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1 Introduction

The study of effective theories arising in string compactifications is of crucial importance

both from a conceptual as well as phenomenological point of view. It is now believed that

there is a vast landscape of four-dimensional effective theories with minimal or no super-

symmetry arising in string theory, but it is an open problem to systematically characterize



these theories [1-3]. A systematic study becomes more tractable in compactifications to
higher dimensions and with more supersymmetry. Highly supersymmetric compactifica-
tions have a more constrained effective theory, and arise from restricted classes of candidate
string constructions. In the maximally supersymmetric case the theory and compactifica-
tion geometry are in fact almost unique.

An intermediate scenario is provided by six-dimensional (6d) (1,0) supergravity the-
ories [4]. While there are constraints both from supersymmetry and anomalies in this
dimension, the moduli space of these theories still permits a rich structure and is not fixed
by the symmetries. The (1,0) multiplets in the spectrum are the gravity multiplet, a
number of tensor and vector multiplets, as well as neutral and matter hypermultiplets. A
special complication arises from the fact that in six dimensions the (1,0) two-form tensors
in the tensor multiplets and the gravity multiplet obey duality constraints. The two-form
in the gravity multiplet has a self-dual field strength, while the two-forms in the tensor
multiplets will admit an anti-self-dual field strength. This fact makes it hard to give a La-
grangian formulation for the dynamics of these forms. While such formulations exist [5], we
will take a different route in this work. Our 6d actions will be formulated as pseudo-actions
which yield equations of motions for the tensor fields which still need to be additionally
restricted by imposing the self- and anti-self-duality constraints [6-11]. Moreover, our
computations will proceed by first determining a five-dimensional (5d) action for which
these conditions can be consistently imposed on the level of the action. We will see that
this transdimensional treatment is natural in connecting compactifications of F-theory and
M-theory. Recently, a transdimensional treatment was suggested to study the M5-brane
action with self-dual non-Abelian two-forms [12-14].

In the last years a systematic study of six-dimensional (1,0) supergravity theories has
been undertaken to study the consistency conditions imposed by quantum gravity [4]. In 6d
there are gravitational, gauge as well as mixed anomalies. These impose constraints on the
number of multiplets, and link the matter spectrum to the anomaly coefficients; see e.g. [15—
17]. A fruitful starting point has been to ask for a realization of these supergravity theories
as a compactification of F-theory on Calabi-Yau threefolds [18-28]. These threefolds have
to be elliptically fibred with a base space being a Kéahler twofold. At the loci in the base
where the elliptic fibre becomes singular, the dilaton-axion, parameterizing the complex
structure of the elliptic fibre, indicates the existence of seven-brane sources. These seven-
branes wrap complex curves in the base. Two seven-branes can intersect at points at
which strings ending on different branes yield new massless matter hypermultiplets in the
effective theory. This gives the embedding of six-dimensional gauge theories with matter
in a general geometric framework. Note that in order to obtain non-Abelian gauge groups
the elliptic Calabi-Yau threefold Y3 has to be singular itself. For Calabi-Yau singularities
localized along a single seven-brane divisor one can infer the gauge group G at co-dimension
one in the base. The singularity enhancements at co-dimension two in the base predict the
representations of matter fields [29-31].

To study the 6d (1,0) effective action arising by compactifications of F-theory on an
elliptically fibred Calabi-Yau threefold, we take a detour via M-theory. Our analysis will be
analogous to the 4d/3d treatment of F-theory on Calabi-Yau fourfolds presented in [32, 33],



but will be more refined and use the enhanced constraints of 6d (1,0) supersymmetry and
anomalies. M-theory and F-theory on the same Calabi-Yau manifold are connected by a
certain limit which shrinks the elliptic fibre in M-theory and grows an extra dimension
required to the match with F-theory. The simplest physical description of this limit is
provided by considering M-theory on a two-torus. Shrinking the size of the torus, one ends
up in a Type ITA string set-up on a small circle. Performing a T-duality along this circle
leads to a Type IIB string compactifications on a large circle. Indeed, if the torus shrinks
to zero size, the Type IIB set-up grows an extra dimension. One can extend this limit
adiabatically to elliptic fibrations. Furthermore, also branes and flux sources can be traced
through this duality. We recall more details on this duality and the geometry of elliptically
fibred Calabi-Yau threefolds in section 2.

Since we want to determine the characteristic data of the 6d F-theory effective action,
we start with a rather general 6d (1,0) pseudo-action with a non-Abelian gauge group G,
and a generalized Green-Schwarz term to cancel 6d anomalies [6-10]. The self-duality of
the tensors is imposed on the level of the equations of motion. We perform the Kaluza-
Klein reduction on a circle, and derive an actual 5d effective action for the Kaluza-Klein
zero-modes in section 3. We show how the self-duality can now be imposed on the action
level, and determine the characteristic data of the 5d N/ = 2 theory. In particular, we
find that the kinetic terms of the 5d vectors are encoded by a real function A'F', which
is homogeneous of degree three. It is interesting to point out that it contains a non-
polynomial term which is not allowed in a standard 5d N/ = 2 supergravity theory. This
correction is induced by the fact that the 6d theory contained a classically non-gauge
invariant Green-Schwarz term to cancel 6d one-loop anomalies. Our findings are then
interpreted as counterterms in five dimensions, following the suggestion of [21]. In order to
prepare the ground for the comparison with the M-theory reduction, it will be crucial to
comment on the modifications when moving to the Coulomb branch of the 5d gauge theory.
Furthermore, also higher curvature terms are required in 6d for anomaly cancellation, and
we provide a partial dimensional reduction which will be compared with the M-theory
result.

To determine the 6d characteristic data in terms of the geometric data of the com-
pactification threefold, we also determine the 5d M-theory effective action in section 4.
The derivation is performed on a fully resolved Calabi-Yau threefold Y3. This implies that
the 5d gauge theory will be in the Coulomb branch, and all M2-brane states wrapped on
the elliptic fibre and the resolution cycles will be massive. The resulting 5d N/ = 2 action
has already been known in the literature [34]. Also higher curvature corrections have been
dimensionally reduced from eleven to five dimensions [35]. It was shown in [35] that the
second Chern class of the threefold Y3 determines 5d higher curvature couplings of the form
ANtrR AR, with A being a 5d vector and R being the 5d curvature two-form.

In the comparison of the general 6d/5d reduction with the M-theory reduction in
section 5, we argue that the latter does not only contain the classical terms but also
certain one-loop corrections. We identify the F-theory limit of M-theory which leads to a
perfect match of the classical terms and allows us to extract all characteristic data for the
6d (1,0) theory in terms of the geometry of the resolved Calabi-Yau threefold Ys. This



includes the geometric data determining the classical metrics on the 6d vector, tensor and
hypermultiplet moduli spaces. Including a comparison of the dimensionally reduced higher
curvature terms, we also infer the discrete data determining the 6d Green-Schwarz term
and hence encode 6d anomalies. Our results confirm more indirect arguments using the
Chern-Simons action of seven-branes [22, 36]. Furthermore, our results agree with the
analysis of 6d anomalies presented in [23-26].

Remarkably, we identify several terms in the 5d M-theory reduction on Y3 which do
not arise in the classical 6d/5d reduction. We argue using [37, 38] that this is due to
the fact that there are one-loop corrections in the 6d/5d reduction which arise form two
sources: (1) in going to the Coulomb branch, there are massive charged hypermultiplets,
and massive vector multiplets containing the W-bosons which have to be integrated out, (2)
in the dimensional reduction there are massive Kaluza-Klein modes for all 6d multiplets. In
particular, we argue that massive fermions running in the loop generate constant corrections
to the 5d Chern-Simons terms of the from A A F' A F, with F' being the 5d gauge fields.
Integrating out 5d massive Kaluza-Klein modes of 6d chiral fields also generates one-loop
Chern-Simons couplings A° A FO A FO and A° A tr(R A R) for the 5d vector zero-mode
AY arising from the reduction of the 6d gravity multiplet. Both coefficients depend on the
number of 6d tensor multiplets. The comparison with the M-theory result is expected to
yield the 6d anomaly conditions.

2 F-theory in six dimensions

This section is devoted to a brief account on the F-theory set-up, applied to the construc-
tion of 6d models. Firstly, we recall the basics of F-/M-theory duality and make some
comments about the Type IIB picture of F-theory vacua. Secondly, we develop a minimal
mathematical toolkit to describe elliptically fibred Calabi-Yau threefolds.

2.1 F-theory via M-theory

F-theory [18] is a twelve-dimensional geometric framework introduced to capture some
crucial non-perturbative aspects of Type IIB vacua in presence of seven-branes. One of the
most efficient ways to extract information about F-theory vacua is given by duality with
M-theory compactifications [3]. Since we will follow this strategy throughout the paper,
let us briefly review some basic material about F-/M-theory duality and its application to
the study of 6d vacua.

Consider M-theory on the product manifold

My =T?% x By x RY, (2.1)

where T2 is a two-torus, By is a Kéihler manifold of complex dimension two, and R is 5d
Minkowski spacetime. The metric on the torus can be written as

0
ds3s = 1;77' [(dza + Rerdzp)® + (Im7)%dzg] . (2.2)



Here x4, zp are real coordinates with period 1, 7 is the complex structure parameter, and
oY is the volume of the torus. The canonical coordinates x4, g parameterize the two one-
cycles which we name A- and B-cycle, respectively. Upon compactification along a small
A-cycle, M-theory reduces to Type ITA string theory. An application of T-duality acting
on the B-cycle results in Type IIB string theory on the background

My = St By x R1’4, (2.3)

where the circle S' corresponds to the B-cycle. Note that in this duality the complex
structure parameter 7 in (2.2) is identified with dilaton-axion 7 = Cy + ie~?, where Cp
is the RR scalar and ¢ is the dilaton. In this way, SL(2,Z) modular invariance of Type
IIB is interpreted as the SL(2,7Z) reparameterization symmetry of the complex structure
parameter of 72. Furthermore, in the limit of vanishing 1°, the size of the compact S*
becomes infinite, thus leading effectively to Type IIB on

Mg = By x RY, (2.4)

where R'® denotes 6d Minkowski spacetime. The present discussion can be generalized to
the case in which M is a T%-fibration over By X RM, repeating the argument fibrewise.
We require 72 to depend holomorphically on the complex coordinates of By. More precisely,
the 11d background can be written as

My =Yy x R, (2.5)

where Y3 is an elliptic fibration with zero-section over the base By with fibres being possibly
singular elliptic curves. In order to preserve a fraction of supersymmetry, Y3 must be a
Calabi-Yau manifold. In summary we are thus led to consider elliptically fibred Calabi-Yau
threefolds. We introduce some basic facts about their geometry in subsection 2.2.

Carrying out the duality program outlined above, we end up with a Type IIB vacuum
with non-trivial dilaton-axion profile 7 varying along Bs. As a consequence general F-
theory vacua do not admit a perturbative description in terms of of fundamental strings
and D-branes. The fundamental objects of F-theory are (p,q)-strings and (p, ¢)-branes,
which are SL(2, Z)-generalizations of the fundamental strings and D-branes. A particular
role is played by (p,q) seven-branes which magnetically couple to 7. This allows to treat
them geometrically. In fact, space-time filling seven-branes are located at co-dimension
one loci in By at which the elliptic fibre becomes singular. More precisely, a (p, q) seven-
brane can be found at a point where the (pA + gB)-cycle collapses. In the following we
will include stacks of such seven-branes which admit a non-Abelian gauge-theory on their
worldvolume.

Despite the non-perturbative nature of general F-theory vacua, the connection with
M-theory will allow us to restrict to a low-energy supergravity framework. More precisely,
we will compute a 6d effective action for F-theory vacua through the following steps:

1. computation of the 5d A/ = 2 action resulting from Kaluza-Klein reduction on a circle
of a general 6d (1,0) supergravity action; specialization to the 5d Coulomb branch
of the gauge theory;



2. computation of the 5d N = 2 effective action of M-theory on a resolved elliptically
fibred Calabi-Yau threefold;

3. comparison between the results and determination of the characteristic data which
specify the 6d (1,0) effective action.

In carrying out this program we will restrict to the zero-modes in both the 6d/5d
reduction as well as in the M-theory reduction. In the 6d/5d-reduction the Kaluza-Klein
modes will become light in the decompactification limit and restore the dependence of the
supergravity fields on all 6d coordinates. Moreover, in the M-theory reduction additional
M2-brane modes become relevant in the F-theory limit due to the vanishing size of the
T?-fibre. Both contributions will be neglected when working with 5d massless modes only.
However, the duality outlined above suggests that the massive 5d corrections of both sides
can also be matched. The crucial observation which we will use in our work, is that
the functional dependence of the characteristic data of the supersymmetric actions on the
fields should be already captured by the zero-modes. This allows us to carry out the above
program and indeed determine the 6d effective action of an F-theory compactification on
a Calabi-Yau threefold. In addition, we find that also certain one-loop corrections can be
matched under this duality and are crucial to complete the picture.

2.2 Elliptically fibred Calabi-Yau threefolds

As explained in the previous subsection, we want to consider elliptically fibred Calabi-Yau
threefolds. To this end, it is useful to recall the Weierstrass description of a 72 as a complex
curve inside the weighted projective space P23 1, as discussed e.g. in [3, 19, 20]. In this
ambient space the T2 is given by the equation

y? =23 + fazt + ¢25, (2.6)

modulo the identification (z,y, 2) = (u’x, py, pz) for all p € C\ {0}. If f, g are complex
constants we are describing a specific elliptic curve. In order to describe an elliptic fibration
over Bs, we have to promote f,g to sections of the line bundles —4 K, —6K respectively,
where K denotes the canonical line bundle on Bsy. Locally f, g can be given as polynomials
in some holomorphic coordinates of Bs.

In order to describe seven-branes we have to find the loci where the elliptic fibre
degenerates. This happens at points on Bs where the discriminant

A = 4f3 4 274 (2.7)

vanishes. Let us denote by [A] the two-form cohomology class Poincaré dual in By to the
divisor given by A = 0. It has been shown by Kodaira that this class [A] must be related
to the canonical class [K] = —c¢q(Bs) of the base By via

—12[K] = [A], (2.8)

in order for the total space Y3 to be a Calabi-Yau manifold. Generally speaking, a singu-
larity in the fibration may or may not yield a singularity of the whole Calabi-Yau threefold.



