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1 Introduction and summary

The Maldacena Conjecture [1–3] provides what is probably the most effective and con-

trollable tool to study non-perturbative dynamics of a variety of field theories. A large

variety of effects have been discovered or checked in field theories using a suitable string

dual. Integrability, correlation functions of various interesting operators (protected or not

by symmetries), aspects of lower dimensional systems, applications in condensed matter

and QCD-like systems have been succesfully studied using gauge/gravity duality.

The results above, while more numerous and spectacular in highly (super)symmetric

theories, are not restricted to examples of this sort. As a matter of fact, there are many

applications where black holes (and hence dual field theories at finite temperature) play a

fundamental role. In these cases the dynamics is neither driven by SUSY nor by confor-

mal symmetry.

As a result, an interesting problem is to construct backgrounds duals to field theories

where supersymmetry has been broken in a soft way. These systems should conserve some of

the dynamics of the SUSY case with the addition of the deformations by relevant operators

that break the supersymmetry. The low energy dynamics should then be determined by a

combination of SUSY and non-SUSY effects. This is an interesting problem, on which it

seems feasible to make progress.

In this paper, we will construct duals to field theories in four dimensions where SUSY

has been explicitly and softly broken by the addition of relevant operators to the La-

grangian. The original field theories will be those obtained by a twisted compactification

of five branes wrapping a calibrated two cycle in the resolved conifold and those obtained

by studying the dynamics of D3 and fractional D5 branes on the tip of a conifold. Both are

non-conformal theories with interesting low energy dynamics (confinement, R-symmetry

breaking, formation of domain walls, k-strings, etc.)

We will construct our non-SUSY backgrounds by finding an explicit solution of the

Einstein, dilaton and RR-form equations of motion. We also impose that irrelevant oper-

ators are absent from the dynamics and that the string backgrounds are regular all along

the space. We will concentrate on the case in which the SUSY breaking parameters are

small compared the others already present in the system in the SUSY case.

These will then be examples of backgrounds dual to the strongly coupled dynamics of

well understood SUSY field theories in which SUSY has been softly and controllably broken.

Some examples of this sort have appeared in the past for deformations of well-known SUSY

backgrounds, see for example [4–10].

Our paper is organized as follows. We start in section 2 by presenting the SUSY sys-

tem. While the fomalism summarized there does not apply to problem of interest, we do
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give some details that are useful in attempting to construct the non-SUSY solutions (in

particular large-radius asymptotics). In section 3, we will the propose a SUSY breaking so-

lution in series expansion for large (UV) and small (IR) values of the radial coordinate. We

will carefully count the parameters that control our solutions and find numerical solutions

interpolating in a smooth way between the desired UV and IR asymptotics. Section 4 gives

some details of the numerical method. In section 5 we calculate the ADM Energy of the

new solutions (with the SUSY solutions as reference backgrounds). In section 6 we perform

a detailed study of various field theory quantities, whose strong-coupling result points us

to an interpretation of the dual field theory being deformed by the insertion of relevant

operators, like gaugino masses that break SUSY and may also influence VEVs. We close

with some conclusions and possible interesting problems to be solved constructing on the

results of this paper. The high technical nature of our work is clear from the outline above.

For the benefit of readers, we have included explicit technical points in detailed appendices.

Note added. While this paper was close to completion, we were informed of the work by

Dymarsky and Kuperstein, having interesting overlap with ours [63]. We thank Anatoly

Dymarsky for letting us know about this work prior to publication and discussion on

these topics.

2 Presentation of the SUSY system

In this section we summarize well established aspects of particular supersymmetric field

theories and their dual backgrounds. This will be useful when introducing SUSY break-

ing deformations.

We start by considering two apparently different field theories. The first one, we refer

to it as ‘theory I’ or ‘Type I theory’ (hoping not to cause confusion with the Type I string

theory), is a quiver with gauge group SU(n + Nc) × SU(n) and bifundamental matter

multiplets Ai, Bα with i, α = 1, 2. The global symmetries are1

SU(2)L × SU(2)R ×U(1)B ×U(1)R. (2.1)

These bifundamentals transform under the local and global symmetries as

Ai =

(
n+Nc, n̄, 2, 1, 1,

1

2

)
, Bα =

(
n̄+ N̄c, n, 1, 2,−1,

1

2

)
. (2.2)

There is also a superpotential of the form W = 1
µεijεαβtr[AiBαAjBβ]. The field theory is

taken to be close to a strongly coupled fixed point. In that case one can show that the

anomalous dimensions should be γA,B ∼ −1
2 . This field theory is well known to be the dual

to the Klebanov-Strassler background [11] and its generalization to the baryonic branch [12].

The second field theory, that we will call ‘theory II’ (again not to be confused with

the Type II string!) is obtained after a twisted compactification (to four dimensions) of

six dimensional SUSY SU(Nc) Yang-Mills with 16 supercharges. This special compactifi-

cation studied in [14–16] preserves four supercharges. In four dimensional language, the

1The R-symmetry is anomalous, breaking U(1)R → Z2Nc .
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field content is a massless vector multiplet and a ‘Kaluza-Klein’ tower of massive chiral

and massive vector multiplets. The Lagrangian, the weakly coupled mass spectrum and

degeneracies are written in [15, 16]. The local and global symmetries are (the R-symmetry

is anomalous, like in the theory I above),

SU(Nc)× SU(2)L × SU(2)R ×U(1)R. (2.3)

These two theories, apparently so different, can be connected as discussed in [17] and [18]

via higgsing. Indeed, giving a particular (classical) baryonic VEV to the fields (Ai, Bα)

and expanding around it, the field content and degeneracies of [15, 16] is reproduced. This

weakly coupled field theory connection has its counterpart in the type IIB solutions dual

to each of the field theories. Indeed, it is possible to connect the dual backgrounds to field

theories I and II, using U-duality [17]. This connection was further studied in [18–22].

We will now explain this connection among the explicit Type IIB string backgrounds.

We start from a background describing the strong dynamics of the ‘field theory II’ (the

twisted compactification of five branes). A quite generic configuration of this kind can be

compactly written using the SU(2) left-invariant one-forms

ω̃1 = cosψdθ̃ + sinψ sin θ̃dϕ̃ , ω̃2 = − sinψdθ̃ + cosψ sin θ̃dϕ̃

ω̃3 = dψ + cos θ̃dϕ̃ (2.4)

and the vielbeins

Exi = e
Φ
4 dxi, Eρ = e

Φ
4

+kdρ, Eθ = e
Φ
4

+hdθ, Eϕ = e
Φ
4

+h sin θdϕ,

E1 =
1

2
e

Φ
4

+g(ω̃1 + adθ), E2 =
1

2
e

Φ
4

+g(ω̃2 − a sin θdϕ),

E3 =
1

2
e

Φ
4

+k(ω̃3 + cos θdϕ). (2.5)

In terms of these, the background and the RR three-form read (in the Einstein frame)

ds2
E =

10∑
i=1

(Ei)2, (2.6)

F3 = e−
3
4

Φ
[
f1E

123 + f2E
θϕ3 + f3(Eθ23 + Eϕ13) + f4(Eρ1θ + Eρϕ2)

]
where we defined

Eijk..l = Ei ∧ Ej ∧ Ek ∧ . . . ∧ El,

f1 = −2Nce
−k−2g, f2 =

Nc

2
e−k−2h(a2 − 2ab+ 1),

f3 = Nce
−k−h−g(a− b), f4 =

Nc

2
e−k−h−gb′. (2.7)

The dilaton, as usual, is a function of the radial coordinate Φ(ρ) and we have set α′gs = 1.

The full background is then determined by solving the equations of motion for the

functions (a, b,Φ, g, h, k). A system of BPS equations is derived using this Ansatz (see
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appendix of reference [23]). These non-linear and coupled first order equations can be

arranged in a convenient form, by rewriting the functions of the background in terms of

a new basis of functions P (ρ), Q(ρ), Y (ρ), τ(ρ), σ(ρ) that decouples the equations (as

explained in [24, 25]–[26]). We quote this change of basis in our appendix A.

Using these new variables, one can manipulate the decoupled BPS equations, solving

most of them and obtaining a single decoupled second order equation for P (ρ). All other

functions are obtained from P (ρ) — see [24, 25] and our appendix A for details. The second

order equation mentioned above reads

P ′′ + P ′
(
P ′ +Q′

P −Q
+
P ′ −Q′

P +Q
− 4 coth(2ρ− 2ρ0)

)
= 0. (2.8)

We will refer to eq. (2.8) as the master equation: this is the only equation that needs

solving in order to generate the large classes of solutions of Type IIB dual to “field theory

II” in different circumstances (vacua, insertion of operators in the Lagrangian, etc.).2

In this paper, we will not be concerned with SUSY solutions, but they will play an

important guiding role. We summarize below the small and large ρ expansions of the

function P (ρ).

2.1 Aspects of the SUSY solutions

Let us start from the solution of the master equation (2.8) for large values of the radial

coordinate (describing the UV of the field theory II). The SUSY solutions have an expansion

for ρ→∞ of the form,

P = e4ρ/3

[
c+ +

e−8ρ/3N2
c

c+

(
4ρ2 − 4ρ+

13

4

)
+ e−4ρ

(
c− −

8c+

3
ρ

)
+
N4
c e
−16ρ/3

c3
+

(
18567

512
− 2781

32
ρ+

27

4
ρ2 − 36ρ3

)]
(2.9)

Notice that this expansion involves two integration constants, c+ > 0 and c−. The back-

ground functions at large ρ are written in appendix A.

Regarding the IR expansion, we look for solutions with P → 0 as ρ→ 0, in which case

we find

P = h1ρ+
4h1

15

(
1− 4N2

c

h2
1

)
ρ3 +

16h1

525

(
1− 4N2

c

3h2
1

− 32N4
c

3h4
1

)
ρ5 +O(ρ7), (2.10)

where h1 is again an arbitrary constant, there is of course another integration constant,

taken to zero here, to avoid singularities. This gives background functions that are quoted in

appendix A. Of course, there is a smooth numerical interpolation between both expansions.

However, there is then only one independent parameter; given a value for one of {c+, c−, h1},
the requirement that the solution matches both expansions is sufficient to determine the

values of the other two.

2As an example, the solution P = 2Ncρ gives the background of [14, 27]. This solution and those with

the same large ρ asymptotics will not be the focus of this paper.
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As explained in [18], this solution corresponds to a dual field theory II in the presence

of a dimension-eight operator inserted in the Lagrangian which ultimately couples the field

theory to gravity. This calls for a completion in the context of field theory. This is achieved

with the U-duality of [17] (which we will sometimes refer to as the ‘rotation’).

After the U-duality described in [17] is applied, we define the new vielbein (which we

use in the following),

exi = e
Φ
4 ĥ−

1
4dxi, eρ = e

Φ
4

+kĥ
1
4dρ, eθ = e

Φ
4

+hĥ
1
4dθ, eϕ = e

Φ
4

+hĥ
1
4 sin θdϕ,

e1 =
1

2
e

Φ
4

+gĥ
1
4 (ω̃1 + adθ), e2 =

1

2
e

Φ
4

+gĥ
1
4 (ω̃2 − a sin θdϕ),

e3 =
1

2
e

Φ
4

+kĥ
1
4 (ω̃3 + cos θdϕ). (2.11)

The newly generated metric, RR and NS fields are

ds2
E =

10∑
i=1

(ei)2,

F3 =
e−

3
4

Φ

ĥ3/4

[
f1e

123 + f2e
θϕ3 + f3(eθ23 + eϕ13) + f4(eρ1θ + eρϕ2)

]
H3 = −κ e

5
4

Φ

ĥ3/4

[
− f1e

θϕρ − f2e
ρ12 − f3(eθ2ρ + eϕ1ρ) + f4(e1θ3 + eϕ23)

]
C4 = −κe

2Φ

ĥ
dt ∧ dx1 ∧ dx2 ∧ dx3,

F5 = κe−
5
4

Φ−kĥ
3
4∂ρ

(
e2Φ

ĥ

)[
eθϕ123 − etx1x2x3ρ

]
. (2.12)

We have defined

ĥ = 1− κ2e2Φ, (2.13)

where κ is a constant that we will choose to be κ = e−Φ(∞), forcing the dilaton to be

bounded at large distances. The rationale for this choice is to obtain a dual QFT decoupled

from gravity. Details of this were carefully discussed in [18, 22]. The tuning κ = e−Φ(∞)

(also chosen in [28], though in slightly different notation) is the geometric version of the

fact that, in order to eliminate an irrelevant operator in the dual field theory I, we have

to finely-tune the matter content and the gauge group with which we will UV-complete

the theory II after un-higgsing from the single node to the quiver. See [18] for a complete

explanation. We will now move to study SUSY breaking deformations.

3 The SUSY-breaking deformation

The goal is to find a non supersymmetric solution with the same symmetries and structure

as the ones described above. We proceed as follows: we will find a non-SUSY general-

ization of the system in eq. (2.6). We will solve the equations corresponding to Einstein,

Maxwell, dilaton and Bianchi equations of the system. The nice properties of the SUSY

formalism just explained do not apply. We will then propose series expansions for the

– 5 –
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individual background functions Φ, h, g, k, a, b. With the experience gained in the SUSY

example, especially keeping in mind the expansions quoted in eqs. (A.3), (A.5), we propose

similar asymptotics.

