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1 Introduction

The low energy theory of N coincident M5-branes is given by an interacting (2,0) super-

conformal theory in 6 dimensions [1–4]. For a single M5-brane, the low energy theory is

known [5–13]. So far very little is known about this theory for N > 1. There are a num-

ber of difficulties associated with this theory. First, the structure of (2,0) supersymmetry

constraints the 2-form potential to have self-dual field strength. This makes it difficult

to write down a Lorentz invariant action. This problem was solved in [7–12] where an

action principle was constructed with the self-duality equation obtained as the equation

of motion. For the non-abelian case, there is an additional problem that an appropriate

generalization of the tensor gauge symmetry was not known. In particular, there are no-go

theorems [14–21] which state that there is no nontrivial deformation of the Abelian 2-form

gauge theory if locality of the action and the transformation laws are assumed. The no-go

theorems suggest an important direction to go is to give up locality.

Since M2-branes can end on M5-branes, one may wonder what one may learn by

considering the intersecting M2-M5 branes system. In the paper [22], a system of open

N M2-branes described by the open ABJM theory [23] is considered. The gauge non-

invariance of the boundary Chern-Simons action was shown to imply the existence of a
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Kac-Moody current algebra on the worldsheet of multiple self-dual strings. It was con-

jectured [24] that the Kac-Moody symmetry induces a U(N) × U(N) gauge symmetry in

the theory of N coincident M5-branes. The precise nature of this gauge symmetry in the

theory of M5-branes is however not known due to our little understanding of the self-dual

strings. Motivated by this, in [24] a set of U(N) × U(N) gauge bosons was introduced

and a version of non-abelian generalization of the tensor gauge symmetry of 2-form gauge

potentials was constructed. This formulation has the advantage of having manifest Lorentz

symmetry fully.

Generally, the non-abelian tensor gauge symmetry is linearly represented if the U(N)×

U(N) gauge bosons are treated as independent fields. On the other hand, the (2,0) super-

symmetry of M5-branes implies that no extra degrees of freedom is allowed and so these

fields must be taken as auxiliary. This turns out to be very difficult for one of the auxiliary

fields. So in this paper we will consider a gauge fixed approach by given up manifest 6d

Lorentz symmetry.

As a first step towards understanding the theory of multiple M5-branes, we will focus

on the chiral tensor gauge fields in this paper. Our action consists of a non-abelian gen-

eralization of the action of Perry and Schwarz [7] plus an additional term which sets the

Yang-Mills gauge fields to become auxiliary. We emphasis that the action of Perry-Schwarz

(PS) is of the same type as the action originally introduced by Henneaux and Teitelboim

(HT) [25], see also [26] for a recent discussion. The difference is that a time direction was

separated from the rest in HT action as they were interested in a Hamiltonian description,

while in the PS action a space direction was separated from the (5+1) dimensional space-

time, making it particularly suitable for discussing dimensional reduction of the system.1

Since we will be interested in dimensional reduction of our action, so we will follow [7] in

this paper. As in Perry-Schwarz’s construction, a direction x5 is singled out and specially

treated, so our theory is only manifestly 5d Lorentz invariant. Nevertheless, we manage

to establish the existence of an additional non-manifest 6d Lorentz symmetry, generalizing

the result of the abelian case [7, 25]. Moreover, on dimensional reduction on a circle, our

action gives rise directly to the standard 5d Yang-Mills theory plus higher order correc-

tions. Based on these properties, we propose that our action describes the gauge sector of

a system of coincident M5-branes in flat space. The tensor gauge symmetry in our action

turns out to be abelian, but highly nonlinear and nonlocal. In fact whether the tensor

gauge symmetry is abelian or non-abelian is not constrained by any physical requirement

we know of. The abelian nature of the tensor gauge symmetry is thus a prediction of our

construction. The construction of a non-abelian tensor gauge symmetry is still an inter-

esting mathematical question, but from our construction it seems not necessary for the

non-covariant description of multiple M5-branes.

The plan of the paper is as follows. In section 2, we review the construction of Perry

and Schwarz [7]. In section 3, we present our construction of the action for non-abelian

2-form fields and establish the properties of self-duality, 6d Lorentz symmetry and dimen-

1The covariant Pasti-Sorokin-Tonin (PST) formulation [9–12] unifies both since one can gauge fix the

auxiliary scalar to arrive at these different formulations.
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sional reduction to 5d Yang-Mills action. Section 4 contains some further discussions. In

particular we comment on the inclusion of fermions and scalar fields and supersymmetry in

the discussion section. For completeness, three appendices are included which treat some

analysis in the main text in more details.

Recent related works on the subject includes: [27, 28] which proposed a fundamental

definition of multiple M5-branes in terms of 5d supersymmetric Yang-Mills theory; [29]

which constructed a non-abelian version of (2,0) supersymmetric equation of motion using

Lie 3-algebra; [30] which constructed a compactified theory of non-abelian 2-form gauge

potentials with a self-dual field strength; [31] which proposed a more general framework

than [24] in utilizing a 3-form gauge potentials in addition to the 1-form gauge poten-

tials; [32–39] which studied the form of quantum geometry of M5-branes in a C-field

background; [40] on amplitudes of multiple M5-branes theory; [41, 42] on the N3 entropy

counting of M5-branes; as well as other issues concerning multiple M5-branes [43–49]. For

a review on older results on M5-branes and superconformal theory in 6-dimensions, we

suggest [50, 51].

2 Abelian action of Perry-Schwarz

Let us start by reviewing the construction [7, 25] of an action for a self-dual tensor in

6-dimensions. A key feature of their construction is that a certain direction, x0 in [25] or

x5 in [7], has to be singled out and so the formulation has only manifestly 5d rotational

invariance or 5d Lorentz invariance. Nevertheless these theories do possess the full Lorentz

symmetry. The existence of this modified Lorentz symmetry is a remarkable feature of

these constructions.