We are thus led to represent [A] as

[A] = valSa] + [A] (2.9)
A

where [S4] are the Poincaré dual two-form classes of the irreducible, effective divisors S
on which the Calabi-Yau threefold develops a singularity, while [A’] is the residual class
associated to singularities of the fibration which leave the total space smooth. Singularities
of the Calabi-Yau threefold along S4 corresponds to stacks of seven-branes on S4 which
admit a non-Abelian gauge theory on their world-volume. Possible gauge groups can
be classified looking at the possible singularities which occur in Y3 [19, 20, 29-31]. The
constants v are related to group-theoretical invariants. The divisor A’ is wrapped by a
single seven-brane with no massless gauge bosons on its world-volume. Furthermore, if
[A’] and some of the [S4]’s have non-vanishing intersection, singularity enhancements take
place, which give rise to charged matter in the Type IIB picture.

In order to perform dimensional reduction of M-theory, it is necessary to resolve the
Calabi-Yau threefold Y3 if it is singular. This amounts to find a smooth Calabi-Yau three-
fold Y3 and a map f . Y3 — Y3 such that singular loci on Y3 are preimages through f of
so-called exceptional divisors on Y3. This can be done in a canonical way, both if the singu-
larity locus is a point and if it is a smooth curve [19, 20, 29, 39]. The resolution procedure
can be given the following physical description in the F-/M-theory duality picture. The
non-Abelian gauge theory with group G 4 living on the unresolved stack of seven-branes
at [S4] goes to its 5d Coulomb branch in the resolved space, with Abelian gauge group
U(1)22K(&) | Indeed, in M-theory M2-branes wrapping the P!-fibres of the exceptional di-
visors encode the degrees of freedom of vectors that are massive in the Coulomb branch
and become massless as the exceptional divisors are shrunk to zero size.

In the remaining part of this section we collect some results about divisors and inter-
section numbers of an elliptically fibred Calabi-Yau threefold.! Let us start by considering
the case of a smooth threefold Y3. On such a space there is a natural set of divisors which
span Hy(Y3,R). Firstly, one has the section of the fibration which is homologous to the base
Bs. Secondly, there is the set of vertical divisors D, which are obtained as D, = 7~ !(DP),
where DZ is a divisor of By and 7 is the projection to the base w : Y3 — Bs. For these
smooth elliptic fibrations one has h!(By) = h'1(Y3) — 1 such divisors. Let wp,w, be the
two-form cohomology classes Poincaré dual to Bs, D,. It is useful to record some facts
concerning intersections of divisors for smooth elliptic fibrations. Due to the fibration
structure one has

DoNDgN D, =0. (2.10)

We also introduce the matrix 7,3 by defining

Mg = DY N DY = ByNDyNDg. (2.11)

'Full SU(3)-holonomy is always understood.



Note that 7,43 is a non-degenerate symmetric matrix with mostly minus Lorentzian signa-
ture (1, A% (By) — 1). Finally, let us recall the cohomological identity?

wo Awp + ¢1(B2) Awp =0. (2.12)

We also introduce the vector K¢ by expanding the canonical class [K] in a basis two-forms
dual to vertical divisors as
(K] = K%q . (2.13)

Some basic formulae for the base By of Y3 will be useful later. The Euler number y(Bs)
and the integral of ¢}(By) can be generally evaluated as

X(B2) = / c2(B2) = 2+h"1(By), / 3(Ba) = K*KPnog = 10-hY(By),  (2.14)
B2 Bs

where we have used c1(Bz) = —K®w,, and the fact that h1Y(By) = h?Y(By) = 0 for a base
of a Calabi-Yau manifold.

Let us now take into account a singular Calabi-Yau threefold Y3 and its resolution Ys.
For the sake of simplicity, we will restrict ourselves to the case of a single seven-brane stack,
thus omitting the sum over index A in (2.9), [A] = v[S] + [A']. Let D; be the exceptional
divisors introduced by resolving the singularity. The index ¢ runs from 1 to rank(G). The
cohomology class Poincaré dual to D; is denoted w;. Furthermore, let us expand the divisor
S wrapped by the stack of branes in a basis of two-forms dual to vertical divisors as

[S] = C%W, - (2.15)

Note that, after resolution, this is replaced by

A~

[S] = C%wa + d'w;, (2.16)

where a’ are the Dynkin numbers characterizing the Dynkin diagram of G.?> Exceptional
divisors enjoy the following properties:

BosND;=0
DaﬂDiﬂDj:—CingﬂDaﬂS
DaﬁDlgﬂDi =0, (2.17)

where Cj; is the Cartan matrix of the group G.

We are now in a position to summarize all intersection numbers on the resolved Calabi-
Yau threefold Y. We have found a cohomology basis {wo, wqa,w;} which can be denoted
collectively as {wp}. Intersection numbers are defined as

Vase = / wpa A\ ws A we . (2.18)
Y3

2We will be slightly sloppy with the notation in the following, since we do not explicitly indicate that
certain quantities, e.g. the first Chern class c¢1(Bz), have to be pulled back from B> to the Calabi-Yau
threefold.

3Note that after singularity resolution also (2.13) is modified by the addition of non-trivial w; terms.
Nonetheless, these terms do not affect the following discussion on intersection numbers, thanks to identi-
ties (2.17).



Identities and properties listed above imply that intersection numbers must satisfy

Vooo = naﬁKaK'B, Voin =0, (2.19)
Vooa = 1 K”, Vaij = —CijnasC’,

Voas = 1as Vagi =0,

Vapy =0,

where A = 0,a,j. As far as Vj; is concerned, in general it is non-vanishing, but oth-
erwise unconstrained by our discussion so far. These intersection numbers arise from
intersecting exceptional divisors. In fact, as we will discuss below, they will be linked to
group-theoretical factors depending on the charged matter content of the gauge theory.

3 Circle compactification from six to five dimensions

In this section we discuss the circle reduction of a general 6d (1,0) supergravity theory. Af-
ter reviewing some foundational material about 6d supergravities with a simple non-Abelian
gauge group in subsection 3.1, the details of the dimensional reduction are presented in
subsection 3.2 supplemented by appendix C. We emphasize the treatment of self-dual two-
forms, and describe both the reduction of the non-Abelian gauge theory and its broken
phase relevant in the match with M-theory. The 5d action is brought into canonical N' = 2
form in subsection 3.4. We point out an intriguing generalization of the A/ = 2 formalism
which captures the full reduced action. In subsection 3.5 certain higher order curvature
corrections are reduced which carry crucial information about gravitational 6d anomalies.

3.1 Generalities on 6d (1,0) supergravity

In this subsection we review some basic facts about the spectrum and the dynamics of a
generic 6d supergravity model with (1,0) supersymmetry, corresponding to 8 real super-
charges. Massless states in six dimensions are classified by representations of the little group
SO(4) = SU(2) x SU(2) and are therefore labelled by a couple of integer or half-integer
spins, (jr,jr). Four different kinds of supersymmetric multiplets can be constructed, re-
stricting to spin less or equal to two [17]. We list them following the chirality conventions
which are more common in the 6d supergravity literature, cf. e.g. [6]:

e gravity multiplet: (1,1) @ 2(%, 1) @ (1,0), i.e. the graviton, one Weyl* left-handed
gravitino, one self-dual two-form;
e vector multiplet: (%, %) & 2(%, 0), i.e. one vector and one Weyl left-handed gaugino;

e tensor multiplet: (0,1) @ 2(0,3) @ (0,0), i.e. one anti-self-dual two-form, one Weyl
right-handed tensorino, one real scalar;

4An equivalent formulation makes use of a SU(2) doublet of Weyl left-handed gravitini (SU(2) is the
automorphism group of the supersymmetry algebra), supplemented by a symplectic Majorana condition.
Similar remarks apply to all other fermions. This explains why this model is sometimes referred to as N' = 2
in the literature.



e hypermultiplet: 2(0, %)@4(0, 0), i.e. one Weyl right-handed hyperino and two complex
scalars.

A general model features one gravity multiplet, ny vector multiplets, ny hypermultiplets,
np tensor multiplets. It is well known that the (anti-)self-duality condition is incompatible
with a naive Lagrangian formulation, because the usual kinetic term for two-forms vanishes
identically once it is taken into account. In the special case np = 1, the anti-self-dual
two-form from the gravity multiplet and the self-dual two-form from the tensor multiplet
can be combined into a two-form without any self-duality property, and the standard
Lagrangian formulation applies. Nonetheless, a set of consistent, supersymmetric, two-
derivative, classical equations of motion is known for arbitrary ny [6]. We can still derive
them from variation of a suitable functional of the fields (called pseudo-action), provided
that the self-duality condition is imposed after computation of functional derivatives. In
this paper, all 6d actions are to be interpreted in this weak sense.’

We will always restrict ourselves to the bosonic content of the model, and adopt no-
tations described below. First of all, we denote all 6d two-forms collectively as B®, where
a =1,...ny + 1.5 The scalars coming from the ny tensor multiplets parameterize the
quotient

SO(1,n7)/SO(nr). (3.1)

It is customary to describe this coset scalar manifold by means of a vielbein formalism. We
refer the reader to e.g. [6] for a detailed account. For our present discussion we need only
to recall that a constant SO(1,n7) metric Q2,5 is introduced, along with a set of np + 1
scalar fields j*. The metric 2,3 has mostly minus Lorentzian signature (1,nr), and the
scalars j¢ are subject to the constraint

Qapi®i® =1. (3.2)

Moreover, the scalar manifold is endowed with another non-constant, positive definite
metric gog, which is given in terms of Q,g3, j* by

Jap = 2jaj,8 - Qaﬁ s (3'3)

where jo, = Q43 48, This metric is needed to write down the (anti)-self-duality condition
for B® in a SO(1, nr) covariant way, as we will see in equation (3.21).

As far as vectors are concerned, in this section we consider a supergravity model
with simple gauge group G. Let g be the Lie algebra of G. We denote the g-valued
gauge one-form by A, and matrix multiplication will always be understood. Moreover,
we use anti-Hermitian generators, and the expression for the non-Abelian field strength
two-form reads

A ~ A~ ~ A~

1,
F:dA+A/\A:dA+§[A,A]. (3.4)

5This formalism is usually applied to Type IIB supergravity in ten dimensions to deal with the self-dual
four-form in the RR sector.

Later on we will identify nr + 1 = h'''(B2) in the duality to M-theory. This provides the match of the
indices of the present section with the ones of section 2.2.

,10,



Let us recall the definition of the Chern-Simons three-form
. F T
cfS:u<AAdA+3AAAAA>, (3.5)

where the trace is taken in a suitable representation of g. More details about our normali-
zation for gauge traces can be found in appendix B. It is also useful to point out two key
properties of the Chern-Simons three-form,

60 =trdAAdA,  do®S=trFAF. (3.6)

Next, let us make some remarks about the hyper sector. Each hypermultiplet contains
four real scalars, and therefore we use the notation ¢V (U =1,...,4ng). These scalar
fields can be considered as real coordinates for a quaternionic manifold, whose metric
we write as hyy. The geometric structures of quaternionic manifolds have been studied
intensively, see e.g. [40, 41]. Since our main focus will be on the tensor and vector multiplet
structure, we will refrain from giving a detailed account of these results here. However, in
the following we will need to consider some aspects of charged hypermultiplets. The only
piece of information relevant to our discussion is the 6d covariant derivative, which reads
schematically

D" = dq” + Al(TFq)Y, (3.7)
where the index I runs over all generators of the gauge group G, and TIR are the group
generators acting on the scalars ¢V in the representation R. Several examples of gauged
6d (1,0) supergravities are known. We refer the reader to [42-45] and references therein
for a detailed account on the subject.

Finally, gravitational degrees of freedom are described by means of the vielbein formal-
ism. The analogue of the one-form gauge connection Ais provided by the so(1,5)-valued
spin connection one-form w, determined by the vielbein through the usual torsionless con-
dition

dée+wNé=0, (3.8)
where matrix multiplication is understood. If / is a s0(1,5)-valued zero-form which we
interpret as infinitesimal parameter of a local Lorentz transformation, we have

o0 = dil + [@,1). (3.9)
The correct covariant field strength is the curvature two-form R, which is constructed out
of the spin connection according to

R=do+OAGD, (3.10)
and is related to the components of the 6d Riemann tensor jr2 #ip by
~n 1 - -2 5 A D o
Ral;: 563651‘_{ _fﬂ,;dx“/\dx’/, a,b,:(),...,5. (311)
We also define a gravitational Chern-Simons three-form
2
Dy = tr <w/\dw+3wA@/\w>. (3.12)
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This definition implies the identities

60 =trdi Ndw,  doSS, =trRAR. (3.13)

grav grav

Note that the right hand side of the last equation is proportional to a characteristic class
build from the curvature two-form. In general, the proportionality constant is fixed by
the requirement that suitable integrals of such classes take integer values. This standard
normalization is achieved by inserting a factor of (27)~! for each occurrence of the curvature
two-form R specified by (3.11). In order to improve readability, we will never write down
these factors of (27) ! in the following. Similar remarks apply to the 5d curvature two-form
introduced in section 3.2.

As we have seen above, the spectrum of a general 6d (1,0) supergravity model contains
chiral fermions and (anti)-self-dual two-forms. As a result, gauge, gravitational, and mixed
anomalies may appear once one-loop effects are taken into account. Nonetheless, a general-
ization of 10d Green-Schwarz mechanism, due to Sagnotti [15, 16, 22|, can be implemented
to generate consistent, anomaly-free theories: it is reviewed concisely in appendix B. Let
us just recall now that, under suitable conditions on the matter content of the model, the
anomaly polynomial factorizes,

~ 1 N N
Iy = SQapX§ A X7, (3.14)

where )
X = 5a"tr7€/\7€+217%1&'5/\1'5. (3.15)
If this is the case, even if I3 is non-vanishing, anomalies can be counterbalanced by adding
the so-called Green-Schwarz term to the action,
cas _ L Aoy 3B
S = —— QupBY N X)) . (3.16)
2 S,

In order for this generalized Green-Schwarz mechanism to work, we have to assign the
following non-trivial transformation rules to the fields of the model:

SA=d\+ AN, (3.17)
§BY = dA* — %aatr Cdéy — 2b%tr MdA . (3.18)

In the second equation, A® is a collection of one-forms which are the parameters of the
usual Abelian gauge invariance of two-form potentials. The correct, gauge-invariant field
strength three-form for B* turns out to be

A . 1
G* = dB* + §a%§rsav + 2b°0°8, (3.19)
and satisfies a non-standard Bianchi identity,
dG™ = X (3.20)
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The self-duality constraint for the two-forms is written in terms of the three-form field
strengths as
gaﬁgéa = Qaﬁéﬁa (321)

where g, is the positive-definite, non-constant metric introduced in (3.3).
We are now in a position to write down the pseudo-action for 6d (1,0) supergravity
with simple gauge group G. Its purely bosonic terms relevant to us are given by

. 1. . . 1 s g 1 .
S6) = / + —R¥1 — hyyDqY A «Dg" — — oG A $GP — =9apdj* N fdj®
M 2 4 2
. .1 . R .
— 204,570 tr F A SE — 5as B A XP Vi1, (3.22)

In the second line, Visa potential generated by gauging the hypermultiplet scalars ¢U.
Its explicit form can be found e.g. in [45], but will not be crucial for our discussion. Recall
that this action has to be supplemented by the duality constraint (3.21) imposed on the
level of the equations of motion. Note that the second-order equation obtained through
variation of B® is equivalent to the exterior derivative of (3.21) thanks to (3.20). This
action contains a two-derivative part which yields the equations of motion discussed in [7—
9]. We included in (3.22) one additional higher derivative term which is the generalized
Green-Schwarz term (3.16) required for 6d anomaly cancellation.

