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1 Introduction

The study of effective theories arising in string compactifications is of crucial importance

both from a conceptual as well as phenomenological point of view. It is now believed that

there is a vast landscape of four-dimensional effective theories with minimal or no super-

symmetry arising in string theory, but it is an open problem to systematically characterize
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these theories [1–3]. A systematic study becomes more tractable in compactifications to

higher dimensions and with more supersymmetry. Highly supersymmetric compactifica-

tions have a more constrained effective theory, and arise from restricted classes of candidate

string constructions. In the maximally supersymmetric case the theory and compactifica-

tion geometry are in fact almost unique.

An intermediate scenario is provided by six-dimensional (6d) (1, 0) supergravity the-

ories [4]. While there are constraints both from supersymmetry and anomalies in this

dimension, the moduli space of these theories still permits a rich structure and is not fixed

by the symmetries. The (1, 0) multiplets in the spectrum are the gravity multiplet, a

number of tensor and vector multiplets, as well as neutral and matter hypermultiplets. A

special complication arises from the fact that in six dimensions the (1, 0) two-form tensors

in the tensor multiplets and the gravity multiplet obey duality constraints. The two-form

in the gravity multiplet has a self-dual field strength, while the two-forms in the tensor

multiplets will admit an anti-self-dual field strength. This fact makes it hard to give a La-

grangian formulation for the dynamics of these forms. While such formulations exist [5], we

will take a different route in this work. Our 6d actions will be formulated as pseudo-actions

which yield equations of motions for the tensor fields which still need to be additionally

restricted by imposing the self- and anti-self-duality constraints [6–11]. Moreover, our

computations will proceed by first determining a five-dimensional (5d) action for which

these conditions can be consistently imposed on the level of the action. We will see that

this transdimensional treatment is natural in connecting compactifications of F-theory and

M-theory. Recently, a transdimensional treatment was suggested to study the M5-brane

action with self-dual non-Abelian two-forms [12–14].

In the last years a systematic study of six-dimensional (1, 0) supergravity theories has

been undertaken to study the consistency conditions imposed by quantum gravity [4]. In 6d

there are gravitational, gauge as well as mixed anomalies. These impose constraints on the

number of multiplets, and link the matter spectrum to the anomaly coefficients; see e.g. [15–

17]. A fruitful starting point has been to ask for a realization of these supergravity theories

as a compactification of F-theory on Calabi-Yau threefolds [18–28]. These threefolds have

to be elliptically fibred with a base space being a Kähler twofold. At the loci in the base

where the elliptic fibre becomes singular, the dilaton-axion, parameterizing the complex

structure of the elliptic fibre, indicates the existence of seven-brane sources. These seven-

branes wrap complex curves in the base. Two seven-branes can intersect at points at

which strings ending on different branes yield new massless matter hypermultiplets in the

effective theory. This gives the embedding of six-dimensional gauge theories with matter

in a general geometric framework. Note that in order to obtain non-Abelian gauge groups

the elliptic Calabi-Yau threefold Y3 has to be singular itself. For Calabi-Yau singularities

localized along a single seven-brane divisor one can infer the gauge group G at co-dimension

one in the base. The singularity enhancements at co-dimension two in the base predict the

representations of matter fields [29–31].

To study the 6d (1, 0) effective action arising by compactifications of F-theory on an

elliptically fibred Calabi-Yau threefold, we take a detour via M-theory. Our analysis will be

analogous to the 4d/3d treatment of F-theory on Calabi-Yau fourfolds presented in [32, 33],
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but will be more refined and use the enhanced constraints of 6d (1, 0) supersymmetry and

anomalies. M-theory and F-theory on the same Calabi-Yau manifold are connected by a

certain limit which shrinks the elliptic fibre in M-theory and grows an extra dimension

required to the match with F-theory. The simplest physical description of this limit is

provided by considering M-theory on a two-torus. Shrinking the size of the torus, one ends

up in a Type IIA string set-up on a small circle. Performing a T-duality along this circle

leads to a Type IIB string compactifications on a large circle. Indeed, if the torus shrinks

to zero size, the Type IIB set-up grows an extra dimension. One can extend this limit

adiabatically to elliptic fibrations. Furthermore, also branes and flux sources can be traced

through this duality. We recall more details on this duality and the geometry of elliptically

fibred Calabi-Yau threefolds in section 2.