We will be interested in the Lagrangian formulation of the chiral tensor gauge fields on

multiple M5-branes and its dimensional reduction. Therefore let us follow the construction

of Perry-Schwarz [7] in the following. Let us denote the 5d and 6d coordinates by xµ =

(x0, x1, · · · , x4) and xM = (xµ, x5). We adopt the convention ηMN = (− + + + ++) for

the metric and

ǫ01234 = −ǫ01234 = 1, ǫ012345 = −ǫ012345 = 1 (2.1)

for the antisymmetric tensors. The Hodge dual of a 3-form GMNP is defined by

G̃MNP := −
1

6
ǫMNPQRS GQRS . (2.2)

Note the minus sign in our definition of the Hodge dual follows from our convention of the

antisymmetric tensor (2.1) which says that the 6d orientation is specified by dx0dx1 · · · dx5.

The abelian field strength is given by

HMNP = ∂MBNP + ∂NBPM + ∂PBMN := ∂[MBNP ] (2.3)

and the self-duality equation reads

H̃MNP = HMNP . (2.4)
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In the Perry-Schwarz formulation, the self-dual tensor gauge field is represented by a

5× 5 antisymmetric tensor field Bµν . The action reads

S0(B) =
1

2

∫

d6x
(

−H̃µνH̃µν + H̃µν∂5Bµν

)

(2.5)

where

H̃µν :=
1

6
ǫµνρλσHρλσ, Hµνρ = −

1

2
ǫµνρλσH̃λσ. (2.6)

The action has the second order equation of motion

ǫµνρλσ∂ρ(H̃λσ − ∂5Bλσ) = 0 (2.7)

which has the general solution

H̃λσ − ∂5Bλσ = Φλσ (2.8)

for some function Φλσ such that ∂[µΦλσ] = 0. It is easy to check that the action (2.5) is

invariant2 under the gauge symmetry

δBµν = Σµν (2.9)

for arbitrary Σµν such that ∂[µΣνλ] = 0, or equivalently

δBµν = ∂µϕν − ∂νϕµ, for arbitrary ϕµ. (2.10)

This is the tensor gauge symmetry of the model. An appropriate gauge fixing of this

symmetry allows one to reduce the general solution (2.8) to the special form

H̃µν = ∂5Bµν . (2.11)

This is the self-duality equation in this theory.

The action is manifestly 5d Lorentz invariant. Nevertheless the action is indeed in-

variant under an additional Lorentz transformation mixing the µ directions with the 5

direction. The proposed modified Lorentz transformation is

δBµν = (Λ · x)H̃µν − x5(Λ · ∂)Bµν , (2.12)

where Λµ = Λ5µ denote the corresponding infinitesimal transformation parameters. One

can check that

[δΛ1 , δΛ2 ]Bµν = δ
(5d)
Λαβ

Bµν + ∂µϕν − ∂νϕµ (2.13)

gives, apart from terms that vanish on-shell (2.11), the expected 5d Lorentz transformation

δ
(5d)
Λαβ

Bµν = Λµ
λBλν − Λν

λBλµ + xλΛ
λα∂αBµν (2.14)

plus the gauge transformation (2.10). The parameters are

Λµν = Λ1µΛ2ν − Λ1νΛ2µ, ϕν = xαΛαλBν
λ. (2.15)

Therefore the modified Lorentz transformation (2.12) does give rise to the desired 6d

Lorentz group.

A couple of remarks follow concerning the Perry-Schwarz construction.

2This is under the usual assumption that fields, in this case Hµνλ, vanishes at infinity |xµ| = ∞.
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1. We note that in the proof [7] of the invariance of the action (2.5) under the Lorentz

transformation (2.12), various total derivatives terms in the variation of the action

were dropped under the natural assumption that

∂λBµν → 0 as |xM | → ∞ . (2.16)

Under the same assumption, the self-duality equation of motion (2.11) holds since

Hµνλ → 0 at infinity.

2. The Perry-Schwarz theory is based on the set of fields Bµν which nevertheless is

6d Lorentz invariant. That it is possible to support the Lorentz symmetry with-

out introducing the components Bµ5 is entirely due to the existence of the gauge

symmetry (2.10) in the theory. In the manifestly Lorentz covariant formulation of

PST [9–12], the field Bµν is extended to BMN . In addition an auxiliary scalar field a

is introduced with new gauge symmetries that allow one to choose the gauge Bµ5 = 0

and a = x5. In this gauge, the Perry-Schwarz action is obtained.

3. One may also combine the modified Lorentz transformation (2.12) with the gauge

transformation (2.10) with a parameter ϕµ = −x5BµκΛ
κ and obtain an equivalent

form of the modified Lorentz transformation

δBµν = (Λ · x)H̃µν − x5Λ
κHκµν , (2.17)

which is written entirely in terms of the field strength. The check of the invariance

of the action under (2.17) is included in the appendix.

3 Action for non-abelian self-dual two-form on M5-branes

For simplicity, we will construct a theory of the 2-form potential without scalars and

fermions. Supersymmetry is important and will be considered separately. For the gauge

part, motivated by the construction of [24], we consider the addition of a set of 1-form

gauge fields Aa
M for a gauge group G.

3.1 Non-abelian action

Following the above discussion, we will give up manifest 6d Lorentz symmetry and represent

the self-dual tensor gauge field by a 5 × 5 antisymmetric field Bµν in the adjoint. Since

there is no room for extra degrees of freedom in the (2,0) tensor multiplets of M5-branes,

therefore the gauge fields AM must be determined in terms of the tensor gauge fields. It

turns out we need to take the Yang-Mills gauge field to be a 5-dimensional field living in the

5d space xµ, i.e. Aµ = Aµ(x
λ).3 Let us introduce the following non-abelian generalization

3We note that a 5-dimensional gauge field was also employed in [30]. However our construction differs

from theirs in essential ways: a compactified spacetime was considered in [30] and the gauge field was taken

to be the zero mode of the tensor gauge field B
(0)
µ5 . In our construction, we do not compactify the spacetime

and Aµ is given by an integrated expression (3.12) on shell. We thank Pei-Ming Ho for a discussion on

this point.
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of the Perry-Schwarz action