It is appropriate to point out that the Green-Schwarz term is a possible source of non
gauge-invariance of this classical action. Indeed, one computes

e 1 1. o\
65 = /M Qs <2aatr€dd)~|—2batr AdA) nXE (3.23)
6

which in general is not just a surface contribution. It is precisely this failure of gauge
invariance at tree-level which cancels one-loop anomalies. We summarize the anomaly
conditions in appendix B. For completeness let us point out that there is a simple special
case where the action is already classically gauge invariant. It is enforced by the conditions

Qupaa’ =0, Qupa®t’ =0, Qasb®? =0. (3.24)

These conditions on a®, b* can be related to the spectrum of fields, in particular the charge
matter content, through the anomaly cancellation conditions (B.4)—(B.9) of appendix B.
As we argue in section 5, the match between the F-theory set-up and the M-theory com-
pactification is simpler in this special case.

3.2 Kaluza-Klein reduction on the circle

Let us now study the supergravity model outlined above on a background with one compact
spatial dimension, i.e. with topology R® x S'. Degrees of freedom along the circle can be
analysed in terms of their Fourier expansion, giving rise to an infinite tower of Kaluza-Klein
modes. As discussed above, we restrict ourselves to zero-modes only.

Our metric Ansatz reads

d§§6) = gudatdz” + r*Dy?, Dy = dy — A°, (3.25)
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where A = Agdx“, and all 5d field are independent of the coordinate y along S'. A twiddle
is used to stress that this form of the metric gives rise to a non-canonically normalized action
for gravity, so that a Weyl rescaling has to be performed. As usual, A° is a 5d vector with
Abelian U(1) symmetry A° — A° 4 dy coming from S' diffeomorphisms y — y + x, which
leave the derivative Dy invariant. The field strength of A° reads

FO = dA°. (3.26)

It is useful to write down the Kaluza-Klein Ansatz for the metric in the vielbein formalism,
too. Up to local Lorentz transformations, we can take

& = éldat, &> =rDy, (3.27)

where Dy is given in (3.25), and €}, a = 0,...,4 is the 5d vielbein (independent of y) before
Weyl rescaling.

Let us now turn to the one-forms and two-forms, and take into account zero-modes only.
In order to get 5d fields which are uncharged under the aforementioned U(1) symmetry,
we expand all fields on Dy defined in (3.25). To begin with, we set

A= A+¢Dy, (3.28)

where ( is a g-valued 5d zero-form. The gravitational analogue of this relation consists of
the expression for the spin connection components, which can be computed from (3.27):

Gab = Doy + 80Dy, @as = b + 0Dy, (3.29)

where @ is the 5d spin connection determined by éj;. The zero-forms ﬁsz),E((lO), and the

one-form EE}) are given by

- 1 5. . ~ 1 _ 5 =
Clg%) = 57‘26565}7’3”, [)((11) — ireéFQM dxﬂ7 c((z()) — —GQ\V)\’F, (330)

where V) is the 5d Levi-Civita connection before Weyl rescaling.

We are now in a position to write down the Kaluza-Klein Ansatz for the two-forms
Be. Care has to be taken because the 6d transformation rule (3.18) entangles the degrees
of freedom encoded in B with those of vectors and gravity. Thus, we set

B =B |An - %aa tr (80a) — 2% tr (CA)| A Dy. (3.31)

In this way A“, B* have the simplest possible gauge transformations,
0AY = du”, (3.32)
§B® = dA® + u®F° — %aa tr (€d) — 2b% tr (AdA) , (3.33)

where the infinitesimal parameters are a g-valued 5d zero-form A, a so(1, 4)-valued 5d zero-
form ¢, 5d zero-, one-forms p®, A®. The first relation implies that A% has a standard,
Abelian field strength

F* = dA*. (3.34)
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However, the naive field strength dB® is not gauge invariant, and must be improved by

setting
1
G =dB* — A“ A F° + ia%grgv + 268, (3.35)
where
2
By = tT (w N+ 56 NG A w) , (3.36)
cs _ 2
W =tr A/\dA—|—3A/\A/\A : (3.37)

The corresponding non-standard Bianchi identity reads
1 .
dG® = —F*ANF° + 5aatm AR+20%r FAF. (3.38)

In the rest of this subsection, we will only focus on the two-derivative Lagrangian. As a
consequence, we drop higher curvature terms from the 6d pseudo-action, and we also neglect
gravitational contribution to the gauge transformation of B and to the field strength G.
A discussion of the higher curvature corrections can be found in subsection 3.5.

Dimensional reduction of action (3.22) is performed in appendix C, to which we refer
the reader for more details. However, let us just stress here that the resulting 5d action
is a proper action, without any need for auxiliary self-duality conditions. This is possible
because the 6d two-forms B* dimensionally reduce to two-forms B® and vectors A% as
seen in (3.31). At the same time, we also have to dimensionally reduce the self-duality
constraint (3.21). Explicitly we find

190g*G? = —QapF?, (3.39)
where we have introduced the shorthand notation
F = FY — 4b%r (CF) + 20%tr (C¢) FP. (3.40)

The key point is that the 5d duality condition (3.39) now relates two-forms and vectors.
Since it does not involve a self-duality, it can be imposed on the level of the action itself.
Hence, in computing the 5d action we proceed in the two steps:

GOBF

pseudo

such that B® only appears through its field strength G*. Moreover, G* can be treated

1. We rewrite the 5d pseudo-action resulting from reduction of (3.22) in a form

as an independent variable which enters the action only algebraically.

2. The 5d pseudo-action Slgi()eid , can be replaced by an actual action by adding terms of

the schematic form Q,5dB* A F? to the action to impose the condition (3.39). More
precisely, the modification is of the form

ASOF — _/ %Qaﬁ(aa + A% A O — 2520, C8) A PP (3.41)
Ms

The first term proportional to G* acts as Lagrangian multiplier term to link G* with
its dual F*. The remaining two terms act as source terms which ensure compatibility
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with the modified Bianchi identity (3.38) of G*. Including these modifications, both
the self-duality constraint and the Bianchi identity for G follow from the equations
of motion. We are thus able to integrate G* out and obtain a 5d proper action S®¥,

written in terms of the vectors A® only.

The 5d action which results from this algorithm can be found in (C.8). It is interesting
to note that these two steps can be performed even if we reintroduce the gravitational
part of the generalized Green-Schwarz term, and all gravitational contributions to G, as
discussed in section 3.5.

3.3 Moving to the Coulomb branch

In the following sections, we will explore the dynamics of F-theory in six dimensions by
means of the duality with M-theory on a Calabi-Yau threefold, as introduced in section 2.
In this framework, we can access directly only the Coulomb branch of our non-Abelian
gauge sector. The full gauge group G is spontaneously broken down to U(l)r"mk(G), which
is spanned by the Cartan generators T, i = 1, ..., rank(G). We take them to be normalized
in such a way that

tr (TiT)) = Cij (3.42)

where Cj; is the Cartan matrix of G.
The spontaneous break down of gauge symmetry is triggered by non-vanishing VEVs
of some adjoint scalars ¢ in the vector multiplets. In particular, inspection of the terms

— 2r23Q,570Ptr F A % F — 2r~2Q,3j°b5tr DC A %DC (3.43)

in the non-Abelian 5d action (C.8) shows that the usual Higgs mechanism originates a
mass term for the vectors lying outside of the Cartan subalgebra. We refer to these massive
vectors as W-bosons. Their scalar partners acquire a mass, as well. From an effective field
theory perspective, we are thus left only with the massless fields A%, (* associated to the
Cartan subalgebra of the full gauge algebra. As a result, replacements such as

tr (FA*F) — CyF" AxF7, tr (D¢ A *DC) — CyidCt A +d¢?
WCS — CUAZ A FI (3.44)

have to be made in (C.8) to get the relevant 5d action.
In a similar fashion, charged hypermultiplets acquire a mass through the 5d scalar
potential
V=W By I (TR V(TR )Y (3.45)

given in the last line of (C.8). Note that the second term originates directly from dimen-
sional reduction of the 6d kinetic term hUVf)qU A >T<2A)qv. It is quadratic in the scalars of
the charged hypermultiplets and is the source for their masses once gauge symmetry is
spontaneously broken. Following the effective field theory paradigm, one should integrate
out the massive hypermultiplets and only keep neutral hypermultiplets in the 5d action in

,16,



the Coulomb branch. We use lower-case indices u,v =1, ... ,4n1§'“tral to enumerate them.
Hence, we have the replacement rule

huvDGY A xDgY — hypdg™ A xdg®, (3.46)

where hy,, is a quantum corrected hypermultiplet metric. Determining h,,, after integrating
out the massive states is in general a complicated task, but we will later give the M-theory
expression for h,, where certain corrections have been taken into account implicitly via
the geometry. In accord with supersymmetry we also drop the scalar potential from the
effective action for the massless modes.

The interested reader can find the explicit expression for the effective action in the
Coulomb branch in (C.9). However, it is crucial to recast this result in a more transparent
form in order to implement the F-theory lift discussed in section 5. The aim of the following
section is precisely the reformulation of the 5d action in terms of new variables, in such
a way to exploit the underlying supersymmetric structure. Hence, we begin our analysis
with a concise review of 5d A = 2 supergravity.

3.4 The 5d effective action and its canonical form

Let us briefly recall the field content of 5d A/ = 2 (8 real supercharges) supersymmetry
multiplets [46]:

e gravity multiplet: the graviton, one vector (referred to as ‘graviphoton’), one Dirac’
gravitino;

e vector multiplet: one vector, one scalar, one Dirac gaugino;

e hypermultiplet: 2 complex scalars, one Dirac hyperino.

Let the spectrum consist of the gravity multiplet, n%}r’) vector multiplets, ng) hyper-

multiplets, and let us focus on the bosonic sector. We are not going to study gauged
supergravity models, and therefore the framework outlined in [47] is general enough for
our purposes.® As usual, each hypermultiplet contributes four real scalars to the spectrum,
and we will use notation ¢* withu =1,.. ., 4ng). The hypersector is entirely specified once
a quaternionic structure with metric hy, is given. Since the graviphoton and the vectors
from the vector multiplets are naturally entangled by the dynamics of the theory, let us
denote them collectively as A% where T =0, ... ,ngf). The scalars coming from the vector
multiplets parameterize a n%}%) -dimensional manifold which is most conveniently described

in terms of so-called very special coordinates MZ. These are ng}r)) +1 real coordinates which

describe an auxiliary (ng) + 1)-dimensional manifold in which the actual scalar manifold
is embedded as an hypersurface, as explained below.

"It is customary to replace one Dirac fermion by a SU(2) doublet of Dirac fermions satisfying a symplectic
Majorana condition. This explains the notation N/ = 2.

8In order to compare formulae below with the reference, the reader should be aware that we have changed
notation, should recall our conventions on Riemann tensor contractions (cf. appendix A), and should also

note that CHie = YO chere
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The dynamics of gravity-vector sector at two-derivative level is entirely specified once
the cubic potential

1
N = 501 i MEMT MF (3.47)

is given in terms of very special coordinates and of a constant symmetric tensor Cz7x. First
of all, the scalar manifold is identified with the hypersurface described by the so-called very
special geometry constraint

N=1. (3.48)

Second of all, the gauge coupling function and the metric on the scalar manifold coincide
and are constructed out of second derivatives of the cubic potential,

Grg = [ — %aMlan log./\/} = |: - %sz + %NZNJ . (3.49)
N=1 N=1
In this expression, and in the following, downstairs indices Z, 7, . . . denote partial derivative
with respect to coordinates NZ, M7 . ..
Finally, the constant tensor Czsx itself appears in the action as Chern-Simons cou-
pling. Indeed, the action is given by

1 1
S(5)Can:/ +§R *1—iGdeMI/\*de_huvdqu/\*dqv
Ms

1 1
- 5GIJFZ AxFI — ECZJ,CAZ ANFT NFR (3.50)

Let us now discuss the relation between the spectrum of a 6d supergravity model
and the spectrum of its Kaluza-Klein reduction on a circle. Suppose the numbers of 6d
tensor, vector and hypermultiplets are np,ny,ng respectively. To begin with, we note
that the bosonic part of a hypermultiplet behaves trivially under dimensional reduction on

S'. Hence, we can conclude that the number ng) of 5d hypermultiplets is given simply by

ng) = pygutral (3.51)

where the label ‘neutral’ has been added to remind the reader that charged 6d hypermul-
tiplets are integrated out and do not appear in the 5d effective theory.

As far as 5d vectors are concerned, they are generated by three different mechanisms.
First of all, one vector A° is introduced by the off-diagonal component of the Kaluza-Klein
Ansatz for the 6d metric. Second of all, ny + 1 vectors A% come from the (anti)-self-
dual two-forms in six-dimensions. Finally, reduction of 6d vectors gives us ny additional
A'. 'We thus have a total of 1 + (np + 1) + ny vectors, which we denote collectively as
AT = (A, A%, AY). They fit into

ng) =ny +nr+1 (3.52)

5d vector multiplets, because one linear combination of {A° A%} has to be identified with
the graviphoton and sits in the gravity multiplet.” The corresponding scalar degrees of

9We include A because we cannot exclude a contribution from the 6d anti-self-dual two-form in the
gravity multiplet.
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freedom are provided by j¢, ¢?, r for a total of (ng+1)-+ny +1 variables. However, they are
subject to one constraint, which in 6d language is given by (3.2). This counting is consistent
with the existence of very special coordinates M = (MY, M, M?) satisfying (3.48).

