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1 Introduction

Entanglement entropy (EE) SA is a measure of entanglement between two subsystems A,B

of a quantum system (for a holographically centered review see [1]). It is the von Neumann

entropy of the reduced density matrix, obtained from the density matrix constructed by

tracing out the degrees of freedom of our subsystem B (ρA = trBρ):

SA =− trA (ρA log ρA) (1.1)

This quantity is 0 if two subsystems are independent (ie. if the reduced density matrix still

corresponds to a pure state). One can intuitively think of SA as the entropy due to lack of

information of an observer in A who can not access degrees of freedom in B.

This definition of entanglement entropy is easily extended to quantum field theories

as follows [2]: if the spacetime dimension of the theory is d + 1 we first need to pick a d

dimensional time slice or Cauchy surface. Then we define a subsystem A to be a (spatial)

subregion of this Cauchy surface and denote its complement B. The d − 1 dimensional

hypersurface which divides these two regions (the boundary of A, ∂A) is what we will call

the entangling surface. With these considerations, we can define the entanglement entropy

of the system as in (1.1). Unfortunately, in a QFT, the result will always be divergent and

we will have to introduce a cutoff ξ. The first divergent term is (for theories with d > 1)

proportional to the area (A) of the boundary of A:

SA ∝
A(∂A)

ξd−1
(1.2)
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This relation is also called “the area law”. However, the coefficient of this term is not

universal, i.e. it depends on the way we choose the cutoff. After this term there can be

sub-leading divergent terms (including a logarithmic term) and a finite constant term. The

coefficient in front of the logarithmic term is universal and for CFT’s with d even, it is a

combination of the central charges appearing in the trace anomaly. This relation between

central charge and EE has been studied recently in [3–6]. The constant term has important

uses in the condensed matter community [7, 8]. For topologically ordered systems, where

there is no notion of order parameter, this quantity has proven to be the observable that

characterizes the phase of the system.

The gauge/gravity duality allows us to perform calculations for strongly coupled d+ 1

dimensional field theories using holographic (d+ 2 dimensional) gravitational duals [9–11].

Ryu and Takayanagi [12, 13] proposed a way to compute the entanglement entropy using

holography. The holographic entanglement entropy is obtained by considering the area of

the minimal surface (extended in the extra direction) whose boundary ends in ∂A.1 If we

denote this surface γ (so that ∂γ = ∂A), the entanglement entropy will be given by [1]:

SA =
1

4Gd+2
N

min
∂γ∼∂A

A(γ) (1.3)

This formula has not been proved in general but has been successfully verified with a wide

range of consistency checks- see for example [14, 15]. Furthermore, the result was recently

derived for the special case of a spherical entangling surface [16]. Although this definition of

holographic entanglement entropy was first used for CFTs, we will use the same definition

for studying nonconformal theories (introducing scales such as a confinement length or a

flux). It is worth commenting that there may be more than one extremal surface from

which one must only consider the one with the minimal area. The absolute minima can

be different if we change parameters of our geometry, so this defines naturally a phase

transition in the EE, which occurs when two different surfaces have the same minimal area.

Ref. [17] studied the behavior of the EE of a strip in holographic confining theories.

On the gravity side these theories are realized by a compact cycle that shrinks to zero at

some finite depth in the bulk. The holographic dictionary tells us that the bulk direction

represents an energy scale and hence the minimal radii where the geometry ends introduces

a mass gap in the dual theory [18]. As we alluded to above, (1.3) can have more than one

competing extrema for confining theories. We will obtain a “connected solution” where the

bulk surface runs between the two boundaries of the strip (and its area will depend on the

width of the strip), but we will always also have a “disconnected” solution which has two

independent pieces which go straight from the boundary to the cut-off radius (and whose

area doesn’t depend on the width of the strip). By comparing the areas of the connected

and disconnected surfaces we will find that they coincide for a particular width of the strip

lc. That means that if l < lc the EE will be obtained from the connected solution and

for l > lc from the disconnected. In [17], they then compute the value of lc for different

systems and obtain that lc = O(1)Λ−1
IR . That is, the critical width seems to be closely

1Technically speaking, it is a saddle point, the area will decrease if we extend it in the time direction.