S0 =
1

2

∫

d6x tr
(

−H̃µνH̃µν + H̃µν∂5Bµν

)

, (3.1)

where

Hµνλ = DµBνλ +DνBλµ +DλBµν (3.2)

and

H̃µν =
1

6
ǫµνρλσHρλσ (3.3)

is the Hodge dual of Hµνλ. Hµνλ obeys the modified Bianchi identity

D[µHνλρ] =
3

2
[F[µν , Bλρ]]. (3.4)

The action S0 is invariant under the Yang-Mills gauge symmetry

δAµ = ∂µΛ + [Aµ,Λ], for arbitrary Λ = Λ(xλ), (3.5)

δBµν = [Bµν ,Λ], δHµνλ = [Hµνλ,Λ] (3.6)

and the following “tensor gauge symmetry”:4

δTAµ = 0, (3.8)

δTBµν = Σµν , for arbitrary Σµν(x
M ) such that D[λΣµν] = 0. (3.9)

It is [δT (1) , δT (2) ] = 0 and so the tensor gauge symmetry is abelian. Like the abelian case,

we will consider field configurations with vanishing covariant derivatives at infinity:

DλBµν , ∂5Bµν → 0 as|xM | → ∞. (3.10)

It follows that Hµνλ vanishes at infinity also.

An important observation is that the condition for the vanishing of field strength

at infinity:

Hµνλ → 0, at x5 → ±∞ (3.11)

is equivalent to the Bianchi identity of the gauge field Aµ if Fµν is identified with the

boundary value of Bµν , e.g. Fµν = Bµν(x5 = ∞). With the anticipation of the self-duality

equation of motion (3.27) in our theory, we will consider a different constraint

Fµν =

∫

dx5 H̃µν . (3.12)

4Or equivalently

δTBµν = DµΛν −DνΛµ for arbitrary Λµ(x
M ) such that [F[µν , Λλ]] = 0. (3.7)
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With the constraint (3.12), there is no new degrees of freedom carried by Aµ.
5 We will

implement (3.12) in the action by introducing a 5-dimensional auxiliary field Eµν(x
µ) and

add the action

SE =

∫

d5x tr

(

(Fµν −

∫

dx5 H̃µν)E
µν

)

. (3.13)

The boundary condition of Eµν will be taken as the trivial one

Eµν → 0 as |xλ| → ∞. (3.14)

Eµν transforms under Yang-Mills and tensor gauge transformation as

δEµν = [Eµν ,Λ], δTEµν = 0 (3.15)

and so SE is invariant. The action is also invariant under the gauge symmetry

δEµν = αµν (3.16)

for arbitrary α(xλ) such that

D[µανλ] = 0, Dµαµλ = 0, and α → 0 as |xλ| → ∞. (3.17)

All in all, we propose the following action for a non-abelian theory of self-dual tensor

S = S0 + SE . (3.18)

The action S is Yang-Mills gauge invariant and tensor gauge invariant. It is also invariant

under the gauge symmetry (3.16) of Eµν . Five dimensional Lorentz symmetry is manifest.

We will show below this action leads to a self-duality equation of motion. We will also

demonstrate the existence of a non-manifest 6d Lorentz symmetry in our theory and the

connection to 5d Yang-Mills theory of multiple D4-branes through dimensional reduction

on a circle. The form of the constraint (3.12) is inspired by the analysis of this reduction.

3.2 Properties

3.2.1 Self-duality

The equation of motion of Eµν gives the constraint

Fµν =

∫

dx5 H̃µν . (3.19)

This has to satisfy the Bianchi identity

ǫµνρλσDρFλσ = 0. (3.20)

5One may be tempted to use a Chern-Simons action to enforce the gauge field to be auxiliary. However

unlike the 3-dimensional case where a Chern-Simons gauge field is auxiliary and contains no local degrees

of freedom, pure Chern-Simons gauge field in 5-dimension contains local degrees of freedom [52–54]. In

the appendix, we review this argument as well as the extension for Chern-Simons coupled to a conserved

source.
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For Bµν , we have

δS0 =
1

2

∫

ǫµνρλσδBµνDρ(Hλσ − ∂5Bλσ) (3.21)

and hence the equation of motion

ǫµνρλσDρ(H̃λσ − ∂5Bλσ + Eλσ) = 0, (3.22)

Integrating it over x5, we get

D[ρEλσ] = 0. (3.23)

In fact
∫
dx5 ǫ

µνρλσDρ(H̃λσ − ∂5Bλσ) = 0 where we have used (3.19) and the Bianchi

identity of Fµν , and we have assumed that Hµνλ vanishes at x5 = ±∞. Our claim follows

from the fact that Eλσ is independent of x5. As a result, the equation (3.22) reads

ǫµνρλσDρ(H̃λσ − ∂5Bλσ) = 0 (3.24)

and has the general solution

H̃λσ − ∂5Bλσ = Φλσ, (3.25)

where

D[λΦµν] = 0. (3.26)

Therefore with an appropriate fixing of the gauge symmetry (3.9), one can always reduce

the second order equation (3.25) to the first order form

H̃µν = ∂5Bµν . (3.27)

This is the form of the self-duality equation in our theory.

The equation (3.27) implies that on-shell, Fµν is simply given in terms of the boundary

values of Bµν :

Fµν = Bµν(x5 = ∞)−Bµν(x5 = −∞), (3.28)

and Bianchi identity is satisfied since the field strength vanishes at infinity. Finally, the

equation of motion for Aµ gives

DµEµν −
1

4

∫

dx5 ǫν
αβγδ[Bαβ , Eγδ] = −

1

2

∫

dx5 ǫν
αβγδ[Bαβ , ∂5Bγδ −

1

2
H̃γδ] := Jν . (3.29)

We note that as a result of the self-duality equation of motion (3.27), the “current” is

covariantly conserved DλJ
λ = 0 . Of course (3.29) is consistent with this.

Summarizing, the equations of motion in our theory are the auxiliary equation for

Aµ (3.12), the self-duality equation (3.27) and the equations (3.23) and (3.29) for Eµν .