In the remaining part of this section we discuss in which way, and to which extent,
the results of the dimensional reduction performed in 3.2 can be expressed in canonical
form (3.50). The first step towards this direction is provided by the correct identification
of the very special coordinates MZ on the vector multiplet scalar manifold. It turns out
that these new coordinates are defined in terms of the old coordinates (r, j, ¢*) by relations

MO _ 7,,74/3
M = T2/3(joz + 2ba7,,—20ij<-i<j>’
M = =43¢, (3.53)

Next, let us define

o MEMIMFM!
N = Qs MOMOMP — 4Q,5b"Ci; MP M M7 + 4Qa5b%ﬁcijcle . (3.54)
Expressions (3.53) and (3.54) are engineered in such a way that
N = Q.59 =1 (3.55)

holds identically. In particular, note that this identity depends on the non-trivial interplay
of the non-linear b®-shifted redefinition of the coordinates M< (3.53) and the fact that
there is a non-polynomial term in the definition (3.54) of A'F, including an inverse power
of M9, This non-polynomial term in N is a significant deviation from the canonical case,
in which NV is a cubic polynomial, and will be discussed further in the following. However,
note that MY is still a homogeneous function of degree three in the coordinates MZ.
Once the new coordinates M7 are introduced, the 5d effective action takes the form

1 1
SOF — / + iR * 1 — hypdq" N xdq” — iGdeMI A xdMT
M

5

1 1
— §GIJFI AxFT — EXZJ,CAZ ANFT N FR (3.56)

where the metric Gz7 and the coefficients Xz77x = Xz(7x) are functions of the scalar
fields MZ. Note that the gauge coupling function and the metric in the kinetic term for
scalars M7 coincide, as expected for a 5d A = 2 theory. Moreover, both G77 and X7 7 are
completely determined by the function N introduced above, as explained in the following.

As far as the metric Gz7 is concerned, it is given precisely by (3.49). It is interesting
to point out that the non-polynomial term in the definition of N is crucial for (3.49) to
hold for the Kaluza-Klein reduced action.

The Chern-Simons term in (3.56),

1
SEF = —— / Xz AL A FI A FR, (3.57)
12 /.
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deserves more discussion. Its variation under an Abelian gauge transformation § AT = d\*
can be written as a boundary term, plus

1
5SEIF = “ /., NodXzgc NFT A FE. (3.58)
5

For each value of indices Z, 7, KC, two possibilities may occur:

1. X7 7K is constant: the corresponding contribution to the Chern-Simons term is gauge
invariant in five dimensions;

2. X7z depends non-trivially on the scalars M7: the corresponding contribution to
the Chern-Simons term breaks 5d gauge invariance explicitly.

Usually, only the first case is encountered in supergravity models. As a consequence, only
the totally symmetric part of Xz 7x effectively enters the action, because we are allowed
to integrate by parts and permute indices on the vector and the field strengths in (3.57).
This symmetry argument breaks down if some components of X7 7, are non-constant. In
fact, the first slot of this tensor plays a distinguished role: exactly those gauge symmetries
are broken, whose gauge vector has index Z such that not all components {Xz7x}7 x are
constant, as can be see from (3.58).

As mentioned above, all data needed to construct (3.57) can be extracted from the
function N'¥ introduced above. To this end, it is useful to note that A'F naturally splits in

a polynomial part NPF and a non-polynomial part /\/'an,

NE = QopM M MP — 4Q,5b"Cy; MP M M7
MEMIMFM

NE = 49,5007 C;;Ciy 270

(3.59)
On the one hand, since NpF is a homogeneous polynomial of degree three, its third deriva-
tives with respect to coordinates M7 are constants. In fact, they turn out to be sim-
ply related to the coefficients of the gauge invariant part of (3.57). On the other hand,
third derivatives of pr are non-constant, and indeed they are proportional to the coeffi-
cient functions appearing in the gauge-anomalous contributions to (3.57). More precisely,

we have
1 1 .
SOF — —— [ (WE)zscATAFT A FF - / (NE)igic AT A FT AFR. (3.60)
12 M P 16 Ms

Two remarks are due at this point. Firstly, observe that the first term fits into the canonical
form discussed above, since for a cubic polynomial as (3.47) one has precisely Nz 7 =
Cz7Kk. Secondly, note that in the second term the first index never takes values 0, «. This
means that the U(1) gauge symmetries associated to vectors A%, A% are unbroken, while
those associated to vectors A’ are broken.

It may be considered questionable, if not inconsistent, to construct a 5d effective action
which fails to be gauge invariant. However, this should not come as a surprise. Our starting
point in six dimensions (3.22) is not gauge invariant as well, because of the introduction of
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the Green-Schwarz terms. As discussed in section 3.1, these terms are needed in order to
implement the anomaly cancellation mechanism: they introduce tree-level gauge violations
which counterbalance one-loop anomalous diagrams generated by the chiral matter content
of the theory. As a result, the sum of the tree-level and one-loop contributions to the 6d
effective action is gauge invariant, while the two summands are not invariant separately.
This suggests that a gauge invariant 5d effective action could be obtained supplementing the
computation of this section with the reduction of the one-loop 6d effective action. However,
we do not need to address this ambitious task, since we will show that all relevant data
about the effective action of F-theory in six dimensions can already be extracted from the
reduction of the tree-level action only.

It is worth mentioning a crucial distinction between anomalous terms in six and five
dimensions. It is well known that 5d theories do not develop quantum anomalies. Indeed,
possible non-gauge invariant terms can always be cancelled by adding suitable local counter-
terms to the tree level action, in such a way that the full effective action at one-loop is
gauge-invariant. This kind of anomalies is referred to as ‘irrelevant’. The aforementioned
counterterms in 5d take the form [ A A xJ, where A is one of the vectors whose gauge
invariance is anomalous, and J is a gauge invariant 5d current, such that xJ o« FF A F. It
is precisely the gauge invariance of this current which makes the anomaly irrelevant. If
we were to implement a similar mechanism to treat 6d anomalies, we would have *J
AN F A F, which is manifestly non gauge invariant.

From this point of view, the non-gauge invariant Chern-Simons term which appears
in (3.60) has the same form as the counterterms discussed above. More precisely, the
corresponding gauge invariant current reads

1 K
w J; = —E(pr)inFI A FX. (3.61)
Note that all scalar fields in (./\/fp)i 7x are neutral under the gauge group U(1)"#"k(G) after
spontaneous symmetry breaking to the Coulomb branch.
In summary, we are able to cast the Kaluza-Klein reduced action in canonical form,
even though some subtle points have to be stressed:

e N has to be promoted from a cubic polynomial to a homogeneous function N'F of
degree three; the very special geometry constraint N¥ = 1 and the metric Gz are
formulated in terms of this non-polynomial N'F;

e the Chern-Simons term coming from Kaluza-Klein reduction and the Chern-Simons
term obtained through the canonical prescription Cz7x = (NT)z7x share the same
gauge-invariant part, and differ only for non gauge-invariant terms; these can be
interpreted as local counterterms which make 5d anomalies irrelevant.

Since counterterms are completely specified by the classical data of the model, all infor-
mation about the effective 5d action is encoded in the polynomial part of N and the
corresponding gauge-invariant Chern-Simons terms.
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3.5 Higher order curvature corrections

As we have seen in subsection 3.1, anomaly cancellation requires the introduction of a
higher curvature term in the 6d action,

89 - _i Qusa®BP Nr RAR . (3.62)
Me
Furthermore, local Lorentz transformations act non-trivially on the two-forms Ea, in such
a way that the corresponding field strength G receives a gravitational contribution. Even
if we are not going to perform the dimensional reduction of the complete, higher-derivative
action, we can make general remarks about some interesting feature of the resulting 5d
action.
First of all, as stated in subsection 3.2, inclusion of gravitational contributions does
not interfere with the possibility to get rid of 5d two-forms B® in favour of vectors A“.
Indeed, gravitational terms modify the action in such a way that F# in

Ag@F - 1 / QupdB* A FP (3.63)
2 s

is replaced by a more complicated expression, which is nonetheless exact. ASOIF g still
a total derivative, and the elimination of B® can proceed along the same line as in the
two-derivative case.

Secondly, it can be verified that all possible non-gauge invariant terms in the final 5d
action are proportional to

Qaﬁao‘aﬁ or Qaga“bﬁ or Qaﬁbabﬁ. (3.64)

This observation will be relevant for the discussion of F-theory lift, in section 5.

Finally, let us present one particular higher curvature contribution to the 5d action,
which will play a prominent role in the matching with M-theory on a Calabi-Yau threefold.
It is the ARR term coming from dimensional reduction of the BRR 6d term written above.
In order to extract this term from the total 5d action, we can effectively set A° to zero and
treat r as a constant:!”

A~

Rapb =Rap + - .-
ﬁ,a5 =0+...,
where a,b,=0,...,4 are 5d flat spacetime indices, and ‘5’ refers to the compact direction.
As a consequence, we have
trRAR=trRARA+.... (3.65)
A first contribution to the term we are looking for is then given by
1
/ Qupa®AP NTRATR, (3.66)
4 J s

The Weyl rescaling .. = r_z/ggw has no effect on the leading, moduli-independent terms in the
expression of the curvature two-form.
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in which the change of sign comes from the Ansatz (3.31). Note however that an addition
contribution arises when AS®F is added in order to eliminate tensors from the 5d action,
as can be seen recalling the definition of G (3.35):

1 1 1
— | QupdBAFP D 4= | QupawBAFE = 2 [ Qupa®APAtrRAR. (3.67)
2 s 4 Jous 4 Jous

In summary, we find the 5d higher curvature term
1
SO = = / Qapa® AP NrRAR. (3.68)
2 S

We conclude this subsection describing the effect of higher curvature terms on the
canonical form of 5d supergravity. As done in [48], superconformal techniques can be used
to construct the 5d supersymmetric completion of the ARR term. In this formalism, the
supersymmetry algebra closes off-shell, at the expense of introducing auxiliary fields in the
gravity, vector and hypermultiplets. The scalar manifold associated to vector multiplets is
still described by constrained coordinates MZ. However, the constraint is no longer

1

3'(Jw,cz\ﬂzwjzw’C =1 (3.69)

but gets corrected by terms proportional to the constants cor appearing in front of AL A
tr R AR in the higher-derivative Lagrangian [49]:

1 7 K 1 T T
51 CraeM MIME =1— ECQI(DM +o"EL) (3.70)
where D, v, are the auxiliary bosonic fields in the gravity multiplet. It is possible to
integrate them out iteratively in a small co7r expansion; the result reads schematically
CM3 =1+ cF?

4 M-theory on a Calabi-Yau threefold

In this section we recall the dimensional reduction of M-theory on a Calabi-Yau threefold
and adapt it to the case of elliptic fibrations with resolved singularities. The basics of the
Kaluza-Klein reduction restricted to the zero-modes are presented in subsection 4.1, with
more details summarized in appendix E. We also discuss the the specification to a resolved
elliptically fibred Calabi-Yau threefold. In subsection 4.2 we perform the dimensional
reduction of a higher curvature correction to 11d supergravity focusing on the terms needed
in the matching with the 5d higher curvature terms of section 3.5.

4.1 M-theory action on an elliptic Calabi-Yau threefold

In this subsection, we start with the unique two-derivative action for 11d supergravity [50],
whose purely bosonic part is

5 1. 1o o 1
S — / SREl — SEy ANREy — —Cs A Fy A Fy, (4.1)
My 4 12
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where F;, = dC5. In this subsection a hat will always denote 11d fields. Supergravity
compactified from eleven to five dimensions is discussed e.g. in [34].

Following the standard recipe for dimensional reduction on a Calabi-Yau threefold Y3,
we expand 11d fields on a basis of zero-modes of the appropriate differential operator on
the internal manifold. We refer the reader to appendix D for an account on our notations
for Calabi-Yau threefolds. The background metric has a line element

ds%l = Guv(z)datdz” + Qggj(y)dyidyj (4.2)

where the external metric g, describes a maximally symmetric spacetime (Minkowski, dS,
AdS) and a twiddle reminds us that a Weyl rescaling will be performed later. Fluctuations
of the internal metric g;; are zero-modes of the Lichnerowicz operator and are expanded
onto the (1,1) and (1,2) cohomologies,

592‘]‘ = —i(wA)ij5UA, 592']' = (Bg)ij (527{, (4_3)
in which .
_ 2 B ——
(br)ij = WWR)“—JQMW (4.4)

where () is the holomorphic (3,0)-form, and x, is a basis of (2,1)-forms on Y3;. The
variations (4.3) are parameterized by the complex structure moduli z”, and the Kéhler
moduli v* which are obtained in the expansion of the Kéhler form

J =vtwy . (4.5)

The excitations of the three-form Cj are zero-modes of the internal Laplacian, and are
therefore expanded on a cohomology basis of the internal manifold,

Cs = Rag — BN + AM Nwp + Cs, (4.6)

where (af, f%) is a real symplectic basis of the middle cohomology of Y3. The zero-modes
(¢K, 3 &) are scalars, A are vectors, and Cj is a three-form in five dimensions.

Let us now discuss how these fields fit into 5d N/ = 2 supersymmetry multiplets. As a
preliminary remark, recall that in five dimensions three-forms can be dualized into scalars,
so that we are allowed to trade C3 for a real scalar field ®. The gravity multiplet consists
of G, and of one (linear combination) of the A* vectors. The remaining vectors fit into

n) = hb1(¥3) — 1 (4.7)

vector multiplets, along with the Kihler moduli v*. It seems like there is a mismatch of
degrees of freedom, since we have h':}(Y3) scalars. This seeming difficulty is overcome by
the following observation. We introduce the total volume of the Calabi-Yau threefold as
1 1
V=_ / JNJTANJT = =Vasevv™v®, (4.8)
3! Jy, 3!
where Vyye are the intersection numbers of the Calabi-Yau threefold introduced in (2.18).

Then, V actually sits in the universal hypermultiplet, leaving effectively h'!(Y3) — 1 scalar
degrees of freedom in the vector sector.
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To discuss hypermultiplets we need to recall the decomposition of the third cohomology
into complex cohomologies,

HY(Ys) = [H'(Ys) @ H*(Ya)] @ [H'3(Y3) @ H3O(Y3)] (4.9)

Real scalars ¢85, &g provide h'2(Y3) + 1 complex degrees of freedom: hY2(Y3) of these
correspond to the H'2(Y3) @ H?!(Y3) component and combine with the complex structure
moduli z* to give h'?(Y3) hypermultiplets; the remaining complex degree of freedom lives in
H3(Y3)® H*(Y3) and combines with V, ® in the universal hypermultiplet. In conclusion,

we have found
n'D) = h12(v5) + 1 (4.10)

hypermultiplets, which will be collectively denoted by ¢“.
The dimensional reduction is carried out in detail in appendix E. Since the overall
volume sits in the universal hypermultiplet it is natural to define scalar fields

LA =Vt (4.11)

which are the real scalars in the vector multiplets. They only parameterize hb!(Y3) — 1
degrees of freedom, since due to their definition they are subject to the constraint

1
gVAEQLALZLe =1. (4.12)

We are naturally led to interpret L as 5d very special coordinates, in term of which the
cubic potential reads

1
N = 5VAE@LALEL@. (4.13)

Some additional details of this 5d formalism have been already given in section 3.4.