3.1 Asymptotic expansions

In the UV (large values of ρ) our expansions take the form,

e2h ∼
∞∑
i=0

i∑
j=0

Hijρ
je4(1−i)ρ/3,

e2g

4
∼
∞∑
i=0

i∑
j=0

Gijρ
je4(1−i)ρ/3,

e2k

4
∼
∞∑
i=0

i∑
j=0

Kijρ
je4(1−i)ρ/3, e4Φ ∼

∞∑
i=1

i∑
j=0

Φijρ
je4(1−i)ρ/3,

b(ρ) ∼
∞∑
i=1

i∑
j=0

Vijρ
je2(1−i)ρ/3, a(ρ) ∼

∞∑
i=1

i∑
j=0

Wijρ
je2(1−i)ρ/3. (3.1)

We have found that a generic solution of this sort can be written in terms of nine integration

constants. These constants are free; all other coefficients in the series expansion can be

written in terms of them. The independent constants are taken to be,

K00, K30, H10, H11,Φ10,Φ30,W20,W40, V40. (3.2)

Note that we have found the constants V21,W21 must vanish for this to be a solution.

Also, we imposed that terms that would spoil the UV behavior of the SUSY solution

(corresponding to irrelevant operators in the dual QFT) are absent from our expansions.

Without loss of generality, we relabel the UV parameters in eq. (3.2) to make contact

with the SUSY case (see appendix A):

W40 = 2eρo , K00 =
2c+

3
, Φ10 = e4Φ∞ ,

H10 =
Qo
4
, K30 =

c− − 64e4ρoc3
+

48c2
+

. (3.3)

The independent parameters are then

c+, c−, Φ∞, Qo, ρo, H11, W20, Φ30, V40, (3.4)

and we can recover the SUSY case by setting

H11 =
1

2
, W20 = 0, Φ30 = −3e4Φ∞

4c2
+

(3 + 4Qo), V40 = 2e2ρo(1 +Qo). (3.5)

For small values of the radial coordinate (which we take to end at ρ = 0) we will

propose an expansion of the form (again, imposing regularity of the solution),

e2h ∼
∞∑
j=2

hjρ
j ,

e2g

4
∼
∞∑
j=0

gjρ
j ,

e2k

4
∼
∞∑
j=0

kjρ
j , (3.6)

e4Φ ∼
∞∑
j=0

fjρ
j , a(ρ) ∼

∞∑
j=0

wjρ
j , b(ρ) ∼

∞∑
j=0

vjρ
j .
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In this case the free parameters are k0, f0, k2, v2 and w2. For any value of these numbers we

find a solution. To make contact with the SUSY solution in eq. (A.5), we relabel k0 = h1/2

and f0 = e4φ0 . We then recover the SUSY solution if the remaining three parameters take

the values

k2 =
2

5h1
(h2

1 − 4), v2 = −2

3
, w2 =

8

3h1
− 2. (3.7)

If we want to restrict our attention to those solutions which match both the UV and IR

expansions described above, we expect to have fewer independent parameters. To see this,

note that we can describe the solutions either by the IR boundary conditions, so that they

are parameterised by the five IR parameters {h1, φ0, k2, v2, w2}, or by the UV boundary

conditions, giving a parameterisation in terms of

{c+, c−,Φ∞, Qo, ρo, H11,W20,Φ30, V40}.

If a solution exists which connects our IR and UV expansions, the functions resulting from

these two parameterizations must be the same. We can formally express this as a system

of twelve equations,3

gh1...w2(ρ) = gc+...V40(ρ), g′h1...w2
(ρ) = g′c+...V40

(ρ),

hh1...w2(ρ) = hc+...V40(ρ), h′h1...w2
(ρ) = h′c+...V40

(ρ),
...

...

bh1...w2(ρ) = bc+...V40(ρ), b′h1...w2
(ρ) = b′c+...V40

(ρ).

However, the derivative of one of the functions can be expressed in terms of the other

derivatives and the functions themselves using the constraint, so only eleven of these equa-

tions can be independent. We therefore expect to be able to solve for eleven of the fourteen

parameters, leaving only three independent.

We know that the dilaton can be shifted without otherwise affecting the solution, so

one of these parameters must be either φ0 or Φ∞. Additionally, we know that we also need

one of h1, c+ or c− to describe the class of SUSY solutions. The third parameter therefore

breaks SUSY.

Note that there does not appear to be anything to stop us choosing, say, Qo to pa-

rameterise the SUSY-breaking, despite the fact that UV expansions with Qo 6= −Nc do

not break SUSY. This is explained by the fact that SUSY solutions with Qo 6= −Nc do

not have a regular IR. If we simultaneously demand that Qo 6= −Nc and the IR is of the

form (C.13)–(C.24) we must therefore have a non-SUSY solution. However, it seems con-

ceptually simpler to choose the third parameter to be one which explicitly breaks SUSY.

For our three independent parameters, we might select (in the IR) {h1, φ0, w2}, or (in the

UV) {c+,Φ∞,W20}.
In the next section, we will study the challenging numerical problem of finding a

solution that interpolates between the small and the large ρ expansions in eqs. (3.1)–(3.7).

3We write the functions resulting from a given choice {h1, φ0, k2, v2, w2} of the IR parameters in the

form gh1,φ0,k2,v2,w2(ρ). Similarly, the expressions of the form gc+,c−,Φ∞,Qo,ρo,H11,W20,Φ30,V40(ρ) refer to the

functions resulting from a given choice of the UV parameters.
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To summarize: we want to find a numerical solution for the functions above. This will

provide us with a non-SUSY deformation of the background in eq. (2.6) dual to field theory

of type II. Applying the U-duality in [17]–[22] we construct a non-SUSY background of the

form given in eq. (2.12), dual to a non-SUSY version of the field theory I.

4 Numerical analysis

In this section we show that for some values of the free constants in the IR and in the

UV we can connect the asymptotics numerically. We first briefly describe our method

of relating the IR and UV parameters, the details of which are relegated to appendix D,

before presenting a sample solution which smoothly connects the IR and UV asymptotics

of the previous section.

Our approach is to solve the equations of motion (B.4)–(B.9) numerically, using the

expansions (see appendix C) as boundary conditions. We start from the IR expan-

sions (C.13)–(C.24), meaning that our numerical solutions are described by the three

SUSY-breaking parameters {k2, v2, w2}, in addition to those already present in the SUSY

case h1 and φ0.

However, we have seen in section 3.1 that we expect only three independent parameters

in total, one of which breaks SUSY. This would mean that in the non-SUSY case we cannot

treat even the five IR parameters as independent. This is confirmed by our numerical

analysis: a generic choice of the IR parameters yields UV behaviour of the form b ∼ ±e2ρ

and e2g ∼ e2h ∼ e2k ∼ e8ρ/3, which is incompatible with our expansions (3.1). To obtain

a solution connecting the IR and UV expansions, then, we have to determine both an

appropriate combination of values for the IR parameters and the corresponding values for

the UV parameters.

We achieve this using the method described in detail in appendix D. In outline, we

start with a manual search of the IR parameter space, using Mathematica’s NDSolve to

obtain numerical solutions. Having obtained a solution with the desired UV behaviour

(b ∼ e−2ρ/3, g ∼ h ∼ k ∼ e4ρ/3) we optimise the match to the UV expansions (C.1)–(C.6)

with respect to the parameters (3.4) using NMinimize.

An example of solution is shown in figure 1. As is expected from the expan-

sions (C.1)–(C.6), the most significant modification with respect to the SUSY solution

is the presence of the e−2ρ/3 behaviour in the UV of a and b. The size of this effect is

controlled by the SUSY-breaking parameter W20; in the SUSY case we have W20 = 0,

resulting in a ∼ e−2ρ and b ∼ ρe−2ρ. The other functions are modified at higher order

in (C.1)–(C.6), and as expected no effect is visible in figure 1. See appendix D for details

of the numerical analysis.

5 Energy

In this section we study the energy of the non-SUSY solutions found above. For any

stationary spacetime admitting foliations by a spacelike hypersurface Σt, the free energy

and the energy are related via the thermodynamic relation F = E − TS. Here we are
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Figure 1. Plots of the functions g, h, k, Φ, log a and log b, obtained numerically (solid blue),

together with the IR (dotted red) and UV (dashed orange) expansions (appendix C), with small

deviations from the SUSY values of the parameters. The SUSY solution (grey) is included for

comparison.

considering T = 0 backgrounds and so we expect F = E. In this section we will first

calculate the ADM energy E, for the solutions before the U-duality — we will refer to

the U-duality of reference [17] as ‘rotation’. We will then repeat this calculation for the

solutions after rotation and show that the energies before and after rotation are equal. As

a check of our results, in appendix E we obtain the free energy using the on-shell action

method and show that F = E.

5.1 ADM energy

Consider a non-asymptotically flat 10-dimensional background. Let Σt be a 9-dimensional

constant-time slice whose 8 dimensional boundary is a constant-radius surface S∞t . The

regularized internal energy E is defined as [29],

E = − 1

8π

∫
S∞t

[
Nt

(
8K −8 K0

)
+Nµ

t pµνn
ν
]
dS∞t . (5.1)

Nt is the lapse function, Nµ
t is the shift vector, pµν the momentum conjugate to the

time derivative in the constant time-slice, 8K and 8K0 are the extrinsic curvatures of the
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8 dimensional boundary S∞t , for the background under consideration and the reference

background respectively. Finally nν is the spatial unit vector normal to the constant

radius-surface S∞t . It is required that both geometries induce the same metric on St
∞.

The matter fields should also agree at S∞t or at least the difference should tend to zero as

S∞t goes to infinity. We will choose a SUSY background as a reference geometry.

For the metrics before rotation (2.5)–(2.6) we have Nµ
t = 0, Nt =

√
|g00| = eΦ/4,

dS∞t = 1
8e

2(Φ+g+h)+k, nµ =
√
grrδµr = e−Φ/4e−k. The extrinsic curvature is

8K = ∇µnµ =
1
√
g9

∂µ(
√
g9n

µ) = e−Φ/4−k
[
2(Φ′ + g′ + h′) + k′

]
, (5.2)

where g9 denotes the determinant of the 9-dimensional constant time slice Σt. The require-

ment that the induced metrics on St
∞ agree at the boundary implies,4

e
Φns

2 e2gns = e
Φsu

2 e2gsu , e
Φns

2 e2hns = e
Φsu

2 e2hsu , e
Φns

2 e2kns = e
Φsu

2 e2ksu , (5.3)

and the g00 component agrees if

e−
Φns

2 = e−
Φsu

2 . (5.4)

All the quantities in (5.3) and (5.4) are evaluated at some large but finite rc that acts as

a cutoff. Using (5.1), the energy is

E = −vol8
64π

lim
rc→∞

{
e−kns

(
e2Φns+2gns+2hns+kns

)′
− e−ks

(
e2Φs+2gs+2hs+ks

)′}
. (5.5)

Before evaluating (5.5) we have to satisfy the matching conditions at the boundary, (5.3)

and (5.4). In order to do this we have to use the most general asymptotics of a supersym-

metric solution. As discussed in eq. (3.5), analyzing the BPS equations (see appendix A in

reference [23]) we see that the most general supersymmetric UV asymptotics is obtained

by replacing

W20 → 0, V40 → 2e2ρo(1 +Qo), H11 → 1/2, Φ30 → −3
(3 + 4Qo)

4c2
+

e4Φ∞ (5.6)

in the non-supersymmetric expansion (3.1). Notice that this substitution restores the inte-

gration constants Qo, ρ0 and eΦ∞ that are usually set to −1, 0 and 1 respectively [24, 25].

Reintroducing the integration constants is equivalent to using the shift invariance of the

r coordinate (encoded in Q0 and ρ0) and the dilaton [30]. Adjusting these constants will

allow us to satisfy the matching conditions at the boundary and cancel divergences in the

energy. Given the complexity of the UV expansions the matching procedure is cumbersome

but straightforward. Working to linear order in W20 we obtain,

E =
1

24π
c2

+e
2ρ0+2Φ∞W20. (5.7)

After the duality transformations the UV asymptotics changes drastically. In this case

we have Nµ
t = 0, Nt =

√
|g00| = e−Φ/4

H1/4 , dS∞t = 1
8e

3Φ+2g+2h+kH1/2, nµ = e−3Φ/4e−kH−1/4

4The subscripts ns and su stand for non-supersymmetric and supersymetric respectively.
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and

8K = ∇µnµ =
1
√
g9

∂µ(
√
g9n

µ) =
e−

3Φ
4
−k

2H5/4

[
H ′ + 2H(3Φ′ + 2g′ + 2h′ + k′)

]
. (5.8)

Note that here we defined H = e−2Φ− e−2Φ∞ . The regularized energy after the rotation is

E = − vol8
64π2

lim
r→∞

{∆ns −∆su} (5.9)

where

∆ ≡ e−Φ−k
√
H

(√
He3Φ+2g+2h+k

)′
. (5.10)

The matching conditions now read,

H1/2
ns e

3Φns
2

+2gns = H1/2
su e

3Φsu
2

+2gsu , H1/2
ns e

3Φns
2

+2hns = H1/2
su e

3Φsu
2

+2hsu ,

H1/2
ns e

3Φns
2

+2kns = Hsue
3Φsu

2
+2ksu , H

− 1
2

ns e
−Φns

2 = H−1/2
su e−

Φsu
2 . (5.11)

Note that

∆ = e−k
(
e2Φ+2g+2h+k

)′
+
eΦ+2g+2h

√
H

(
eΦ
√
H
)′

= ∆before + ∆extra (5.12)

where ∆before ≡ e−k
(
e2Φ+2g+2h+k

)′
and ∆extra ≡ eΦ+2g+2h

√
H

(
eΦ
√
H
)′

. We have

E = − vol8
64π2

lim
rc→∞

{
(∆before

ns −∆before
s )− (∆extra

ns −∆extra
s )

}
, (5.13)

where all the functions are evaluated at some large but finite cutoff rc. After adjusting the

parameters to ensure that the induced metrics at the boundaries are the same, as required

in (5.11), we take the cutoff to infinity. The first two terms in (5.13) are the same as in

the energy before rotation (5.5). We find that — to first order in W20 — the matching

conditions are satisfied using the same set of integration constants as before the rotation.

