higgs sector, so the different D-term

contributions cancel exactly. One obtains two physical states A0 and A0
η with masses

m2
A0 =

2Bµ
sin 2β

, m2
A0
η

=
2Bµ′

sin 2β′
. (2.35)

A more detailed study of the pseudoscalar sector at one-loop, including the question if the

block-diagonal form of the mass matrix in eq. (2.34) can be maintained at higher order,

goes beyond the scope of this work and will be presented elsewhere [34].
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2.5.2 Scalar Higgs bosons

In the scalar sector the gauge kinetic terms do induce a mixing between the SU(2) dou-

blet Higgs fields and the bileptons. The mass matrix reads at tree level in the basis

(σd, σu, ση, ση̄):

m2
h,T = (2.36)
m2
A0s

2
β + ḡ2v2

u −m2
A0cβsβ−ḡ2vdvu

g̃gBL
2 vdvη − g̃gBL

2 vdvη̄

−m2
A0cβsβ − ḡ2vdvu m2

A0c
2
β + ḡ2v2

d − g̃gBL
2 vuvη

g̃gBL
2 vuvη̄

g̃gBL
2 vdvη − g̃gBL

2 vuvη m2
A0
η
c2
β′ + g2

BLv
2
η −m2

A0
η
cβ′sβ′−g2

BLvηvη̄

− g̃gBL
2 vdvη̄

g̃gBL
2 vuvη̄ −m2

A0
η
cβ′sβ′−g2

BLvηvη̄ m2
A0
η
s2
β′ + g2

BLv
2
η̄


where we have defined ḡ2 = 1

4(g2
1 + g2

2 + g̃2), cx = cos(x) and sx = sin(x) (x = β, β′).
The one-loop corrections are included by calculating the real part of the poles of the

corresponding propagator matrices [26, 34]

Det
[
p2
i1−m2

h,1L(p2)
]

= 0, (2.37)

where

m2
h,1L(p2) = m2,h

T −Πhh(p2). (2.38)

Equation (2.37) has to be solved for each eigenvalue p2 = m2
i which can be achieved in an

iterative procedure.

2.5.3 The charged Higgs boson

At the tree level one finds that the charged Higgs boson mass has exactly the same form

as in the MSSM:

m2
H+ = m2

A0 +m2
W (2.39)

However, for the one-loop corrections one obtains additional contributions due to the kinetic

gauge mixing [34].

2.6 Neutralinos

In the neutralino sector we find that the gauge kinetic effects lead to a mixing between the

usual MSSM neutralinos with the additional states, similar to the mixing in the CP-even

Higgs sector. In other words, were these to be neglected, both sectors would decouple. The

mass matrix reads in the basis
(
λB̃, W̃

0, H̃0
d , H̃

0
u, λB̃′ , η̃, ˜̄η

)

mχ̃0 =



M1 0 −1
2g1vd

1
2g1vu

1
2MBB′ 0 0

0 M2
1
2g2vd −1

2g2vu 0 0 0

−1
2g1vd

1
2g2vd 0 −µ −1

2 g̃vd 0 0
1
2g1vu −1

2g2vu −µ 0 1
2 g̃vu 0 0

1
2MBB′ 0 −1

2 g̃vd
1
2 g̃vu MB −gBLvη gBLvη̄

0 0 0 0 −gBLvη 0 −µ′
0 0 0 0 gBLvη̄ −µ′ 0


(2.40)
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It is well known that for real parameters such a matrix can be diagonalized by an orthogonal

mixing matrix N such that N∗M χ̃0

T N † is diagonal. For complex parameters one has to

diagonalize M χ̃0

T (M χ̃0

T )†. We obtain, in a straightforward generalization of the formulas

given in [26], at the one-loop level

M χ̃0

1L(p2
i ) = M χ̃0

T −
1

2

[
Σ0
S(p2

i ) + Σ0,T
S (p2

i ) +
(

Σ0,T
L (p2

i ) + Σ0
R(p2

i )
)
M χ̃0

T

+M χ̃0

T

(
Σ0,T
R (p2

i ) + Σ0
L(p2

i )
)]
, (2.41)

where we have denoted the wave-function corrections by Σ0
R, Σ0

L and the direct one-loop

contribution to the mass by Σ0
S .

In this model, for the chosen boundary conditions, the lightest supersymmetric particle

(LSP), and therefore the dark matter candidate, is always either the lightest neutralino

or the lightest sneutrino. The reason is that m0 must be very heavy in order to solve the

tadpole equations, and therefore all sfermions are heavier than the lightest neutralino, with

the possible exception of the sneutrinos. As described in section 2.7 below, the splitting

of the CP-even and CP-odd components of the sneutrinos can be very large, pushing the

mass of the lighter eigenstate down even to the point of being lighter than the lightest

neutralino. However, we have chosen to leave the investigation of such a scenario to future

work, and we take only points with neutralino LSPs as our benchmark scenarios. Before

leaving this topic, we note that BLV has a lightest sneutrino that is almost as light as the

lightest neutralino. A neutralino LSP is in general a mixture of all seven gauge eigenstates.

However, normally the character is dominated by only one or two constituents. In that

context, we can distinguish the following extreme cases:

1. M1 �M2, µ,MB, µ
′: Bino-like LSP

2. M2 �M1, µ,MB, µ
′: Wino-like LSP

3. µ�M1,M2,MB, µ
′: Higgsino-like LSP

4. MB �M1,M2, µ, µ
′: BLino-like LSP

5. µ′ �M1,M2, µ,MB: Bileptino-like LSP

In addition, we will summarize the Bino- and Wino-like states, i.e. the states built by the

gauginos of the MSSM, in the following often by ‘gaugino-like’. Note that this doesn’t

include the BLino, the gaugino of the B − L sector.

Although the gauge kinetic effects do lead to sizable effects in the spectrum, they are

not large enough to lead to a large mixing between the usual MSSM-like states and the

new ones. Therefore, we find that the LSP is either mainly a MSSM-like state or mainly

an admixture between the BLino and the bileptinos. A discussion of the parameter space

where the different characters appear is given in section 3.4.
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2.7 Charginos and sfermions

For completeness we also give a short summary of the other sectors of the model. The

chargino mass matrix at tree level is exactly the same as for the MSSM:

M χ̃+

T =

(
M2

1√
2
g2vu

1√
2
g2vd µ

)
. (2.42)

This mass matrix is diagonalized by a biunitary transformation such that U∗M χ̃+

T V †

is diagonal. The matrices U and V are obtained by diagonalizing M χ̃+

T (M χ̃+

T )† and

(M χ̃+

T )∗(M χ̃+

T )T , respectively. At the one-loop level, one has to add the self-energies [26]

M χ̃+

1L (p2
i ) = M χ̃+

T − Σ+
S (p2

i )− Σ+
R(p2

i )M
χ̃+

T −M χ̃+

T Σ+
L (p2

i ). (2.43)

The mass matrices for the squarks and the charged sleptons are given in appendix A. At

tree level, the differences compared to the MSSM are the additional D-terms in the diagonal

entries. All complex scalar mass matrices are diagonalized by an unitary matrix Z

Zφm
2
φZ
†
φ = m2

φ,diag. (2.44)

The corresponding mass matrices at the one-loop level are again obtained by taking into

account the self-energy according to

m2,φ
1L (p2

i ) = m2,φ
T −Πφφ(p2

i ), (2.45)

and the one-loop masses are obtained by calculating the poles of the real part of the

propagator matrix.