Note that on eliminating Aµ using (3.12), the self-duality equation (3.27) is self-interacting

and is completely independent of Eµν .

The counting of the degrees of freedom in our theory goes as follows. The equation of

motion (3.19) says Aµ is auxiliary and is determined entirely in terms of H̃µν . Using this,

the action S can be written as a nonlocal action in terms of expansion in powers of Bµν .

– 8 –
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At the quadratic level, the action is simply given by dimG copies of the Perry-Schwarz

action, plus the action SE . For small field strengths, we can take the higher order terms as

small corrections and we can count the degrees of freedom using the linearized theory. In

this limit, Aµ = 0 and the tensor gauge symmetry and the self-duality equation of motion

are precisely those of the original Perry-Schwarz theory. Thus we obtain 3× dimG degrees

of freedom in Bµν . As for Eµν , the linearized equations of motion are

∂[µEνλ] = 0, ∂µEµν = 0, (3.30)

and there is the gauge symmetry (3.16) with the parameters αµν satisfying, in this case,

∂[µανλ] = 0, ∂µαµν = 0. (3.31)

Since Eµν and αµν also satisfy the same (vanishing) boundary condition at infinity, so we

can use the gauge symmetry to remove the Eµν field completely. This is compatible with

the fact Eµν was introduced as an auxiliary field to implement the constraint (3.12). All in

all, our theory contains 3× dimG degrees of freedom as required by (2,0) supersymmetry

We remark that when Bµν is diagonal with distinct diagonal elements such that the

gauge group is broken down to U(1)r (r is the rank of the gauge group), our action reduces

to a sum of r copies of the abelian Perry-Schwarz theory and describes the gauge sector of r

separated M5-branes. More generally, once the scalar and fermion fields are included in the

theory, one can have a system of lumps of coincident M5-branes, BPS or non-BPS relative

to each other; and as usual, the pattern of symmetry breaking as well as the interacting

dynamics of M5-branes can be studied.

3.2.2 Lorentz symmetry

Our action is manifestly 5d Lorentz invariant. It is straightforward to check that it is not

invariant under the modified Lorentz transformation (2.12) or (2.17). See appendix A for

the check. Let us proceed by further modifying the Lorentz transformation. We observe

that the equation (3.21) for the variation of S0 under a general variation of δBµν can be

rewritten as

δS0 =

∫

d6x tr
[

∆BµνH̃µν

]

, (3.32)

where

∆Bµν := ∂5(δB
µν)−

1

2
ǫµναβγDα(δBβγ). (3.33)

It is interesting to note that

∆Bµν = −δ(H̃µν − ∂5Bµν), (3.34)

which is just the variation of the self-duality equation of motion.

Taking δBµν now as the 5-µ Lorentz transformation, it is clear that the action will

be invariant if the variation satisfies ∆Bµν = 0. This is a sufficient condition, but not

– 9 –
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necessary. In fact ∆Bµν 6= 0 for the abelian case (2.17), nevertheless S0 is invariant. So let

us consider a general transformation of the form

δBµν = (Λ · x)H̃µν − λx5Λ
κHκµν + Λκφµνκ := δ(1)Bµν + δ(2)Bµν , (3.35)

where λ is a constant and φµνκ = −φνµκ is a quantity to be determined by demanding S0

to be invariant. We have denoted the first two variation terms by δ(1)Bµν and the third

term by δ(2)Bµν . By redefining φµνκ with an appropriate shift, one can bring λ to any

value one wants. This freedom will turn out to be convenient.

The variation of S0 under δ(1)Bµν is

δ(1)S0 =

∫ [
λ

2
x5ǫ

µναβγDαHβγκΛ
κ +

λ− 1

4
ΛρH̃αβǫ

ραβµν

]

H̃µν . (3.36)

For λ = 1, the result in the appendix is recovered. For the moment, let us keep λ arbitrary.

Since (3.36) is of the form of (3.32), therefore it can be cancelled with δ(2)Bµν if φµνκ

satisfies

∂5φµνκ −
1

2
ǫµν

αβγDαφβγκ = −
λ

2
x5ǫ

µναβγDαHβγκ −
λ− 1

4
H̃αβǫκαβµν := Jµνκ. (3.37)

In addition, we impose the boundary condition

φµνκ vanishes as |x5| → ∞. (3.38)

A solution can always be written down using the Green function technique for general Jµνκ.

Let Gab
µν,µ′ν′(x, y) be the Green function which satisfies

∂5G
abµ′ν′

µν −
1

2
ǫµν

αβγ(D(y)
α )acG

cbµ′ν′

βγ = δµ
′ν′

µν δabδ(6)(x− y) (3.39)

and the boundary condition

Gabµ′ν′

µν (x, y) = 0, |x5| → ∞. (3.40)

Here x = (xM ) and (Dα)
a
c = ∂αδ

a
c + (Ãα)

a
c where (Ãα)

ac := fabcAb
α. Then

φa
µνκ =

∫

dy Gabµ′ν′

µν (x, y)Jb
µ′ν′κ(y) (3.41)

satisfies both (3.37) and (3.38). As a result, if also

δAµ = 0, (3.42)

then S0 is invariant. So far this works for any λ.

Next let us examine the action SE . It follows from (3.35) that

δH̃µν = ∂5φµνκΛ
κ +

Λ · x

2
ǫµν

αβγDαH̃βγ +
λ+ 1

4
ǫµν

αβγΛαH̃βγ , (3.43)
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where we have used the differential equation (3.37). Therefore SE is invariant if we take

λ = −1 and if Eµν transforms as

δEµν =
1

2
ǫµν

αβγDα((Λ · x)Eβγ). (3.44)

All in all, our action is invariant under the transformation (3.35), (3.42) and (3.44).