However if we first Wick rotate to a Euclidean version of the theory, it is indeed minimal.
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related to the confinement scale. The phase transition in the EE for confining theories was

also studied for different entangling geometries in [19] with a similar result. This phase

transition in the EE has been studied in different situations [20–23]. Setting holography

asides, this phase transition in the EE has also been found in numerical lattice simulations

of SU(N) gauge theories [24, 25].

Motivated by [17], in this note we would like to study what is the relation be-

tween the phase transition of the EE (connected-disconnected surfaces) and an underlying

confinement-deconfinement phase transition with multiple parameters. In the holographic

models studied in [17], there is a single scale and so it is natural to expect that lc ∼ 1/ΛIR

as well as lc ∼ 1/Tc (where Tc denotes the deconfining temperature). Our purpose is to test

these relations in a more general context where the holographic models and hence the dual

confining theory contains multiple parameters. In this extension, we consider holographic

models with one extra parameter which may help us understand better this transition. The

EE phase transition will be determined by a critical width lc, that is, the width of the strip

in the boundary when the areas of the two contributions are the same. What we will do

then is to study the behavior of this width and compare it with that of physical quantities

that characterize our phase transition.

The structure of the paper is as follows: in section 2, we set the preliminaries for

the further calculations, that is, we review the computation of the EE for the strip and

establish the procedure that we are going to follow in the next section. We also explain

which quantities we are going to consider to compare with lc. In section 3 we consider

explicit examples with more than one scale where we study what is the dependence of lc on

the extra scale, comparing its behavior with that of the other physical quantities presented

in the previous section. The models that we study can be constructed as the double Wick

rotation of black hole solutions; the latter would be a charged AdS5 BH, D4-D0 bound

state and the backreaction of a relevant operator in the perturbative regime. We close the

paper by discussing the results obtained.

2 Preliminaries

In this section we will review how to compute the minimal area that will give us the EE

for our different holographic systems, for the entangling geometry of the strip.

The field theories we are going to study will be in a confined state, obtained from the

finite temperature theories via a double Wick rotation, resulting in a solitonic solution.

Our field theories will be d+ 1 dimensional with a compactified internal dimension whose

proper length shrinks to zero in the bulk (xd ∼ xd + 2πR). A general metric with the

desired characteristics will be (we are considering that the boundary is at r =∞):

ds2 = −gtt(−dt2 + d~x2
d−1 + fdx2

d) + grrdr
2 + ds′2X (2.1)

We have included the possible presence of an internal manifold X, that usually appears in

10d supergravity solutions (but only appear as internal symmetries in the field theories).

Where the compact field theoretical direction closes if we get deep in the bulk (f(r0) = 0).

We have also included the possible presence of internal dimensions.
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If we are dealing with a 10d supergravity solution with nonvanishing dilaton, the

prescription for the EE is easier to understand with the Einstein frame, so we have to

rescale our induced string frame metric such that:√
gEind = e−2φ√gind (2.2)

Note that we will be integrating over 8 dimensions because if the gravitational theory is

d+ 2 dimensional, our integral will be d dimensional.

Given a metric with rotational symmetry in the spatial directions (as in our case for

the d − 1 spatial directions), the computation of the EE is straightforward for certain

cases. In our calculations we will consider the region A to be a strip and so the entangling

surface are two flat planes separated by a distance l. Let’s consider a strip of size D in

the x2, . . . , xd−1 directions and l� D in the x1 direction, it is clear that (for the minimal

surface embracing the strip in the boundary) only x1 will depend on the r coordinate.

From these considerations it is easy to write the integral for the area:

A =

∫
X

∫
ddxe−2φ√gind = Dd−22πR

∫
X

∫ l/2

−l/2
dx1e

−2φ√gXf1/2|gtt|d/2
√

1 +
grr
|gtt|

ṙ2

= Dd−22πRVol(X)

∫ l/2

−l/2
dx1h1

√
1 + h2

2ṙ
2 (2.3)

In this equation ṙ ≡ ∂r
∂x1

. In the last step, we factorized the volume of the internal manifold

X and just consider the integral of functions of r, remembering that if the dilaton is nonzero

we have to include it in h1. Our task now is to find the minimal surface, so we will only

have to minimize the integral.