Thus, the first two terms in (5.13) give exactly the energy before rotation. Any difference

in energies will come from the extra terms (5.13). However, it can be shown that using

the integration constants necessary to satisfy (5.11),

lim
rc→∞

{
(∆extra

ns −∆extra
s )

}
= 0. (5.14)

Thus the energy before and after rotation are the same.5 Indeed, plugging in the UV

expansions directly in (5.9) we obtain,

E =
1

24π
c2

+e
2ρ0+2Φ∞W20. (5.15)

5This suggests that the ADM Energy is ‘uncharged’ under the U-duality, like probably are also uncharged

various thermodynamical quantities.

– 11 –



J
H
E
P
0
5
(
2
0
1
2
)
0
3
1

A couple of comments are in order. First, note that the overall constant that appears

in the energy can be changed by shifting the value of the dilaton at infinity. Thus, the

physically meaningful statement is that the energies before and after rotation have the

same functional dependence on the parameters,

Ebefore ∼ Eafter ∼ c2
+e

2ρ0+2Φ∞W20. (5.16)

Second, this calculation can be carried out to higher order in the SUSY breaking parameter

W20. The divergences in the energy can be cancelled by subtracting an appropiate SUSY

background. However, at higher orders there will always be a discrepancy of order W 2
20 of

the metrics at the boundary. This clearly indicates that the treatment presented in this

section is valid only for soft supersymmetry breaking with small breaking parameter, W20.

Had we not expanded around W20 ∼ 0 the mismatch at the boundary could be arbitrarily

large indicating that the non-supersymmetric solution does not approach the SUSY solution

fast enough for the energy to be finite, indicating that one should find another reference

background to subtract. Note that this substantiates the smallness of W20 seen numerically

in the previous section where the solutions found have W20 ∼ O(10−5).

6 Field theory aspects

In this section we will analyze various field theory aspects of a non-SUSY version of the

quiver that we called field theory I and described below eq. (2.1) To this end, we will use

the non-SUSY background one obtains when plugging our numerical solutions in section 4

in the background of eq. (2.12) dual to the field theory I.

To begin with, notice that in eq. (2.12) we did not specify the NS potential B2. Since

this will be useful below, we discuss it here (the result is different from the SUSY one).

Following the intuition gained in the SUSY example, we propose a B2 of the form

B2 = b1(ρ)eρ3 + b2(ρ)eθϕ + b3(ρ)e12 + b4(ρ)eθ2 + b5(ρ)eϕ1, (6.1)

by imposing that dB2 = H3 and that the Page charge vanishes QPage, D3 = 0 (see below)

we obtain — all details are discussed in appendix F —

b1 =
e2g−2k

4ĥ

[
2b3Φ′ − 3ĥb3Φ′ − 4ĥb3g

′ − 2ĥb′3 + κNce
3Φ
2
−2hĥ

1
2
(
a2 − 2ab+ 1

)]
b2 =

e−2h

4ĥ1/2

{
e2gĥ

1
2
(
1− a2

)
b3 −

κ

Nc
e

3Φ
2

[
N2
c (a− b)b′ + 4e2(g+h)Φ′

]}
b4 = b5 = −1

2
eg−hab3 −

κNce
3Φ
2
−g−hb′

4ĥ1/2
, (6.2)

with b3(ρ) an undetermined function. This freedom corresponds to a gauge transformation.

A general B2 can be expressed as

B2 = (B2)b3=0 −
1

2
d
(
e2g−k+Φ/4ĥ1/4b3 e

3
)
. (6.3)
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Before computing various observables of the strongly coupled non-SUSY field theory I, we

will quote another quantity that will appear frequently in the analysis. This is a periodic

quantity in the string theory. Given the two cycle defined as,

Σ2 = [θ = θ̃, ϕ = 2π − ϕ̃, ψ = ψ0], (6.4)

we define

b0 =
1

4π2

∫
Σ2

B2. (6.5)

When computed explicitly using the form of the B2 potential in eqs. (6.1)–(6.2), we obtain

b0(ψ0) =
κNc

4π
e2Φb′(b+ cosψ0)− κ

πNc
e2Φ+2h+2gΦ′ (6.6)

These quantities together with those appearing in the background of eq. (2.12) will be

important in the study of the non-perturbative field theory dynamics.

6.1 Calculation of observables

We now move into the calculation of observables that will help us understand the field

theory interpretation of our solution.

6.1.1 Interesting asymptotic behaviors

We start by studying some combination of fields that have a particular behavior. For

this it is convenient to reduce the system to five dimensions as was done in [18]. Once in

five dimensions, the paper [18] shows that some of the 5-d fields are invariants under the

rotation. These fields are the dilaton Φ and the combinations

M1 = 1 + a2 + 4e2h−2g, M2 = e2h+2g−4k (6.7)

The corresponding UV expansions are (see section 4 and appendix C for the notation)

M1 = 2 +
(
8H11ρ+ 3c+W

2
20 + 2Qo

) e−4ρ/3

c+
+O

(
e−8ρ/3

)
,

M2 =
9

16
− 27

16
W 2

20e
−4ρ/3 +O

(
e−8ρ/3

)
. (6.8)

Now, suppose that we define a variable z = e−2ρ/3. Any field M that for z → 0 scales

likeM∼ z∆ indicates either the insertion of a relevant/marginal operator or the VEV for

an operator of dimension ∆ (if ∆ > 0 or ∆ = 0). On the other hand, if ∆ < 0, it indicates

the insertion in the Lagrangian of an irrelevant operator of dimension (4−∆).

Using the UV expansion of the dilaton (see appendix C), we see that the dilaton cor-

responds to a marginal operator of dimension ∆ = 4 (this is identified with a combination

of gauge couplings g2
+ discussed below). The expansion of the function b(ρ) — see again

appendix C — indicates that the SUSY breaking constant W20 corresponds to the insertion

of an operator of dimension three in the lagrangian. We associate this operator with the

mass for the gaugino and in an analogous way, the constant e2ρo is associated with the
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VEV for the gaugino. The association is not exact, in the sense that once SUSY is broken

there could be a contribution of W20 to the gaugino VEV. Then, schematically we have

W20 → mλλ, e2ρ0 → 〈λλ〉 ∼ Λ3
YM . (6.9)

Following this logic, the expansion of the field M1 ∼ z2 is interpreted as the VEV for a

dimension two operator [28],

U ∼ tr[AA† −B†B]. (6.10)

This same operator gets a VEV in the SUSY case and is the one that allows us to explore the

baryonic branch. Notice that the SUSY breaking coefficient W20 contributes to this VEV.

In the theory of type I, that has two gauge groups, we should expect two independent

gaugino masses. Here, the solution is obtained by U-duality applied on a background dual

to a Theory of type II, with only one gauge group. We seem to have only one integration

constant associated with gaugino mass, that is W20. As emphasized below eq. (3.2) the

numbers V21,W21 corresponding to behavior of the functions a ∼ b ∼ ρe−2ρ/3, which could

be associated with this second mass parameter, turn out to vanish in our particular solution.

6.1.2 Energy

We take the expressions for the ADM Energy of the non-SUSY backgrounds as derived in

eqs. (5.7) and (5.16) and we use the map described in eq. (6.9), we obtain that

EADM ∼ c2
+e

2Φ(∞)e2ρ0W20 ∼ mΛ3
YM. (6.11)

Then the energy is proportional to the gaugino mass and the strong coupling scale, as

expected. The result in eq. (6.11) was first obtained in [61, 62].

6.1.3 Charges

We will define the Maxwell and Page Charges

QMaxwell, D3 =
1

16π4

∫
X5

F5, QMaxwell, D5 =
1

4π2

∫
X3

F3,

QPage, D3 =
1

16π4

∫
X5

F5 −B2 ∧ F3, (6.12)

where the manifoldX5 = [θ, ϕ, θ̃, ϕ̃, ψ] andX3 = [θ̃, ϕ̃, ψ]. As in the SUSY case we have that

QMaxwell, D3 =
κ

π
e2g+2h+2ΦΦ′, QMaxwell, D5 = Nc. (6.13)

We have also imposed that QPage, D3 = 0 in determining the B2 field of eq. (6.1) — see

appendix F for details. The vanishing of the D3-Page charge is a feature of the SUSY non-

singular solutions; this is the reason why we imposed it here. It would be interesting to

see if one can obtain a regular non-SUSY solution in the presence of sources indicated by a

non-vanishing Page charge. Using the UV expansions, the Maxwell charge for D3 branes is

QMaxwell, D3 =
eΦ∞

π
ρ− 1

24π

(
9eΦ∞ + 4c2

+e
−3Φ∞Φ30

)
+

33eΦ∞W 2
20

32π
e−4ρ/3 +O

(
e−8ρ/3

)
. (6.14)

– 14 –



J
H
E
P
0
5
(
2
0
1
2
)
0
3
1

So, we see that W20, the same number that determines the mass of the gaugino ac-

cording the discussion above, changes the large energy value of the Maxwell charge

(correspondingly of the c-function — see below) in a subleading way, as expected.

6.1.4 Gauge couplings and beta functions

Let us review briefly what happens in the SUSY case. In the SU(Nc + n) × SU(n) SUSY

quiver, we have two couplings g1, g2. Close to the Klebanov-Witten conformal point (in

the UV), the anomalous dimensions are γA,B ∼ −1
2 . This implies that the beta functions

for the diagonal combinations

β 8π2

g2−

= β 8π2

g21

− β 8π2

g22

= 6Nc, β 8π2

g2+

= β 8π2

g21

+ β 8π2

g22

= 0. (6.15)

As in the SUSY case, we will adopt the definitions6

4π2

g2
+

= πe−Φ,
4π2

g2
−

= 2πe−Φ [1− b0(π)] (6.16)

where b0(ψ0) is defined in eq. (6.5)–(6.6). We obtain

4π2

g2
−

= 2e−Φ

(
π +

κ

Nc
e2g+2h+2ΦΦ′

)
− κNc

2
eΦ(b− 1)b′, (6.17)

Notice that the result is independent of the gauge artifact function b3(ρ). In the UV, these

formulas are typically trustable. The explicit expansions are

4π2

g2
+

= e−Φ∞π +

(
3e−Φ∞π

2c2
+

ρ− 1

4
e−5Φ∞πΦ30

)
e−8ρ/3 +O

(
W 2

20e
−4ρ
)

(6.18)

and

4π2

g2
−

=

(
2ρ− 1

3
c2

+Φ30e
−4Φ∞ + 2πe−Φ∞ − 3

4

)
− 3

4
W20e

−2ρ/3 +O
(
e−4ρ/3

)
. (6.19)

Let us now compute the beta functions as read from the geometry. We will use the ra-

dius/energy relation

r = e2ρ/3 =
µ

Λ
(6.20)

where µ is the energy scale at which we probe the process and Λ the reference or strong

coupling scale of the given gauge group. Notice that this choice is arbitrary, just reflecting

the possibility of choosing a scheme. Other monotonic relations ρ(µ) would express the

beta function in other schemes. To calculate the beta functions we perform

β 8π2

g2−

=
d

dρ

(
8π2

g2
−

)
dρ

d log(µ/Λ)
= 6Nc +W20Nc

Λ

µ
,

β 8π2

g2+

=
d

dρ

(
8π2

g2
+

)
dρ

d log(µ/Λ)
= O

(
log

(
Λ

µ

)
Λ4

µ4

)
. (6.21)

6These are strictly correct in the N = 2 examples and the KW fixed point. We adopt the definition here

to get a handle on the non-SUSY dynamics.
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We have reinstated the factor of Nc in the expansions. With a naive use of the NSVZ

expression for the Wilsonian beta functions one may have interpreted this result for β− as

the SUSY breaking parameter W20 changing slightly the value of the anomalous dimensions

γA,B ∼ −1
2 +O

(
W20

Λ
µ

)
. But this is not matching with the analogous calculation for β+.

Hence this solution does not respect the NSVZ expression (as expected). Also, notice that

while in the SUSY case, the beta functions receive corrections O
(

Λ3

µ3

)
, we have here an

example where the SUSY breaking parameters produce lower order corrections O
(

Λ
µ

)
. Let

us move now to IR observables.