We focus here on the sneutrino sector as it shows two distinct features compared to

the MSSM. Firstly, it gets enlarged by the additional superpartners of the right-handed

neutrinos. Secondly, even more drastically, a splitting between the real and imaginary parts

of the sneutrino occurs resulting in twelve states: six scalar sneutrinos and six pseudoscalar

ones [35, 36]. The origin of this splitting is the Y ij
x ν̂i η̂ ν̂j in the superpotential, eq. (2.1),

which is a ∆L = 2 operator. Therefore, we define

ν̃iL =
1√
2

(
σiL + iφiL

)
ν̃iR =

1√
2

(
σiR + iφiR

)
(2.46)

The 6×6 mass matrices of the CP-even (m2
νR

) and CP-odd (m2
νI

) sneutrinos can be written

in the basis (σL, σR) respectively (φL, φR) as

m2
νR = <

(
mR
LL mR,T

RL

mR
RL mR

RR

)
, m2

νI = <
(
mI
LL mI,T

RL

mI
RL m

I
RR

)
. (2.47)
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While mI
LL = mR

LL = mLL holds, the entries involving right-handed sneutrinos differ by a

few signs. It is possible to express them in a compact form by

mLL =
1

8

(
1
((
g2

1 + g2
2 + g̃2

)(
− v2

u + v2
d

)
+ g̃gB

(
− 2v2

η̄ + 2v2
η − v2

u + v2
d

)
+ 2g2

B

(
− v2

η̄ + v2
η

))
+ 8m2

l + 4v2
uYνY

†
ν

)
(2.48)

mR,I
RL =

1

4

(
− 2
√

2vdµY
†
ν + vu

(
2
√

2T Tν ± 4vηYxY
†
ν

))
(2.49)

mR,I
RR =

1

8

(
1
(

2g2
B(v2

η̄ − v2
η)− g̃gB

(
− v2

u + v2
d

))
+ 8m2

ν + 2vη̄

(
∓ 4
√

2Yxµ
′∗
)

+ 4v2
uY

T
ν Y

∗
ν + 2vη

(
± 4
√

2Tx + 8vηYxY
∗
x

))
(2.50)

The upper signs correspond to the scalars and the lower ones to pseudoscalars and we

have assumed CP conservation. In the case of complex trilinear couplings or µ-terms, a

mixing between the scalar and pseudoscalar particles occurs, resulting in 12 mixed states

and consequently in a 12× 12 mass matrix. It particular the term ∼ vη̄Yxµ′∗ is potentially

large and induces a large mass splitting between the scalar and pseudoscalar states. Also

the corresponding soft SUSY-breaking term ∼ vηTx can lead to a sizable mass splitting in

the case of large |A0|. As a side-remark we note that in such a case also the determinant

of this matrix could become negative indicating the breaking of R-parity in a somewhat

different way compared to the discussion in ref. [7]. However, here we will concentrate on

the R-parity conserving case and discuss R-parity violation elsewhere [21].

2.8 Boundary conditions at the GUT scale

We will consider in the following a scenario motivated by minimal supergravity. This means

that we assume a GUT unification of all soft SUSY-breaking scalar masses as well as a

unification of all gaugino mass parameters

m2
0 =m2

Hd
= m2

Hu = m2
η = m2

η̄ (2.51)

m2
0δij =m2

Dδij = m2
Uδij = m2

Qδij = m2
Eδij = m2

Lδij = m2
νδij (2.52)

M1/2 =M1 = M2 = M3 = MB̃′ (2.53)

Also, for the trilinear soft SUSY-breaking coupling, the ordinary mSUGRA conditions

are assumed

Ti = A0Yi, i = e, d, u, x, ν . (2.54)

We do not fix the parameters µ,Bµ, µ
′ and Bµ′ at the GUT scale but determine them

from the tadpole equations. The reason is that they do not enter the RGEs of the other

parameters and thus can be treated independently. The corresponding formulas are given

in section 2.3.

In addition, we consider the mass of the Z ′ and tanβ′ as inputs and use the following

set of free parameters

m0, M1/2, A0, tanβ, tanβ′, sign(µ), sign(µ′), MZ′ , Yx and Yν . (2.55)
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Figure 2. One-loop evaluation of the gauge couplings (left) and gaugino mass parameters (right)

associated with the Abelian gauge groups. Blue color is used for gY Y & MBB , black for gBB
& MB′B′ , dashed black for gY B & MBB′ and dashed blue for gBY . The evolution of the two

off-diagonal couplings hardly differs and thus the two lines nearly match.

Yν is constrained by neutrino data and must therefore be very small in comparison to the

other couplings; thus it can be neglected in the following. Yx can always be taken diagonal

and thus effectively we have 9 free parameters and two signs.

Furthermore, we assume that there are no off-diagonal gauge couplings or gaugino

mass parameters present at the GUT scale

gBY = gY B = 0 (2.56)

MBB′ = 0 (2.57)

This choice is motivated by the possibility that the two Abelian groups are a remnant of

a larger product group which gets broken at the GUT scale as stated in the introduction.

In that case gY Y and gBB correspond to the physical couplings g1 and gBL, for which we

assume a unification with g2:

gGUT
1 = gGUT

2 = gBL . (2.58)

where we have already taken into account the correct GUT normalization as discussed

in section 2.2. In figure 2 we display the running of the gauge couplings and gaugino

parameters in the Abelian sector to demonstrate the effect of the gauge kinetic mixing.

The GUT scale has been set to 2 · 1016 GeV where we have fixed gY Y = gBB = 0.72 and

MBB = MB′B′ = 200 GeV. All off-diagonal parameters have been set to zero. Note that

in particular MBB′ becomes sizable at the electroweak scale.

3 Numerical results

All analytic expressions for masses, vertices, RGEs as well as one-loop corrections to the

masses and tadpoles were calculated using the SARAH package [37–39]. For the generic

expressions, those of ref. [40] are used in the most general form respecting the complete

flavour structure. In addition, gauge kinetic mixing effects in the RGEs are included using

the extensions of ref. [22]. The loop corrections to all masses as well as to the tadpoles are

derived in DR scheme and the ’t Hooft gauge.
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The numerical evaluation of the model is very similar to that of the default implemen-

tation of the MSSM in SPheno [41, 42]: as the starting point, the SM gauge and Yukawa

couplings are determined using one-loop relations as given in ref. [26] which are extended

to our model. The vacuum expectation values vd and vu are calculated with respect to the

given value of tanβ at MZ , while vη and vη̄ are derived from the input values of MZ′ and

tanβ′ at the SUSY scale.

The RGEs for the gauge and Yukawa couplings are evaluated up to the SUSY scale,

where the input values of Yν and Yx are set. Afterwards, a further evaluation of the RGEs

up to the GUT scale takes place. After setting the boundary conditions all parameters

are evaluated back to the SUSY scale. There, the one-loop-corrected SUSY masses are

calculated using on-shell external momenta. These steps are iterated until the relative

change of all masses between two iterations is below 10−4.

3.1 Benchmark points

For the numerical analysis in the following we have chosen five points in the constrained

parameter space which have distinct features. An overview of these points is given in

table 2. A typical feature is that m0 has to be in the TeV range to be consistent with the

existing bounds on the Z ′-mass.

BLI provides a neutralino LSP similar to the MSSM and also the lightest scalar Higgs

is very similar to that of the MSSM and serves mainly to exemplify technical details. BLII

demonstrates that it is possible to increase the Higgs mass of the MSSM-like light Higgs

boson through a mixing with the new B−L fields. BLIII has an LSP with a large Higgsino

fraction that is difficult to reach within the MSSM. BLIV and BLV show two new dark

matter candidates: a BLino and a bileptino LSP.

We have also chosen points which lead to SM-like Higgs masses in the preferred range

of 123-126 GeV [43, 44]. As we will show in the following, the extended Higgs sector has

an impact also on the MSSM Higgs masses. For instance, using the CMSSM parameters

of BLI, the light Higgs would have a mass of 122.2 GeV, i.e. 1.5 GeV lighter. However,

this effect will be smaller for points like BLIII or BLIV for which a larger mass splitting

between the Higgs fields of both sectors is present. In this case, the light Higgs mass in

the BLSSM agrees with that of the MSSM for the same parameters. One can also see that

the branching ratios to two photons are always larger than in the SM except for BLIV,

where the additional neutralinos are so light that Br(h → χ̃0
1χ̃

0
1) = 43.6%. This feature

significantly softens, of course, the bounds on the Higgs mass.