Because the integral doesn’t depend on x1 we can use ordinary functional methods to

argue that the “energy” is conserved (E =
∂L
∂ṙ
ṙ−L) and then obtain the maximum depth

in the r direction of our surface, if we denote this value of the coordinate r? (h? ≡ h(r?)), we

can rearrange our integral in one that we know how to compute given the maximum depth:

ṙ = h−1
2

√(
h1

h?1

)2

− 1

l

2
=

∫ ∞
r?

dr

ṙ

Ac = Dd−22πRVol(X)

∫ ∞
r?

dr
h1h2√

1−
(
h?1
h1

)2
=

∫ ∞
r?

drFc (2.4)

This was the computation for the connected surface, there is also a disconnected surface

(which does not depend on l), that can be easily obtained from (2.3) by demanding ṙ−1 = 0:

Ad = Dd−22πRVol(X)

∫ ∞
r0

drh1h2 =

∫ ∞
r0

drFd (2.5)

Now we are interested in compute the difference in EE between the connected and

disconnected pieces. Because the two areas diverge in the same way (as the integral is

– 4 –
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extended to the boundary), we can get the difference in the finite piece just by subtracting

inside the integral:

∆A(r?) =

∫ ∞
r?

(Fc −Fd)−
∫ r?

r0

Fd (2.6)

In this way, we will define lc as the width where the disconnected and connected piece

have the same areas:

∆A(rc) = 0→ lc = l(rc) (2.7)

2.1 Physical scales in confining theories

The physical scales that we will consider for the confining models will be the deconfinement

temperature (Tc), the glueball mass (Mgb) and the tension of the flux string (Tstr). We are

interested in comparing these energy scales to l−1
c .

• Deconfinement temperature:

We will have two gravitational backgrounds, corresponding to the confining and de-

confining phases - both of them are periodic in (at least) one spatial direction and

the imaginary time direction. Their Euclidean action will depend on the radius of

confinement (R), the temperature (T ) and the external parameter (Y ). Following the

standard approach of Euclidean quantum gravity, the phase with the largest (nega-

tive) action dominates. Hence equating the gravitational actions at the same R, T

will give us the deconfinement temperature as a function of R and Y :

∆I(R, Tc, Y ) = 0→ Tc(Y,R) (2.8)

• Glueball mass:

We can compute the glueball mass of our theory by considering a massless scalar

field propagating in a background, see for example [26–28]. Using the ansatz: φ =

ψ(r)β(r)e−iMt, the scalar dynamics are determined by the wave equation:

∂µ
(√
−ggµν∂νφ

)
=0 (2.9)

This wave equation can be easily put into a Schrodinger form, but if we do the crudest

WKB approximation to get a feeling of how the mass depends on the parameters of

our theory, we don’t really need to do the algebra. In this way, if we consider that

the glueball is very massive so we neglect other terms proportional to ψ(r), for large

n, WKB yields [27]:

M−1
gb ≡M

−1

(
n− 1

2

)
=

1

π

∫
r

√
−gtt

grr
dr (2.10)

The integral is definite and we have to integrate r from the boundary to the end

of the geometry. Although M is not the first excitation, it gives us a scale for the

glueball mass spectrum and because we only worry about what is the scale that
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the glueball is defining, we will reabsorb the n factors in this energy scale (Mgb).

Abusing of language, we will call Mgb the glueball mass, even though it is just the

scale of the large excitations of the glueball spectra (for large n, that we reabsorbed

in its definition).

• Tension of the string:

The tension of the string is defined for the confining solution as the effective funda-

mental string tension redshifted at r0 [18]:

Tstr =
1

2πα′
√
−gxxgtt

∣∣
r=r0

(2.11)

Note however that this quantity will be parametrically different than the previous

ones because it usually comes multiplied by the ’t Hooft coupling λ, and the calcu-

lation we will make will be in the strong coupling regime.

3 Different models

3.1 5D flux soliton

The model is a magnetically charged extension of the first case considered in [17]. We may

begin with the charged black hole in AdS5, which is a solution to the Einstein-Maxwell

equations of motion and can be uplifted to type IIB SUGRA (see [29]). Wick rotating this

solution we get a “magnetically charged” soliton. This model has two scales, the potential

Φ at infinity and the compactification radius of the spatial direction x3. In order to study

a confinement/deconfinement phase transition, we will construct two solutions from this

black hole: a soliton with magnetic flux in a compactified coordinate and a black hole

with constant magnetic flux in the compact direction. We expect that if there is a phase

transition the confinement phase will be described by the thermal soliton and the black

hole will represent the deconfined phase.