6.1.5 K-strings

We will follow the treatment in [31, 32]. We need to evaluate the action for a D3 brane

that extends on the manifold Σ = [t, x1, θ = θ̃, ϕ = 2π − ϕ̃]. The D3 brane is sitting at

ρ = 0 but can move on the angle ψ, so that it will minimize its energy. The (string frame)

metric seen by such a D3 brane is

ds2
ind =

eφ0√
ĥ0

{
dx2

1,1 +Ncĥ0
h1

2

[
dχ2 + sin2 χ

(
dθ2 + sin2 θdϕ2

)]}
(6.22)

where we have written ψ = 2χ+ π, and used the values of the functions at ρ = 0:

e2g(0) = e2k(0) =
h1

2
, e2h(0) = 0, Φ(0) = φ0, a(0) = 1. (6.23)

We have additionally written ĥ0 ≡ ĥ(0) = 1− e2φ0−2Φ∞ .

The RR field and its potential are,

F3|Σ = 2Nc sin2 χ Ω2 ∧ dχ, C2|Σ = Nc

(
χ− sin 2χ

2

)
Ω2,

Ω2 = sin θ dθ ∧ dϕ. (6.24)

Using eqs. (6.1)–(6.2) and the fact that b′(0) = Φ′(0) = 0 we find that the NS potential

B2 vanishes.

We will turn on an electric field F2 = Ftx dt ∧ dx in the space-time directions. Then

the Born-Infeld-Wess-Zumino action gives an effective one dimensional lagrangian,

Leff = −4πTD3Nc

[
h1

2

√
e2φ0 − ĥ0

F 2
tx

4
sin2 χ−

(
χ− sin 2χ

2

)
Ftx

]
. (6.25)

This is equivalent to eq. (9.8) of [31, 32], with modifications which result from the U-duality,

β =
h1

2
→ h1

2

√
ĥ0, e2Φ(0) → e2φ0

ĥ0

. (6.26)

The rest of the discussion then proceeds as in [31, 32]. We impose the equation of motion for

Ftx and quantize it to be an integer multiple of the tension of the fundamental string, ∂Leff
∂Ftx

=
kTf

2 . The resulting tension follows an approximate sine-law, as in the whole baryonic branch,

including the KS solution. This also happens for D5 solutions in section 8 of reference [23].

The influence from the SUSY breaking parameters enters only through the modifica-

tions (6.26).
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6.1.6 The non-SUSY Seiberg-like duality

We will follow the treatment in the SUSY case, as developed in [33]. The basic idea is go

back to the quantity b0(ψ), computed as specified around eq. (6.6) and compare with what

occurs in the SUSY case. The Seiberg duality is identified with a large gauge transformation

such that b0 → b0 ± 1 and the charge of D3 branes changes by ±Nc.

Consider the Page charge of section 6.1.3; a large gauge transformation on B2 will

change b0 by one unit. This translates in the change of Nc units in the Page charge. This

works exactly as in [33].

Let us now study how the Maxwell charge ‘sees’ the Seiberg duality. We will focus on

the UV part of the background, where the cascade is known to work in the SUSY case.

Following the steps described in appendix G, we have

b0 =
ĥ1/2eΦ/2

π

[
b2e

2h − b4(a+ cosψ0)eh+g
]

=
Nc

π
[(f + k̃) + (k̃ − f) cosψ0] (6.27)

with (using the explicit values for b2, b4)

f =
eΦ/2ĥ1/2

2Nc
[b2e

2h − b4eg+h(a− 1)] = κ
e2Φ

8

[
b′(b− 1)− 4

N2
c

e2g+2hΦ′
]
,

k̃ =
eΦ/2ĥ1/2

2Nc
[b2e

2h − b4eg+h(a+ 1)] = κ
e2Φ

8

[
b′(b+ 1)− 4

N2
c

e2g+2hΦ′
]
,

→ b0 =
κNce

2Φ

4π
b′(b+ cosψ0)− κe2Φ+2h+2g

πNc
Φ′. (6.28)

Now, it is interesting to notice that — far in the UV — the Maxwell charge

QMax,D3 =
κ

π
e2g+2h+2ΦΦ′ =

κN2
c e

2Φ

4π
b′(b+ cosψ0)−Ncb0 (6.29)

changes under a change in b0 as,

b0 ∼ b0 ± 1→ QMax,D3 ∼ QMax,D3 ∓Nc. (6.30)

Specially, notice that for large values of ρ the ‘correction-term’ b′(b + cosψ0) is quite

suppressed. This ‘correction’ is more suppressed in the SUSY case, where b′ ∼ e−2ρ, in

contrast to our non-SUSY solutions, where b′ ∼ e−2ρ/3. The ‘Seiberg duality’, associated

with a large gauge transformation of index k that changes the Maxwell charge in kNc units

is better approximated in the SUSY than in the non-SUSY case. Nevertheless, in both

cases, the transformation is good at leading order.

So, as expected, far in the UV we could think that the decrease in the Maxwell charge

is interpreted as a non-SUSY version of Seiberg duality that is at work here.

6.1.7 Domain walls

Let us compute the tension of a domain wall as the effective tension of a five brane that

sits at ρ = 0 and is extended along Σ6 = [t, x1, x2, θ̃, ϕ̃, ψ]. Before the U-duality for field
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theories of type II, we use the background in eq. (2.6) and obtain that the induced metric

on such five brane is (in string frame)

ds2
ind = eΦ

[
dx2

1,2 +
e2g

4
(dθ̃2 + sin2 θ̃dϕ̃2) +

e2k

4
(dψ + cos θ̃dϕ̃)2

]
(6.31)

The induced tension on the three dimensional wall is

Teff = 2π2TD5e
2Φ+2g+k

∣∣∣
ρ=0

=
π2TD5e

2φ0h
3/2
1√

2
, (6.32)

which is unchanged from the SUSY result.

After the U-duality, in the background of eq. (2.12), we place a similar five brane, the

induced metric is,

ds2
ind = eΦ

[
1√
ĥ
dx2

1,2 +
√
ĥ

(
e2g

4
(dθ̃2 + sin2 θ̃dϕ̃2) +

e2k

4
(dψ + cos θ̃dϕ̃)2

)]
. (6.33)

There is also an induced B2 field,

B2 =
1

4

√
ĥe2g+Φ/2b3(ρ) sin θ̃dθ̃ ∧ dϕ̃. (6.34)

In order to have a gauge invariant Born-Infeld Action, we must add the F2 field on the

world-volume of the brane. Indeed, the change due to a gauge transformation of the B2

field is cancelled by a (non-gauge)-transformation on F2,7

B2 → B2 + dΛ1, F2 → F2 − dΛ1. (6.35)

Hence, we need to turn on gauge field strength on the world-volume of the brane,

Fθ̃ϕ̃ = −

√
ĥ

4
e2g+Φ/2b3(ρ) sin θ̃. (6.36)

This implies that the BIWZ action will be

S = −TD5(4π)2 e
2g+k+2Φ

8

∫
d2+1x (6.37)

which gives the same effective tension as in eq. (6.32) and the same as in the SUSY case.8

Then the tension before and after the U-duality is the same. As a side remark, one may

wonder if it is possible to fix the value of b3 at ρ = 0 using some physical criterium. Though

it is not an invariant quantity, the small ρ expansion of

BµνB
µν ∼ b3(0)2

ρ2
+ · · · (6.39)

suggests that we should take b3(0) = 0 as in the SUSY case.

7One can also add a field strength F2 such that aside from cancelling the gauge-variance of B2 adds a

kind of ‘magnetic charge’ to the domain wall or a Maxwell-like term in the Minkowski directions. We will

not consider the addition of these extra components of F2 as they will typically raise the energy of the wall.
8Notice, that in the SUSY case we have (using eq. (F.1))

b3 = −κe3Φ/2ĥ−1/2 cosα, (6.38)

which vanishes for ρ = 0.
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6.1.8 Central charge

We will calculate the central charge of this non-susy solution. We should follow the usual

procedure of [34, 35], that requires a reduction to five dimensions. However, an equivalent

treatment presented in [36] indicates that for any string-frame metric of the form

ds2 ∼ α(ρ)dx2
1,d + α(ρ)β(ρ)dρ2 + gij(ρ, y)dyidyj (6.40)

we define

Vint =

∫
d~y
√

det gij , H = e−4ΦαdV 2
int. (6.41)

and the central charge (for d = 3) is given by c ∼ β3/2H7/2

(H′)3 , in our case

c ∼ e2h+2g+2Φ+4kĥ2

(2h′ + 2g′ + 2Φ′ + k′ + ĥ′

2ĥ
)3

(6.42)

In the IR, the explicit expansion for the central charge is

c ∼ e2φ0−4Φ∞
(
e2Φ∞ − e2φ0

)2
h4

1ρ
5

+
1

9
e2φ0−4Φ∞

(
e2Φ∞ − e2φ0

)
h2

1

[
e2Φ∞

(
−16− 15h1k2 + 12h2

1

)
+ e2φ0

(
28 + 15h1k2 − 12h2

1 + 9v2
2

) ]
ρ7 +O

(
ρ9
)
, (6.43)

and in the UV we have

c ∼ e2Φ∞ρ2 −
(

3

4
e2Φ∞ +

1

3
c2

+e
−2Φ∞Φ30

)
ρ+O

(
1

ρ

)
. (6.44)

It is immediately clear that the SUSY-breaking parameters have no effect at the leading

order in the UV. However, in the IR the question is more subtle. Although none of the

explicit SUSY-breaking parameters appear in the leading term there is an effect. This is

because in the SUSY case there are only two independent parameters, so that fixing h1 and

φ0 is sufficient to determine Φ∞. In the non-SUSY case the discussion of sections 3.1 and 4

suggests that there is one more parameter, which breaks SUSY. This means that even

with fixed h1 and φ0 we can expect that Φ∞ varies as a function of the SUSY-breaking

parameter. Indeed, when in appendix D we compare SUSY and non-SUSY numerical

solutions with the same h1 and φ0, we find that Φ∞ changes.

6.1.9 Force on a probe D3-brane

We will now consider a D3 probe brane that extends in the Minkowski directions and is

free to move in the radial direction as suggested in [28],

D3 : [t, x1, x2, x3], ρ(t). (6.45)

the induced metric and RR four form field are obtained from the string frame version of

eq. (2.12),

ds2
ind = eΦĥ−1/2

[
− dt2(1− ĥe2kρ′2) + dx2

1 + dx2
2 + dx2

3

]
,

C4 = −κe
2Φ

ĥ
dt ∧ dx1 ∧ dx2 ∧ dx3. (6.46)
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this gives an action for the D3 brane,9

SBIWZ = −TD3V3

∫
dt

(
eΦ

ĥ

√
1− ĥe2kρ′2 − κe

2Φ

ĥ

)
. (6.47)

We then approximate this for small velocities and change to the variable dr = ek+Φ/2dρ

and get

S = TD3V3

∫
dt

(
r′2

2
− eΦ

1 + κeΦ

)
. (6.48)

the force on this probe is then

f =
eΦ/2−k

(1 + κeΦ)2
Φ′. (6.49)

In the IR, the explicit expansion for this force is

f =
2
√

2

3

e
φ0
2

+2Φ∞
(
4 + 3v2

2

)
(eφ0 + eΦ∞)

2
h

5/2
1

ρ+O
(
ρ2
)
, (6.50)

and in the UV we have

f =

[√
3

2

e
Φ∞

2

c
5/2
+

ρ−
e
−7Φ∞

2

(
9e4Φ∞ + 4c2

+Φ30

)
8
√

6c
5/2
+

]
e−10ρ/3 +O

(
e−14ρ/3

)
. (6.51)

As expected, the force vanishes quickly in the far UV, where the solution approaches the KS

background. Also, notice that in the radial coordinate r ∼ e−2ρ/3, the force is f ∼ log r
r5 as

obtained in [37]. The SUSY breaking parameters do not enter explicitly in the expression

for this (small) force at leading order. In the other hand, the breaking of SUSY explicitly

changes the value of the force in the IR, as expected.

6.2 Field theory comments

This section relies on the ideas of [38]–[39], but most fundamentally on the analysis of the

paper [39]. Similar ideas that may be useful in thinking about our string backgrounds

have been put forward for example in [40, 41]. This paper studies non-SUSY deformations

of N = 1 SQCD. We use this to analyze the quiver field theory of type I. This is as

we discussed, a non-SUSY deformation of the KS-quiver. In the SUSY case, the KS-

field theory can be understood as N = 1 SQCD with gauged flavor group and a quartic

superpotential (see for example [43]) and due to this, the results of [39] are important to us.

The qualitative results of the paper [39] become quantitatively accurate once we take the

SUSY breaking parameters much smaller than the relevant scale of the problem, namely

ΛSQCD.10 In our case, this is reflected in the small size of the coefficient W20.