In general the Lorentz invariance of the action implies that the equations of motion

(i.e. (3.12), (3.24), (3.23) and (3.29)) are automatically Lorentz invariant, up to terms

vanishes on shell and terms that can be interpreted as any other symmetry transformations

of the theory. However since the self-duality equation (3.27) is obtained by a gauge fixing,

it is not guaranteed to be Lorentz invariant. In fact, the transformation (3.35) implies that

δ(H̃µν − ∂5Bµν) =
Λ · x

2
ǫµν

αβγDαH̃βγ − (Λ · x)∂5H̃µν − ∂5(x5HµνκΛ
κ). (3.45)

This gives in (3.32) δS0 = 0 as expected. Using the self-duality equation (3.27), the first

and second term of (3.45) actually cancel and so

δ(H̃µν − ∂5Bµν) = −∂5(x5HµνκΛ
κ) + EOM, (3.46)

where EOM denotes terms vanish when the equation of motion (3.27) is used. One can

rewrite this further by using the equation of motion and obtains

δ(H̃µν − ∂5Bµν) =
1

2
ǫµνκ

αβΛκ(H̃αβ + 2x5∂5H̃αβ) + x5Λ
κDκH̃µν +D[µϕν] + EOM, (3.47)

where ϕν = x5H̃νκΛ
κ. Now the first and second term on the r.h.s. of (3.47) respectively

gives zero when substituted into (3.32) and so they corresponds to symmetry transforma-

tions of the action S0.
6 For the abelian case, the third term corresponds to the symmetry

transformation δBµν = ∂[µαν] of Bµν and since SE decouples from the theory, so we obtain

that the self-duality equation is Lorentz invariant up to terms vanishes on shell and terms

that correspond to a symmetry transformation of the theory. However the above analysis

breaks down in the non-abelian case and so we conclude that the self-duality equation of

motion is not Lorentz invariant. We emphasize that the loss of Lorentz invariance in (3.27)

is simply because it is a gauge fixed equation of motion. This is not surprising. For exam-

ple, Yang-Mills equation of motion in the Coulomb gauge is not Lorentz invariant. The use

of the self-duality equation is important for obtaining the correct counting on the degrees

of freedom in the theory. However the use of the ungauge-fixed version (3.24) may be useful

for some other purposes, for example, supersymmetry.

If we compute the algebra of commutator [δ(Λ
(1)
µ ), δ(Λ

(2)
µ )] for the physical field Bµν ,

we get the standard 5d Lorentz transformation plus an additional transformation. This

additional transformation is quite complicated but is a symmetry of the action since we

know already the action is invariant under the 5d Lorentz transformation and is invariant

under [δ(Λ
(1)
µ ), δ(Λ

(2)
µ )]. Therefore we can interpret (3.35) as a modified Lorentz symmetry.

6More specifically, the symmetry transformations are given by δBµν = φµνκΛ
κ where φµνκ is given

by (3.41) with Jµνκ specified by the first and second term of the r.h.s. of (3.47) respectively.
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Note that the form of the transformation laws (3.42) and (3.44) are quite non-standard

but they are compatible with the auxiliary nature of these fields.

We note that as φµνκ is determined explicitly as an integrated expression over the Green

function, the transformation (3.35) is non-local in the fields. It is now clear that the different

choices of λ simply correspond to different non-local form of the transformation (3.35).

What we have shown is that one can make the action invariant by using a transformation

law that has a nonlocal piece that is based on a local part with the particular choice

of λ = −1. For the abelian case, we know the Lorentz transformation (2.17) is locally

represented in terms of Aµ and Bµν ; and corresponds to λ = 1 and φµνκ = 0. Let us

demonstrate that this is equivalent to having λ = −1 and a nontrivial φµνκ as determined

above. To see this, the equation (3.37) reduces in the abelian case to

∂5φµνκ −
1

2
ǫµν

αβγ∂αφβγκ = x5∂κH̃µν −Hµνκ. (3.48)

Let us put φµνκ = −2x5Hµνκ + ϕµνκ and so

∂5ϕµνκ −
1

2
ǫµν

αβγ∂αϕβγκ = −
1

2
ǫµνκ

αβ(H̃αβ + 2x5∂5H̃αβ)− x5∂kH̃µν . (3.49)

Now the right hand side of this equation when substituted into (3.32) actually leaves S0

invariant. Therefore as explained above, ϕµνκ represents a symmetry and we recover (2.17)

up to a symmetry transformation.

The Lorentz symmetry we proposed is nonlocal and is quite different from the usual

representation of a symmetry in terms of local fields, but it seems this is what is needed for

multiple M5-branes.7 In fact, nonlocal symmetry is not uncommon in string theory. For ex-

ample, the spacetime Lorentz symmetry in the light cone gauge string theory is nonlocal in

the worldsheet coordinate [55]. There the nonlocality arises since a Lorentz transformation

will generally bring one out of the lightcone gauge and so a worldsheet reparametrization

(turns out to be nonlocal) is needed in order to restore the gauge condition. For us, we

are in a formulation without the B5µ fields. Since a standard 5-µ Lorentz transformation

will turn Bµν to B5µ, we suspect that the reason of having a modified Lorentz symmetry

is similarly due to a compensating gauge transformation in a covariant formulation. In the

abelian (free) case, the modification is not so drastic and the modified Lorentz transfor-

mation is still local. But this is not the case for the non-abelian case as we found here.

To check our suspicion, it is needed to construct the covariantized theory. It is remarkable

that for the abelian case, PST [9–12] were able to provide a Lorentz covariant formulation

by introducing additional auxiliary fields (scalar field a and the B5µ components). It will

be very interesting to covariantize our construction by following a similar construction of

PST and it is possible that the employment of additional auxiliary fields would allow for a

local representation of the Lorentz symmetry.