3.2 Precision of the mass calculation: the impact of kinetic mixing

Before we take a closer look on the Higgs and neutralino sector, we want to comment on

the precision of the mass calculation. As already mentioned, we use two-loop RGEs and

one-loop corrections to the masses. In addition, we take the feature of kinetic mixing into

account which is often neglected in literature. To show the importance of the kinetic mixing

and to compare the resulting mass spectrum of the B−L model with the MSSM, we show

in table 3 the masses calculated at the one-loop level using one- or two-loop RGEs. For
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BLI BLII BLIII BLIV BLV

Bino LSP
Light

Higgs
Higgsino

LSP

BLino

LSP

Bileptino

LSP

Input

m0 [GeV] 1000 600 3500 3000 1000

M1/2 [GeV] 1200 1400 1000 2500 1500

tanβ 10 20 46 40 20

sign(µ) 1 1 1 1 1

A0 [GeV] -1000 -1000 0 1500 -1500

sign(µ′) 1 1 1 1 1

tanβ′ 1.07 1.055 1.34 1.20 1.15

MZ′ [GeV] 3000 2750 3600 2000 2500

Yx,11 0.41 0.43 0.42 0.42 0.37

Yx,22 0.41 0.43 0.42 0.42 0.40

Yx,33 0.41 0.43 0.36 0.42 0.40

CP-even Higgs sector

mh1
[GeV] 110.1 14.7 122.9 124.1 123.9

mh2 [GeV] 124.2 123.6 849.2 273.9 208.1

mh3 [GeV] 1934.3 1877.3 2042.3 3008.7 2165.0

mh4
[GeV] 4044.1 3414.5 5914.8 6830.5 3007.8

|ZH13|2 + |ZH14|2 0.8471 0.9978 0.0002 0.0046 0.0026

|ZH23|2 + |ZH24|2 0.1529 0.0022 0.9998 0.9954 0.9973

Γ(hSM ) [MeV] 2.22 2.47 2.43 4.15 2.47

Br(hSM → γγ) · 10−3 4.13 4.29 4.28 2.61 4.34

Neutralino sector

mχ̃0
1

[GeV] 583.3 681.1 461.6 22.3 678.0

mχ̃0
2

[GeV] 987.0 1150.9 501.8 1284.0 735.1

mχ̃0
3

[GeV] 1501.0 1222.6 525.9 2025.9 1241.9

mχ̃0
4

[GeV] 1508.0 1688.0 863.3 2063.0 1827.0

mχ̃0
5

[GeV] 1673.3 1694.0 1783.9 2148.0 1867.5

mχ̃0
6

[GeV] 1967.0 1845.4 2672.5 3876.5 1871.5

mχ̃0
7

[GeV] 4139.3 3651.5 4876.2 4897.9 3131.4

|ZN11|2 + |ZN12|2 0.9975 0.9975 0.4441 0.0137 O(10−5)

|ZN13|2 + |ZN14|2 0.0017 0.0013 0.5558 O(10−6) O(10−7)

|ZN15|2 O(10−5) O(10−5) O(10−5) 0.7770 0.0032

|ZN16|2 + |ZN17|2 0.0007 0.0012 0.0001 0.2092 0.9967

Table 2. Points with distinct features: BLI is similar to the MSSM with a bino LSP, BLII provides

a very light, bilepton-like Higgs boson, BLIII has a very large Higgsino fraction, BLIV has a BLino

LSP and sizable mixing between the doublets and bileptons in the Higgs sector, and BLV has a

bileptino LSP. hSM denotes the Higgs field which is most similar to the SM Higgs particle.
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an easier comparison of the various effects, we fix the gauge the GUT scale to 2 · 1016 GeV

and the gauge couplings at the GUT scale to g1 = g2 = g3 = gBL = 0.72.

It can be seen that the most pronounced differences are in the neutralino and Higgs

sectors. In case of sfermions and the heavier Higgs bosons the differences between the

MSSM and BLSSM particle spectrum are about 1-2 percent and thus relatively small.

They are larger in the charged slepton sector since here the additional U(1)B−L leads to

larger effects. The main reason for the smallness of the differences is the required largeness

of m0. Moreover, the D-term effects due to the extra U(1)B−L are also small as tanβ′

is close to 1. In the sneutrino sector the scalar and pseudoscalar particles behave quite

differently: while the mass shifts in the pseudoscalar sector are rather moderate, the masses

of the scalars change by more than 100 GeV. The cause for this is a partial cancellation

for the given parameter point between the large positive terms in eq. (2.50), m2
ν + vηYxY

∗
x ,

and the large negative term −4
√

2Yxµ
′∗ which is very sensitive to the exact values of

all parameters at the SUSY scale. This also implies that kinetic mixing is particularly

important for this sector and could even trigger R-parity violation [21].

In this table we also demonstrate that neglecting the gauge kinetic effects can have

dramatic effects in the extended Higgs sector: the mass of h2 state would be predicted to

be about 20% larger.

Also in the neutralino sector there is quite some impact for the LSP masses which would

be wrong by about 10% if gauge kinetic terms were to be neglected. But also the properties

of the lightest Higgs particle can change: we show in figure 4 a comparison between the

mass and bilepton fraction of the lightest with and without kinetic mixing. It can be seen

that the masses are clearly shifted while, of course, there is also huge difference of several

orders in the bilepton fraction between both cases. While the bilepton contribution for

MSSM-like scalars in the case without kinetic mixing is solely based on the mixing at

one-loop level, the off-diagonal gauge couplings introduce already a tree-level mixing.

We turn now to to the neutralino sector. When the lightest neutralino is bino- or

Higgsino-like in this model, it shares the common features of the analogous neutralino

in the MSSM. However, the masses differ at the SUSY scale for the same GUT scale

parameters mainly as a consequence of gauge kinetic mixing in the gaugino sector which in

our example amounts to shift of about 10 per-cent. This effect is especially important in the

case of a bino LSP because the off-diagonal gaugino mass parameter MBB′ can easily reach

values of O(−50 GeV) (for M1/2 ' 200 GeV) or even O(−150 GeV) (for M1/2 ' 1000 GeV).

For this purpose, we depict in the left column of figure 5 the mass of the lightest neutralino

in the (m0,M1/2)-plane as well the BLino fraction. To point out again the importance of

kinetic mixing, we show the same plots in the right column of figure 5 without the kinetic

mixing. A shift of masses is clearly visible and also the admixture differs by several orders.

The other parameters are the same as for figure 4.

For completeness we note that the differences between tree-level masses and loop-

corrected masses are of similar size for the MSSM particles. The right-handed sneutrinos

receive somewhat larger loop corrections of about 3-4 per-cent compared to a few per-mille

for the left-handed sneutrinos. However, interesting effects in the Higgs and neutralino

sector can happen which we discuss in the next subsections.
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particle MSSM1L B − L 1L
NKM B − L 1L

KM MSSM2L B-L2L
NKM B-L2L

KM

d̃1 2280.8 2272.6 2273.2 2244.7 2234.6 2235.3

d̃2 2429.8 2442.3 2449.9 2403.4 2414.7 2421.8

d̃3,4 2445.5 2457.9 2465.5 2418.7 2430.0 2437.0

d̃5,6 2570.9 2563.2 2564.2 2519.4 2509.7 2510.9

ũ1 1832.5 1848.5 1834.0 1828.7 1842.4 1828.9

ũ2 2301.3 2294.1 2294.2 2266.7 2257.8 2258.1

ũ3,4 2459.3 2471.4 2461.3 2428.9 2439.1 2429.6

ũ5,6 2569.7 2561.9 2563.0 2518.2 2508.5 2509.7

ẽ1 1087.2 1064.3 1056.3 1078.1 1043.4 1040.9

ẽ2,3 1103.1 1080.4 1072.9 1093.8 1059.4 1057.3

ẽ4 1287.6 1379.7 1356.1 1259.9 1345.3 1323.6

ẽ5,6 1293.4 1385.5 1362.1 1265.6 1351.0 1329.4

ν̃R1,2,3 - 848.6 698.8 - 944.3 809.1

ν̃R4 - 1376.7 1353.1 - 1342.2 1320.4

ν̃R5,6 - 1382.9 1359.5 - 1348.3 1326.7

ν̃
(I)
1 1284.2 1376.7 1353.1 1256.3 1342.2 1320.4

ν̃
(I)
2,3 1290.6 1382.9 1359.5 1262.8 1348.3 1326.7

ν̃I4,5,6 - 3321.5 3220.8 - 3307.8 3205.0

h1 121.9 121.6 123.3 122.1 121.8 110.1

h2 - 127.2 102.2 - 130.9 124.2

h3 1937.0 1934.1 1920.4 1952.2 1948.3 1934.3

h4 - 4111.0 4109.3 - 4045.4 4044.1

A0 1937.5 1936.1 1922.3 1952.6 1950.2 1936.2

A0
η - 2829.0 2820.3 - 2733.9 2725.5

H+ 1941.0 1938.2 1924.4 1956.1 1952.3 1938.3

g̃ 2669.9 2670.2 2670.2 2602.1 2600.9 2600.7

ν4,5,6 - 1046.9 1046.5 - 987.6 987.2

χ̃+
1 1046.3 1477.5 1467.4 988.5 1518.4 1508.2

χ̃+
2 1480.7 3023.5 3020.4 1522.6 3023.2 3020.1

χ̃0
1 550.3 550.3 598.4 534.8 533.9 583.3

χ̃0
2 1046.2 1046.8 1046.3 988.3 987.4 987.0

χ̃0
3 1472.2 1468.9 1458.4 1515.7 1511.6 1501.0

χ̃0
4 1480.5 1477.3 1467.3 1522.3 1518.2 1508.0

χ̃0
5 - 1749.0 1729.0 - 1695.2 1673.3

χ̃0
6 - 1959.6 1947.5 - 1978.0 1966.9

χ̃0
7 - 4175.5 4183.5 - 4131.2 4139.3

Table 3. Comparison of mass spectrum in the MSSM and the BLSSM for input parameters BLI

of table 2. We give the masses for one- and two-loop RGE-evaluations. In addition, we include a

comparison of the case of properly taking into account gauge kinetic mixing (KM) versus neglecting

it (NKM).
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Figure 3. Spectrum of BLII (upper left figure), BLIII (upper right figure), BLIV (lower left figure)

and BLV (lower right figure). All masses are given in GeV. The masses of the neutralinos and

scalar Higgs fields are also given in table 2.