Since we want to determine the characteristic data of the 6d F-theory effective action,

we start with a rather general 6d (1, 0) pseudo-action with a non-Abelian gauge group G,

and a generalized Green-Schwarz term to cancel 6d anomalies [6–10]. The self-duality of

the tensors is imposed on the level of the equations of motion. We perform the Kaluza-

Klein reduction on a circle, and derive an actual 5d effective action for the Kaluza-Klein

zero-modes in section 3. We show how the self-duality can now be imposed on the action

level, and determine the characteristic data of the 5d N = 2 theory. In particular, we

find that the kinetic terms of the 5d vectors are encoded by a real function NF, which

is homogeneous of degree three. It is interesting to point out that it contains a non-

polynomial term which is not allowed in a standard 5d N = 2 supergravity theory. This

correction is induced by the fact that the 6d theory contained a classically non-gauge

invariant Green-Schwarz term to cancel 6d one-loop anomalies. Our findings are then

interpreted as counterterms in five dimensions, following the suggestion of [21]. In order to

prepare the ground for the comparison with the M-theory reduction, it will be crucial to

comment on the modifications when moving to the Coulomb branch of the 5d gauge theory.

Furthermore, also higher curvature terms are required in 6d for anomaly cancellation, and

we provide a partial dimensional reduction which will be compared with the M-theory

result.

To determine the 6d characteristic data in terms of the geometric data of the com-

pactification threefold, we also determine the 5d M-theory effective action in section 4.

The derivation is performed on a fully resolved Calabi-Yau threefold Ỹ3. This implies that

the 5d gauge theory will be in the Coulomb branch, and all M2-brane states wrapped on

the elliptic fibre and the resolution cycles will be massive. The resulting 5d N = 2 action

has already been known in the literature [34]. Also higher curvature corrections have been

dimensionally reduced from eleven to five dimensions [35]. It was shown in [35] that the

second Chern class of the threefold Ỹ3 determines 5d higher curvature couplings of the form

A ∧ trR∧R, with A being a 5d vector and R being the 5d curvature two-form.

In the comparison of the general 6d/5d reduction with the M-theory reduction in

section 5, we argue that the latter does not only contain the classical terms but also

certain one-loop corrections. We identify the F-theory limit of M-theory which leads to a

perfect match of the classical terms and allows us to extract all characteristic data for the

6d (1, 0) theory in terms of the geometry of the resolved Calabi-Yau threefold Ỹ3. This
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includes the geometric data determining the classical metrics on the 6d vector, tensor and

hypermultiplet moduli spaces. Including a comparison of the dimensionally reduced higher

curvature terms, we also infer the discrete data determining the 6d Green-Schwarz term

and hence encode 6d anomalies. Our results confirm more indirect arguments using the

Chern-Simons action of seven-branes [22, 36]. Furthermore, our results agree with the

analysis of 6d anomalies presented in [23–26].

Remarkably, we identify several terms in the 5d M-theory reduction on Ỹ3 which do

not arise in the classical 6d/5d reduction. We argue using [37, 38] that this is due to

the fact that there are one-loop corrections in the 6d/5d reduction which arise form two

sources: (1) in going to the Coulomb branch, there are massive charged hypermultiplets,

and massive vector multiplets containing the W-bosons which have to be integrated out, (2)

in the dimensional reduction there are massive Kaluza-Klein modes for all 6d multiplets. In

particular, we argue that massive fermions running in the loop generate constant corrections

to the 5d Chern-Simons terms of the from A ∧ F ∧ F , with F being the 5d gauge fields.

Integrating out 5d massive Kaluza-Klein modes of 6d chiral fields also generates one-loop

Chern-Simons couplings A0 ∧ F 0 ∧ F 0 and A0 ∧ tr(R ∧ R) for the 5d vector zero-mode

A0 arising from the reduction of the 6d gravity multiplet. Both coefficients depend on the

number of 6d tensor multiplets. The comparison with the M-theory result is expected to

yield the 6d anomaly conditions.