As noted, given the solution of the charged black hole, we will do a double Wick

rotation to get the soliton (in order to keep the potential real, we will reabsorb a imaginary

unit in the potential) and we will assume periodic imaginary time. The other solution

will simply be the black hole with constant potential. In this way, for the two cases, the

coordinates t, x3 should be identified as t → t + iT−1, x3 → x3 + 2πR. The solutions we

will be considering are then:

Soliton: ds2
c =

r2

L2

[
−dt2 + dx2

1 + dx2
2 + fcdx

2
3

]
+
L2dr2

r2fc

Ac =
√

3Φ

(
1− r2

0

r2

)
dx3 fc =

(
1− r2

0

r2

)(
1 +

r2
0

r2
+

Φ2r2
0L

2

r4

)
Black Hole: ds2

d =
r2

L2

[
−fddt2 + dx2

1 + dx2
2 + dx2

3

]
+
L2dr2

r2fd

Ad =
√

3Φdx3 fd =

(
1−

r4
d

r4

)
(3.1)

– 6 –
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The subscripts c, d which denote confined and deconfined phase respectively and cor-

respond to the soliton and black hole. Note that, because the x3 direction is compact, the

gauge potential in the deconfined phase is not pure gauge, we have a nontrivial magnetic

holonomy. From here it is easy to compute the radius of the compact direction and the

temperature of the black hole in terms of the parameters of the theory (they have to be

fixed in order to avoid conical singularities).

The radius of the compact direction x3 is:

1

R
=
r0

L2

(
2 +

ΦL

r0

)
r±0 =

L2

4R
(1±

√
1− 8x2) with x =

ΦR

L
(3.2)

Like we said before, there are only two independent parameters (we also introduce a

temperature implicitly but r0 is independent of T ). The ones that are physically interesting

are R and Φ, and we have seen that r0(R,Φ) has two solutions for every pair of parameters.

However, because we know that at x = 0, r0 = L2

2R2 , the only physical solution is r+
0 , so

from now on we will omit the ± label. Also, because we want r0 to be real, the variable x

will have to be between 0 and 1√
8
.

The temperature of our system will be determined by identifying periodically imaginary

time for the black hole:

T−1 =
πL2

rd
(3.3)

Although we have two solutions at finite temperature for the same system, at every

point T,R,Φ the state will be described by one of the solutions. The physical solution is

the one which has the least (i.e. more negative) free energy. The difference between the

free energy of the two solutions goes like:

∆Ic−d ∝ RT−1
[
r4
d − r4

0 − (ΦLr0)2
]

(3.4)

If we now plug the expressions for T and R in terms of the parameters it is straight-

forward to find the deconfinement transition (if T < Tc we are in the confined phase):

T 4
c =

1

(2πR)4
h(x)

h(x) =
1

2

(
1− 4x2 − 8x2 +

√
1− 8x2

)
(3.5)

We can see the function h(x)1/4 plotted in figure 1, because x ∈ [0, 1√
8
]→ h(x) ∈ [1, 3

16 ].

The glueball mass 2.10 and tension 2.11 will be:

πM−1
gb

1 +
√

1− 8x

4R
= agb(x) =

∫ ∞
1

1√
(1− y−2)(1 + y−2 + x2y−4)

dy (3.6)

Tstr =
1

2πα′

(r0

L

)2
=

λ

16R2

(
1 +
√

1− 8x
)2

(3.7)

where λ, the ’t Hooft coupling is defined as usual λ = L2

2πα′

– 7 –
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Figure 1. h(x)1/4 =
Tc

2πR

3.1.1 Stripe EE

With all the previous things in consideration, the computation of the entanglement entropy

is straightforward: everything will reduce to a relatively complicated integral of a function

of r between r? and ∞ (2.4) , where r? is as usual how deep our surface gets in the r

direction, and after integrating another function we will obtain the physical width l(r?).

In order to simplify the final expressions we did some change of variables. The first change

of variables is to go to a coordinate where the boundary is at 0 and the upper limit of

the integral is 1. This coordinate is: y =
r?

r
. We have a family of EE parametrized by Φ

and r? (which is an implicit function of l), to make the computations easier let’s assume

r? = r0
µ , the final redefinition that we will make is q ≡ ΦL

r0
=

4x

1 +
√

1− 8x2
. In this way,

we will be able to factorize the dependence in r0 to end up having just a family of integrals

parametrized by µ and q, whose values must be between [0, 1] and [0,
√

2], respectively.