Once the cubic potential N is known, the only missing ingredient to specify the model
is the quaternionic metric h,, on the hypermultiplet scalar manifold: its expression in
terms of V, ®, &K €k, 2% can be found in appendix E. In summary, the reduced bosonic

action reads

1 1
SOEM / + Rl - 5GAEdLA A *dL¥ = hypdg® A xdg® (4.14)
M

1 1
- 5GAEFA AxF> — EVAZQAA AF¥ A FO,

where, as expected,
1
GAE = |:— *8LA8LZ IOgN . (415)
2 N=1
When restricted to elliptic fibrations as discussed next, it will be this form of the 5d action
which can be matched to the circle reduced action of section 3.4.
Let us now specify this result to the elliptically fibred geometry introduced in subsec-
tion 2.2. We first split the index A into (0, o, ) and write

LM = (R, L&), AN =(A% A% A7), (4.16)
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Combining this notation with the intersection numbers (2.19) of an elliptic fibration we get
1 arf 1 ap2rp 1 a 16 3
N = inaﬂRL LP + 577a5K R°L +677Q5K K”R
1 @ Bpigi , 1 i¢j ek
— 5MasC O L7EET + L Vi '§1E7 (4.17)

As we will discuss in section 5 couplings of the form R?L® in (4.17) are not compatible
with the 6d/5d lift. However, there is as simple field redefinition which allows us to get rid
of these R2L® terms. More precisely, one introduces the shifted fields'!

. 1 . 1
L% =L+ KR,  A%= A%+ 5K“A0, (4.18)
where the shift of the vectors is required by supersymmetry. Clearly, the new L%, and new

vectors can be obtained by expanding J and C5 in a new basis of two-forms

1
Wy = wy — =K%q , Do = W, W = wj . (4.19)

2

In fact, this new basis is better suited to identify the vectors A® as dualizable into 5d
tensors. The cubic potential in the new coordinates given by

1 Lo 1
NM = §nagRLaLB + ﬂnagKO‘KﬁRf*
1 a P Beied 1 a Bpeici 1 ieg ek
- 5%50 Ci; L7 + Znaﬁc Ci; KPRE'E + gvijkff . (4.20)

Using this expression of A/ the Chern-Simons term takes the form
1 - - 1 . 4 4
SR = [ = A AFU NP 4 GnasCOCy AT AF AP
Ms

1 1 .
- @nagKO‘KBAO ANFOAFO — gnaﬁcacinﬁAO AF'A FI
1

- EvijkAi ANFIANFF (4.21)

where F® is the usual field strength of the vectors A® introduced in (4.18).

4.2 Higher-order curvature corrections

Several higher-derivative corrections to the 11d M-theory action (4.1) are known [52, 53].

In the following, we will focus on the mixed gauge-gravitational correction!?
g _ L G n lr Rt — L R2)? (4.22)
CRYT96 Jagy, 4 '

“This field redefinition is also crucial in the 4d/3d treatment of F-theory on Calabi-Yau fourfolds as
discussed in [32, 51].

12 As discussed in section 3.1, factors of (27) ! are understood in R. Moreover, the relative normalization
of this higher-derivative term and the two-derivative action (4.1) depends on the value of the 11d gravita-
tional constant. It is suppressed everywhere, adopting a convention which is best suited to make contact
with the 6d Green-Schwarz term, in which the 6d gravitational constant has been equally suppressed.
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because this terms allows us to make direct contact to the higher-derivative corrections
studied in subsection 3.5.

Rather than performing a complete dimensional reduction of (4.22), we will extract the
relevant terms and we will systematically neglect all contributions which involve gradients
of the Kéhler and complex structure moduli. This means that we can effectively neglect
fluctuations and compute curvature invariants on the background, which is the product
space M1; = M5 x Y3. As a result, we have simply'3

R=R+Ry,, (4.23)

where Ry, is the curvature two-form on the Calabi-Yau threefold, and R is the 5d curvature
two-form. A straightforward computation gives then

(trRY)? =20 R At RY, +...,  tR'=0+..., (4.24)

where the dots are a reminder of the moduli-dependent, neglected terms. It is useful to
recall the definition of the first Pontryagin class of the Calabi-Yau threefold Y3,

1
p(Ys) = —gtr Ry, , (4.25)

and its relation with the second Chern class,

p1(Y3) = —2c2(Y3). (4.26)

Combining these equations with the three-form expansion (4.6), we can deduce that the
11d correction (4.22) yields, among other terms, the following 5d correction [35]

1 .
SOM _ B, AN At R, (4.27)
5

where we have defined
CA = / wp A ca(Y3). (4.28)
Y3

To make further progress it is crucial to specialize to the case of an elliptically fibred
Calabi-Yau threefold Y3. Let us discuss a smooth fibration first. The second Chern class
of the total space can then be expressed in term of Chern classes on the base space Bs, by
means of [55]

c2(Y3) = c2(Ba) + 11¢3(Ba) + 12w A ¢1(By) . (4.29)

Making use of (2.12) we get

/YS wo A ca(Y3) = /Y3 wo A [co(B2) — ci(B2)] = / co(Bs) — c3(By) . (4.30)

Bs

This equation can be evaluated further by using the explicit expressions of the integrals of
c2 and ¢} on By given in (2.14) as

/ wo N\ CQ(Yg) = 2h1’1(32) — 8. (4.31)
Y3

13 Just like in the reduction from six to five dimensions, performing the Weyl rescaling on the 5d metric
does not affect the moduli-independent terms in the expression of the curvature two-form.
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Furthermore, we can also evaluate the second Chern class on the basis w, as

/ wa A ca(Y3) = / wa A [c2(Bz) + 11¢2(By) + 12wp A a1 (Ba)]. (4.32)
Y3 Y3

Since the first two terms have all their indices on the base, only the last term provides a
non-vanishing contribution. Using ¢;(B2) = —K%w,, as introduced in subsection 2.2, we
compute

Co = / Wo A c2(Y3) = —120,5K7°, (4.33)
Y3

where we have used Wy = wq. In order to obtain ¢y from (4.31), (4.32) we have to recall
the definition (4.19) of &y, and find

Go =52 —4hVN(By). (4.34)

So far we have worked on a smooth elliptic fibration. We now include the effects of
singularities and their resolution. Clearly, the presence of resolved singularities induces
new couplings

¢ = /~ w; N\ CQ(Y},) . (4.35)
Y3

One expects that this expression evaluated for a given gauge group has a group theoretic
interpretation. Giving its precise form is beyond the scope of this work. However, let us
note that also the other couplings ¢y and ¢, could be corrected by the inclusion of blow-up
divisors. Indeed, a general shift of ¢3(Y3) with the blow-up divisors induces

/ wo/\ACQ(ffg) =0, / wa/\ACQ(ffg) :Cij/N Wa N wi Awj, (4.36)
Y3 Vs Y3

where we have used the vanishing of the intersections (2.19) with only one w; and two w,
and w; Awp = 0. Note that a shift in ¢y could still be induced due to the basis change (4.19)
inducing a term proportional to ¢,. We claim that also ¢, is uncorrected, and thus ¢y and
Co. remain unchanged. Despite that we do not have a general proof, we have checked for
many examples that (4.33) and (4.34) are still true:

G = —12n0sK®, & =52—4h"(By). (4.37)

As we will show later, the fact that ¢, is not changed is consistent with the F-theory lift.
The fact that ¢y does not change in this case follows from (4.36).

5 F-theory lift and one-loop corrections

In this section we compare the result of the circle reduction of the general 6d (1,0) super-
gravity theory with the M-theory reduction on an elliptically fibred Calabi-Yau threefold.
We identify terms which appear at classical level on both sides and can be immediately
matched as discussed in subsection 5.1. We also comment on the matching of certain
higher-derivative terms. It is crucial insight that both reductions contain additional terms
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which have no immediate analogue in the dual reduction. We suggest in subsection 5.2
that these terms arise at the quantum level and encode the same information about the
underlying fully quantized theory. In particular, we argue that certain intersections on the
M-theory side correspond in the 6d/5d reduction on a circle to one-loop corrections with
charged matter fermions and Kaluza-Klein modes of all 6d chiral fields running in the loop.
In conclusion this allows us to extract all data from M-theory required to specify the 6d
action including the complete information about 6d anomalies.

5.1 Classical action in the F-theory lift

In order to extract information about F-theory in six dimensions, we have to compare the
5d action coming from Kaluza-Klein reduction from six dimensions with the 5d action of
M-theory on an elliptically fibred Calabi-Yau threefold. Our strategy will be similar to the
4d/3d treatment of F-theory on Calabi-Yau fourfolds presented in [32].
As a first step, we present the match of the number of multiplets in five dimensions
in order to give the number of 6d multiplets in terms of the topological data of the F-
theory compactification manifold Y3. This was already implicit in our choice of indices in
sections 3 and 4. More precisely, for the a-index we find that the number of 6d tensors is
given by
nr +1=h"Y(By), (5.1)

where we recall that there are ny 6d tensor multiplets and 1 tensor in the gravity multiplet.
In the F-theory reduction the tensors arise from the reduction of the Type IIB RR four-
form into a base of H?(By). Since A’ parameterize the Coulomb branch of the 6d/5d gauge
theory, one finds

rank(G) = hY(Y3) — hM(By) — 1, (5.2)

which counts the number of independent blow-up divisors induced to resolve the singular
elliptic fibration to obtain Y3. Note that for ADE gauge groups G the number of 6d vector
multiplets is then given by

ny = (cg + 1)rank(G) (5.3)

where c¢g is the dual Coxeter number of G. In F-theory these vectors arise from the seven-
brane gauge potentials. Finally, one can match the number of hypermultiplets, simply by
noting that a 6d hypermultiplet becomes a 5d hypermultiplet in the circle reduction. This
leads to the following number of neutral 6d multiplets

gl = > (Ys) + 1. (5.4)

In F-theory on Y3 these neutral hypermultiplets contain the complex deformations of the
seven-branes and their Wilson line moduli.'* The universal hypermultiplet in the F-theory
reduction contains as one complex scalar the volume of the base together with the scalar
of the Type II1B RR four-form expanded in the volume form of By. The remaining two real
scalar degrees of freedom in the universal hypermultiplet arise in the expansion of the Type
IIB RR and NSNS two-forms into the universal two-form mode present for any By. The

YGee ref. [56], for a detailed matching with the orientifold picture with D7-branes.
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proof of the match (5.1)—(5.4) follows from the match of the effective theories presented in
the following.

In order to systematically approach the match of the effective action, we would first
like to identify the terms which are classical on both sides. This is not hard for the
6d/5d reduction. More complicated is the distinction of the various terms in the M-theory
potential. We will address the two sides in turn.

In the 6d/5d reduction performed in section 3 we found that there is a potential A~ ¥
given in (3.54) which encodes the kinetic terms of the gauge coupling functions and the
Chern-Simons terms in the 5d reduced action. It is crucial to recall the natural decompo-
sition of N'F in (3.54) into a polynomial and a non-polynomial part:

N = QopM M MP — 4Q,5b"Ci; MP M M7,
MEMIMFM!
MO '

The terms in NIJF are cubic and hence encode a standard N’ = 2 5d action. In contrast ./\/‘fp

NE = 49,5670 C15Cy (5.5)

is only homogeneous of degree three, but non-polynomial. As argued in section 3.4 it can
be interpreted as a counterterm of the 5d one-loop effective action. Its 6d origin is related
to the classical lack of gauge invariance of the 6d action. In fact, it vanishes precisely when

Qupb®’ = 0. (5.6)

This corresponds to the case where the 6d action is gauge invariant as inferred from (3.24),
and is consistent with the absence of 6d anomalies as discussed in appendix B.

Let us now turn to the M-theory reduction. Here the identification of the classical
terms is more subtle. We have worked on the resolved space with finite size elliptic fibre.
As discussed in the introductory section 2, the F-theory limit corresponds to both shrinking
the blow-up divisors as well as the size of the elliptic fibre. One expects that this selects
classical terms in the potential N™ of equation (4.20). It turns out to be useful to introduce

an e-scaling to distinguish various terms in A™. For the volumes v°,v®,v® appearing in
the Kéhler form J = v*wy, we make the formal replacements

00 e, v® e Y20, v’ e (5.7)

Note that these scalings satisfy some important consistency checks. Firstly, the size of the
elliptic fibre v° and the blow-up fibres v* vanish for ¢ — 0. Secondly, the total volume V
of Y3 is finite, which is required by the fact that V sits in a 5d hypermultiplet. Translated
into the variables R, L%, £ one finds the replacements

R eR,  Low— e V2Le, ¢ /A, (5.8)

Since the redefined scalars L® contain L® linearly, they obey the same rescaling as L*. In
the limit € — 0 two terms in (4.20) survive which we collect in N} . We thus divide the
terms in (4.20) into

M
N class

1 o 1
:i%ﬂMWﬁ—i%ﬂﬂQ@%%ﬂ (5.9)

1 1 | o
Nisop = 5710s KK R? + 2n0pCCiy KPRE'E! + 2V 'ele™
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It is now straightforward to match A2 with /\/’If given in (5.5). Note that the second

class
term /\/'lM in (5.9) will be later reinterpreted as a loop correction, which gives another

00
justiﬁcatic?n of the split induced by the F-theory limit (5.8).

Let us first start by matching the fields on the 6d/5d and the M-theory side. In order
to do that we have to fix the normalization of the fields, which cannot be uniquely extracted
by comparing (5.5) and (5.9). Supersymmetry relates the normalization of the real scalars
and vectors in the vector multiplets. Hence, given a fixed normalization of the vectors
the complete match of the scalar components can be inferred. On the one hand, in the
6d/5d compactification the vectors are normalized by the Green-Schwarz term (3.16), and
the fixed definition of the anomaly coefficients b, a“. On the other hand, in M-theory the
normalization of the vectors is fixed by a choice of integral basis in the expansion (4.6) of

Cs. Appropriately rescaling the 6d vectors to also adopt to an integral basis, one can infer

the map
1. . 1 .
M° =2R, M = 5fﬂ, M = 55%, (5.10)
while the constants are identified as
Qap = Nag, bt = C“. (5.11)

Note that our result are consistent with the findings of [22-26].

So far we have only discussed the vector and gravity sectors of the M-theory to F-
theory matching. Clearly, both the 6d/5d reduction as well as the M-theory reduction
contain a hypermultiplet sector. As discussed in section 3.3, we found that in the dimen-
sional reduction from six to five dimensions the charged hypermultiplets are massive in
the Coulomb branch. Therefore, they are not visible in the effective action of the massless
modes of M-theory. We will include them in the study of loop corrections in the next sub-
sections. However, the neutral hypermultiplets are massless and their moduli space could
be matched straightforwardly also leading to (5.4).