2 F-theory in six dimensions

This section is devoted to a brief account on the F-theory set-up, applied to the construc-

tion of 6d models. Firstly, we recall the basics of F-/M-theory duality and make some

comments about the Type IIB picture of F-theory vacua. Secondly, we develop a minimal

mathematical toolkit to describe elliptically fibred Calabi-Yau threefolds.

2.1 F-theory via M-theory

F-theory [18] is a twelve-dimensional geometric framework introduced to capture some

crucial non-perturbative aspects of Type IIB vacua in presence of seven-branes. One of the

most efficient ways to extract information about F-theory vacua is given by duality with

M-theory compactifications [3]. Since we will follow this strategy throughout the paper,

let us briefly review some basic material about F-/M-theory duality and its application to

the study of 6d vacua.

Consider M-theory on the product manifold

M11 = T 2 ×B2 × R
1,4, (2.1)

where T 2 is a two-torus, B2 is a Kähler manifold of complex dimension two, and R
1,4 is 5d

Minkowski spacetime. The metric on the torus can be written as

ds2T 2 =
v0

Im τ

[

(dxA +Re τdxB)
2 + (Im τ)2dx2B

]

. (2.2)
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Here xA, xB are real coordinates with period 1, τ is the complex structure parameter, and

v0 is the volume of the torus. The canonical coordinates xA, xB parameterize the two one-

cycles which we name A- and B-cycle, respectively. Upon compactification along a small

A-cycle, M-theory reduces to Type IIA string theory. An application of T-duality acting

on the B-cycle results in Type IIB string theory on the background

M10 = S1 ×B2 × R
1,4, (2.3)

where the circle S1 corresponds to the B-cycle. Note that in this duality the complex

structure parameter τ in (2.2) is identified with dilaton-axion τ = C0 + ie−φ, where C0

is the RR scalar and φ is the dilaton. In this way, SL(2,Z) modular invariance of Type

IIB is interpreted as the SL(2,Z) reparameterization symmetry of the complex structure

parameter of T 2. Furthermore, in the limit of vanishing v0, the size of the compact S1

becomes infinite, thus leading effectively to Type IIB on

M′
10 = B2 × R

1,5, (2.4)

where R
1,5 denotes 6d Minkowski spacetime. The present discussion can be generalized to

the case in which M11 is a T 2-fibration over B2 × R
1,4, repeating the argument fibrewise.

We require T 2 to depend holomorphically on the complex coordinates of B2. More precisely,

the 11d background can be written as

M11 = Y3 × R
1,5, (2.5)

where Y3 is an elliptic fibration with zero-section over the base B2 with fibres being possibly

singular elliptic curves. In order to preserve a fraction of supersymmetry, Y3 must be a

Calabi-Yau manifold. In summary we are thus led to consider elliptically fibred Calabi-Yau

threefolds. We introduce some basic facts about their geometry in subsection 2.2.

Carrying out the duality program outlined above, we end up with a Type IIB vacuum

with non-trivial dilaton-axion profile τ varying along B2. As a consequence general F-

theory vacua do not admit a perturbative description in terms of of fundamental strings

and D-branes. The fundamental objects of F-theory are (p, q)-strings and (p, q)-branes,

which are SL(2,Z)-generalizations of the fundamental strings and D-branes. A particular

role is played by (p, q) seven-branes which magnetically couple to τ . This allows to treat

them geometrically. In fact, space-time filling seven-branes are located at co-dimension

one loci in B2 at which the elliptic fibre becomes singular. More precisely, a (p, q) seven-

brane can be found at a point where the (pA + qB)-cycle collapses. In the following we

will include stacks of such seven-branes which admit a non-Abelian gauge-theory on their

worldvolume.