3.3 The Higgs sector

In this section we concentrate on the Higgs sector and discuss new phenomenological aspects

arising in the B − L model. In figure 6 we show the lightest scalar Higgs mass in the

(m0,M1/2)-plane. In addition, we give the bilepton fraction. The other input values are

the same as for BLI. The nature of the second lightest Higgs is roughly complementary to

the lightest one with respect to the ratio of the bilepton nature versus the Higgs doublet

nature. The reason is that the mixing between the light states with the two heavy states,

which have masses above a TeV, is quite small. Note that the complete region shown is

compatible with recent LHC data even though the mass of the second lightest Higgs boson

is in most parts above 140 GeV, as it is mainly a bilepton with a small production cross

section at the LHC.

Close to the border of the allowed regions in the (m0,M1/2)-plane, the lightest Higgs

particles become bilepton-like. Not only can this be observed for a variation of m0 and

M1/2 but also by adjusting tanβ′, as shown in figure 7 where we have fixed m0 = 1000 GeV

and M1/2 = 500 GeV. To understand this behavior we neglect gauge kinetic mixing for

simplicity as then the bilepton sector decouples from the MSSM Higgs bosons. In this limit

we obtain at tree level a similar formula for masses as for the MSSM Higgs bosons:

m2
1,2 =

1

2

(
m2
Z′ +m2

A0
η
∓
√

(m2
Z′ +m2

A0
η
)2 − 4m2

Z′m
2
A0
η

cos2(2β′)
)

(3.1)
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Figure 4. Mass of the lightest Higgs (first row) and the logarithm of the bilepton fraction of the

lightest Higgs (second row). The other parameters are those of BLI. First left: with kinetic mixing,

right: without kinetic mixing.

Equations (2.23) and (2.34) imply that for fixed MZ′ , m
2
A0
η

shows a sizable dependence

on tanβ′. We checked that very light bilepton-like Higgs scalars are not ruled out by

experimental data using HiggsBounds 3.6.1beta [45, 46]. However, the mixing between

the bilepton and the MSSM-like Higgs is rather small and thus the branching ratio h2 →
h1h1 is at most a few per-cent. Therefore, the main decay channels of the doublet Higgs

are still SM final states and the well-known bounds do hold. However, as can be seen also

in figure 7, the mass of the MSSM-like Higgs bosons gets pushed to larger values for very

light bilepton scalars. Such a behavior has already been observed in the literature when

considering models with extended gauge symmetries [47–52].

In figure 8 we take the point BLII and vary m0 and M1/2. We see that there is a sizable

region where the lightest Higgs, being essentially a bilepton, has a mass of less than half of
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Figure 5. The (m0,M1/2) plane for a bino-LSP with kinetic mixing (left) and without (right). First

row: mass of lightest neutralino. Second row: BLino fraction. The other parameters correspond to

point BLI.

the second lightest, which is mainly like the MSSM h0. Even though the bilepton has only

a small admixture of the doublet Higgs bosons, it is large enough to determine its main

decay properties, which are mainly SM-like with respect to its decay into SM fermions.

Loop corrections. Concerning the loop-corrections in the Higgs sector, the picture is

often comparable with the MSSM: the lightest two Higgs bosons receive very large correc-

tions. These are even larger for the chosen BLSSM point than in the MSSM. For the heavy

doublet scalar as well as the charged and MSSM-like pseudoscalar Higgs, the differences be-

tween tree-level and one-loop masses are rather small and of the same size as in the MSSM.

The neutrino Yukawa couplings don’t play any role in this context because the correct ex-

planation of neutrino data requires them to be very small. However, there are sizable loop

corrections due to the large Yx couplings similar to the top-stop contributions to the lighter
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Figure 6. Mass of the lightest Higgs (first row on the left) and the second lightest Higgs (first row

on the right), the logarithm of the bilepton fraction of the lightest Higgs (second row on the left) as

well as the bounds from Higgs searches (second row on the right) in the (m0,M1/2)-plane. For the

Higgs search the saturation of the tightest bound as calculated by HiggsBounds is shown. While

the blue is still consistent with all data, the red area is excluded. The most stringent channels are

e+e− → Zh1,2, h1,2 → bb̄ and pp→ h1,2 →W+W−. The other parameters are as for point BLI.

MSSM-Higgs. For example, in the case of the BLIV scenario, mh2 gets shifted from about

252 GeV at tree level to about 210 GeV at the one-loop level. This is a consequence of the

mass hierarchy between fermions and bosons in the extended gauge/Higgs sector.

For completeness we note that in the Higgs sector one finds that the mass of the

bilepton-like Higgs field vanishes at tree level in the limit tanβ′ → 1. Note, however, that

tanβ′ = 1 is a saddle point and not a minimum of the tree-level potential. This in turn

implies that the loop corrections will be large compared to the tree level similar to as it is

in the MSSM when considering there the limit tanβ → 1. We explicitly demonstrate this

in figure 9 where we compare the tree-level and one-loop masses of the two lightest Higgs
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Figure 7. a) Masses of two lightest scalars. b) Doublet (dashed blue) and bilepton (black) fraction

of lightest higgs as function of tanβ′. The other input parameters are as for point BLII, but with

m0 = 2M1/2 = 1 TeV.

fields, fixing the input parameters as in point BLII but varying tanβ′. This behavior is also

reflected in the values of µ calculated from the one-loop and tree-level tadpole equations

as shown in the right plot of figure 9. It can be understood from eq. (2.20): compared to

cos(2β′), all parameters and the one-loop corrections show only a very mild dependence

on β′ as tanβ′ has to be close to one. Therefore, the one-loop correction to the tadpole

equation can be included in the first term and effectively be absorbed in a redefintion of

β′, denoted by β̃′, using the equation g̃gBLx
2 cos(2β′) + 4(δtu−δtd)

sec(2β) = g̃gBLx
2 cos(2β̃′) with

a shifted β̃′.
In figure 10 we show the masses of the two lightest Higgs fields for BLI with a variation

of MZ′ . As expected the tree-level and one-loop mass of the lightest Higgs, which consists

mainly of the SU(2) doublet, is nearly independent of MZ′ . In contrast to that, the

tree-level mass of the bilepton-like Higgs depends strongly on MZ′ . Furthermore, the one-

loop corrections can be nearly of the order known from the MSSM for the doublet Higgs

depending on the mass of the Z ′. Also the sign of the correction can change depending on

the mass ordering of Z ′ and the BLino-like neutralino.

3.4 The neutralino sector

Similarly to how it is in the CMSSM, the lightest neutralino is often bino-like and the

main difference is, in this case, that the relation between the parameters at different scales

gets changed due to the gauge kinetic mixing. Note that this holds even though the soft

SUSY-breaking gaugino mass term MB′ is always smaller than M1, because, at one-loop

level and without kinetic mixing, the relation

M1/2

g2
GUT

=
M1

g2
Y

=
MB′

g2
BL

(3.2)

would hold and gBL is always smaller than gY if unification at the GUT scale is assumed, as

can be seen in eq. (2.7). However, usually there is a large mixing between the BLino with

the bileptinos, leading to heavy states. However, we will demonstrate that nevertheless

regions exist where the lightest neutralino is BLino- or even bileptino-like. Therefore, a
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Figure 8. Mass of the two lightest Higgs fields (first row) as well as the logarithm of the bilepton

fraction (left plot in second row) in the (m0,M1/2)-plane. The right plot in the second row shows the

saturation of the tightest bound as calculated by HiggsBounds: the blue are is allowed, the red one

excluded by Higgs searches. The most sensitive channels are e+e− → Zh2, h2 → bb̄, pp→ A0 → τ τ̄

and pp→ h2 →W+W−. The other parameters are based on BLII.

neutralino LSP can have four different natures in the BLSSM (bino, Higgsino, BLino,

bileptino) in contrast to only two possibilities in the CMSSM. This can provide interesting

features in the context of dark matter [34].