Let us close this subsection by also comparing the classical parts of the higher curvature
terms dimensionally reduced in sections 3.5 and 4.2. We have focussed on the terms
involving the 5d vectors and two 5d curvature forms R. In (3.66) and (4.27) we found that
such couplings are given by

1 ;
55157)53 =3 Qqpa” » A* A trR?, Sﬁf%dz = g A » AMAtr R (5.12)
5 5

Recall that the coefficients ¢y have been determined in (4.37), and (4.35). Since in the
6d/5d reduction only the A% appears, one suspects that, similar to the F-theory limit
discussed above, that these are the only classical terms in the reduction. Using ¢, =
—121,3K?, as given in (4.37), we can apply the identification (5.11) to infer

a® = K°. (5.13)

Note that this is precisely, the identification dictated by anomaly cancellation conditions as
found in [22-26]. On the M-theory side we also found the non-vanishing couplings involving

— 31 —



¢, Co. Similar to the split found for A™ we believe that these couplings are induced by
one-loop corrections on the F-theory side. The remainder of this paper is devoted to the
discussion of such one-loop quantum corrections.

5.2 Completing the duality using one-loop corrections

As we have seen in the previous subsection, only some terms of the 5d cubic potential N™M
of M-theory compactified on a Calabi-Yau threefold admit a straightforward dual in the
potential N'F arising from circle compactification of 6d supergravity. In this subsection,
we will provide a framework for the interpretation of the remaining terms in N™, which
we record here again for the ease of the reader,

= inaﬁKo‘KﬁRg + %naﬁcacinﬂRfifj + évijkfifjfk- (5.14)
Recall that 5d N' = 2 supersymmetry ensures that exactly the same amount of informa-
tion is contained in the cubic potential ' and in the Chern-Simons couplings of vectors.
The following discussion is conveniently formulated in terms of the latter. As already
anticipated, we relate these couplings to one-loop effects in the 6d/5d dual description.

In order to clarify the precise meaning of this statement, let us analyse in more detail
the origin of Chern-Simons couplings in the effective 5d theory arising from 6d supergravity
on a circle. A possible source of this kind of interactions is of course provided by dimen-
sional reduction of the Green-Schwarz term in the classical 6d action. These interactions
are precisely the ones which we have considered in the previous subsection. However, ad-
ditional contributions arise, which are understood in the framework of effective quantum
field theory. In fact, from a quantum perspective, the 5d effective action resulting from
compactification on a circle of 6d supergravity encodes all information about the low-energy
dynamics, including interactions induced by massive fields which have to be integrated out
when we restrict our attention to the lightest states of the theory.

In the case under examination, we identify two different families of massive fields which
can alter bd effective couplings:

e Kaluza-Klein modes. All 6d fields can be schematically expanded into Kaluza-Klein
modes as

p,y) = M (x)e™. (5.15)

ne”L

The modes cp(”) with non-zero n appear in the 5d theory as massive fields, with mass
inversely proportional to the radius r of the compactification circle,® m ~ In|/r.
As argued in the introductory section 2.1, zero-modes only are sufficient to fix all
data needed to specify the 6d model we are compactifying, and this is why we have
systematically neglected excited modes so far. Nonetheless, Kaluza-Klein modes can
run in 5d loop diagrams.

15This holds before possible Weyl rescalings are taken into account.
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e Flields which are given a mass by gauge symmetry breaking. Recall that F-/M-theory
duality can be applied in a geometric regime only if the 5d gauge symmetry is spon-
taneously broken down to the Coulomb phase and the compactification threefold is
resolved. This amounts to giving non-vanishing VEVs to some scalars in the vector
multiplets. As described in subsection 3.3, these VEVs provide mass terms for the
W-bosons and the scalars in charged hypermultiplets. Supersymmetry implies that
their fermionic partners, gaugini and hyperini, get massive as well. We claim that
these fields can run in 5d loops in such a way as to induce effective Chern-Simons
couplings.

We are able to provide a geometric picture for these families in the F-theory set-up.
As recalled in the previous subsection, F-theory is conveniently analysed in a phase with
finite size of the elliptic fibre and of the exceptional divisors introduced by resolution of
singularities. However, F-/M-theory duality holds only in the limit in which these cycles
are shrunk to zero size. In the M-theory picture, M2-branes can wrap these shrinking
submanifolds. By means of the chain of dualities described in section 2.1, it is possible to
identify the states of M2-branes wrapping the elliptic fibre as Kaluza-Klein modes in the
6d/5d picture. Furthermore, 5d Higgsing to the Coulomb branch is dual to the blowing-up
of singularities provided by exceptional divisors. M2-branes wrapping such divisors provide
the degrees of freedom of both W-bosons and charged hypermultiplets, whose mass vanishes
as the divisor is blown-down.

We now turn to a more detailed description of the mechanism responsible for Chern-
Simons couplings in the effective 5d theory. We follow closely reference [37]. A term of
the form

ANFAF (5.16)

in the Lagrangian corresponds to an amplitude with three external vectors. If these carry
momenta p, g, —p — ¢q and polarizations «, 3,, the amplitude will be proportional to

B a,. (5.17)

Suppose we compute a three-vector amplitude in the 5d theory with massive fields of the
kind listed above. General arguments imply that only one-loop diagrams provide correc-
tions to the classical Chern-Simons interactions. It is crucial to observe that the structure
of the Chern-Simons coupling we are interested in can be extracted unambiguously by look-
ing at the parity violating terms with quadratic dependence on the external momenta p, q.
In particular, a Chern-Simons effective coupling can arise only if a totally antisymmetric
tensor €*7# is found in the computation of the three-vector amplitude.

We argue that this tensorial structure can be generated if massive modes of 6d chiral
fields run in the loop. First of all, vertices between fermions and vectors are able to give
this kind of parity violating term. From a Feynman diagram perspective, this can be
seen as follows. In the computation of a one-loop amplitude with fermions running in the
loop, the trace of a string of 5d gamma matrices is involved. However, 5d Clifford algebra
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implies, e.g.
tr Lo plelgle = 4€apede s
tr D Iyl glel ¢ Iy = 4€qpeden)fg + other terms. (5.18)

Indeed, as explained in [37], whenever a 5d fermion ¢ runs in the loop, with standard
propagator and coupling to vectors of the form A“lﬂl“uw, a contribution to the effective
Chern-Simons coupling is found. Second of all, we claim that massive Kaluza-Klein modes
of tensors can contribute to the parity violating part of the loop amplitude. On very general
grounds, an electric coupling to the graviphoton A° is expected for all excited Kaluza-Klein
modes. Moreover, the epsilon tensor can enter the diagram by means of a term of the form
B A dB in the 5d effective action.

We are now in a position to state our claim about the quantum origin of terms (5.14):
they are generated by 5d one-loop diagrams with three external vectors and massive chiral
modes running in the loop. In order for this mechanism to work, we have to show that
the fields in the three massive families listed above interact with 5d vectors in the correct
way such that the result of [37] can be applied. A thorough derivation of (5.14) from
one-loop calculation in 5d dimensions is beyond the scope of this paper, and is left for
further investigation in future work. Nonetheless, we can give a schematic illustration of
the source of the relevant couplings and mass terms for the massive fermions in the two
families listed above. Massive modes of tensors would deserve further discussion, and the
authors hope to come back soon to this subject.

5.3 Origin of the one-loop Chern-Simons couplings

We start discussing fermionic Kaluza-Klein modes. Let ﬁ(i) denote a general 6d spinor
of given chirality. It is an 8-component spinor with complex entries, but the number of
degrees of freedom is halved by restriction to definite chirality. This counting agrees with
the number of degrees of freedom of the (off-shell) 5d reduced spinor 1, which can be
represented as a 4-component vector with complex entries.

We can be more explicit. A representation of 6d gamma matrices f&, {f&, fé} = 2145
a,b=20,1,...,5 can be found, such that

fa:0'1®ra, I's=0o®1y. (519)

In these equations, o; are the usual Pauli matrices, while 'y, {T'4, %} = 214, a,b =
0,1,...,4 are bd gamma matrices, satisfying

Do Dalsly =1y . (5.20)

As a result, the 6d chirality matrix is simply given by

AAAAAA

[ =T Dolsyls = o3 @14 (5.21)

We can thus write 1[1&) in the factorized form

Pty = Lx) Y, (5.22)

where ¢(4) is a unit vector in C?2, such that O3L(+) = *i(4), and ¢ is a 5d spinor.

— 34 —



Using these conventions, dimensional reduction of the 6d standard kinetic term for
V() yields!®

I DA T(n n N o(n), (n . 7(n n
/dew(i)F”3ﬂ¢(i) — QWZ/deT{¢( T19,p™ ¥ ;%ZJ( D )+mA21/)( )T )}.
nez
(5.23)

On the left hand side, a hat denotes 6d gamma matrices, indices, and coordinates. The
modes (™) of the fermion v are defined as in (5.15). On the right hand side, we find a
result consistent with the general features of Kaluza-Klein models on a circle. In fact, the
n-th excited Kaluza-Klein mode has a mass proportional to n and is electrically charged
with respect to the vector AY. The charge is proportional to n as well.

We can now turn to fermions in the vector multiplets. Let A be a 6d spinor in the adjoint
representation of the simple gauge group G. Its gauge-covariant derivative is given by

DA =d\+[A, )], (5.24)

where A are the non-Abelian 6d vectors introduced in section 3.1. In order to keep the
discussion as simple as possible, we restrict our attention to Kaluza-Klein zero-modes only
in this paragraph. As a consequence, dimensional reduction of the 6d kinetic term for A is
of the form

/ dSztr (\PP D) = 27 / d%r{tr (AT#D,A) + ;tr (X[c,x])}. (5.25)

On the right hand side, DA = d\ + [A, \] is the 5d gauge-covariant derivative, while
¢ is the adjoint scalar introduced in the Ansatz (3.28). Note that the sign of the last
term is determined by the requirement of left-handedness for the gaugini, and that no
Ap-coupling emerges for the Kaluza-Klein zero-modes precisely thanks to the shift of 5d
vectors described by (3.28). When the gauge symmetry is spontaneously broken to the
Coulomb branch, the scalars { acquire a non-vanishing VEV orthogonal to the Cartan
subalgebra. Furthermore, commutators [A, A], [¢, A] vanish for the components of A lying
in this subalgebra. However, they are non-trivial for the components orthogonal to it.
These components receive a mass from the second term in (5.25), while the first term in
the same equation provides electric coupling to the Abelian vectors A’ associated to the
generators of the Cartan subalgebra. We can thus see that Higgsed gaugini have the correct
coupling to generate the effective Chern-Simons interaction under examination.

A similar argument can be used to conclude that charged hyperini can run in the loop
and furnish a non-vanishing contribution. More precisely, dimensional reduction of their
kinetic term gives

/d6§3tr [hUVJUfﬂ(f)MZ))V] = 27T/d593T{hUv¢UF”(Dﬂ¢))V - ZhUviﬁUCI(T}{WV}-
r
In this expression, the 6d covariant derivative of the hyperino is defined as

(Dph)V = VU + AL (TR)Y, (5.26)

15Tn order to keep the argument simple, we work in a flat background and we do not Weyl rescale the 5d

metric.
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and an analogous expression is understood for the 5d covariant derivative on the right hand
side. Note that the sign of the last term has changed with respect to the gaugino reduction,
because hyperini are right-handed. Upon spontaneous gauge symmetry breaking to the
Coulomb branch, this term provides a mass for charged hyperini, while neutral hyperini
are unaffected and remain in the massless 5d spectrum.

The reader might wonder whether there are massive fermions which are electrically
coupled to vectors A%. Our analysis suggests that this is not the case. A thorough expla-
nation would require dimensional reduction of the full 6d pseudo-action, including fermionic
terms. Such a pseudo-action can be found e.g. in [7-9]. However, it is crucial to recall that
5d vectors A® are obtained by dimensional reduction of 6d two-forms B“. Such two-forms
enter the 6d action in a qualitatively different way as 6d vectors. Geometrically, they are
not connection forms, and cannot be used to build 6d covariant derivatives. Therefore, the
reduced 5d action lacks electric couplings of vectors A to fermions. Nonetheless, different
couplings are possible, which can be referred to as magnetic. They read schematically
ma I’ F i where ¢ stands for a 5d fermion. Even though these interactions may play
a role in the full one-loop 5d effective action, in the absence of electric vertices they are
not able to generate contributions to the Chern-Simons couplings.

It is interesting to point out the connection between this argument and the shift of
vectors performed in (4.18). As explained in section 4.1, this shift is crucial to identify prop-
erly 5d vectors coming from 6d two-forms. As we can see by comparing (4.17) and (4.20),
the field redefinition (4.18) is such that in the cubic potential NM the term R2L® gets
replaced by the term RE'E7. As argued in the previous paragraph, it would be impossible
to generate the former term using 5d fermion loops, while in the following we will show
how the latter term can emerge from such Feynman diagrams.

After these general remarks about massive fermions in the 5d theory, let us discuss in
more detail each term in (5.14). The first term corresponds to a Chern-Simons coupling
of the form A% A FO A FO. As we argued above, Kaluza-Klein modes are the fields which
are electrically charged under A. We therefore claim that this 5d interaction is generated
by diagrams in which Kaluza-Klein excited modes coming from reduction of all chiral 6d
fields can run in the loops. In order to get a finite result, the sum over modes has to be
suitably regularized, e.g. by means of the Riemann zeta function. We expect the outcome
of the computation to be independent of the specific regularization scheme chosen, since it
describes a physical observable. It is intriguing to recall at this point the interplay between
the 6d anomaly coefficients and the numbers of multiplets in 6d the theory. In particular,
we can consider equations (B.4) and (B.6), which we record here again,

ng —ny =273 —29n7p,  Qupa®ad® =9 —nr. (5.27)

These relations can be combined with the identification K% = a® found in the previous
subsection and strongly suggest that the prefactor of the first term in (5.14) can be ex-
tracted from 5d loop computations involving all species of chiral fields of the theory. Each
species gives a contribution proportional to number of the corresponding 5d multiplets.
Note that the relation between 5d and 6d multiplets has been worked out in section 3.4,
see (3.51), (3.52).
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The next term in (5.14) corresponds to a Chern-Simons vertex of the form AYA F'AFJ.
In order to reproduce this effective coupling using 5d one-loop diagrams, we need fermions
which are electrically coupled both to the Kaluza-Klein vector A and to the Abelian
vectors A’ in the Coulomb branch. Our discussion above singles out Kaluza-Klein modes
of Higgsed gaugini and charged hyperini as natural candidates to run in the loop.