Despite the non-perturbative nature of general F-theory vacua, the connection with

M-theory will allow us to restrict to a low-energy supergravity framework. More precisely,

we will compute a 6d effective action for F-theory vacua through the following steps:

1. computation of the 5d N = 2 action resulting from Kaluza-Klein reduction on a circle

of a general 6d (1, 0) supergravity action; specialization to the 5d Coulomb branch

of the gauge theory;
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2. computation of the 5d N = 2 effective action of M-theory on a resolved elliptically

fibred Calabi-Yau threefold;

3. comparison between the results and determination of the characteristic data which

specify the 6d (1, 0) effective action.

In carrying out this program we will restrict to the zero-modes in both the 6d/5d

reduction as well as in the M-theory reduction. In the 6d/5d-reduction the Kaluza-Klein

modes will become light in the decompactification limit and restore the dependence of the

supergravity fields on all 6d coordinates. Moreover, in the M-theory reduction additional

M2-brane modes become relevant in the F-theory limit due to the vanishing size of the

T 2-fibre. Both contributions will be neglected when working with 5d massless modes only.

However, the duality outlined above suggests that the massive 5d corrections of both sides

can also be matched. The crucial observation which we will use in our work, is that

the functional dependence of the characteristic data of the supersymmetric actions on the

fields should be already captured by the zero-modes. This allows us to carry out the above

program and indeed determine the 6d effective action of an F-theory compactification on

a Calabi-Yau threefold. In addition, we find that also certain one-loop corrections can be

matched under this duality and are crucial to complete the picture.

2.2 Elliptically fibred Calabi-Yau threefolds

As explained in the previous subsection, we want to consider elliptically fibred Calabi-Yau

threefolds. To this end, it is useful to recall the Weierstrass description of a T 2 as a complex

curve inside the weighted projective space P2,3,1, as discussed e.g. in [3, 19, 20]. In this

ambient space the T 2 is given by the equation

y2 = x3 + fxz4 + gz6, (2.6)

modulo the identification (x, y, z) ≡ (µ2x, µ3y, µz) for all µ ∈ C \ {0}. If f, g are complex

constants we are describing a specific elliptic curve. In order to describe an elliptic fibration

over B2, we have to promote f, g to sections of the line bundles −4K,−6K respectively,

where K denotes the canonical line bundle on B2. Locally f, g can be given as polynomials

in some holomorphic coordinates of B2.

In order to describe seven-branes we have to find the loci where the elliptic fibre

degenerates. This happens at points on B2 where the discriminant

∆ = 4f3 + 27g2 (2.7)

vanishes. Let us denote by [∆] the two-form cohomology class Poincaré dual in B2 to the

divisor given by ∆ = 0. It has been shown by Kodaira that this class [∆] must be related

to the canonical class [K] = −c1(B2) of the base B2 via

− 12[K] = [∆] , (2.8)

in order for the total space Y3 to be a Calabi-Yau manifold. Generally speaking, a singu-

larity in the fibration may or may not yield a singularity of the whole Calabi-Yau threefold.
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We are thus led to represent [∆] as

[∆] =
∑

A

νA[SA] + [∆′] (2.9)

where [SA] are the Poincaré dual two-form classes of the irreducible, effective divisors SA
on which the Calabi-Yau threefold develops a singularity, while [∆′] is the residual class

associated to singularities of the fibration which leave the total space smooth. Singularities

of the Calabi-Yau threefold along SA corresponds to stacks of seven-branes on SA which

admit a non-Abelian gauge theory on their world-volume. Possible gauge groups can

be classified looking at the possible singularities which occur in Y3 [19, 20, 29–31]. The

constants νA are related to group-theoretical invariants. The divisor ∆′ is wrapped by a

single seven-brane with no massless gauge bosons on its world-volume. Furthermore, if

[∆′] and some of the [SA]’s have non-vanishing intersection, singularity enhancements take

place, which give rise to charged matter in the Type IIB picture.