It is well known that in the MSSM, it is very hard to reach Higgsino fractions of the

LSP larger than 50 per-cent: even in the focus point region this fraction hardly ever exceeds

30 per-cent. Only in a tiny region where |µ| gets close to 0, and which is excluded by LEP

data, does it get larger than 50 per-cent. In contrast in our model new contributions

show up in the formula for µ in eq. (2.20), in particular the term g̃gBLx
2 cos(2β′). Using

universal boundary conditions it is in general negative and is particularly sizable for large

tanβ′ and MZ′ . Therefore it is possible to increase the Higgsino fraction of the LSP by

increasing these two parameters with fixed CMSSM parameters as shown in figure 11.
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Figure 9. Left: mass of the lightest Higgs fields at one-loop level (black) and tree level (dashed

blue). Right: value of µ calculated from the one-loop corrected tadpole equations (black) and the

tadpole equations at tree level (dashed blue). The other input parameters correspond to those

of figure 7.
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Figure 10. Left: masses of the lightest Higgs (dashed) and second lightest Higgs (solid) at one-

loop level (black) and tree level (blue) for a variation of MZ′ . Right: relative difference between

tree-level and one-loop mass for the lightest Higgs (dashed blue) and second lightest Higgs (solid

black). The other input parameters correspond to point BLI.

As mentioned above, the soft-breaking parameter MB′ is always smaller than M1, but

the large mixing between the BLino and the bileptino usually implies that the bino is still

the LSP. However, there are regions where this mixing is small and the BLino becomes the

LSP. In particular this happens if µ′ � gBLx ' MZ′ which happens either for large |Yx|
or large m0, as this increases the difference m2

η̄ −m2
η. As an example we show in figure 12

the dependence of µ′, the masses of all neutralinos and the content of the lightest on m0.

As claimed, µ′ grows with increasing m0 leading to a larger mass splitting between the

bileptino-like neutralinos and the others. For very large values of µ′, the bilepton fields are

nearly decoupled and the nature of the LSP becomes BLino-like. In this case one has to

check if one can obtain the correct value for the relic density. A principal possibility are

resonances as there are two light Higgs bosons and the LSP mass could easily be half of

one of the Higgs masses. However, it still has to be checked if the corresponding couplings

are sufficiently large, which however is beyond the scope of this paper.
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Figure 11. The content of the LSP depending on the tanβ′ (right) and MZ′ (left). The other

parameters are those of BLIII. The color code is as follows: gaugino fraction (dashed black), Hig-

gsino fraction (blue), logarithm of the BLino fraction (dotted black) and bileptino fraction (dot-

dashed blue).
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Figure 12. a) µ′ as function of m0. b) Masses of all neutralinos. c) Content of the lightest neu-

tralino: gaugino fraction (dashed black), Higgsino fraction (blue), logarithm of the BLino fraction

(dotted black) and bileptino fraction (dot-dashed blue). The input parameters were those of BLIV

but with M1/2 = 1 TeV.

We want to close the discussion of the BLino LSP with a remark about the impor-

tance of the loop corrections. It is well known that in the MSSM one gets a few per-cent

corrections to the masses of sleptons, neutralinos and charginos [26]. In the model con-

sidered, the corrections are usually of a similar size. However, this doesn’t apply for a

light BLino because here loops contribute with rather heavy particles, in particular A0
η and

– 26 –



J
H
E
P
0
5
(
2
0
1
2
)
0
4
2

1.25 1.30 1.35 1.40

0

50

100

150

200

250

300

tan β′

|m
T χ̃
0 1
|,|
m

1
L

χ̃
0 1
|[
G
eV

]

1.25 1.30 1.35 1.40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tan β′

|∆
m
|

Figure 13. Left: mass of lightest neutralino at tree level (dashed blue) and one-loop level (black)

for a variation of tanβ′. Right: relative size of the correction |∆m| =
∣∣1 − mT

m1L

∣∣. The input

parameters are those of BLIV.

0.30 0.35 0.40 0.45

500

1000

1500

2000

2500

3000

Yx,11

m
i
[G

eV
]

0.30 0.35 0.40 0.45

-10

-8

-6

-4

-2

0

Yx,11

lo
g(
N

2 i,
j
)

Figure 14. LSP with large bileptino fraction (benchmark scenario BLV): a) mass of neutralinos,

b) neutralino content. The color code on the right-hand side is as follows: gaugino fraction (dashed

black), Higgsino fraction (blue), logarithm of the BLino fraction (dotted black), bileptino fraction

(dot-dashed blue).

the bileptino-like neutralinos. This is demonstrated by inspecting scenario BLIV. Varying

tanβ′ we find that these corrections get larger the closer tanβ′ gets to one as can be seen

in figure 13. At tree level one might then conclude that the LSP could be massless even for

unified gaugino masses. This behavior can be roughly understood when neglecting gauge

kinetic mixing as then the bileptinos and the BLino decouple from the MSSM neutralinos.

In this limit it is thus sufficient to consider only the lower left 3× 3 block of the neutralino

mass matrix given in eq. (2.40). Taking tanβ′ ' 1 or equivalently vη ' vη̄ we find for the

LSP mass
1

2
(MB + µ′ −

√
(MB − µ′)2 + 8(gBLvη)2) (3.3)

This expression can obviously be negative or positive for the same sign of µ′ depending on

the value of vη. Although this gets changed at the one-loop level, it is still easy to obtain

a dark matter candidate within the mass range preferred by direct detection experiments

like DAMA [53, 54], CRESST [55] or CoGeNT [56].
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Finally, we note that also a bileptino-like LSP can be obtained in this model. The

necessary condition, |µ′| being smaller than |µ| and all gaugino mass parameters, can be

obtained if the difference betweenm2
η andm2

η̄ becomes small. This can be accommodated by

adjusting the entries of Yx. As an example, we show in figure 14 the masses of all neutralinos

as well as the composition of the lightest neutralino as function of Yx,11 while keeping all

other values as in scenario BLV. Already a 10 per-cent decrease leads to a nearly a pure

bileptino LSP and its mass depends strongly on Yx,11. For larger values a level crossing

takes place and the LSP becomes bino-like. In principal this coupling could be larger at

the electroweak scale but then one would encounter a Landau pole below the GUT scale.

4 Conclusions and discussion

We have discussed in this paper the mass spectrum of the minimal B − L extension of

the MSSM taking universal boundary conditions at the GUT scale. We have calculated

the spectrum using two-loop RGEs and the complete one-loop contributions to all masses,

which are particularly important in the Higgs and neutralino sectors. Consistency with

current bounds on the additional Z ′ implies that the scalar partners of the fermions are

quite heavy in this scenario, except the sneutrinos can be light under certain conditions.

However, this is a consequence of taking the mass parameters of the sfermions equal to the

ones in the extended Higgs sector. Relaxing this assumption allows for lighter non-sneutrino

sfermions in addition to light sneutrinos.

It turns out that gauge kinetic mixing between the two Abelian gauge groups is quite

important for Higgs bosons and neutralinos and it cannot be neglected. On one hand

it leads to sizable shifts in the masses of up to 10 per-cent. On the other it induces

tree-level mixing between the MSSM states and the states of the extended B − L sector

leading to important shifts in the nature of the corresponding particles. This holds in

particular for the light Higgs bosons and the lightest neutralino. For example in the latter

case we find regions in parameter space with light neutralinos as preferred by DAMA or

CoGeNT. Moreover, the nature of the lightest neutralino can be quite different from the

usual CMSSM, e.g. we have identified regions where it is either dominantly Higgsino-,

BLino- or bileptino-like.

In the extended Higgs sector we find that one-loop corrections are not only important

for the MSSM-like h0 but also for the light bilepton field. This particle can be so light that

the MSSM h0-like state can decay into two of them without conflicting with any of the

known experimental results. However, in general we find that the corresponding branching

ratio is at most a few per-cent.
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A Mass matrices

Here we collect the tree-level formulas for the remaining sfermion mass matrices.