Finally, we focus our attention on the last term in (5.14), which gives rise to a Chern-
Simons term A* A F9 A F*. We identify the source of this coupling in the Higgsed gaugini
and the massive charged hyperini. The one-loop effect due to these fermions has been com-
puted [38] for a 5d N = 2 supersymmetric gauge theory decoupled from gravity. The full
result for the purely gauge part of the 5d cubic potential A, including quantum corrections,
reads

1 o1 o 1
NEEe — 2mocij5’@+6cdassdz»jk$5ﬂs’“+12(ZrR-§|3—Z > |w-£+mf|3>- (5.28)
R

f WGWf

In this equation ¢ is a vector whose component are the scalar fields & associated to vectors
A’ In £ - R it is contracted with a root of the simple gauge group G, while in £ - w it
contracts with a weight of a the representation in which the charged fermions transform.
The first sum in (5.28) runs over all the roots of G, and arises from integrating out the
Higgsed gaugini, i.e. the fermionic partners of massive W-bosons. The second sum in (5.28)
runs over all massive charged fermions f and all weights in Wy, i.e. all elements of the
set of weights of the representation in which the fermion f transforms. my is the classical
mass of the fermion f. Finally, the group theoretical invariants Cj; and d;;; are given by

1
Cij = tr TZT] , dijk = §trTi(Tka + TkT]) . (529)

To apply the formula (5.28) to our 6d/5d compactification, we recall the classical
expression (5.5) for AF. This leads to the identification

mo = —8M°bQug,  Coass =0, (5.30)

where we have used the fact that upon decoupling gravity the M“ are simply parameters.
Following the discussion of section 5.1 this matches the classical M-theory result. A careful
comparison of the loop terms in (5.28) and the intersection numbers Vjjj of the resolved
Calabi-Yau threefold Y3 would require the introduction of new technical tools and lies out
of the main line of development of this section. However, let us stress that the reader can
find a detailed discussion of this point in [33], appendix A: as explained there, the match
can be performed successfully in many examples of Calabi-Yau threefolds with SU(N)
singularities. The classical mass my is zero in this case.

In summary, we are confident that all terms in the M-theory expression (5.14) arise
from one-loop quantum corrections in the 6d/5d dual picture. Moreover, it is tempting
to extend this analysis to some higher-derivative couplings which appear naturally in the
M-theory reduction on a Calabi-Yau threefold, but seem to be absent in the reduction of
6d supergravity on a circle. Since we have not addressed the problem of the full reduction
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of higher-derivative actions, we limit ourselves to an example. In section 4.2 we have
seen that M-theory higher curvature correction induce a term (4.27) which has a non-
vanishing contribution involving the Kaluza-Klein vector A°. It is proportional to the
shifted component ¢y of the second Chern class of the Calabi-Yau threefold c2(Y3) and
reads schematically

A"ANtrRAR, (5.31)

and corresponds to an amplitude with one Kaluza-Klein vector A° and two 5d gravi-
tons. It is impossible to extract such a coupling from the higher-curvature Green-Schwarz
term (3.16) in the 6d pseudo-action. Hence, we are led to claim that on the 6d/5d side this
interaction emerges as quantum effect, in a similar fashion as the A° A FO A FY coupling
analysed above. In particular, since the tensorial structure of this vertex involves the to-
tally antisymmetric symbol e#*P7* we can apply the same argument used above and infer
that the only non-vanishing contributions to this coupling are due to massive modes from
the reduction of 6d chiral fields. Given the universality of gravitational interactions and
Kaluza-Klein couplings involving A, it is natural to expect that all species contribute to
this amplitude. A more systematic treatment of this issue is not possible in the context of
the present paper, and the authors regard it as possible subject for further research.

6 Conclusions

In this paper we derived the 6d (1,0) effective action of F-theory compactified on a singular
elliptically fibred Calabi-Yau manifold Y3. Our strategy was to use an M-theory compact-
ification on the resolved space }7}3, and compare the effective 5d action with a general 6d
action reduced on a circle. We included an extensive discussion of 5d one-loop corrections
to the Chern-Simons term and their interplay with the 6d anomaly conditions.

In the first part of this work we performed the circle reduction of a general 6d (1,0)
supergravity theory with a non-Abelian gauge group G. We performed the Kaluza-Klein
reduction in the non-Abelian phase and later discussed the modifications when the effective
5d theory is considered on the Coulomb branch. We argued that the charged hypermul-
tiplets and the vector multiplets containing the W-bosons are massive in this phase and
need to be integrated out when comparing with an M-theory reduction on Y3. Moreover,
we presented a careful treatment of the self-dual and anti-self-dual tensors present in a
general 6d theory. While we used a 6d pseudo-action, which has to be accompanied by
the self-duality conditions on the level of the equations of motion, we showed in detail
that in the Kaluza-Klein reduced theory the self-duality can be imposed on the level of the
action now relating 5d vectors and tensors. However, due to the fact that the 6d theory
requires an anomaly cancelling Green-Schwarz term, the resulting 5d theory is also classi-
cally non-gauge invariant. We showed that its vector sector can nevertheless be encoded
by a single real function MY which is homogeneous of degree three. However, N contains
a non-polynomial term which is required to encode the complete 5d metric for the vectors
and enforce N'F' = 1 consistent with the 6d supergravity constraint Qapg® 4% =1 imposing
a condition on the real scalars j¢ in the tensor multiplets. The non-polynomial term is
not present in a standard 5d N/ = 2 supergravity theory and induces a non-gauge invariant
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term. We identify this term as a one-loop counterterm. The 6d Green-Schwarz term also
contains a higher curvature coupling and we presented a partial dimensional 5d reduction
of this term.

In the second part of this paper we compared the circle reduced action with the 5d
effective action of M-theory on a Calabi-Yau threefold Y3. To extract the 5d N = 2
characteristic data in a geometric regime one has to work with the resolved threefold Ys,
where both the gauge group singularities at co-dimension one in Bs, as well as the matter
singularities at co-dimension two in Bs are resolved. Accordingly all M2-brane states
wrapped on cycles in Y3 are massive and do not arise as dynamical degrees of freedom
in the 5d effective theory. However, the 5d effective action of M-theory on Y3 contains
terms which arise by consistently integrating out these massive states. To disentangle
these from the terms present in the classical 6d/5d reduction we introduced a scaling limit
corresponding to the F-theory limit. The finite terms in the M-theory reduction are readily
matched with the general 6d/5d result. This enabled us to determine the core characteristic
data required to evaluate the 6d (1,0) F-theory effective action in terms of the geometric
data of Y3. Also dimensionally reducing the known M-theory higher curvature terms we
were able to extract from a 5d comparison the integral vectors (a®,b%) encoding all 6d
anomalies.

In the treatment of the massive states we have discovered an intriguing interplay of
5d one-loop corrections and 6d anomalies. In fact, since the M-theory reduction is on the
resolved Y3, all M2-brane states wrapped on the resolving P-fibres are massive. These M2-
brane states are dual in the F-theory limit of M-theory to the 6d charged hypermultiplets,
and 6d vector multiplets containing the W-bosons. Accordingly, one can only compare the
5d theories if these massive states are consistently integrated out also in the circle reduced
theory. This is equally true for the M2-brane states on the elliptic fibre itself which are mas-
sive for a finite fibre volume. Using the M-theory to F-theory lift we identify these modes as
certain Kaluza-Klein modes. More generally, this implies that also massive Kaluza-Klein
modes have to be integrated out consistently in the circle reduction to compare the 5d
result with the M-theory reduction. We have focused in this work on the investigation of
the 5d Chern-Simons couplings which only receive corrections due to massive 5d modes of
6d chiral fields in one-loop diagrams. The investigation of the various couplings allowed us
to identify the one-loop diagrams generating the classically absent couplings. In particular,
we argued that the couplings A A FOA FO and A° Atr R Atr R are generated by integrating
out massive Kaluza-Klein modes. We expect that both fermions and tensors can run in
this loop diagram. A detailed account of possible fermionic coupling has been given, while
we leave a proper discussion of massive tensors for future investigation. More familiar, are
the couplings A* A F* A F7_ which are generated by integrating out massive hyperini and
gaugini. The mixed terms, such as A° A F? A FJ, are induced by combining the vertices
and propagators of both sets of massive fermionic modes. We believe that comparing the
resulting coefficient functions to the geometric M-theory result leads to a 5d derivation of
the 6d anomaly cancellation conditions. While we have summarized the necessary tools
to perform these one-loop integrals, we leave the explicit evaluation of all Chern-Simons
coefficients to future work.
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There are various interesting directions for further research. Firstly, one can extend
the classical reduction on both the 6d/5d action and the M-theory side to more than one
non-Abelian gauge group. Also the extension to include Abelian U(1) gauge groups is
desirable. Additional U(1) gauge fields will modify the 6d anomaly constraints and lead to
new insights about the interplay of resolved geometries and 6d gauge theories.!” Beyond
the classical analysis it would be important to extend the study of loop corrections to
all terms in the 5d action obtained by circle reduction. This includes a detailed study of
the metric for the neutral hypermultiplets. Also a evaluation of the coefficient of the 5d
higher curvature corrections, generated at the quantum level, will be desirable. Comparing
the results with the coefficients ¢, ¢ predicted by the geometry of Y3 on the M-theory
side, will be a non-trivial test of the F-theory limit and its consistency with 6d anomaly
cancellation. Reversely, one might also be able to use known 6d higher curvature terms to
infer additional terms in the 11d supergravity action. This is particularly interesting since
the 6d/5d Kaluza-Klein vector is part of the M-theory three-form.

Let us close by noting that in this work we have only dealt with Abelian tensor fields
in the 6d action. We have found that in this case the couplings of the form A® A F# A FY
are not generated in the 5d effective theory. In a future project we hope to generalize the
transdimensional treatment of tensors to the non-Abelian case. It will be interesting to
investigate how the various terms expected for non-Abelian tensors are generated in the
M-theory picture.
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A Notations and conventions

For every spacetime dimension d, we adopt the mostly plus convention for the metric g,
and the (+ + +) conventions of [57] for the Riemann tensor: explicitly,

1
Fp,uz/ = igpg(augua + al/g;w - 80'gul/) s
R)\ = aﬂr)\m— - al/r)\,m- + F)\uaram- - F)\uara;m- )

THY
A
R, =R W R=R,,9". (A.1)
We use €, ..., to denote the Levi-Civita tensor, and use the metric to raise its indices.
It is defined in such a way that, in any coordinate system (20, 2!, ... x9=1),
€01...(d—1) = T/ — det Guv - (A.2)

17See ref. [27, 28] for recent progress in this direction.
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Note that the following identity holds for arbitrary k£ =0,...,d:

€ptn i N 1 Ag €N = El(d — kDO L0 (A.3)

Differential p-forms are expanded on the basis of differential of the coordinates as

1
A= H)\mm“p dztt A - A dxtr, (A.4)

so that the wedge product of a p- and a ¢-form satisfies

(p+q)!

(Oé N 6)#1--~Hp+q = p!q! [Ml---#pﬁﬂp%—l---lﬁwq] : (A5)
Exterior differentiation of a p-form is given by
(de) g, = (P + 1)a[uoo‘u1..-up] : (A.6)

The Hodge dual of p-form in real coordinates and arbitrary spacetime dimension d is defined
by expression

1
(*Q)HL Hd—p — Haylmypﬁul..Aup,ul...,ud,p . (A7)
As a consequence,
1
aNxf = Ham..,upﬁm“'“p * 1 (A.8)

holds identically for arbitrary p-forms «, 3.

B Anomalies in 6d supergravity

In subsection 3.1 we mentioned generalized Green-Schwarz mechanism [15, 16, 22| for
anomaly cancellation in a 6d supergravity model with simple gauge group G. In this
appendix we review this mechanism in the more general case in which the gauge group is
the direct product of several simple groups (G;. Possible Abelian factors are not take into
account.

In 6d models, tree-level exchange of B quanta can counterbalance one-loop anomalous
diagrams. For this to be possible, the total anomaly polynomial must be of the form

. 1 . R
Iy = 5 Q0 XJ A X7, (B.1)

where

g 1 [T > > ay—1 r n

X§ = ga TRAR+ Y 260N g By A F (B.2)

7

In these expressions a®, b§' transform as vectors in the space RYT with symmetric inner
product {2, 5. Furthermore, try of Ff denotes the trace in the fundamental representation,
and \; are normalization constants depending on the type of each simple group factor. In
the main text, this constant is always reabsorbed in the normalization of the trace of field
strengths, tr =\~ tr ¢. We refer the reader to [23-26] for the value of X for various simple
gauge groups.
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If condition (B.1) is met, the theory can be made anomaly-free by introduction of the
generalized Green-Schwarz term

N 1 A A
868 — _ /M 52as B A X7 (B.3)
5

By computation of the anomaly polynomial I ¢ in terms of the chiral matter content and
comparison with the factorized form (B.1), the following necessary conditions for anomaly
cancellation are found:

ng —ny = 273 — 29nT (B4)
0=Bly— > =Bk (B.5)
R
Qupaa’ =9 —nyp (B.6)
a 1 i A i
R
1 o A
Qagb?bf = §)‘Z2 ( Z rrCR — C;dj> (no sum over 1) (B.8)
R
Qugb?b] = Aidj Y 2s AR AL (i #3). (B.9)
RS

In these equations, ng,ny,np are the numbers of hyper-, vector and tensor multiplets in
the model, Ar, Br, Cr are group theory coefficients defined through

tr RFQ = ARtrfﬁ‘Q (B.10)
trg I = BrtrpF* + Or(trpF?)?, (B.11)

and xiR, xﬁs denote the number of matter fields that transform in the irreducible repre-
sentation R of gauge group factor G;, and (R, S) of G; x Gj, respectively. Note that for
groups such as SU(2) and SU(3), which lack a fourth order invariant, Bg = 0 and there is
no condition B.5.

C Two-derivative 6d (1,0) supergravity on a circle

In this appendix we discuss the dimensional reduction of 6d (1,0) supergravity at two-
derivative level. Our starting point is therefore (3.22), which we write down again for
convenience,

X PO B T NI
SO = / + S = 205G NG — 2 gapdi® N 3dj” — hyyDg” A 4Dg”
Me

— 200370t FARF — Qupb®BP Atr FAF — V4L (C.1)

The Kaluza-Klein Ansatz for the metric was given in (3.25), while vectors and two-forms
are expanded in 5d fields according to (3.28), (3.31). Consistently with our two-derivative
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approximation, we omit the gravitational contribution proportional to a® in eq. (3.31).
This implies that the gravitational part is dropped in G¢, too.