In order to perform dimensional reduction of M-theory, it is necessary to resolve the

Calabi-Yau threefold Y3 if it is singular. This amounts to find a smooth Calabi-Yau three-

fold Ỹ3 and a map f̃ : Ỹ3 → Y3 such that singular loci on Y3 are preimages through f̃ of

so-called exceptional divisors on Ỹ3. This can be done in a canonical way, both if the singu-

larity locus is a point and if it is a smooth curve [19, 20, 29, 39]. The resolution procedure

can be given the following physical description in the F-/M-theory duality picture. The

non-Abelian gauge theory with group GA living on the unresolved stack of seven-branes

at [SA] goes to its 5d Coulomb branch in the resolved space, with Abelian gauge group

U(1)rank(G). Indeed, in M-theory M2-branes wrapping the P
1-fibres of the exceptional di-

visors encode the degrees of freedom of vectors that are massive in the Coulomb branch

and become massless as the exceptional divisors are shrunk to zero size.

In the remaining part of this section we collect some results about divisors and inter-

section numbers of an elliptically fibred Calabi-Yau threefold.1 Let us start by considering

the case of a smooth threefold Y3. On such a space there is a natural set of divisors which

span H4(Y3,R). Firstly, one has the section of the fibration which is homologous to the base

B2. Secondly, there is the set of vertical divisors Dα which are obtained as Dα = π−1(Db
α),

where Db
α is a divisor of B2 and π is the projection to the base π : Y3 → B2. For these

smooth elliptic fibrations one has h1,1(B2) = h1,1(Y3)− 1 such divisors. Let ω0, ωα be the

two-form cohomology classes Poincaré dual to B2, Dα. It is useful to record some facts

concerning intersections of divisors for smooth elliptic fibrations. Due to the fibration

structure one has

Dα ∩Dβ ∩Dγ = 0 . (2.10)

We also introduce the matrix ηαβ by defining

ηαβ = Db
α ∩Db

β = B2 ∩Dα ∩Dβ . (2.11)

1Full SU(3)-holonomy is always understood.
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Note that ηαβ is a non-degenerate symmetric matrix with mostly minus Lorentzian signa-

ture (1, h1,1(B2)− 1). Finally, let us recall the cohomological identity2

ω0 ∧ ω0 + c1(B2) ∧ ω0 = 0 . (2.12)

We also introduce the vector Kα by expanding the canonical class [K] in a basis two-forms

dual to vertical divisors as

[K] = Kαωα . (2.13)

Some basic formulae for the base B2 of Y3 will be useful later. The Euler number χ(B2)

and the integral of c21(B2) can be generally evaluated as

χ(B2) =

∫

B2

c2(B2) = 2+h1,1(B2) ,

∫

B2

c21(B2) = KαKβηαβ = 10−h1,1(B2) , (2.14)

where we have used c1(B2) = −Kαωα, and the fact that h1,0(B2) = h2,0(B2) = 0 for a base

of a Calabi-Yau manifold.

Let us now take into account a singular Calabi-Yau threefold Y3 and its resolution Ỹ3.

For the sake of simplicity, we will restrict ourselves to the case of a single seven-brane stack,

thus omitting the sum over index A in (2.9), [∆] = ν[S] + [∆′]. Let Di be the exceptional

divisors introduced by resolving the singularity. The index i runs from 1 to rank(G). The

cohomology class Poincaré dual to Di is denoted ωi. Furthermore, let us expand the divisor

S wrapped by the stack of branes in a basis of two-forms dual to vertical divisors as

[S] = Cαωα . (2.15)

Note that, after resolution, this is replaced by

[Ŝ] = Cαωα + aiωi , (2.16)

where ai are the Dynkin numbers characterizing the Dynkin diagram of G.3 Exceptional

divisors enjoy the following properties:

B2 ∩Di = 0

Dα ∩Di ∩Dj = −Cij B2 ∩Dα ∩ S
Dα ∩Dβ ∩Di = 0 , (2.17)

where Cij is the Cartan matrix of the group G.

We are now in a position to summarize all intersection numbers on the resolved Calabi-

Yau threefold Ỹ3. We have found a cohomology basis {ω0, ωα, ωi} which can be denoted

collectively as {ωΛ}. Intersection numbers are defined as

VΛΣΘ =

∫

Ỹ3

ωΛ ∧ ωΣ ∧ ωΘ . (2.18)

2We will be slightly sloppy with the notation in the following, since we do not explicitly indicate that

certain quantities, e.g. the first Chern class c1(B2), have to be pulled back from B2 to the Calabi-Yau

threefold.
3Note that after singularity resolution also (2.13) is modified by the addition of non-trivial ωi terms.