With all these simplifications, using the usual formula for the EE, the integral that we

will have to compute to get the entanglement entropy is the following (we set L = 1):

S(l,Φ) =
πRD

G5
N

A[l,Φ]

A[l,Φ] = r2
0Ā[l, q(Φ)] = r2

0

∫ 1

0
dy F [y, µ(l), q]

l(µ,Φ) =
l̄(µ, q(x))

r0(x)
=

2

r0

∫ 1

0
dy
dl

dy
(3.8)

Note that we explicitly wrote the dependence of the expressions on r0, this factorization

will make the numerics much easier and comes precisely from the choice of coordinates we

did. From now on we will drop the dependence on x of q and r0 (we know their explicit

dependence on x,R). With this, we can integrate the functions F (note that the second

piece of Fd in (2.6) has to be integrated between 1 and µ−1) and dl
dy between 0, 1 for a set

of values of µ and obtain the functions ∆Ā[l̄, q], the ones that are of interest. The functions

– 8 –
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Figure 2. (Colour online) Dependence on x for lc (black) and the scales of our theory (dashed)

1/Tc (black), T
−1/2
str (red) and M−1gb ∝ a(x)/r0 (blue), the quantities are normalized with their value

at x = 0, so they all begin at 1.

to integrate are:

Fc[y, µ, q] =

√
1− (1− q2) y4µ4 − q2y6µ6

y6µ4 (1− y6 + (1− q2) y4 (−1 + y2)µ4)
(3.9)

Fd[y, µ, q] =
1

y3µ2

dl

dy
=

√
y6µ2 (−1 + µ2) (−1− µ2 − q2µ4)

(−1 + y2) (−1+y2µ2) (−1−y2µ2−q2y4µ4) (−1−y2+y4 (−1 + (1− q2)µ4))

Integrating these functions we can obtain lc(q) by equating ∆Ā[lc, q] = 0. With ev-

erything we have, now it is relatively easy to get this values. For every x we will have to

obtain the functions µc(x) by solving (2.7) numerically. After that, we plug µc and x in the

integral for the physical width, so we end up having the function lc(x). We can see these

quantities plotted in figure 2. Note that although the functions may seem to be diverging,

they are finite at x = 1√
8
.

We can see how lc tracks well the other physical three quantities, in particular it

seems to follow most closely the glueball mass. These results are not conclusive about the

preferences of lc, because it seems all of the physical quantities of interest to track to order

one. Of course all of the relevant quantities track each other at the qualitative level.

3.2 Magnetically charged D4 soliton

In order to obtain this model we will begin with the soliton M5 brane supergravity solution

(for example [30]):

ds2
11 = H

−1/3
3 (d~x2 + fdx2

4 + dx2
11) +H

2/3
3

(
dr2

f
+ r2dΩ2

4

)
Ctx1x2x3x4x11 =

√
1 +

(r0

L

)3
(H−1

3 − 1) ≈ H−1
3 (3.10)

– 9 –
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where:

H3 = 1 +

(
L

r

)3

≈
(
L

r

)3

f = 1−
(
r0

r

)3

(3.11)

Here the parameter L is specified in terms of the string theory parameters and the near

horizon limit (L � r) that we used ends up being the usual field theory limit (large Nc

but finite “t’Hooft coupling”). If we rotate in the 4 and 11 direction with an angle θ we

obtain the rotated solution:

ds2
11 = H

−1/3
3 (d~x2 + fH−1

0 dx2
4) +H

2/3
3

(
dr2

f
+ r2dΩ2

4

)
+H

−1/3
3 H0

[
dx11 + cotanθ

(
H−1

0 − 1
)
dx4

]2
H0 = 1− q3

r3
with q3 = r3

0 sin2 θ (3.12)

In order to KK compactify the 11th dimension we will decompose it as usual:

ds2
11 = e−2φ/3gµνdx

µdxν + e4φ/3
[
dx11 +Aµdx

µ
]2

(3.13)

So we end up with the result we wanted (we add a constant to the gauge potential to ensure

A(r0) = 0):

ds2
c = H

−1/2
3

[
−fH−1/2

0 dx2
4 +H

1/2
0 (−dt2+dx2

1+dx2
2+dx2

3)
]