In this case, lots of the structure of Seiberg’s SQCD [44] remains. Particularly inter-

esting to us is the fact that for SU(Nc) SQCD with Nf flavors and with Nf = Nc, there

9Notice that in the way things have been defined, the action for a D3 has the WZ term with the same

sign as the BI term. See eq. (2.13) in the paper [19].
10Ofer Aharony explained to us that the soft breaking mass terms for squarks could have different signs

under a Seiberg Duality, see [42]. This technical subtlety seems to play no role in our analysis.
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exists a vacuum which breaks spontaneously the U(1)-baryonic symmetry and this vaccum

persists in the non-SUSY analysis of [39]. This will be relevant for us as the case Nf = Nc

is associated in the SUSY case with the last step of the cascade. We then argue that our

geometry describes a situation where SUSY is broken by gaugino masses and other VEV’s

and the baryonic symmetry is broken by the vacuum state.

In a bit more detail, the authors of [39], added to the SQCD lagrangian a term of

the form

L = LSQCD + ∆L,

∆L ∼
∫
d4θMQ(Q†eVQ+ Q̃†e−V Q̃) +

∫
d2θMgS, (6.52)

where S is the superfield S = Tr[WαW
α], MQ is a vector multiplet whose D-component

equals the mass of the squarks (−m2
q) and Mg is a chiral multiplet whose F-component

is the mass of the gluino. The authors of [39] argued that to leading order in the SUSY

breaking parameters MQ,Mg one can write an effective lagrangian in terms of mesons M̂ ,

baryons (B, B̃) and S,

∆L ∼
∫
d4θBMMQtr[M̂

†M̂ ] +BbMQ(B†B + B̃†B̃) +

∫
d2θMgS + . . . . (6.53)

The idea is then that one should supplement the usual actions and superpotentials discussed

in the SUSY case with the SUSY breaking terms above. In particular, in the case Nf = Nc

we will need to minimize the potential term coming from eq. (6.53) together with the

potential coming from the SUSY superpotential

W = Wtree +Wquant = κTr(M̂ †M̂) + ξ(detM − B̃B − Λ2Nc). (6.54)

Therefore, the vacua of the theory are those that minimize the potential coming from the

tree level superpotential, together with that from the SUSY breaking term, all subject

to the constraint in Wquant. The result is that in the non-SUSY case, one finds one vac-

uum state where the baryons get a VEV and the mesons are at the origin of the moduli

space, M̂ = 0.

In this way, we have argued that our solution, which breaks SUSY due to masses for

the gauginos has very similar behavior to the KS-cascade (actually to the baryonic branch

in [12]). We found that many non-perturbative aspects behave very similarly as the SUSY

case: the expression of the domain wall tension is basically the same as in the SUSY case.

Of course, numbers will differ as the functions in the IR pick the influence of the SUSY

breaking terms. The tensions for k-strings gives an approximate sine-law, again with the

SUSY breaking entering the value of the tension. In the UV, the beta function for the

gauge couplings of the quiver and the leading order of the central charge behave at leading

order in the UV like their SUSY counterpart, but in the case of the beta functions, the

first correction is purely coming from SUSY breaking contributions. The Seiberg duality

(identified here with the change of the Maxwell charge under large gauge transformations

of the NS B-field) behaves very approximately as in the SUSY case. One can probably

make an argument for self-similarity as presented in [43].
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Obviously, what happens is that the SUSY breaking terms, for example the gaugino

mass indicated by the quantityW20, are not important at high energies. They enter some IR

observables, correcting but not changing the qualitative behavior expected from the SUSY

example. This suggests that we need to think that our SUSY breaking scales are smaller

than our strong coupling scale. Hence, the phenomena are the same as in the SUSY models,

but numerically there will be differences. All this is in line with the analysis of [38]–[39].

6.3 Some words on (meta)-stability

We will briefly comment here on the stability of our solutions. The way in which pertur-

bative stability can be directly checked is to consistently fluctuate our solutions and find

the presence of tachyons. Of course, it may be the case that the precise fluctuations that

we study are not those leading to instabilities, while on the other hand, finding a tachyonic

mode will ensure the instability of the solution. We will not make a exhaustive analy-

sis of fluctuations here, but postpone it for future work. We will content ourselves with

presenting here some arguments in favour of the stability of the backgrounds of this paper.

To begin with, we notice the close parallels between our backgrounds and the analogous

SUSY (baryonic branch) solutions. Indeed, we are deforming the backgrounds by the

presence of the coefficients v2 or w2 that break supersymmetry. These coeffcients, as we

insisted throughout the paper, are taken to be small. This was a technical requirement

to ensure a good normalization of the energy functional — see section 5. The parametric

smallness of the SUSY breaking parameters implies a good mapping with the field theory

results of the paper [39]. In that paper, it was shown, using field theory techniques, that

the generated potential has a minimum which we believe — due to the analogous behavior

— is the vacuum of the field theory that our background is dual to. This would imply that

tachyons are perturbatively absent from the spectrum in analogy with the results of [39].

One may of course be worried about non-perturbative instabilities. In this case, one

may appeal to an argument very similar to that presented in [63]. Indeed, in our case,

the tension of domain walls is not modified by the SUSY breaking parameters — see

section 6.1.7 — we can then estimate the action of a vacuum bubble to be Sbubble ∼
Nc(Λ/mλ)3, where mλ is the mass of the gauginos and Λ the strong coupling scale. As in

the rest of the paper Λ is taken to be hierarchically bigger than the SUSY breaking scale.

In this way, for these solutions quite close to the SUSY ones, the probability of decay is

very small and the tunneling rate to the SUSY solutions is suppressed as e−Sbubble .

Of course, the ideal would be to make an argument similar to the ones made in ‘fake

supergravity’ [64], but in this case, to construct a fake superpotential seems a formidable

task, if possible at all.

7 Conclusions

In this paper we have used analytical (UV and IR series expansions) and numerical methods

to construct smooth backgrounds dual to particular non-SUSY field theories. The field

theories in question can be thought of as softly-broken-SUSY versions of the field theories

appearing in twisted D5 branes and Klebanov-Strassler quivers.
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We presented some details of the derivations, involving a U-duality, a careful numerical

procedure and a detailed study of many observables at low and high energies. All this

supports the field theory interpretation discussed towards the end of section 6. In other

words, the dynamics is basically the SUSY one, but with interesting details and deviations

coming from the soft-breaking terms.

Various things come to mind that would be nice to study using the backgrounds pre-

sented here. Before the U-duality, it would be nice to study the effect on k-string tensions,

domain walls and the confining behavior of the Wilson loop, as there exist in the bibli-

ography various results for N = 1 Super-Yang-Mills being softly broken. Also, it would

be nice to study the effect of the mass terms responsible for the breaking, on the glueball

spectrum. It would also be interesting to see if our solutions can be of any help for the

interesting line of metastable broken SUSY, in the sense of providing a good set of UV

boundary conditions that break SUSY. This may be used to get ideas on the singular IR

behaviors obtained in [37, 53–60].

It would be interesting to calculate the mass spectrum and compare it with the result

of the analogous glueballs in the KS/baryonic branch solution [45–50]. Also, it would

be nice to find numerically the expression for the massless glueball corresponding to the

spontaneous breaking of the baryonic symmetry. The spectrum of mesons is also of interest.

In particular, comparing the masses of the lightest scalar meson and the lightest vector

meson we could learn if the non-SUSY background presented here provides a plausible

holographic dual of nuclear forces [51, 52].

Another problem that we are not addressing here: it is known that taking the inte-

gration constant c+ → ∞ leads, in the SUSY case, to the Klebanov-Strassler background

(see [19]). It is interesting to see this working numerically and to compare the solutions

found here — in the limit — with those found in the past by first order fluctuations of the

KS system (see [61, 62]). In this line, a nice problem would be to find the recent solution

by Dymarsky and Kuperstein [63] as a scaling of ours.
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A Technical aspects of the SUSY background

We write in this appendix various technical aspects of the supersymmetric backgrounds.

As explained in section 2 one changes the basis of functions from Φ, h, g, k, a, b into

P,Q, Y, Φ̂, τ, σ in order to decouple the non-linear system of BPS equations. As explained
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in [24, 25], the change of basis functions is

4e2h =
P 2 −Q2

P cosh τ −Q
, e2g = P cosh τ −Q, e2k = 4Y,

a =
P sinh τ

P cosh τ −Q
, Ncb = σ. (A.1)

Using the relations above, one can solve for the decoupled BPS equations,

Q(ρ) = (Q0 +Nc) cosh τ +Nc(2ρ cosh τ − 1),

sinh τ(ρ) =
1

sinh(2ρ− 2ρ0)
, cosh τ(ρ) = coth(2ρ− 2ρ0),

Y (ρ) =
P ′

8
, e4Φ =

e4Φo cosh(2ρ0)2

(P 2 −Q2)Y sinh2 τ
,

σ = tanh τ(Q+Nc) =
(2Ncρ+Qo +Nc)

sinh(2ρ− 2ρ0)
. (A.2)

and the master equation (2.8). Solving the master equation in the UV (2.9) and plugging

back into eqs. (A.1)–(A.2) the background functions read at large ρ,

e2h ∼
[
c+e

4ρ/3

4
+
Nc

4
(2ρ−1) +

N2
c e
−4ρ/3

16c+
(16ρ2−16ρ+13) +

e−8ρ/3

4

(
c−−c+

(
2+

8ρ

3

))]
e2g

4
∼
[
c+e

4ρ/3

4
− Nc

4
(2ρ−1)+

N2
c e
−4ρ/3

16c+
(16ρ2−16ρ+13) +

e−8ρ/3

4

(
c−+c+

(
2− 8ρ

3

))]
e2k

4
∼
[
c+e

4ρ/3

6
− N2

c e
−4ρ/3

24c+
(4ρ− 5)2 +

e−8ρ/3

3

(
c+

(
8ρ

3
− 1

)
− c−

)]
e4Φ−4Φ0 ∼

[
1 +

3N2
c e
−8ρ/3

4c2
+

(1− 8ρ) +
3N4

c e
−16ρ/3

512c4
+

(2048ρ3 + 1152ρ2 + 2352ρ− 775)

]
a∼ 2e−2ρ +

2Nc

c+
(2ρ− 1)e−10ρ/3 +

2N2
c

c2
+

(2ρ− 1)2e−14ρ/3

b =
2ρ

sinh(2ρ)
∼ 4ρe−ρ + 4ρe−6ρ (A.3)

The geometry in eq. (2.6) asymptotes to the conifold after using the expansions above. In

the IR we have using eq. (2.10) and (A.1),

e2h ∼ h1ρ
2

2
+

4

45

(
−6h1 + 15Nc −

16N2
c

h1

)
ρ4 +O(ρ6),

e2g

4
∼ h1

8
+

1

15

(
3h1 − 5Nc −

2N2
c

h1

)
ρ2 +

2
(
3h4

1 + 70h3
1Nc − 144h2

1N
2
c − 32N4

c

)
ρ4

1575h3
1

+O(ρ6),

e2k

4
∼ h1

8
+

(
h2

1 − 4N2
c

)
ρ2

10h1
+

(
6h4

1 − 8h2
1N

2
c − 64N4

c

)
ρ4

315h3
1

+O(ρ6),
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e4(Φ−Φ0) ∼ 1 +
64N2

c ρ
2

9h2
1

+
128N2

c

(
−15h2

1 + 124N2
c

)
ρ4

405h4
1

+O(ρ6), (A.4)

a ∼ 1 +

(
−2 +

8Nc

3h1

)
ρ2 +

2
(
75h3

1 − 232h2
1Nc + 160h1N

2
c + 64N3

c

)
ρ4

45h3
1

+O(ρ6),

b =
2ρ

sinh(2ρ)
∼ 1− 2

3
ρ2 +

14

45
ρ4 +O(ρ6). (A.5)

This space is free of singularities as can be checked by computing invariants.

B Euler-Lagrange equations of motion

Here we write the full equations of motion, for reference. We start with the effective

Lagrangian and the constraint and then write the equations of motion. We set Nc = 1

for simplicity.