Standard dimensional reduction techniques can be applied to this pseudo-action, con-
sidered as a functional of both A% and B® independently. One computes

1 - 1 1
S o = / + T REL = PO AR — Jrgasd)® A 3dj® — rhyy DU A ¥Dg"
Ms

— 2rQup b tr (F — CF) A (F — CF°) — 271 Qu55%0Ptr DC A ¥DC

1 - 1 -
- ngagGa AFGP — Zr_lgagfo‘ AFFP

- %Qaﬁaa A(FP = FP) 4+ Qupb® AP ANtr FAF

— 20,5607 WS A (2t CF — tr (CFO)

— 20,500 tr CA N (tr F A F — 2tr (F A FO + tr CCFO A FO)

= [PV v (TR (T ) V51 (C.2)
In this expression, D¢ = d¢ + [A, (] is the gauge covariant derivative for the adjoint scalars

¢, while D¢V = dqV + A! (TIRq)U are the 5d gauge covariant derivatives for the scalars ¢V
in the hypermultiplets. Furthermore, we have introduced the shorthand notation

F& = F% — 4p%r CF 4 20%tr (CFV. (C.3)
Dimensional reduction of the the self-duality constraint (3.21) gives
rgaﬁiGﬁ = _Qaﬁ]:ﬁa (04)

where the minus sign comes from our Ansatz (3.31). This relation means that A* and B¢
encode the same physical degrees of freedom. Let us now discuss in detail how we can
obtain a proper 5d action written in terms of vectors A% only. The first step amounts to
adding a total derivative to the action above: S®F = S}()iiido + AS®F where

ASON — —EQQ dB* N\ FP (C.5)
My 2 7
5
N / _%QQBGQ NF 4 %Qaﬂ(_AaFO +20%w ) A FP (C.6)
Ms

If we now consider S®F as a functional of G*, A%, the equations of motion ensure both
the self-duality condition (C.4) and the non-standard Bianchi identity (3.38). Moreover,
G® enters SOF only quadratically, and is therefore readily integrated out:

1 - 1 1
SOIF — / +5rREL - Z7~3F0 ANFFO — 5" Gapdi A %dj® — rhyv DY AF¥Dg"
M

— 27 Q7 b tr (F — CF) A F(F — CF°) — 2771 Qu55%0 tr DC A %DC

1 N 1
—~ ir_lgag}-a NFFP — igaﬁAO AF*ANFP 4 20,50A° Ntr FAF
— 20,5b°bP WS A (2tr CF — tr (CFO)

— 20,50V tr CAN (tr F A F — 2tr CF A FO 4 tr CCFY A FO)

— [PV + gy I (TR V(TR ) V] 51 (C.7)
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It is worth pointing out that —%TgaﬁGa AFGP — ir‘lgag]:o‘ A %FB vanishes identically

after elimination of G%, and that the kinetic term for vectors —%r‘l JapF ¢ N *F B comes

from the Chern-Simons term —%QaﬁGo‘ A FP. Moreover, the term +2Q,3b A Ntr F N F
has a different prefactor because two different contributions must be taken into account:
one was already present in (C.2), the other one is found in AS®)F,

The last step consists of the Weyl rescaling g, = r2/ ngu which brings the Einstein-
Hilbert term in (C.7) into canonical form:

1 2 1
SOF — / + SR#1 — Sr72dr A xdr — = gapdi® A xdjP
My 2 3 2
— 272,55V tr DC A %D¢ — hyy DY A ¥DqY

1 1
- er/?’FO A*F0 — §T_4/3ga5fa A *FP

— 27230, 570Ptr (F — CFO) A %(F — CF0)
1

— 5QWAO ANFYNFP 4+ 20,30°AP Atr FAF

— 20,500 WS A (2tr CF — tr ¢CFO)

— 20,500 tr CAN (tr FAF — 2tr CF A FO 4 tr CCFO A FO)

— [PV By (TR Y (TRg) ] < 1. (C.8)

As explained in subsection 3.3, we are interested in the broken phase of the theory

corresponding to the Coulomb branch of the gauge sector. The fields which acquire a mass
during the spontaneous breaking of gauge symmetry are omitted from the final 5d effective
action. These include W-bosons and charged hypermultiplet scalars. As a consequence, the
lower-case indices u, v now only run over neutral hypermultiplets. For the same reason, the

scalar potential is omitted. The final form of the effective action in the Coulomb branch
thus reads

1 2 1
SOF /M + §R *1 — gr*er A *dr — igagdjo‘ A *dj”
5
— 29 2Q55 VP Ci5dCt A %dCT — hyydg® A xdg”
— ir8/3F0 A*FO — %7‘_4/3ga5]:a A *FB
— 2r23Q,5C1 VP (F — ('FO) A x(F7 — (U FO)
1 o
— anﬁAU AFONFP 4 20,5C;b% AP A FIA FI
— 2(Qapb®b?) (Cri¢tchHCi ¢t AT N FO N FO
+ 2(Qapb™”) (Ci CriCF ¢ + 2C3Ci¢F¢H A A FI A FO
6(Qapb®”)Ci;Cry ¢t AY A FI N FF. (C.9)

D Calabi-Yau reference formulae

The main purpose of this appendix is fixing some notation about Calabi-Yau threefolds.
Therefore, it is not meant to be complete nor self-contained. We refer the reader to
e.g. [58, 59] for a more detailed account of the material covered hereafter.
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A Calabi-Yau threefold Y3 can be described locally either by means of six real coordi-
nates {¢'},_; g, or by means of three complex coordinates {y'};—1 23, defined as

1,4 s 1,4 1, :
1 i, .2 2 3 .44 3 5 06
= — (& 4i€%), = — (& +4€%), = — (& +14£°). D.1

y \/5(6 &%) y \/5(5 'S y ﬂ(f ¢%) (D.1)
In the following, we will make use of complex coordinates, and their associated holomor-
phic indices 4, 7,... = 1,2,3 and antiholomorphic indices 7,7,... = 1,2,3. Accordingly, a
complex differential form of degree (r, s) is expanded on the basis of differentials of complex
coordinates as

1 ) ) _ _
o= @ail...im...js dy™ N Ndy'" ANdyg?t A A diPe. (D.2)

Being a Kéhler threefold, Y3 is endowed with an Hermitian metric g;;, whose Kahler
(1,1)-form J = ig;;dy’ A dif’ is closed. The Calabi-Yau condition ensures the existence
of a globally defined, non-vanishing, holomorphic (3,0)-form, which we denote by €. The
volume form, the Kéhler form and the holomorphic (3,0)-form are related by

i _ 1 .
HQHQQ/\Q, where ||Q||2:§Qijkw’f. (D.3)

1
*1:§J/\J/\J:

Since our definition of a Calabi-Yau threefold implies strict SU(3) holonomy, the only
independent Hodge numbers of Y3 are h!(Y3), h'2(Y3). Let us fix our notations for the
corresponding cohomology basis.

First of all, we choose an integral cohomology basis {wp}ta for H'(Y3), with A =
1,...,hb1(Y3). The intersection numbers associated to this basis {wp }a are

Vaso = / wpa N\ ws A we . (D.4)
Y3

Second of all, we take H?!(Y3) to be generated by the complex cohomology basis {xx }«,
where k = 1,...,hb2(Y3). It is also useful to consider an integral basis {af, 3% } i for the
middle cohomology H?3(Y3), with K = 1,..., hY?(Y3) + 1. Since three-forms anticommute,
it is natural to introduce a symplectic structure on H?3(Y3) choosing a, G5 in such a
way that

/ ax AL =65, (D.5)
Y3

In order to discuss the metric on the moduli space of neutral hypermultiplets, we need to
introduce matrices AKL, B, CKL_ such that

* UK :AKLCML—I—BKLIBL, *IBK :CKL()(L—ALKBL, (DG)

where * represents the Hodge star in Y3. These matrices can be conveniently expressed in
terms of a symmetric, complex matrix M:

Art = (ReM) ey (ImM) ~HL, (D.7)
Bir = —(ImM) g1, — (ReM) g (ImM) " HIM(Re M)y (D.8)
CEL — (ImM) 1L, (D.9)
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Let us now give a brief account on the moduli space of Calabi-Yau threefold Y;. It
is known that it can be written locally in a factorized form as the product of the Kéhler
moduli space and the complex structure moduli space: M = Mg x M. We discuss each
factor in turn.

On the one hand, the Kahler moduli space My is parameterized by the Kahler moduli
v™ which appear in the expansion of the Kihler form .J on the basis {wx}a,

J =vtwy . (D.10)

Fluctuations of the K&hler moduli encode information about the variation of the mixed
components of the Ricci-flat metric as we move around in the moduli space of Y3, as
specified by

dgi; = —i(wA)ij—(SvA. (D.11)

The Kéhler moduli v* also appear in the expression of the volume V of Yz,

1 1
V=_ / JANTI AT = —Vasovv™0®, (D.12)
31 Jy, 3!

For convenience, we introduce the shorthand notation
1
Va = QVAEQUEUQ =0V, Vay = VAgeve = 0,0 0,5V . (D.13)

On the other hand, the complex structure moduli space Mg is described by suitable
complex coordinates 2. They are obtained as periods of the holomorphic (3, 0)-form €,
and their fluctuations correspond to variations of the components of the Ricci-flat metric
with the same kind of indices. More precisely, Yz € H'?(Y3) are used to construct by €
HO%(vs; TY31’0), where TY31’0 is the holomorphic tangent bundle to Y3, and the bz encode
the metric fluctuations. In our conventions, we have

_ . _ i —
dgi; = (br)ij 02", (bg);” = W(Xa)iz;zﬂk” : (D.14)

Both moduli spaces Mg and Mg are equipped with a natural metric, which can be

derived from a potential. These potentials are determined by

e’CKzfl'J/\J/\J, les =i [ QAQ, (D.15)
v; 3! Vs

and yield the metrics

1 1 1WAV 1V
Gax(v) = —iﬁvAavz:lCK(v) =3y g WA A *wy, = 3 /1\)22 - 5%,
3
e Xe

gHE(Z7 2) = 8ZK62RICCS(Z7 2) - (Dlﬁ)

fYSQAQ ’
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E 11d supergravity on a Calabi-Yau threefold

This appendix is devoted to the presentation of the key points of the Kaluza-Klein reduction
of 11d supergravity on a Calabi-Yau threefold Y3. Zero-modes only are taken into account.
For ease of reference we record again the 11d supergravity action

A 1., 1. o 1 - . N
SO — / GREL = (B niE - SO NE A Fy (E.1)
Miql
the Kaluza-Klein Ansatz for the three-form
Cs = Fag — X+ AM Nwp + Cs, (E-2)
and the background line element
(d3%) = (G () datda” + 2{giz(y))dy'dif. (E.3)

Let us starts discussing the reduction of the Einstein-Hilbert term. The full internal
metric g5, background and fluctuations, depends on the external coordinates through the
Kéhler moduli v* and the complex structure moduli 2%, as can be seen from (D.11), (D.14).
Note that the off-diagonal dxr dy components of the background metric cannot fluctuate
since a Calabi-Yau threefold has no continuous isometries. In order to get a 5d Einstein-
Hilbert term with canonical normalization, we have to perform the Weyl rescaling

guu = V72/3guy . (E4)
Straightforward calculation gives then

1. 1 1 =
/ —R¥1 = / —Rx1— *HAE(U)CZUA A xdv® — gurpdz® A *dzF (E.5)
Mii 2 M 2 2

where g,z is the metric in the complex moduli space, defined in (D.16), and
Hps(v) = —=Gas(v) =V 'Was. (E.6)
We have singled out the expression
Gax(v) = —%&)Aavg log V(v) = —%V(v)_lVAg@U@ + %V(’U)_QVAQ@VE\DEUQUGU\IJ’UE

(E.7)
because it is the natural metric on the Kahler moduli space. It is useful to define

LA = p1/8ph (E.8)

A expressed in these coordinates takes a par-

since, as we shall see, the kinetic term for v
ticularly simple form. It is crucial to observe that the L*’s parameterize one degree of
freedom less than the v™’s, since they obey identically %VAz@LALELe = 1. The kinetic

term we are interested in reads

1 1
— 5HAE(v)dvA A xdv® = —iGAg(L)dLA A*dL* — dD A xdD . (E.9)
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In this expression, we have defined
1

for future convenience, and we have introduced the symbol Gps (L) to denote the metric
obtained by replacing v by L* everywhere in (E.7). It is easily checked that Gx(L) can
be written in a compact form as
Gax(L) = [— %aLA({“)Lz log./\f} = [— %NAE + %/\/’ANZ (E.11)
N=1 N=1

provided that we introduce N = %VAg@LALEL@.

We are now in a position to describe the reduction of the other terms in the 11d La-
grangian. As far as the three-form kinetic term is concerned, a straightforward computation
shows that

/ —1F4 NSFy = / + 1(ang — Myepd€™) ImM) T EE A% (dEp — MpydeN)
M 4 M 4

1 1
- §VGAE(U)FA ANFFE — JVELNFFy (E.12)
See appendix D for the definition of M. For the Chern-Simons term, we find
1 o A~ - 1 1 ~ ~
/ ——C3ANF Ny = / ——Vnso A NFENF® + — (R dég — Egde®)AFy.  (E.13)
My 12 My 12 4

As mentioned in the main text, we can dualize the three-form C3 into a real scalar ®.
To this end we add to the 5d action the term

ASOM — / Lio n Ry (E.14)
M; 4

which implements Bianchi identity dFy = 0 if we consider Fy rather than C3 as independent
variable. After elimination of Fy via its equation of motion, we get

1, .~ o
S e = / + 1(dgK — Mg arde™) (ImM) "V EL A % (dép, — MpydeN) (E.15)
M

5

1 . 1
— §VGA2('U)FA A\ >|<FZ — EVAZG)AA A F2 /\F@

— ﬁ (€K dég — Exde™ + d®] NF [ déx — Excde™ + dD].

Let us stress here that we still have to take into account the Weyl rescaling of the
metric g,,,. It is interesting to note that it is crucial to get the equality between the inverse
gauge coupling function and the metric of the moduli space of scalars L*, since

1 - 1 1
- §VGAE(U)FA AFF® = —§V%GAZ(U)FA A*F* = —§GAZ(L)FA AxFE. (E.16)
The final action was given in the main text in (4.14). We only need to specify the

quaternionic kinetic for hypermultiplets, which turns out to be

huwdq® A dq® = +dD A %dD + gerdz"™ A xdZ" (E.17)

+ %ew [d® + (6% dé — ngﬁK)]Z

-~ %eQD (déx — Mycprde™) (ImM) KL (dg, — Mpnde).
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