+H
1/2
0 H

1/2
3

(
dr2

f
+ r2dΩ2

4

)
(3.14)

where the dilaton, RR 3-form and RR 1-form are:

e−2φ = g−2
s H

−3/2
0 H

1/2
3 F4 = g−1

s 3L3dΩ4 A =
1√
r30
q3
− 1

f

H0
dx4 = Φ

f

H0
dx4 (3.15)

This solution has a magnetically charged RR 1-form, which is sourced by D6 branes,

so it is natural to think of this solution as a D4-D6 brane bound state. Physically, the

parameters we are interested in are the confining radius and the potential at infinity Φ (in

terms of the angle of the rotation Φ = tan θ). We can easily compute the confining radius

of this soliton:

R =
2

g′x4x4(r0)
=

2

3
r0

√
H0H3 =

2L3/2

3r
1/2
0

(1 + Φ2)−1/2 (3.16)

Because the physical quantities are Φ and R, we can express r0 and q in terms of these

variables:

r0 =
4L3

9R2

1

1 + Φ2

q =
4L3

9R2

1

(1 + Φ2)(1 + Φ−2)1/3
=

4L3

9R2

Φ2/3

(1 + Φ2)4/3
(3.17)
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If we now consider the deconfined solution, it’ll just be the black hole solution of the

D4 background, with a constant gauge potential and the x4 direction compactified in a

circle. It’ll simply be then:

ds2
d = H

−1/2
3

[
−f(rd)dt

2 + dx2
1 + dx2

2 + dx2
3 + dx2

4

]
+H

1/2
3

(
dr2

f(rd)
+ r2dΩ2

4

)
(3.18)

Where the dilaton, RR 3-form and RR 1-form are:

e−2φ = g−2
s H

1/2
3 F4 = g−1

s 3L3dΩ4 A = Φdx4 (3.19)

The temperature of this black hole is:

T =
3r

1/2
d

4πL3/2
(3.20)

In that way, if we are to compare the action of the two solutions, they have to have

the same compact circles (ie. time periodic in imaginary time with period T−1 and x4 with

period 2πR).

If we compare these two solutions, from M theory the two solutions only differ by a

rotation, and because nothing else than the metric depends on the rotation (which only

acts through the determinant and the norm of F3), the two actions are the same (with

different parameters r0, rd). From this, the deconfinement temperature will be determined

by r0 = rd:

T−1
c =

4πL3/2

3r
1/2
0

= 2πR
√

1 + Φ2 (3.21)

The glueball mass and the tension of the confined string are:

M−1
gb =

1

π

∫ ∞
r0

dr

√
L3

r3(1− (r0/r)3)
=

1

π

√
L3

r0

∫ ∞
1

dy
1√

y3(1− y−3)

Mgb ' 5.41843Tc (3.22)

Tstr =
1

2πα′
H

1/2
0 H

−1/2
3

∣∣
r=r0

=
1

2πα′
3R

2L3
r2

0 ∼ λRT 4
c (3.23)

Where in the last line we got rid of all the numerical factors, and we subsituted the

t’ Hooft coupling in 5d λ ∼ L3

2πα′ (it has length dimensions). Note that in this case, for

Φ = 0, T
−1/2
str ∼

√
R3λ−1, so although the power of R is not the same that the one for lc,

we are still comparing lc with T
−1/2
str because it is a fundamental quantity in the confining

theory with length units and its behavior with q could be similar.

3.2.1 Stripe EE

Now consider the EE for a strip, if we change to coordinates z = 1/r and we consider that

our strip is a 8 dimensional surface that is completely characterized by the profile z(x), the

induced metric is: √
gEind =

f1/2H
1/2
3

z4

√
1 +

H3z′2

fz4
(3.24)
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Because there is no explicit dependence on H0, the problem is the same one that

without the D0 branes but with different identifications (r0 also depends on Φ).

If we are to compare the two competing extremal surfaces, we will find that the critical

width is:

l−1
c ' 1.1647

√
r0

L3
= 4.8786Tc (3.25)

In this system both lc and M−1
gb track Tc (note also that lcMgb ∼ 1), while T

1/2
str goes

like T 2
c . An interesting observation about this case is that the flux can be as large as we

want, so we can completely separate 1/Tc from R. In this way what the EE phase transition

seems to tell us is that lc goes like M−1
gb or T−1

c .