The effective Lagrangian is L = T − U , with

T = − 1

128
e2Φ
{
e4g
(
a′
)2

+
(
b′
)2
N2
c − 8e2(g+h)

[
2g′
(
2h′ + k′ + 2Φ′

)
+
(
g′
)2

+ 2h′
(
k′ + 2Φ′

)
+
(
h′
)2

+ 2Φ′
(
k′ + Φ′

)]}
, (B.1)

U =
1

256
e−2(g+h−Φ)

[
a4e4g

(
N2
c + e4k

)
− 4a3be4gN2

c + 2a2e2g
(

2b2e2gN2
c

+ e2gN2
c + 4e2hN2

c − 8e2(g+h+k) + 4e4g+2h − e2g+4k + 4e2h+4k
)

− 4abe2gN2
c

(
e2g + 4e2h

)
+ 8b2N2

c e
2(g+h) + e4gN2

c + 16e4hN2
c

− 16e2(2g+h+k) − 64e2(g+2h+k) + e4(g+k) + 16e4(h+k)
]
. (B.2)

The constraint is

0 = T + U

= e−2(g+h−Φ)
[
−2
(
a′
)2
e6g+2h + a4e4g

(
e4k + 1

)
− 4a3be4g

+ 2a2e2g
(

2b2e2g − 8e2(g+h+k) + 4e4g+2h − e2g+4k + e2g

+ 4e2h+4k + 4e2h
)
− 4abe2g

(
e2g + 4e2h

)
− 2

(
b′
)2
e2(g+h)

+ 64e4(g+h)g′h′ + 32e4(g+h)g′k′ + 64e4(g+h)g′Φ′ + 16e4(g+h)
(
g′
)2

+ 8b2e2(g+h) + 32e4(g+h)h′k′ + 64e4(g+h)h′Φ′ + 16e4(g+h)
(
h′
)2

+ 32e4(g+h)k′Φ′ − 16e2(2g+h+k) − 64e2(g+2h+k) + 32e4(g+h)
(
Φ′
)2

+ e4(g+k) + e4g + 16e4(h+k) + 16e4h
]
. (B.3)
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The equations of motion are:

g′′ =
1

8
e−4g−2h

[
e6g
(
a′
)2 − 4a2e2g+4k − 4a2e2g + 4a2e6g + 8abe2g

− e2g
(
b′
)2 − 4b2e2g − 16e4g+2hg′h′ − 16e4g+2hg′Φ′

− 16e4g+2h
(
g′
)2

+ 32e2g+2h+2k − 16e2h+4k − 16e2h
]

(B.4)

h′′ = −1

8
e−2g−4h

[(
a′
)2
e4g+2h + a4e2g+4k + a4e2g − 4a3be2g + 4a2b2e2g

− 8a2e2g+2h+2k + 4a2e4g+2h − 2a2e2g+4k + 2a2e2g

+ 4a2e2h+4k + 4a2e2h − 4abe2g − 8abe2h + e2h
(
b′
)2

+ 4b2e2h + 16e2g+4hg′h′ + 16e2g+4hh′Φ′ + 16e2g+4h
(
h′
)2

− 8e2g+2h+2k + e2g+4k + e2g
]

(B.5)

k′′ =
1

8
e−4g−4h

(
a4e4g+4k − a4e4g + 4a3be4g − 4a2b2e4g + 8a2e2g+2h+4k

− 8a2e2g+2h − 8a2e6g+2h − 2a2e4g+4k − 2a2e4g + 16abe2g+2h

+ 4abe4g − 8b2e2g+2h − 16e4g+4hg′k′ − 16e4g+4hh′k′

− 16e4g+4hk′Φ′ + e4g+4k − e4g + 16e4h+4k − 16e4h
)

(B.6)

Φ′′ =
1

8
e−4g−4h

[
a4e4g − 4a3be4g + 4a2b2e4g + 8a2e2g+2h − 16abe2g+2h

+ 2a2e4g − 4abe4g + 2
(
b′
)2
e2g+2h + 8b2e2g+2h − 16e4g+4hg′Φ′

− 16e4g+4hh′Φ′ − 16e4g+4h
(
Φ′
)2

+ e4g + 16e4h
]

(B.7)

a′′ = e−4g−2h
(
−4a′e4g+2hg′ − 2a′e4g+2hΦ′ + a3e2g+4k + a3e2g − 3a2be2g

+ 2ab2e2g − 8ae2g+2h+2k + 4ae4g+2h − ae2g+4k + ae2g

+ 4ae2h+4k + 4ae2h − be2g − 4be2h
)

(B.8)

b′′ = −e−2h
(
a3e2g − 2a2be2g + ae2g + 4ae2h + 2e2hb′Φ′ − 4be2h

)
(B.9)

C Explicit expansion of the functions

Here we include the explicit solutions for the expansions (3.1) and (3.7). In this section we

again set Nc = 1.

C.1 UV

e2g = c+e
4ρ/3 −

(
2c+W

2
20 + 4H11ρ+Qo

)
− 1

48c+

{
−12H11

[
(32ρ− 6)Qo − c+W

2
20(8ρ+ 93)

]
− 12c+W

2
20Qo

+ 72c2
+W20e

2ρo + 120c2
+W

4
20ρ− 26c2

+W
4
20 + 12c2

+Φ30e
−4Φ∞ − 72ρ

− 24H2
11

(
32ρ2 − 12ρ+ 15

)
− 48Q2

o + 9
}
e−4ρ/3 +O

(
e−8ρ/3

)
(C.1)
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e2h =
c+

4
e4ρ/3 +

(
H11ρ+

Qo
4

)
− 1

192c+

{
−12H11

[
c+W

2
20(88ρ+ 75) + (32ρ− 6)Qo

]
− 396c+W

2
20Qo

+ 264c2
+W20e

2ρo + 440c2
+W

4
20ρ− 626c2

+W
4
20 + 12c2

+Φ30e
−4Φ∞ − 72ρ

− 24H2
11

(
32ρ2 − 12ρ+ 15

)
− 48Q2

o + 9
}
e−4ρ/3 +O

(
e−8ρ/3

)
(C.2)

e2k =
2c+

3
e4ρ/3 +

c+W
2
20

3
− 1

24c+

[
4H11(16ρ− 9)

(
3c+W

2
20 + 2Qo

)
+ 16Q2

o

+ 84c+W
2
20Qo − 72c2

+W20e
2ρo − 120c2

+W
4
20ρ+ 190c2

+W
4
20 − 24ρ− 9

+ 4c2
+Φ30e

−4Φ∞ + 8H2
11

(
32ρ2 − 36ρ+ 27

)]
e−4ρ/3 +O

(
e−8ρ/3

)
(C.3)

e4Φ = e4Φ∞ +

(
Φ30 −

6ρe4Φ∞

c2
+

)
e−8ρ/3

+
W 2

20

(
32c2

+Φ30 − 3(64ρ+ 25)e4Φ∞
)

24c2
+

e−4ρ +O
(
e−16ρ/3

)
(C.4)

a = W20e
−2ρ/3 +

(
4H11W20ρ

c+
+ 2e2ρo +

10W 3
20ρ

3

)
e−2ρ

+
1

48c2
+

(
4c+

{
H11

[
96ρe2ρo +W 3

20

(
160ρ2 + 552ρ+ 495

)]
+ 2Qo

[
12e2ρo

+W 3
20(20ρ+ 87)

]}
+ c2

+

[
W 5

20(391− 480ρ)− 288W 2
20e

2ρo
]

+ 12W20

[
2H11(40ρ+ 27)Qo

+ 6H2
11

(
32ρ2 + 36ρ+ 43

)
+ 8Q2

o − 15
])
e−10ρ/3 +O

(
e−4ρ

)
(C.5)

b =
9

4
W20e

−2ρ/3 +

{[
4e2ρo +

W 3
20

6
(20ρ− 23)− 12W20Qo

6c+

]
ρ+ V40

}
e−2ρ

+
3W20e

−4Φ∞

512c2
+

{
e4Φ∞

[
−3456H11

(
3c+W

2
20 + 2Qo

)
− 3240c+W

2
20Qo

+ 192c2
+V40W20 + 2819c2

+W
4
20 − 35712H2

11 − 576Q2
o + 882

]
− 16ρe4Φ∞

[
144H11

(
3c+W

2
20 + 2Qo

)
+ 24c+W

2
20Qo

− c2
+W20

(
48e2ρo + 269W 3

20

)
+ 1728H2

11 − 18
]

+ 3024c2
+W20e

2ρo+4Φ∞

− 128ρ2e4Φ∞
(
72H2

11 − 5c2
+W

4
20

)
− 48c2

+Φ30

}
e−10ρ/3 +O

(
e−4ρ

)
(C.6)

We can see the effect of the SUSY-breaking parameters by looking at functions of the

form ∆(e2g) = e2g−e2gSUSY , where g corresponds to the full solution and gSUSY corresponds

to the SUSY case with Qo = −Nc and ρo = 0. Note that in general only one of the two

solutions will go to the regular IR — if we start with a SUSY solution and turn on one of
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the SUSY-breaking parameters while keeping e.g. c+ fixed, we will have to change c− to

recover the regular IR. Those SUSY-breaking parameters which have non-zero values in

the SUSY case are expressed here in terms of e.g. ∆H11 = H11 −HSUSY
11 .

∆
(
e2g
)

=
(
−2c+W

2
20 −∆Qo − 4∆H11ρ

)
+
e−4Φ∞

24c+

{
−3c+W

2
20e

4Φ∞
[
−2∆Qo + 2∆H11(8ρ+ 93) + 8ρ+ 95

]
− c2

+

[
36W20e

2ρo+4Φ∞ +W 4
20(60ρ− 13)e4Φ∞ + 6∆Φ30

]
+ 6e4Φ∞

[
∆H11

(
(32ρ− 6)∆Qo + 64ρ2 − 56ρ+ 36

)
+ ∆Qo (4∆Qo + 16ρ− 11)

+ ∆H2
11

(
64ρ2 − 24ρ+ 30

)]}
e−4ρ/3 +O

(
e−8ρ/3

)
(C.7)

∆
(
e2h
)

=

(
∆Qo

4
+ ∆H11ρ

)
+
e−4Φ∞

96c+

(
3c+W

2
20e

4Φ∞
[
66∆Qo + 2∆H11(88ρ+ 75) + 88ρ+9

]
− c2

+

[
132W20e

2ρo+4Φ∞ +W 4
20(220ρ− 313)e4Φ∞ + 6∆Φ30

]
+ 6e4Φ∞

{
∆H11

[
(32ρ− 6)∆Qo + 64ρ2 − 56ρ+ 36

]
+ ∆Qo (4∆Qo + 16ρ− 11)

+ ∆H2
11

(
64ρ2 − 24ρ+ 30

)})
e−4ρ/3 +O

(
e−8ρ/3

)
(C.8)

∆
(
e2k
)

=
1

3
c+W

2
20 +

e−4Φ∞

12c+

(
−3c+W

2
20e

4Φ∞
[
14∆Qo + 2∆H11(16ρ− 9) + 16ρ− 23

]
+ c2

+

[
36W20e

2ρo+4Φ∞ + 5W 4
20(12ρ− 19)e4Φ∞ − 2∆Φ30

]
− 2e4Φ∞

{
2∆H11

[
(16ρ− 9)∆Qo + 4

(
8ρ2 − 13ρ+ 9

)]
+ ∆Qo (4∆Qo + 16ρ− 17)

+ ∆H2
11

(
64ρ2 − 72ρ+ 54

)})
e−4ρ/3 +O

(
e−8ρ/3

)
(C.9)

∆
(
e4Φ
)

= ∆Φ30e
−8ρ/3 +

W 2
20

24c2
+

[
32c2

+∆Φ30 − 3(64ρ+ 17)e4Φ∞
]
e−4ρ +O

(
e−16ρ/3

)
(C.10)

∆a = W20e
−2ρ/3 +

1

c+

[
2

3
c+

(
3e2ρo + 5W 3

20ρ− 3
)

+ 2W20 (2∆H11 + 1) ρ

]
e−2ρ

+
1

48c2
+

(
2c+

{
W 3

20

[
4(20ρ+ 87)∆Qo + 2∆H11

(
160ρ2 + 552ρ+ 495

)
+ 160ρ2 + 472ρ+ 147

]
+ 48

[
4∆H11ρe

2ρo + ∆Qoe
2ρo + (2ρ− 1)

(
e2ρo − 1

)]}
+ c2

+

[
W 5

20(391− 480ρ)− 288W 2
20e

2ρo
]

+ 6W20

{
+(80ρ+ 22)∆Qo

+4∆H11

[
(40ρ+27)∆Qo+96ρ2+68ρ+102

]
+16∆Q2

o+12∆H2
11

(
32ρ2+36ρ+43

)
+ 96ρ2 + 28ρ+ 61

})
e−10ρ/3 +O

(
e−14ρ/3

)
(C.11)
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∆b =
9

4
W20e

−2ρ/3 +
[
c+

{
ρ
[
24
(
e2ρo − 1

)
+W 3

20(20ρ− 23)
]

+ 6V40

}
−12W20ρ (∆Qo−1)

]e−2ρ

6c+
+

3W20e
−4Φ∞

512c2
+

(
c2

+

{
48W20e

4Φ∞
[
(16ρ+ 63)e2ρo+4V40

]
+W 4

20

(
640ρ2 + 4304ρ+ 2819

)
e4Φ∞ − 48∆Φ30

}
− 24c+W

2
20e

4Φ∞ [(16ρ+ 135)∆Qo + 144∆H11(2ρ+ 3) + 128ρ+ 81]

− 18e4Φ∞

{
64∆H11

[
(4ρ+ 6)∆Qo + 8ρ2 + 20ρ+ 25

]
+ 128(ρ+ 1)∆Qo + 32∆Q2

o + 64∆H2
11

(
8ρ2 + 24ρ+ 31

)
+ 128ρ2 + 240ρ+ 289

})
e−10ρ/3 +O

(
e−14ρ/3

)
(C.12)

C.2 IR

e2g =
h1

2
− 1

8

[
4k2 − h1

(
w2

2 + 4
)

+
4

h1

(
v2

2 + 4
)]
ρ2 +

1

20160h3
1

{
1600h1k2

(
3v2

2 + 8
)

− 8h2
1

[
210k2

2 + 144v2 (w2 − 3)w2 + 3v2
2

(
105w2

2 + 168w2 + 580
)

+ 4
(
55w2

2 + 360w2 + 652
)]
− 480h3

1k2

(
w2

2 + 18w2 + 18
)

+ 3h4
1

(
75w4

2 + 432w3
2 + 488w2

2 + 960w2 + 1520
)

+ 16
(
405v4

2 + 1592v2
2 + 656

)}
ρ4 +O

(
ρ6
)