7We thank Pei-Ming Ho and Yutaka Matsuo for emphasizing the nonlocal nature of our proposed Lorentz

transformation and for a discussion on this point.
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3.2.3 Reduction to D4-branes

Let us consider a compactification of x5 on a circle of radius R. The dimensional reduced

action reads

S =
2πR

2

∫

d5x tr
(

−H̃2
µν + (Fµν − 2πRH̃µν)E

µν
)

(3.50)

This form of action has been considered in [24] as a dual formulation of 5-dimensional

Yang-Mills theory. In fact, if we integrate out Eµν , we obtain the expected relation

Fµν = 2πRH̃µν . (3.51)

Eliminate H̃µν using the constraint, we obtain the standard 5d Yang-Mills action

SYM = −
1

4πR

∫

d5x tr F 2
µν . (3.52)

This is however not the complete answer. In fact if we look at the path integral and

integrate out E first, we obtain

∫

[DA][DB][DE]e−S =

∫

[DA][DB]e−SY M δ(Fµν − 2πRH̃µν) =

∫

[DA]e−SY M−S′

, (3.53)

where S′ = S′(A) is a measure contribution obtained from integrating out the delta func-

tional constraint and then rewritten in terms of Aµ. The direct determination of S′ is

nontrivial but it has to satisfy a consistency condition: the condition

DµF
µν = −

πR

2
ǫναβγδ[Fαβ , Bγδ] (3.54)

which follows from (3.51) should be obtained as an equation of motion in the 5d theory.

As a result, S′ has to satisfy

δS′

δAν
=

1

2
ǫναβγδ[Fαβ , Bγδ] (3.55)

with Bµν understood to be a function of Aµ obtained by solving the duality relation (3.51).

The 5d theory is thus given by the action S5d = SYM+S′. The action SYM corresponds

to the expected form of the Yang-Mills coupling

g2YM = R (3.56)

and the gauge group in our construction is to be

G = U(N) (3.57)

for a system of N M5-branes. The reproduction of the 5d Yang-Mills action gives further

support that our construction gives a description of the gauge sector of a system of multiple

M5-branes. The action S′ describes a correction term to the Yang-Mills theory which

appears to be of high derivative in nature since [F,B] ∼ DDB and B is of the order of F

from (3.51)). In the abelian case, Perry and Schwarz has also constructed the nonlinear
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five-brane action that gives the U(1) DBI action of D4-brane upon dimensional reduction.

It would be interesting to work out S′ in more details and see whether it captures the

non-abelian DBI action [56–58] in some way.

We remark that the necessity of non-locality in the M5-branes action has also been

argued by Witten [59]. He observed that conformal invariance of the M5-branes theory

implies that upon double dimensional reduction to five dimensions, the 5 dimensional action

should be proportional to
1

R

∫

d5x. (3.58)

On the other hand, one should get
∫

d6x = 2πR

∫

d5x (3.59)

as a result of integrating over the x5 direction for a standard reduction of a local action,

In our analysis above, we see that both R-dependence are correct and the trick to arrive

from (3.58) to (3.59) is due to the simple R dependence in the constraint (3.51).

In principle one could consider compactification in the other spacelike directions and

one should get the same 5d YM action. However this is already non-trivial for the Perry-

Schwarz action [7] (or the Henneaux-Teitelboim action [25]) and implies the existence of

a symmetry of the D4-branes action which involves a non-local field redefinition. For a

single M5-brane, this symmetry can be made explicit in a covariant PST-like formulation

in which both, the vector field Aµ and the two-form field Bµν are present and related to

each other, on the mass-shell, by the duality condition which follows from the action. See

for example [60] for the case of the duality-symmetric formulation of D = 11 supergravity

with A3 and A6 gauge fields. The construction is completely generic and can be extended

immediately to arbitrary D dimensional spacetime any pair of duality related fields of rank

p and (D− p− 2) whose field strengths are dual to each other on the mass shell.8 It would

be interesting to extend this construction to the non-abelian case.

4 Discussions

In this paper, we have constructed a theory of non-abelian tensor fields with the properties

that:

1. the action admits a self-duality equation of motion,

2. the action has manifest 5d Lorentz symmetry and a modified 6d Lorentz symmetry,

3. on dimensional reduction, the action gives the 5d Yang-Mills action plus certain

higher derivative corrections.

Based on these properties, we propose our action to be the bosonic theory describing the

gauge sector of coincident M5-branes in flat space. A special feature of our construction

is that the tensor gauge symmetry is abelian although the theory is still fully interacting.

8We thank Dmitri Sorokin for explaining this to us.
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This is an interesting difference between the self-interaction of Yang-Mills gauge fields and

the self-interaction of 2-form gauge fields in our construction. It remains to be seen whether

this is still the case in the Lorentz covariant formulation of the theory.

We note that conformal symmetry rules out the possibility of a Yang-Mills action, but

a 5d Chern-Simons action is allowed for the gauge field Aµ:

SCS =
k

24π2

∫

d5x ǫµ1···µ5tr

(

Aµ1∂µ2Aµ3∂µ4Aµ5 +
3

2
Aµ1Aµ2Aµ3∂µ4Aµ5

+
3

5
Aµ1Aµ2Aµ3Aµ4Aµ5

)

. (4.1)

The inclusion of the Chern-Simons action seems to corresponds to a kind of M-theory

compactification as 5d Chern-Simons term naturally arises and plays a very important

role in certain kinds of M-theory compactification on Calabi-Yau manifolds, see for exam-

ple [61–65]. In this case, the level k may corresponds to a parameter describing a kind of

fibered Calabi-Yau compactification. It will certainly be helpful to have the full supersym-

metric theory from which one may obtain the moduli space interpretation from the scalar

sector [66].

Our construction is in principle only a low energy effective description for a system

of coincident M5-branes. If one is lucky, the (2,0) supersymmetric completion may give

a well-defined quantum theory as in the case of BLG [67–69] and ABJM theories [23] for

multiple M2-branes and the N = 4 SYM theory for multiple D3-branes. This is another

strong reason to construct the supersymmetric completion.

To construct the supersymmetric theory, one needs to include scalar fields and fermions

in the adjoint of U(N). For (2,0) supersymmetry, all these fields are sitting in the tensor

multiplet. Since there is no Yang-Mills multiplet in (2,0) supersymmetry, the Yang-Mills

gauge field must be a supersymmetric singlet. This is rather difficult to implement. On the

other hand, it is possible that only a fraction of the (2,0) supersymmetry, i.e. (1,0) super-

symmetry, is visible in the classical action of multiple M5-branes, and full supersymmetry

can be seen only nonperturbatively as in the ABJM theory [23]. With respect to (1,0)

supersymmetry, the (2,0) tensor multiplet is simply the sum of a (1,0) tensor multiplet

and a (1,0) hyper-multiplet. Moreover, one should employ a (1,0) Yang-Mills multiplet as

an auxiliary multiplet. The recent results of (1,0) superconformal theories [31] should be

useful in this regard.