• Mass matrix for Sleptons, Basis: (ẽL, ẽR)

m2
ẽ =

 mLL
1√
2

(
vdTe − vuµ∗Ye

)
1√
2

(
vdT

†
e − vuµY †e

)
mRR

 (A.1)

mLL = m2
L +

v2
d

2
Y †e Ye +

1

8

(
(g2

1−g2
2 +g̃2+ g̃gBL)(v2

d−v2
u) + 2(g̃gBL+g2

BL)(v2
η−v2

η̄)
)
1

(A.2)

mRR = m2
E +

v2
d

2
YeY

†
e +

1

8

(
(2g2

1 +2g̃2+ g̃gBL)(v2
u−v2

d)− 2
(

2g̃gBL+g2
BL

)
(v2
η−v2

η̄)
))

1

(A.3)

• Mass matrix for Down-Squarks, Basis:
(
d̃L, d̃R

)

m2
d̃

=

 mLL
1√
2

(
vdTd − vuµ∗Yd

)
1√
2

(
vdT

†
d − vuµY

†
d

)
mRR

 (A.4)

mLL = m2
Q+

v2
d

2
Y †d Yd +

1

24

(
(g2

1 +3g2
2 +g̃2+ g̃gBL)(v2

u−v2
d) + 2(g2

BL+g̃gBL)(v2
η̄−v2

η)
)
1

(A.5)

mRR = m2
D+

v2
d

2
YdY

†
d +

1

24

(
− (2g2

1 +2g̃2−g̃gBL)(v2
d−v2

u) + 2(g2
BL−2g̃gBL)(v2

η−v2
η̄)1

(A.6)

• Mass matrix for Up-Squarks, Basis: (ũL, ũR)

m2
ũ =

 mLL
1√
2

(
vuTu − vdµ∗Yu

)
1√
2

(
vuT

†
u − vdµY †u

)
mRR

 (A.7)

mLL = m2
Q+

v2
u

2
Y †uYu+

1

24

(
(g2

1−3g2
2 +g̃2+g̃gBL)(v2

u−v2
d) + 2(g̃gBL+g2

BL)(v2
η̄−v2

η)
)
1

(A.8)

mRR = m2
U +

v2
u

2
YuY

†
u +

1

24

(
2(g2

BL+ 4g̃gBL)(v2
η−v2

η̄)+(4g2
1 +4g̃2+g̃gBL)(v2

d−v2
u)
)
1

(A.9)

B RGEs

The calculation of the renormalization group equations performed by SARAH is based on

the generic expression of [40]. In addition, the results of [22] are used to include the effect

of kinetic mixing.
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The β functions for the parameters of a general superpotential written as

W (φ) =
1

2
µijφiφj +

1

6
Y ijkφiφjφk (B.1)

can be easily obtained from the shown results for the anomalous dimensions by using the

relations [57, 58]

βijkY = Y p(ijγp
k) , (B.2)

βijµ = µp(iγp
j) . (B.3)

For the results of the other parameters as well as for the two-loop results which we skip

here because of their length we suggest to use the function CalcRGEs[] of SARAH with the

model files shown in appendix C.

B.1 Anomalous dimensions

γ
(1)
q̂ =Y †d Yd + Y †uYu (B.4)

− 1

60

(
2(g2

Y Y +g2
Y B) + 2

√
10(gY Y gBY +gY BgBB)+5

(
18g2

2 +32g2
3 +g2

BB+g2
BY

))
1

γ
(1)

l̂
=Y †e Ye + Y ∗ν Y

T
v (B.5)

− 3

20

(
2(g2

Y Y + g2
Y B) + 2

√
10(gY Y gBY + gY BgBB) + 5

(
2g2

2 + g2
BB + g2

BY

))
1
)

γ
(1)

Ĥd
= 3Tr

(
YdY

†
d

)
+ Tr

(
YeY

†
e

)
− 3

10

(
5g2

2 + g2
Y Y + g2

Y B

)
(B.6)

γ
(1)

Ĥu
= 3Tr

(
YuY

†
u

)
+ Tr

(
YνY

†
v

)
− 3

10

(
5g2

2 + g2
Y Y + g2

Y B

)
(B.7)

γ
(1)

d̂
= 2Y ∗d Y

T
d (B.8)

+
1

60

(
4
√

10(gY Y gBY + gY BgBB)− 5
(

32g2
3 + g2

BB + g2
BY

)
− 8(g2

Y Y + g2
Y B)

)
1

γ
(1)
û = 2Y ∗u Y

T
u (B.9)

− 1

60

(
32(g2

Y Y + g2
Y B) + 5

(
32g2

3 + g2
BB + g2

BY

)
+ 8
√

10(gY Y gBY + gY BgBB)
)
1

γ
(1)
ê = 2Y ∗e Y

T
e −

3

20

(
4
√

10(gY Y gBY +gY BgBB)+5
(
g2
BB + g2

BY

)
+8(g2

Y Y + g2
Y B)

)
1 (B.10)

γ
(1)
ν̂ = 2Y †v Yν + 2

(
Y †x Yx + Y ∗x Yx

)
− 3

4

(
g2
BB + g2

BY

)
1 (B.11)

γ
(1)
η̂ = − 3

(
g2
BB + g2

BY

)
+ 2Tr

(
YxY

†
x

)
(B.12)

γ
(1)
ˆ̄η

= − 3
(
g2
BB + g2

BY

)
(B.13)

B.2 Gauge couplings

We give here and in the subsequent section the beta functions for the RGEs of the gauge

couplings and gaugino mass parameters in a basis independent way as the off-diagonal
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values for the U(1) gauge couplings and gaugino mass paramters are generated due to

RGE effects.

β(1)
gY Y

=
3

5

(
11g3

Y Y + 4
√

10g2
Y Y gBY + gY Y

(
11g2

Y B + 15g2
BY + 2

√
10gY BgBB

)
+ gY B

(
15gBB + 2

√
10gY B

)
gBY

)
(B.14)

β(1)
gBB

=
3

5

(
11g2

Y BgBB + 4
√

10gY Bg
2
BB + 15g3

BB + 11gY Y gY BgBY + 2
√

10gY Y gBBgBY

+ 2
√

10gY Bg
2
BY + 15gBBg

2
BY

)
(B.15)

β(1)
gY B

=
3

5

(
gY Y

(
15gBB + 2

√
10gY B

)
gBY + g2

Y Y

(
11gY B + 2

√
10gBB

)
+ gY B

(
11g2

Y B + 15g2
BB + 4

√
10gY BgBB

))
(B.16)

β(1)
gBY

=
3

5

(
11g2

Y Y gBY + gY Y

(
11gY BgBB + 2

√
10
(

2g2
BY + g2

BB

))
+ gBY

(
15
(
g2
BB + g2

BY

)
+ 2
√

10gY BgBB

))
(B.17)

β(1)
g2

= g3
2 (B.18)

β(1)
g3

= − 3g3
3 (B.19)

B.3 Gaugino mass parameters

β
(1)
M1

=
6

5

(
11g2

Y YM1 + gBY

(
15gBBMBB′ + 15gBYM1 + 2

√
10gY BMBB′

)
+ gY Y

(
11gY BMBB′ + 2

√
10gBBMBB′ + 4

√
10gBYM1

))
(B.20)

β
(1)
M2

= 2g2
2M2 (B.21)

β
(1)
M3

= −6g2
3M3 (B.22)

β
(1)
MB

=
6

5

(
11g2

Y BMB + 15gBB

(
gBBMB + gBYMBB′

)
+ 2
√

10gY B

(
2gBBMB + gBYMBB′

)
+ gY Y

(
11gY B + 2

√
10gBB

)
MBB′

)
(B.23)

β
(1)
MBB′

=
3

5

(
11g2

Y YMBB′ + 11g2
Y BMBB′ + 2

√
10gY B

(
2gBBMBB′ + gBY

(
M1 +MB

))
+ 15

(
g2
BBMBB′ + gBBgBY

(
M1 +MB

)
+ g2

BYMBB′
)

+ gY Y

(
11gY B

(
M1 +MB

)
+ 2
√

10
(

2gBYMBB′ + gBB

(
M1 +MB

))))
(B.24)

C Model files for SARAH

Below we list the model files used for SARAH to study the model presented in this pa-

per. Using this one can generate the Fortran code for the SPheno extension to reproduce

the results presented. These files will also become part of the public SARAH package in

near future.