(C.13)

e2h =
h1

2
ρ2 +

1

72

[
24k2 − 3h1

(
3w2

2 + 4
)
− 4

h1
(9v2

2 − 4)

]
ρ4

+
1

907200h3
1

{
24h2

1

[
5250k2

2 + 432v2w2 (23w2 + 57)

− 9v2
2

(
189w2

2 + 2016w2 + 940
)
− 20940w2

2 + 8640w2 + 5680
]

+ 480h1k2

(
9v2

2 − 172
)
− 360h3

1k2

(
627w2

2 − 432w2 + 44
)

+ 9h4
1

(
2007w4

2 − 6624w3
2 + 11352w2

2 − 5760w2 + 1520
)

+ 16
(
19359v4

2 + 27288v2
2 − 22672

)}
ρ6 +O

(
ρ8
)

(C.14)

e2k =
h1

2
+ k2ρ

2 +
2

315h3
1

{
5h1k2

(
27v2

2 + 2
)

+
15

4
h3

1k2

(
9w2

2 + 36w2 + 22
)

+
3

2
h2

1

[
175k2

2 + 12v2w2 (w2 + 4)− 30v2
2 + 30w2

2 + 120w2 + 208
]

− 9

16
h4

1

(
w4

2 + 8w3
2 + 36w2

2 + 80w2 + 80
)

+ 9v4
2 + 36v2

2 − 528

}
ρ4 +O

(
ρ6
)

(C.15)
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e4Φ = e4φ0 +
4e4φ0

3h2
1

(
3v2

2 + 4
)
ρ2 +

e4φ0

135h4
1

{
−60h1k2

(
3v2

2 − 8
)

+ 3h2
1

[
3v2

2

(
9w2

2 + 36w2 + 40
)
− 36v2w2 (w2 + 4)− 176

]
+ 4

(
243v4

2 + 672v2
2 + 944

)}
ρ4 +O

(
ρ6
)

(C.16)

a = 1 + w2ρ
2 +

1

90h2
1

{
w2

[
150h1k2 − 3h2

1

(
6w2

2 − 9w2 + 28
)

+ 400
]

+ 36v2
2 (w2 + 2)− 72v2 (w2 + 2)

}
ρ4 +O

(
ρ6
)

(C.17)

b = 1 + v2ρ
2 − 1

90h2
1

{
v2

[
30h1k2 − h2

1

(
9w2

2 + 36w2 + 60
)

+ 176
]

+ 9h2
1w2 (w2 + 4) + 72v3

2

}
ρ4 +O

(
ρ6
)

(C.18)

The effect of the SUSY-breaking parameters can be seen from the differences:

∆
(
e2g
)

=
1

24h1

[
−4h1 (3∆k2 − 4∆w2) + 3h2

1 (∆w2 − 4) ∆w2 + 4 (4− 3∆v2) ∆v2

]
ρ2

+
1

60480h3
1

{
−24h2

1

[
320∆k2 (∆w2 + 7) + 210∆k2

2 − 4∆v2

(
69∆w2

2 + 224
)

+ 3∆v2
2

(
105∆w2

2 − 252∆w2 + 584
)

+ 8 (112− 129∆w2) ∆w2

]
+ 16∆v2

(
1215∆v3

2 − 3240∆v2
2 + 3216∆v2 − 2944

)
+ 9h4

1∆w2

(
75∆w3

2 − 168∆w2
2 − 368∆w2 + 896

)
− 96h3

1

[
3∆k2

(
5∆w2

2 + 70∆w2 − 56
)

+ ∆w2

(
−75∆w2

2 + 126∆w2 + 184
)]

+ 64h1

[
3∆k2

(
75∆v2

2 − 100∆v2 + 264
)
− 126∆v2

2 (5∆w2 − 6)

+ 552∆v2∆w2 + 464∆w2

]}
ρ4 +O

(
ρ6
)

(C.19)

∆
(
e2h
)

=
1

24h1

[
8h1 (∆k2 − 2∆w2)− 3h2

1 (∆w2 − 4) ∆w2 + 4 (4− 3∆v2) ∆v2

]
ρ4

+
1

302400h3
1

{
24h2

1

[
−80∆k2 (209∆w2 − 490) + 1750∆k2

2

+ ∆v2
2

(
−567∆w2

2 − 3780∆w2 + 7032
)

+ 4∆v2

(
1017∆w2

2 − 3136
)

+ 40∆w2 (157∆w2 − 1288)
]

+ 32h1

[
5∆k2

(
9∆v2

2 − 12∆v2 − 4352
)

− 4
(
189∆v2

2 (3∆w2 + 10)− 4068∆v2∆w2 + 856∆w2

)]
− 24h3

1

[
5∆k2

(
627∆w2

2 − 2940∆w2 + 3136
)

− 4∆w2

(
669∆w2

2 − 5670∆w2 + 14872
)]

+ 9h4
1∆w2

(
669∆w3

2 − 7560∆w2
2 + 29744∆w2 − 49280

)
+ 48∆v2

(
2151∆v3

2 − 5736∆v2
2 + 6704∆v2 + 7936

)}
ρ6 +O

(
ρ8
)

(C.20)
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∆
(
e2k
)

= ∆k2ρ
2 +

1

7560h3
1

{
36h3

1

[
15∆k2

(
3∆w2

2 + 14
)
− 8∆w2

(
∆w2

2 − 6
)]

+ 72h2
1

(
120∆k2∆w2 + 175∆k2

2 + 12∆v2∆w2
2 + 6∆v2

2 − 56∆v2 − 30∆w2
2

)
+ 16h1

[
15∆k2

(
27∆v2

2 − 36∆v2 − 106
)

+ 16 (18∆v2 − 29) ∆w2

]
+ 16∆v2

(
27∆v3

2 − 72∆v2
2 − 468∆v2 + 1072

)
− 27h4

1∆w2
2

(
∆w2

2 − 12
)}
ρ4 +O

(
ρ6
)

(C.21)

∆
(
e4Φ
)

=
4e4φ0∆v2

3h2
1

(3∆v2 − 4) ρ2 +
e4φ0

135h4
1

{
4h1

[
∆k2

(
−45∆v2

2 + 60∆v2 + 100
)

+ 36
(
3∆v2

2 − 8∆v2 + 4
)

∆w2

]
+ 3h2

1

[
3∆v2

2

(
9∆w2

2 − 4
)

− 8∆v2

(
9∆w2

2 − 20
)

+ 36∆w2
2

]
+ 4∆v2

(
243∆v3

2 − 648∆v2
2

+ 1536∆v2 − 1664
)}
ρ4 +O

(
ρ6
)

(C.22)

∆a = ∆w2ρ
2 +

1

90h3
1

{
4h1

[
100∆k2 +

(
9∆v2

2 − 30∆v2 − 40
)

∆w2

]
+ 6h2

1

[
25∆k2 (∆w2 − 2)− 24 (∆w2 − 5) ∆w2

]
+ 32∆v2 (3∆v2 − 10)

− 3h3
1∆w2

(
6∆w2

2 − 45∆w2 + 116
)}
ρ4 +O

(
ρ6
)

(C.23)

∆b = ∆v2ρ
2 +

1

90h2
1

{
h1

[
∆k2 (20− 30∆v2) + 16 (3∆v2 − 5) ∆w2

]
+ 3h2

1

[
∆v2

(
3∆w2

2 + 4
)
− 5∆w2

2

]
− 8∆v2

(
9∆v2

2 − 18∆v2 + 20
)}
ρ4 +O

(
ρ6
)

(C.24)

D Details of the numerical analysis

Here we shall discuss in more detail our approach to connecting the given IR and UV

expansions numerically. We start by noting that we have chosen to solve the equations of

motion (B.4)–(B.9) starting from the IR boundary conditions. As the IR parameter space

is much smaller than that of the UV, this makes a search for solutions with the correct

behaviour much less computationally expensive than if we started from the UV.

We use as our boundary conditions the IR expansions (C.13)–(C.24), extended up to

order ρ8. Using NDSolve in Mathematica 7 we then are able to generate numerical solutions

which extend into the UV. We start at ρIR = 10−4 as we found that in the SUSY case this

gives approximately optimal accuracy. We use 40-digit WorkingPrecision in NDSolve.

Comparing the numerical solutions obtained by this method, with the known behaviour

in the SUSY case, suggests that the results are trustable up to ρ ∼ 11. This is supported

by the observation that the constraint (B.3) is almost completely satisfied over this range.
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More explicitly, we find T + U . 10−8 throughout this range. In fact it appears that the

numerical solutions only fail when b decreases past ∼ 10−9. In the SUSY case (in which

b ∼ e−2ρ) this does correspond to ρ ∼ 11, but in the non-SUSY case (with b ∼ e2ρ/3) it

occurs further into the UV.

In the IR we have five parameters {h1, φ0, w2, k2, v2} which we can manipulate although

we set φ0 = 0 (along with Nc = 1) without loss of generality. Given a value of h1 we want to

study the effects of the SUSY-breaking deformations for the remaining three {w2, k2, v2}.
We find that for a general deformation of these IR parameters the resulting solution does

not exhibit the expected UV behaviour. Initially we find that the general behaviour of

solutions in this parameter space has

b ∼ ±e2ρ and e2g ∼ e2h ∼ e2k ∼ e8ρ/3 (D.1)

going into the UV. The e8ρ/3 behaviour appears to be suppressed by a very small numerical

factor relative to the expected e4ρ/3 term, and in fact is not visible in plots of g, h and k

themselves. It is apparent, however, if we examine quantities of the form

e2k − e2kSUSY ∼ e8ρ/3, (D.2)

in which the e4ρ/3 behaviour (almost) cancels.

Given a value for one of the three non-SUSY deformations, we believe it is possible to

obtain the desired UV behaviour (C.1)–(C.6), i.e.

e−2ρ/3 and e2g ∼ e2h ∼ e2k ∼ e4ρ/3, (D.3)

with the correct choice of the remaining two. In practice it seems easier to vary three but

keep one very close to its starting value.

Having obtained a numerical solution with the correct UV behaviour, we look to de-

termine the corresponding values of the expansion coefficients in the UV, i.e.

{c+, c−,Φ∞, Qo, ρo, H11,W20,Φ30, V40}. (D.4)

We define the mismatch function

m =
∑
i

[
fNumerical
i (ρmatch)− fExpansion

i (ρmatch)
]2
, (D.5)

with fi ∈ {g, h, k,Φ, a, b, g′, h′, k′,Φ′, a′, b′}. We then minimise m to match our numerical

solution and a UV expansion using NMinimize (with 60-digit WorkingPrecision) at a

large ρ value, ρmatch.

With this setup and given the SUSY IR, NMinimize recovers the SUSY values for the

UV parameters with an acceptable accuracy, even allowing all nine parameters to vary.

The only restrictions we apply to the parameter space are c+ ≥ 0 and Φ∞ ≥ φ0 = 0.

We now present a non-SUSY solution found using the above methods for one set of

values of the IR parameters. It has the expected behaviour for all functions at least up to

ρ ∼ 11 (where the corresponding SUSY solution fails) and possibly as far as ρ ∼ 17. We
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first choose h1 = 5 (and have set φ0 = 0 as mentioned above). The corresponding SUSY

solution has

w2 =
8

3h1
− 2 = −22

15
, k2 =

2

5h1
(h2

1 − 4) =
42

25
, v2 = −2

3
.

This results in an NMinimize output (with ρmatch = 6) of

c+ ≈ 1.6, c− ≈ 2.0× 103, Φ∞ ≈ 0.076,

Qo ≈ −1.0, ρo ≈ −6.8× 10−11, W20 ≈ 6.9× 10−14,

V40 ≈ 2.7× 10−9, H11 ≈ 0.50, Φ30 ≈ 0.38.

The associated mismatch value is m . 10−29. We take this as a good value for the

mismatch as we know that the SUSY solution does indeed exist, and these values are in

good agreement with (3.5).

To obtain a non-SUSY deformation, we follow the procedure described and modify the

three IR parameters {k2, v2, w2} away from their SUSY values so as to manually scan the

parameter space, until we gain a solution with the correct UV behaviour. We find that a

suitable choice of deformations is11

∆k2 ≈ −2.471× 10−5, ∆v2 ≈ 2.574× 10−5, ∆w2 ≈ 1.029× 10−4.

The minimization routine (again at ρmatch = 6) then finds that the UV parameters are

modified from their SUSY values according to

∆c+ ≈ −6.6× 10−6, ∆c− ≈ 1.6, ∆Φ∞ ≈ −4.0× 10−7,

∆Qo ≈ −1.5× 10−4, ∆ρo ≈ −7.1× 10−5, ∆W20 ≈ 5.2× 10−5,

∆V40 ≈ 5.6× 10−4, ∆H11 ≈ 9.1× 10−5, ∆Φ30 ≈ −5.0× 10−5,

again with a mismatch value of m . 10−29. However, we are unsure of the precision of

these values — they appear to be slightly sensitive to the value of ρmatch, and so should be

interpreted with caution. We present plots of the functions (figure 1) in the main text.

E Free energy

Consider the Euclidean action I for the wrapped D5 background of section 3. The free

energy is F = I/β, where β is the period of the compactified time direction.