3.3 Relevant perturbation

In this section we will consider our thermal theory to be deformed by a relevant perturba-

tion. For simplicity we will limit ourselves to first order in the perturbation (i.e. we work

with large “temperature”), which will allow us to have analytic functions until relatively

far. We are going to consider as usual a confinement-deconfinement transition. We will

follow the notation of [31–33] and most of the results here included (before the EE) can be

found there.

The Einstein-Hilbert action that we are considering is (we set the radius of the asymp-

totic AdS5 to be L = 2):

S =
1

16πG5

∫
M5

dξ5√−g
(
R− 4(∂φ)2 − V (φ)

)
V (φ) = −3 + 4m2φ2 (3.26)

Note that the normalization of the scalar is not the canonical one (which will be just

4φ2 → 1
2φ

2). m denotes mass of the scalar and is related to the dimension of the operator

inserted in the boundary in the usual manner [9, 11]: mL =
√

∆(∆− 4). The physical

dimensions we consider for the operator are ∆ ∈ (2, 4) (note that then m2 ≤ 0, |m2| < 1).

In the regime of small φ (its smallness is controlled by φ0), we can solve the equations of

motion analytically. The metrics2 (which are basically 3.1 with Φ = 0 and the backreaction

of a scalar and, again, we periodically identify t, x3:t → t + iT−1, x3 → x3 + 2πR ) and

scalar profile are:

φ(x) = φ0(2x− x2)∆/4
1F2

(
∆

4
,
∆

4
; 1; (1− x)2

)
ds2
c = c2

2(−dt2 + dx2
1 + dx2

2 + (1− x)2dx2
3) +Gxxdx

2

ds2
d = c2

2(−(1− x)2dt2 + dx2
1 + dx2

2 + dx2
3) +Gxxdx

2

c2 =
δc/d

(2x− x2)1/4
eA(x) (3.27)

2We again follow the conventions of [33], comparing with the previous ones (2.1), (1 − x)2 = −fgtt,
c2 =

√
−gtt, Gxx = grr

(
dr
dx

)2

– 12 –



J
H
E
P
0
5
(
2
0
1
2
)
0
3
2

Here A(x) and Gxx (see [33]) can be easily obtained from the equations of motion (Gxx
is expanded to leading order in φ2

0):

A(x) =
4

3

∫ 1

x

(z − 1)dz

(2z − z2)2
(B(0)−B(z))

B(z) =

∫ 1

z
dyφ′(y)2 (2y − y2)2

(y − 1)

Gxx =
1

(2x− x2)2
− 2A′

2x− x2

(
(1− x) + (1− x)−1

)
+

4m2φ2

3(2x− x2)2
− 4

3
φ′2

For A(x) we have the freedom to add a constant to B(z) and we choose it so the

integral is finite at y = 0.

Like in the previous cases, t and x3 are identified as t→ t+ iT−1, x3 → x3 + 2πR. In

order to compare the two theories we will suppose they have the same φ0, T,R. In this way,

from the usual definition for temperature of a gravitational system (2πT = c2G
−1/2
xx

∣∣
x=1

),

T and R will be [33]:

1

Rδc
=

2πT

δd
= 1 +

(
∆(4−∆)

6
−A′′(x)

∣∣
x=1

)
φ2

0 = 1 + cRφ
2
0 (3.28)

Note that in general δc 6= δd. Because the deformation is the same in both backgrounds,

the transition will occur at T−1 = 2πR (or δc = δd).

The tension of the string and the glueball mass will be:

Tstr =
1

2πα′
√
−gx1x1gtt

∣∣
x=1

=
1

2πα′
c2

2|x=1 =
λ

4

1

(1 + cRΦ2
0)2R2

M−1
gb =

1

π

∫ 1

0
dx

√
Gxx
c2

2

=
1

π
δ−1
c agb(φ0) (3.29)

Because we only calculate up to first order in φ2
0, for every physical variable,the quan-

tities that we will be interested in will be:

X(φ0)

X(0)
= 1 + cXφ

2
0 (3.30)

For the two quantities before then:

c√Tstr = −cR

cM−1
gb

= cR +
a∆

a0
; agb = a0 + a∆φ

2
0 (3.31)

where in the second case, we expanded agb in the perturbation. In this way, in order to

get cM−1
gb

, we will only have to do the integral a∆ for every ∆.