However even before one enters into the details, a simple observation already indicates

that the supersymmetric theory is going to be highly nontrivial. In six dimensions, scalar

field has dimension 2. Conformal invariance plus locality imply that the potential term V

for the scalar fields has to be cubic. However a nonvanishing cubic potential has no ground

state and this is not compatible with supersymmetry.9 This means the potential term,

if nonvanishing, will need to be nonlocal. For example, potential of the schematic form

V ∼ φ4/|φ| or V ∼
∫
dx5

∫
dx5 φ4 could avoid the problem of not having a ground state.

9This observation is also shared independently by David Berman, Neil Lambert, David Tong.
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It is amusing that the later form of the potential has a close resemblance with the scalar

interaction term in [29]10 if one exchanges Cµ ∼ δ5µ
∫
dx5, both of which are of dimension -1.

It would be interesting to understand the connection between our description and the

proposed SYM description of M5-branes [27, 28]. In particular an understanding of how

a non-abelian 2-form gauge field would arise in the Yang-Mills description is needed. In-

cidentally, based on a fluctuation analysis of D1-branes around a large RR 3-form flux

background, a matrix model description for M5-branes in a background C-field was sug-

gested in [35] and there is the same question of how to extract a B-field from the matrix

variables. This problem may be compared with the problem of extracting the spacetime

fields and their dynamics, particularly the gravity field, from the matrix model [70, 71].

See for example [72–75]. Lessons drawn from those analysis may be useful here.

Our theory is based on fields in the adjoint of U(N), i.e. taking N2 values. Naively

this is different from the N3 counting from entropy argument [76]. To understand the

counting, it will be important to understand the dynamics of the theory properly. See for

example [41, 42] for some recent interesting analysis performed on the 5d SYM theory and

a class of 6d SCFT in the Coulomb phase.

A Counting of degrees of freedom in the Perry-Schwarz theory

We give a pedagogical and explicit counting of the degrees of freedom in the Perry-Schwarz

theory. The Perry-Schwarz theory initially has the equation of motion

ǫµνρλσDρ(H̃λσ − ∂5Bλσ) = 0 (A.1)

Using the gauge symmetry

δBµν = ∂µΛν − ∂νΛµ, (A.2)

one can fix the equation of motion to the linear form

H̃µν = ∂5Bµν . (A.3)

Doing so we are left with a x5-independent residual symmetry. Now ∂µBµν is x5 indepen-

dent as a result of (A.3). Using the residual symmetry, one can fix it to be zero

∂µBµν = 0. (A.4)

Differentiating (A.3) with respect to x5 and use (A.4), we obtain that Bµν is massless as

expected, �Bµν = 0. Now (A.4) gives 4 independent conditions on the 10 components of

Bµν . Using the self-duality condition, we have in total (10− 4)/2 = 3 degrees of freedom.

B Variation of S0 under Lorentz transformation

In this appendix, we show that the non-abelian Perry-Schwarz action

S0 =
1

2

∫

d6x tr
(

−H̃µνH̃µν + H̃µν∂5Bµν

)

, (B.1)

10We thank Neil Lambert for pointing out this resemblance.
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is not invariant under the straight-forward non-abelian generalization of the Lorentz trans-

formation (2.17) (i.e. with φµνκ = 0 in (3.35)):

δBµν = (Λ · x)H̃µν − x5Λ
κHκµν , (B.2)

δAµ = 0. (B.3)

It is

2δS0 =

∫

ǫµνρλσtr
[(

(Λ · x)H̃µν
︸ ︷︷ ︸

1

−x5Λ
κHκµν

︸ ︷︷ ︸

2

)(
DρH̃λσ
︸ ︷︷ ︸

a

−Dρ∂5Bλσ
︸ ︷︷ ︸

b

)]

. (B.4)

The contributions are, respectively,

(1a) = −
1

2

∫

tr (ǫµνρλσΛρH̃µνH̃αβ) + tot. , (B.5)

(2b) = −

∫

tr (ǫµνλαβx5H̃αβ∂5H̃µνΛλ) =
1

2

∫

tr (ǫµνρλσΛρH̃µνH̃αβ) + tot. , (B.6)

(1b) = −2

∫

(Λ · x)tr(H̃µν∂5H̃
µν) = tot. , (B.7)

(2a) =

∫

2x5Λ
κ tr (HκµνDρH

µνρ) =

∫

2x5Λ
κ tr (

1

3
HρµνD[κHρµν]) + tot. , (B.8)

where tot. stands for total derivative terms and we have used

D[κHρµν] = DκHρµν −D[ρHµν]κ (B.9)

in simplifying (2a). We see that (1a) cancels (2b). In the abelian case, the term (2a) is

zero due to the vanishing Bianchi identity ∂[κHρµν] = 0. This is not so for the non-abelian

case and so S0 is not invariant under (B.2). It is straightforward to see that S0 is also not

invariant under

δBµν = (Λ · x)H̃µν − x5(Λ ·D)Bµν . (B.10)

C Counting of degrees of freedom for Chern-Simons theory

We will start with a review of the counting of degrees of freedom for pure Chern-Simons

theory performed in [52, 53]. Then we extend the analysis to the case where the Chern-

Simons theory is coupled to a covariantly conserved current. The details of the counting

is not important for our results. They are included here for completeness.