I = Igrav + Isurf

= − 1

16π

∫
M
d10x
√

gR+
1

32π

∫
M

(
dΦ ∧ ?dΦ + eΦF3 ∧ ?F3

)
− 1

8π

∮
Σr

9KdΣr. (E.1)

11The exact values used were ∆k2 = −24 705 875× 10−12,

∆v2 = 25 744 091 286 331 971 640 358× 10−27 and ∆w2 = 1 029 383 373 181 636 875× 10−22.
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M is a ten dimensional volume enclosed by a nine dimensional boundary Σr. The boundary

Σr is taken to be surface at constant radial direction r. 9K is the extrinsic curvature of

the boundary,

9K = ∇µnµ =
1
√

g
∂µ (
√

g nµ) =
1

4
e−Φ/4e−k

[
9Φ′ + 8(g′ + h′) + 4k′)

]
(E.2)

where nµ is the boundary outward normal vector, nµ =
√
grrδµr . Using the equations of

motion Igrav reduces to a volume integral of a total derivative,

Igrav =
1

32π

∫
M
d10x
√

g∇µ∇µΦ =
1

32π

∫
M
d10x∂µ(

√
ggµν∂νΦ)

= vol8β
1

32π
lim
r→∞

(
1

8
e2(Φ+g+h)Φ′

)
. (E.3)

Explicitly, the surface term is

Isurf = −vol8β
1

8π
lim
r→∞

{
1

32
e2(Φ+g+h)

[
9Φ′ + 8(g′ + h′) + 4k′

]}
. (E.4)

Thus,

I = Igrav + Isurf

=− vol8β

256π
lim
r→∞

{
e2(Φ+g+h)

[
8(Φ′ + g′ + h′) + 4k′

]}
. (E.5)

Equation (E.5) gives the value of the on-shell action in terms of the asymptotic fields at

infinity. It typically contains divergences and has to be regularized. One way of doing this

is to subtract the action of a reference background. In our case the natural choice is to

subtract a supersymmetric background. We also require that both backgrounds induce the

same metric at the boundary, Σr,

e
Φns

2 e2gns = e
Φsu

2 e2gsu , e
Φns

2 e2hns = e
Φsu

2 e2hsu ,

e
Φns

2 e2kns = e
Φsu

2 e2ksu , e
Φns

2 = e
Φsu

2 (E.6)

and that the matter fields coincide at the boundary. In order to achieve the matching of

the induced metrics and matter fields at the boundary we have to choose particular values

for the integration constants of the supersymmetric background that we use as a regulator.

We can then evaluate the free energy,

F =
1

β
(Ins − Isu)

= − vol8
256π

lim
rc→∞

{
e2Φns+2gns+2hns(8Φ′ns + 8g′ns + 8h′ns + 4k′ns)

−e2Φs+2gs+2hs(8Φ′s + 8g′s + 8h′s + 4k′s)
}
. (E.7)

Using the UV expansion (3.1), to first order in W20,

F = E =
vol8
24π

c2
+e

2ρ0+2Φ∞W20. (E.8)
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which agrees with the ADM calculation. A similar evaluation of the free energy can

be carried out for the backgrounds after the rotation. Due to the presence of F5

and the Chern-Simons term the calculation is more involved and the equality of the

energy before and after rotation cannot be expressed as simply as (5.12). Neverthe-

less, after plugging in the appropiate UV expansions we get, to first order in W20,

Fbefore ∼ Fafter ∼ c2
+e

2ρ0+2Φ∞W20 as expected.

F Calculation of B2

In the SUSY case, we have

B2 = κ
e

3
2

Φ

ĥ1/2

[
eρ3 − cosα(eθϕ + e12)− sinα(eθ2 + eϕ1)

]
, (F.1)

with

cosα =
cosh(2ρ)− a

sinh(2ρ)
, sinα = − 2eh−g

sinh(2ρ)
. (F.2)

This is not valid in the general non-SUSY case. We obtain the same H3 as in the SUSY

case (2.12), but the relationship to (F.1) requires the BPS equations, as does the consistency

of the definitions (F.2).

Instead, we must determine B2 by requiring that dB2 = H3. We assume that B2 has

the same general structure as (F.1),

B2 = b1(ρ)eρ3 + b2(ρ)eθϕ + b3(ρ)e12 + b4(ρ)eθ2 + b5(ρ)eϕ1, (F.3)

which results in

dB2 =
e−h−k−

Φ
4

(
ab3e

g + 2b4e
h
)

ĥ1/4
e1θ3 +

e−h−k−
Φ
4

(
ab3e

g + 2b5e
h
)

ĥ1/4
eϕ23

− (b4 − b5) e−h−
Φ
4 cot θ

ĥ1/4
eθϕ1

+
e−2g−k−Φ

4

2ĥ5/4

(
e2g
{
ĥ
[
b3
(
4g′ + Φ′

)
+ 2b′3

]
+ b3ĥ

′
}

+ 4b1ĥe
2k
)
eρ12

+
e−h−k−

Φ
4

2ĥ5/4

(
b3e

gĥa′ − 2ab1e
−gĥe2k

+ eh
{
ĥ
[
b4
(
2g′ + 2h′ + Φ′

)
+ 2b′4

]
+ b4ĥ

′
})
eρθ2

+
e−h−k−

Φ
4

2ĥ5/4

(
b3e

gĥa′ − 2ab1e
−gĥe2k

+ eh
{
ĥ
[
b5
(
2g′ + 2h′ + Φ′

)
+ 2b′5

]
+ b5ĥ

′
})
eρϕ1

+
e−h−k−

Φ
4

2ĥ5/4

(
−(b4 + b5)egĥa′ −

(
a2 − 1

)
b1ĥe

2k−h

+ eh
{
ĥ
[
b2
(
4h′ + Φ′

)
+ 2b′2

]
+ b2ĥ

′
})
eρθϕ. (F.4)
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Comparing with (2.12), we see that the eθϕ1 component of H3 is zero, from which we

immediately obtain that b4 = b5. The eρθ2 and eρϕ1 components of (F.4) are then identical,

as are the e1θ3 and eϕ23 components. This is also the case in H3, so we are left with four

independent equations.

Equating the (e1θ3 + eϕ23) components results in

b4 = −1

2
eg−hab3 −

κNce
3Φ
2
−g−hb′

4ĥ1/2
, (F.5)

and the eρ12 component gives

b1 =
e2g−2k

4ĥ

[
2b3Φ′ − 3ĥb3Φ′ − 4ĥb3g

′ − 2ĥb′3

+ κNce
3Φ
2
−2hĥ

1
2
(
a2 − 2ab+ 1

)]
. (F.6)

This leaves b2 and b3 to be determined. Substituting these results into (F.4), we find that

the (eρθ2 + eρϕ1) component of H3 = dB2 reduces to the equation of motion (B.9) for b.

The only remaining equation is then the eρθϕ component. This is a first order differential

equation in b2 and b3,

0 = 8ĥe2g+4hb′2 + 2
(
a2 − 1

)
ĥe4g+2hb′3 + e2(g+h)ĥ′

[(
a2 − 1

)
e2gb3 + 4e2hb2

]
+ ĥe2(g+h)

[
4ae2ga′b3 + (a2 − 1)e2g

(
4g′ + Φ′

)
b3 + 4b2e

2h
(
4h′ + Φ′

)]
− κNc

√
ĥe3Φ/2

[
−2a′b′e2(g+h) + (a4 − 1)e4g

− 2(a2 − 1)abe4g + 2abe4g − 16e4h
]
. (F.7)

Solving for b2 we obtain

b2 =
e−2h−Φ/2√

ĥ

∫ ρ

dρ′

(
e−2g−2h+ Φ

2

8
√
ĥ

{
−
(
a2 − 1

)
e4g+2hĥ′b3

− ĥe4g+2h
[
4aa′ + a2

(
4g′ + Φ′

)
− 4g′ − Φ′

]
b3

+ κNc

√
ĥe3Φ/2

[
(a4 − 1)e4g − 2(a2 − 1)abe4g − 2a′b′e2(g+h) − 16e4h

]}
− 1

4

(
a2 − 1

)√
ĥe2g+ Φ

2 b′3

)
, (F.8)

which does not appear to be very useful. Instead, we can use the fact that we want

QPage, D3 = 0 (see eq. (6.12)). We therefore impose that the eθϕ123 component of F5−B2∧F3

vanishes. The resulting equation is algebraic in b2 and b3, and results in

b2 =
e−2h

4ĥ1/2

{
e2gĥ

1
2
(
1− a2

)
b3 −

κ

Nc
e

3Φ
2

[
N2
c (a− b)b′ + 4e2(g+h)Φ′

]}
. (F.9)

Together with the above results for b1,4,5 this completes (6.2).
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It remains to check that this b2 is also compatible with the requirement that dB2 = H3.

Substituting into (F.7) we find that b3 cancels, giving

0 = 4e4(g+h)
{

2ĥ
[
2g′Φ′ + 2h′Φ′ + Φ′′ + 2

(
Φ′
)2]− 2g′ĥ′ − 2h′ĥ′ − ĥ′′

}
+N2

c

[
a4e4g − 2a3be4g + 2(a− b)b′′e2(g+h) + 4(a− b)b′e2(g+h)Φ′

+ 2abe4g − 2
(
b′
)2
e2(g+h) − e4g − 16e4h

]
. (F.10)

This is solved by the equations of motion (B.7), (B.9) for Φ and b.

To determine the effect of the undetermined function b3, we can look at the difference

∆B2 = B2 − (B2)b3=0, which we find to be of the form

∆B2 = F1(ρ) sin θ dθ ∧ dϕ+ F2(ρ) sin θ̃ dθ̃ ∧ dϕ̃+ F3(ρ) cos θ dρ ∧ dϕ
+ F4(ρ) cos θ̃ dρ ∧ dϕ̃+ F5(ρ) dρ ∧ dψ, (F.11)

where the Fi depend on g, Φ, ĥ, b3 and their derivatives. If we set this equal to

d
[
β1(ρ) cos θ dϕ+ β2(ρ) cos θ̃ dϕ̃+ β3(ρ) dψ

]
(F.12)

we can solve for the βi, giving

∆B2 = −1

4
d
[
e2g+Φ/2

√
ĥb3(cos θ dϕ+ cos θ̃ dϕ̃+ dψ)

]
= −1

2
d
(
e2g−k+Φ/4ĥ1/4b3 e

3
)
. (F.13)

G Seiberg-like duality

In section 6.1.6 we discuss how the operation known as Seiberg duality in the KS cascade

acts for our non-SUSY solution. In order to do so, we find it instructive to compare to two

different cases: the KS case and the baryonic branch case. These are summarized here.

G.1 The KS case

We follow here the treatment in [33], specified in the case of no flavors (Nf = 0). The NS

potential B2 is given by,

B2 =
Nc

2
[fg1 ∧ g2 + k̃g3 ∧ g4] (G.1)

where the definition of g1, . . . , g4 can be found in [33]. When specialized to the cycle

Σ2 = [θ = θ̃, ϕ = 2π − ϕ̃, ψ = ψ0] (G.2)

we obtain that

B2|Σ2 =
Nc

2
[(f + k̃) + (k̃ − f) cosψ0] sin θdθ ∧ dϕ (G.3)

from which one finds

b0 =
1

4π2

∫
Σ2

B2 =
Nc

π

[
f sin2

(
ψ0

2

)
+ k cos2

(
ψ0

2

)]
(G.4)
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On the other hand, as computed in [33], we can see that the Maxwell charge of D3 branes is

QMax,D3 =
N2
c

π
[f − (f − k̃)F ] (G.5)

We see that under the change

f → f − π

Nc
, k̃ → k̃ − π

Nc
(G.6)

the D3-Maxwell charge changes by

QMax,D3 → QMax,D3 −Nc, b0 → b0 − 1. (G.7)

these transformations, are equivalent to changing the NS potential with a large gauge

transformation

B2 → B2 +
π

2
[g1 ∧ g2 + g3 ∧ g4] (G.8)

which when evaluated on the cycle Σ2, produces the changes in eq. (G.7). We move now

to analyze the baryonic branch (SUSY) case.

G.2 Baryonic branch case

In this case the NS potential is

B2 =
κe3Φ/2

ĥ1/2

[
eρ3 − cosα(e12 + eθϕ)− sinα(eθ2 + eϕ1)

]
(G.9)

Evaluating this on the Σ2 we get

b0 =
κe2Φ

π

[
(k̃ + f) + (k̃ − f) cosψ0

]
,

k̃ + f =
κe2Φ

Nc

[
cosα

(
e2g

4
(a2 + 1)− e2h

)
+ sinαaeh+g

]
,

k̃ − f =
κe2Φ

Nc

[
cosα

e2g

2
a+ sinαeh+g

]
, (G.10)

Using the explicit expressions, we have

k̃ = −κe
2Φ

4Nc
Q coth(ρ), f = −κe

2Φ

4Nc
Q tanh(ρ) (G.11)

The Maxwell charge for D3 branes can be written as,

QMax,D3 =
κ

π
e2g+2h+2ΦΦ′ (G.12)

and using the BPS equation for Φ′ we have

QMax,D3 =
N2
c

π

[
2f + (k̃ − f)F

]
, (G.13)

where F = (1− b). So, once again, we obtain that under a large gauge transformation,

b0 → b0 − 1, QMax,D3 → QMax,D3 −Nc. (G.14)
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