3.3.1 Stripe EE

What we want to do now is to compute lc, the width at which the disconnected piece of

the entanglement entropy has the same area than the connected one. First we construct

– 13 –
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the area functionals for the two cases:

Fc =
(1− x)c2

2G
1/2
xx√

1−
(

(1− x?)c?32

(1− x)c3
2

)2

dl

dx
=

G
1/2
xx

c2

√(
(1− x)c3

2

(1− x?)c?32

)2

− 1

Fd = (1− x)c2
2G

1/2
xx (3.32)

In the usual way, the ? denotes the tip of the strip, which will be the upper limit of our

integration and we can obtain the physical width by integrating l̇. Because we are working

in the small φ0 limit, we can only trust the results up the first quadratic term in φ0, which

will make everything simpler. We will also have to expand then in x? = x0 + φ2
0δx:

F = δc(F0 + φ2
0F∆ + φ2

0Fδxδx)

dl

dx
= δ−1

c (l̇0 + φ2
0 l̇∆ + φ2

0 l̇δxδx) (3.33)

Here we explicitly extracted the dependence in δR so all the functions Fi, l̇i only depend

on x, x0.The shift of x? due to the perturbation is linear and the only term that depends

explicitly on the dimension of the operator is the one with subscript ∆ (the last term comes

only from expanding in x?). We are interested in the difference of the constant piece of the

EE for the two solutions and, because the divergent piece will be the same, the integral to

compute will be the following (note that for the term linear in δx there is no disconnected

piece and it is convergent):

Ai(x?) =

∫ x?

0
dx(Fci −Fdi )−

∫ 1

x?
dxFdi (3.34)

If we now consider xc, the point where the EE from the two contributions is the same,

we can do the same expansion x?c = xc + φ2
0δxc (A0(xc) = 0 by definition):

φ2
0(A∆(xc) +Aδx(xc)δxc) = 0 (3.35)

In this way we obtain δxc (that only depends on ∆). In order to get lc we only have

to integrate dl
dx until xc. If we expand lc then and read the contribution quadratic in the

perturbation then:

lc(φ0)

(RδR)−1lc(φ0 = 0)
= 1 +

l∆(xc)− kδxA∆(xc)

lc(φ0 = 0)
φ2

0

kδx =
Aδx
lδx
≈

2
(
2xc − xc2

)
3/4

1− xc
(3.36)

The two integrals in kδx are divergent around xc, but they diverge with the same power,

so kδx is just the ratio of the coefficients that multiply the divergence. The coefficient clc

– 14 –
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Figure 3. (Colour online) Dependence on ci on ∆ and |m2| for clc (black) and the scales of our

theory (dashed) c1/Tc
= 0 (black), −c√Tstr

(red) and cM−1
gb

(blue).

will have contributions both from the integrals and from δR and will be the quantity of our

interest. To compute it we only have to do two integrals: l∆ and A∆ for every ∆.

The critical width of the unperturbed system xc will be: xc ' 0.15406.

In this way, we have all we need to study how does the behavior of lc compare with

that of the other physical quantities. In figure 3 we can see plotted the four c of interest

as a function of ∆ and of |m2| (remember that m is a purely gravitational quantity and Tc
doesn’t depend on Φ2

0).

In this case we see how the tension doesn’t seem to capture as well the behavior of lc
as the other two quantities. It’s worth mentioning that clc = −cR + b (by b we mean the

slope of (3.36)), so clc considerably smaller than cR (is the same than the tension) requires

some tuning.

4 Discussion

In section 2 we compared lc with three quantities that characterize the confined state: the

deconfinement temperature, the tension of the string and the energy scale of the highly

excited glueball states (which we called glueball mass). Overall, we have seen that although

the behavior of lc is not completely the same for all the cases, there are some observations

that apply to the three cases.

First, as we discussed earlier, Tstr is parametrically distinct from other scales in holo-

graphic models. But, even if Tstr is not close to lc,
Tstr(x)
Tstr(x=0) is similar to lc(x)

lc(x=0) .

Second, Mgb and Tc are approximately the same (although not identical) and the way

we obtained Mgb is of course approximate. Comparing these parameters with the critical

width, lc follows very closely both scales, being roughly the same. It seems to have a

slight preference for Mgb, something which makes sense since correlations in the theory are

dominated by its excitations. This preference reflects the intuition that correlations are

minimal beyond lc ∼ 1
Mgb

.
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