C.1 Pure non-abelian Chern-Simons theory

Consider the five dimensional (dimension D = 2n+ 1, n = 2 here) Chern-Simons action

SCS =

∫

M

LCS, with dLCS = gabcF
a ∧ F b ∧ F c (C.1)

where gabc is the symmetric invariant tensor of the gauge group and a = 1, · · · ,N with N

being the dimension of the gauge group. The equation of motion

gaa1a2F
a1
µ1µ2

F a2
µ3µ4

ǫµ1µ2µ3µ4λ = 0 (C.2)
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can be decomposed into

{

ka ≡ gaa1a2F
a1
i1i2

F a2
i3i4

ǫi1i2i3i4 = 0,

kia ≡ 4gaa1a2F
a1
i1i2

F a2
0i3

ǫi1i2i3i = 0,
(C.3)

where µ = (0, i) and i = 1, · · · , 2n. Introduce the ”2nN×2nN matrix” Ωij
ab ≡ 4ǫiji1i2gabcF

c
i1i2

((b, j) as a collective index), we can rewrite the equations of motion in the compact form:

{

ka = Ωij
abF

b
ij = 0

Ωij
abF

b
0j = 0

(C.4)

A simple identity

δi[kg
abcǫiℓmnF b

jℓF
c
mn] = 0, ⇒ Ωij

abF
b
kj = δikka (C.5)

shows that on the constraint surface ka = 0, (vk)
b
j ≡ F b

kj gives 2n null vectors to Ωij
ab.

The non-invertibility of Ω is due to the existence of symmetry. In this case, the 2n null

vectors F b
kj generates the spatial diffeomorphism. In fact under diffeomorphism δxµ = ηµ

of spacetime, the Chern-Simons theory is invariant with δηA
a
µ = LηA

a
µ, or the improved

diffeomorphism

δηA
a
µ = −ǫνF a

µν . (C.6)

In general, the rank of Ω depends on the properties of the invariant tensor gabc, and

the phase space location of the system. For example, at F a
µν = 0, Ωij

ab = 0 and has zero

rank. In [52, 53], a generic condition on gabc was introduced. gabc is said to be generic if

there exists solution F a
ij on the surface ka = 0 such that:

(a) The matrix F b
kj ((b, j) as row and k as column index) has the maximum rank 2n such

that ξkF b
kj = 0 implies ξk = 0, i.e. the 2n null vectors (vk)

b
j ≡ F b

kj of Ωij
ab are linearly

independent.

(b) The matrix Ωij
ab has maximum rank compatible with (a), i.e. Ωij

ab has no other null

vectors except (vk)
b
j and so has rank 2nN − 2n

We remark that the presence of the null vectors of Ω on the surface ka = 0 is due to the

presence of spatial diffeomorphism δxi = ηi, i = 1, 2, 3, 4. (under generic condition assump-

tion, temporal diffeomorphism is not independent). If there were no such diffeomorphism,

we would not expect the existence of such null vectors.

Now the equation of motion (C.4) together with the generic condition implies F b
0j =

NkF b
kj for arbitrary 2n fields Nk, or

Ȧa
i = DiA

a
0 +NkF a

ki (C.7)

Since (C.7) is invariant under

(a) Standard gauge transformation (N dimensional):

δAa
i = −Diλ

a, δλA
a
0 = −λ̇a − [λ,A0]

a, δλN
k = 0 (C.8)
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(b) Spatial diffeomorphism (2n dimensional):

δξA
a
i = −ξjF a

ij , δξA
a
0 = −ξjF a

0j , δξN
k = ξ̇k + [ξ,N ]k (C.9)

where [ξ,N ]k is the Lie bracket of the vectors ξ and N ,

we can use the above symmetries to go to the the time gauge

A0 = 0, Nk = 0. (C.10)

In this case, the equation of motion is equivalent to

ka = 0, Aa
i = time independent. (C.11)

In addition to the N constraints ka = 0, the 2nN functions Aa
i (xi) are subjected to the

residual symmetry of the time gauge, these are N time-independent gauge symmetry (C.8)

as well as the 2n time-independent spatial diffeomorphism (C.9), therefore the number of

arbitrary functions in the solution to the equation of motion of Lagrange formulation is

2nN −N − (N + 2n) = 2(nN −N − n). The local degrees of freedom is simply the half

of it, therefore

no. of local degrees of freedom of pure CS = nN −N − n (C.12)

with n > 1. In 5d, this would be N − 2. We remark that the above analysis holds only

for the non-abelian case. For the counting of local degrees of freedom in the abelian case,

see [52, 53].

C.2 Chern-Simons theory coupled to conserved current

For the case that the Chern-Simons theory is coupled to a conserved current Jλ (DλJ
λ = 0):

S =

∫

d5x tr AµJµ + SCS, (C.13)

the equation of motion of Aλ is

gaa1a2F
a1
µνF

a2
λσǫ

µνλσρ = cJa
ρ (C.14)

where c is some constant. In terms of the matrix Ωij
ab ≡ ǫiji1i2gabcF

c
i1i2

, the equation of

motion can be written as {

Ωij
abF

b
ij = cJa

0

4Ωij
abF

b
0j = cJa

i

(C.15)

Generically, Ja
i 6= 0, this means that (C.5) can no longer be used to reduce the rank of Ω,

so we have full rank 2nN for Ω generically, i.e. Ω is invertible.

Now in the gauge Aa
0 = 0, the second line of the equation of motion (C.15) simply

provides a first order partial differential equation in time:

∂0A
b
j = c(Ω−1)abji J

a
i . (C.16)
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As for the first equation of motion of (C.15), it is indeed time-independent since

∂0(Ω
ij
abF

b
ij − cJa

0 ) =
(

2gabc∂0F
b
kℓF

c
ijǫ

ijkℓ − c∂0J
a
0

)

= Dk[4gabcF
b
ijF

c
0ℓǫ

ijkℓ]− cDiJ
a
i = cDkJ

a
k − cDkJ

a
k = 0 (C.17)

As a result, (C.15) simply provides a constraint on the initial values Ab
j(xi, t = 0). There-

fore, in the time gauge, Ab
j(xi, t) are determined by (C.16) up to the initial conditions

Ab
j(xi, t = 0). Both the time-independent gauge transformation and the time-independent

constraints (C.15) remove N independent initial conditions, so we have local degrees of

freedom
1

2
(2nN −N −N ) = (n− 1)N (C.18)

In 5d, it’s N .
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