– 31 –



J
H
E
P
0
5
(
2
0
1
2
)
0
4
2

C.1 B-L-SSM.m

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ P a r t i c l e Content ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗ Gauge S u p e r f i e l d s ∗)

Gauge [ [ 1 ] ] = {B, U[ 1 ] , hypercharge , g1 , Fa l se } ;

Gauge [ [ 2 ] ] = {WB, SU [ 2 ] , l e f t , g2 , True } ;

Gauge [ [ 3 ] ] = {G, SU [ 3 ] , co lo r , g3 , Fa l se } ;

Gauge [ [ 4 ] ] = {Bp, U[ 1 ] , BminusL , g1p , Fa l se } ;

(∗ Chira l S u p e r f i e l d s ∗)

F i e l d s [ [ 1 ] ] = {{uL , dL} , 3 , q , 1/6 , 2 , 3 , 1/6} ;

F i e l d s [ [ 2 ] ] = {{vL , eL} , 3 , l , −1/2, 2 , 1 , −1/2};
F i e l d s [ [ 3 ] ] = {{Hd0 , Hdm} , 1 , Hd, −1/2, 2 , 1 , 0} ;

F i e l d s [ [ 4 ] ] = {{Hup , Hu0} , 1 , Hu, 1/2 , 2 , 1 , 0} ;

F i e l d s [ [ 5 ] ] = { conj [dR ] , 3 , d , 1/3 , 1 , −3, −1/6};
F i e l d s [ [ 6 ] ] = { conj [uR ] , 3 , u , −2/3, 1 , −3, −1/6};
F i e l d s [ [ 7 ] ] = { conj [ eR ] , 3 , e , 1 , 1 , 1 , 1/2} ;

F i e l d s [ [ 8 ] ] = { conj [ vR ] , 3 , vR , 0 , 1 , 1 , 1/2} ;

F i e l d s [ [ 9 ] ] = {C10 , 1 , C1 , 0 , 1 , 1 , −1};
F i e l d s [ [ 1 0 ] ] = {C20 , 1 , C2 , 0 , 1 , 1 , 1} ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Supe rpo t en t i a l ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

SuperPotent ia l = { {{1 , Yu} ,{u , q ,Hu}} , {{−1,Yd} ,{d , q ,Hd}} ,

{{−1,Ye} ,{ e , l ,Hd}} , {{1 ,\ [Mu]} ,{Hu,Hd}} ,

{{1 ,Yv} ,{ l ,Hu, vR}} , {{−1,MuP} ,{C1 , C2}} ,

{{1 ,Yn} ,{vR, C1 , vR}} } ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ I n t e g r a t e Out or Delete P a r t i c l e s ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

IntegrateOut ={};
D e l e t e P a r t i c l e s ={};

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ ROTATIONS ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗ −−−−− D i f f e r e n t e i g e n s t a t e s : gauge e i g e n s t a t e s and e i g e n s t a t e s a f t e r EWSB

−−−− ∗)

NameOfStates={GaugeES , EWSB} ;

(∗ −−−−− Gauge f i x i n g terms for Gauge e i g e n s t a t e s −−−− ∗)

DEFINITION [ GaugeES ] [ GaugeFixing ]=

{ {Der [VWB] , −1/(2 RXi [W] ) } ,

{Der [VG] , −1/(2 RXi [G] ) }} ;
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(∗−−− Rotat ions in gauge s e c t o r −−−− ∗)

DEFINITION [EWSB] [ GaugeSector ] =

{ {{VB,VWB[ 3 ] ,VBp} ,{VP,VZ,VZp} ,ZZ} ,

{{VWB[ 1 ] ,VWB[ 2 ] } , {VWm, conj [VWm]} ,ZW} ,

{{fWB[ 1 ] , fWB[ 2 ] , fWB[ 3 ] } , {fWm, fWp, fW0} ,ZfW}} ;

(∗−−− VEVs −−−− ∗)

DEFINITION [EWSB] [ VEVs]=

{{SHd0 , {vd , 1/ Sqrt [ 2 ] } , {sigmad , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phid ,1/ Sqrt [ 2 ] } } ,

{SHu0 , {vu , 1/ Sqrt [ 2 ] } , {sigmau , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phiu ,1/ Sqrt [ 2 ] } } ,

{SvL , {0 , 0} , {sigmaL , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phiL ,1/ Sqrt [ 2 ] } } ,

{SvR , {0 , 0} , {sigmaR , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phiR ,1/ Sqrt [ 2 ] } } ,

{SC10 , {x1 , 1/ Sqrt [ 2 ] } , { sigma1 , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phi1 , 1/ Sqrt [ 2 ] } } ,

{SC20 , {x2 , 1/ Sqrt [ 2 ] } , { sigma2 , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phi2 , 1/ Sqrt [ 2 ] } } } ;

(∗−−− Matter Sector −−−− ∗)

DEFINITION [EWSB] [ MatterSector ]=

{ {{SdL , SdR} , {Sd , ZD}} ,

{{SuL , SuR} , {Su , ZU}} ,

{{SeL , SeR} , {Se , ZE}} ,

{{ sigmaL , sigmaR } , {SvIm , ZVI}} ,

{{phiL , phiR } , {SvRe , ZVR}} ,

{{phid , phiu , phi1 , phi2 } , {hh , ZH}} ,

{{ sigmad , sigmau , sigma1 , sigma2 } , {Ah, ZA}} ,

{{SHdm, conj [ SHup ]} ,{Hpm,ZP}} ,

{{ fB , fW0 , FHd0 , FHu0 , fBp , FC10 , FC20} , {L0 , ZN}} ,

{{{fWm, FHdm} , {fWp, FHup}} , {{Lm,UM} , {Lp ,UP}}} ,

{{FvL , conj [FvR]} ,{Fvm,UV}} ,

{{{FeL} ,{ conj [ FeR]}} ,{{FEL,ZEL} ,{FER,ZER}}} ,

{{{FdL} ,{ conj [FdR]}} ,{{FDL,ZDL} ,{FDR,ZDR}}} ,

{{{FuL} ,{ conj [FuR]}} ,{{FUL,ZUL} ,{FUR,ZUR}}} \
} ;

(∗−−− Gauge Fix ing a f t e r EWSB −−−− ∗)

DEFINITION [EWSB] [ GaugeFixing ]=

{ {Der [VP] , − 1/(2 RXi [P] ) } ,

{Der [VWm]+\ [ ImaginaryI ] Mass [VWm] RXi [W] Hpm[ { 1 } ] , − 1/(RXi [W] ) } ,

{Der [VZ] − Mass [VZ] RXi [ Z ] Ah[ { 1 } ] , − 1/(2 RXi [ Z ] ) } ,

{Der [VZp ] − Mass [VZp ] RXi [ Zp ] Ah[ { 2 } ] , − 1/(2 RXi [ Zp ] ) } ,

{Der [VG] , − 1/(2 RXi [G] ) } } ;

(∗−−− Phases −−−− ∗)

DEFINITION [EWSB] [ Phases ]=

{ {fG , PhaseGlu} } ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Dirac Spinors ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
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(∗ Dirac Spinors for gauge e i g e n s t a t e s ∗)

DEFINITION [ GaugeES ] [ Di racSp inors ]={
Bino −>{fB , conj [ fB ]} ,

Wino −> {fWB, conj [ fWB]} ,

Glu −> {fG , conj [ fG ]} ,

H0 −> {FHd0 , conj [ FHu0 ]} ,

HC −> {FHdm, conj [ FHup]} ,

Fd1 −> {FdL , 0} ,

Fd2 −> {0 , FdR} ,

Fu1 −> {FuL , 0} ,

Fu2 −> {0 , FuR} ,

Fe1 −> {FeL , 0} ,

Fe2 −> {0 , FeR} ,

Fv1 −> {FvL , 0} ,

Fv2 −> {0 , FvR} ,

FC −> {FC10 , conj [ FC20 ]} ,

FB −> { fBp , conj [ fBp ]}
} ;

(∗ Dirac Spinors for e i g e n s t a t e s a f t e r EWSB ∗)

DEFINITION [EWSB] [ Di racSp inors ]={
Fd −>{ FDL, conj [FDR]} ,

Fe −>{ FEL, conj [FER]} ,

Fu −>{ FUL, conj [FUR]} ,

Fv −>{ Fvm, conj [Fvm]} ,

Chi −>{ L0 , conj [ L0 ]} ,

Cha −>{ Lm, conj [ Lp ]} ,

Glu −>{ fG , conj [ fG ]}
} ;

C.2 SPheno.m

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ MINPAR ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

MINPAR={{1 ,m0} ,

{2 ,m12} ,

{3 , TanBeta } ,

{4 ,SignumMu} ,

{5 , Azero } ,

{6 ,SignumMuP} ,

{7 ,TanBetaP} ,

{8 ,MZp}} ;

RealParameters = {TanBeta , TanBetaP } ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Tadpoles and reno rma l i z a t i on s c a l e ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

ParametersToSolveTadpoles = {B[ \ [Mu] ] , B[MuP] , \ [Mu] ,MuP} ;

Renormal i za t ionSca l eF i r s tGuess = m0ˆ2 + 4 m12ˆ2 ;

Renormal i zat ionSca le = MSu[ 1 ] ∗MSu [ 6 ] ;
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(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Boundary c o n d i t i o n s ∗)

% (∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗ −−−− D e f i n i t i o n o f GUT s c a l e −−−− ∗)

ConditionGUTscale = ( g1∗g1p−g1g1p∗g1pg1 )/ Sqrt [ g1pˆ2+g1pg1 ˆ2 ] == g2 ;

(∗ −−−− Boundary c o n d i t i o n s at GUT s c a l e −−−− ∗)

BoundaryHighScale={
{g1 , ( g1∗g1p−g1g1p∗g1pg1 )/ Sqrt [ g1pˆ2−g1pg1 ˆ2 ]} ,

{g1 , Sqrt [ ( g1ˆ2+g2 ˆ2 )/2 ]} ,

{g2 , g1 } ,

{g1p , g1 } ,

{g1g1p , 0} ,

{g1pg1 , 0} ,

{T[ Ye ] , Azero∗Ye} ,

{T[Yd] , Azero∗Yd} ,

{T[Yu] , Azero∗Yu} ,

{T[Yv ] , Azero∗Yv} ,

{T[Yn] , Azero∗Yn} ,

{mq2 , DIAGONAL m0ˆ2} ,

{ml2 , DIAGONAL m0ˆ2} ,

{md2, DIAGONAL m0ˆ2} ,

{mu2, DIAGONAL m0ˆ2} ,

{me2 , DIAGONAL m0ˆ2} ,

{mvR2, DIAGONAL m0ˆ2} ,

{mHd2, m0ˆ2} ,

{mHu2, m0ˆ2} ,

{mC12, m0ˆ2} ,

{mC22, m0ˆ2} ,

{MassB , m12} ,

{MassWB, m12} ,

{MassG , m12} ,

{MassBp , m12} ,

{MassBBp , 0} ,

{MassBpB,0}
} ;

(∗ −−−− Boundary c o n d i t i o n s at SUSY s c a l e −−−− ∗)

BoundarySUSYScale = {
{g1T , ( g1∗g1p−g1g1p∗g1pg1 )/ Sqrt [ g1pˆ2+g1pg1 ˆ2 ]} ,

{g1pT , Sqrt [ g1pˆ2+g1pg1 ˆ2 ]} ,

{g1g1pT , ( g1g1p∗g1p+g1pg1∗g1 )/ Sqrt [ g1pˆ2+g1pg1 ˆ2 ]} ,

{g1 , g1T} ,

{g1p , g1pT} ,

{g1g1p , g1g1pT } ,

{g1pg1 , 0} ,

{vevP , MZp/g1p } ,

{betaP , ArcTan [ TanBetaP ]} ,

{x2 , vevP∗Cos [ betaP ]} ,

{x1 , vevP∗Sin [ betaP ]} ,

{Yv, LHInput [Yv]} ,

{Yn, LHInput [Yn]}
} ;

(∗ −−−− Boundary c o n d i t i o n s at EWSB s c a l e −−−− ∗)

BoundaryEWSBScale = {
{g1T , ( g1∗g1p−g1g1p∗g1pg1 )/ Sqrt [ g1pˆ2+g1pg1 ˆ2 ]} ,

{g1pT , Sqrt [ g1pˆ2+g1pg1 ˆ2 ]} ,
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{g1g1pT , ( g1g1p∗g1p+g1pg1∗g1 )/ Sqrt [ g1pˆ2+g1pg1 ˆ2 ]} ,

{g1 , g1T} ,

{g1p , g1pT} ,

{g1g1p , g1g1pT } ,

{g1pg1 , 0} ,

{vevP , MZp/g1p } ,

{betaP , ArcTan [ TanBetaP ]} ,

{x2 , vevP∗Cos [ betaP ]} ,

{x1 , vevP∗Sin [ betaP ]}
} ;

(∗ −−−− I n i t i a l i z a t i o n va lue s −−−− ∗)

I n i t i a l i z a t i o n V a l u e s = {
{g1p , 0 . 5} ,

{g1g1p , −0.06} ,

{g1pg1 , −0.06}
}

(∗ −−−− Boundary c o n d i t i o n s for SUSY s c a l e input −−−− ∗)

BoundaryLowScaleInput={
{vd , Sqrt [ 4 mz2/( g1ˆ2+g2 ˆ 2 ) ]∗Cos [ ArcTan [ TanBeta ] ] } ,

{vu , Sqrt [ 4 mz2/( g1ˆ2+g2 ˆ 2 ) ]∗ Sin [ ArcTan [ TanBeta ] ] }
} ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Two and Three body decays ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

L i s t De ca yP ar t i c l e s = Automatic ;

L i s tDecayPart i c l e s3B =Automatic ;
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[32] G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak

precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].

[33] D. Adams, Beyond the Standard Model: Searches by ATLAS and CMS at the LHC, talk

given at Rencontres de Moriond EW 2012, Paris France, 4–10 March 2012.

[34] F. Staub, B. O’Leary, M. Krauss and W. Porod, in preparation.

[35] M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, B − L violating masses in softly

broken supersymmetry, Phys. Lett. B 398 (1997) 311 [hep-ph/9701253] [INSPIRE].

[36] Y. Grossman and H.E. Haber, Sneutrino mixing phenomena, Phys. Rev. Lett. 78 (1997) 3438

[hep-ph/9702421] [INSPIRE].

[37] F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].

[38] F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput.

Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

[39] F. Staub, Automatic calculation of supersymmetric renormalization group equations and self

energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

[40] S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft

supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008)

039903] [hep-ph/9311340] [INSPIRE].

[41] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays

and SUSY particle production at e+e− colliders, Comput. Phys. Commun. 153 (2003) 275

[hep-ph/0301101] [INSPIRE].

[42] W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models

beyond the MSSM, arXiv:1104.1573 [INSPIRE].

[43] CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard

model Higgs boson in pp collisions at
√
s = 7 TeV, arXiv:1202.1488 [INSPIRE].

[44] ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson

using up to 4.9 fb−1 of pp collision data at
√
s = 7 TeV with the ATLAS detector at the LHC,

Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

[45] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds:

confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron,

Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

– 38 –

http://dx.doi.org/10.1103/PhysRevD.82.055018
http://arxiv.org/abs/1004.3039
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3039
http://arxiv.org/abs/hep-ex/0612034
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0612034
http://dx.doi.org/10.1088/1126-6708/2009/08/017
http://arxiv.org/abs/0906.2435
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2435
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://inspirehep.net/search?p=find+J.Phys.,G37,075021
http://dx.doi.org/10.1103/PhysRevD.74.033011
http://arxiv.org/abs/hep-ph/0604111
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0604111
http://dx.doi.org/10.1016/S0370-2693(97)00234-7
http://arxiv.org/abs/hep-ph/9701253
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9701253
http://dx.doi.org/10.1103/PhysRevLett.78.3438
http://arxiv.org/abs/hep-ph/9702421
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9702421
http://arxiv.org/abs/0806.0538
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0538
http://dx.doi.org/10.1016/j.cpc.2010.01.011
http://dx.doi.org/10.1016/j.cpc.2010.01.011
http://arxiv.org/abs/0909.2863
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2863
http://dx.doi.org/10.1016/j.cpc.2010.11.030
http://arxiv.org/abs/1002.0840
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0840
http://dx.doi.org/10.1103/PhysRevD.50.2282
http://arxiv.org/abs/hep-ph/9311340
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9311340
http://dx.doi.org/10.1016/S0010-4655(03)00222-4
http://arxiv.org/abs/hep-ph/0301101
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1573
http://arxiv.org/abs/1202.1488
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1488
http://arxiv.org/abs/1202.1408
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1408
http://dx.doi.org/10.1016/j.cpc.2009.09.003
http://arxiv.org/abs/0811.4169
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4169


J
H
E
P
0
5
(
2
0
1
2
)
0
4
2

[46] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0:

confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and

the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

[47] H.E. Haber and M. Sher, Higgs mass bound in E6 based supersymmetric theories, Phys. Rev.

D 35 (1987) 2206 [INSPIRE].

[48] M. Drees, Comment on ’Higgs boson mass bound in E6 based supersymmetric theories.’,

Phys. Rev. D 35 (1987) 2910 [INSPIRE].
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