Nonetheless, these terms do not affect the following discussion on intersection numbers, thanks to identi-

ties (2.17).
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Identities and properties listed above imply that intersection numbers must satisfy

V000 = ηαβK
αKβ , V0iΛ = 0 , (2.19)

V00α = ηαβK
β , Vαij = −CijηαβC

β,

V0αβ = ηαβ , Vαβi = 0 ,

Vαβγ = 0 ,

where Λ = 0, α, j. As far as Vijk is concerned, in general it is non-vanishing, but oth-

erwise unconstrained by our discussion so far. These intersection numbers arise from

intersecting exceptional divisors. In fact, as we will discuss below, they will be linked to

group-theoretical factors depending on the charged matter content of the gauge theory.

3 Circle compactification from six to five dimensions

In this section we discuss the circle reduction of a general 6d (1, 0) supergravity theory. Af-

ter reviewing some foundational material about 6d supergravities with a simple non-Abelian

gauge group in subsection 3.1, the details of the dimensional reduction are presented in

subsection 3.2 supplemented by appendix C. We emphasize the treatment of self-dual two-

forms, and describe both the reduction of the non-Abelian gauge theory and its broken

phase relevant in the match with M-theory. The 5d action is brought into canonical N = 2

form in subsection 3.4. We point out an intriguing generalization of the N = 2 formalism

which captures the full reduced action. In subsection 3.5 certain higher order curvature

corrections are reduced which carry crucial information about gravitational 6d anomalies.

3.1 Generalities on 6d (1,0) supergravity

In this subsection we review some basic facts about the spectrum and the dynamics of a

generic 6d supergravity model with (1, 0) supersymmetry, corresponding to 8 real super-

charges. Massless states in six dimensions are classified by representations of the little group

SO(4) ∼= SU(2) × SU(2) and are therefore labelled by a couple of integer or half-integer

spins, (jL, jR). Four different kinds of supersymmetric multiplets can be constructed, re-

stricting to spin less or equal to two [17]. We list them following the chirality conventions

which are more common in the 6d supergravity literature, cf. e.g. [6]:

• gravity multiplet: (1, 1) ⊕ 2(12 , 1) ⊕ (1, 0), i.e. the graviton, one Weyl4 left-handed

gravitino, one self-dual two-form;

• vector multiplet: (12 ,
1
2)⊕ 2(12 , 0), i.e. one vector and one Weyl left-handed gaugino;

• tensor multiplet: (0, 1) ⊕ 2(0, 12) ⊕ (0, 0), i.e. one anti-self-dual two-form, one Weyl

right-handed tensorino, one real scalar;

4An equivalent formulation makes use of a SU(2) doublet of Weyl left-handed gravitini (SU(2) is the

automorphism group of the supersymmetry algebra), supplemented by a symplectic Majorana condition.

Similar remarks apply to all other fermions. This explains why this model is sometimes referred to as N = 2

in the literature.
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• hypermultiplet: 2(0, 12)⊕4(0, 0), i.e. one Weyl right-handed hyperino and two complex

scalars.

A general model features one gravity multiplet, nV vector multiplets, nH hypermultiplets,

nT tensor multiplets. It is well known that the (anti-)self-duality condition is incompatible

with a näıve Lagrangian formulation, because the usual kinetic term for two-forms vanishes

identically once it is taken into account. In the special case nT = 1, the anti-self-dual

two-form from the gravity multiplet and the self-dual two-form from the tensor multiplet

can be combined into a two-form without any self-duality property, and the standard

Lagrangian formulation applies. Nonetheless, a set of consistent, supersymmetric, two-

derivative, classical equations of motion is known for arbitrary nT [6]. We can still derive

them from variation of a suitable functional of the fields (called pseudo-action), provided

that the self-duality condition is imposed after computation of functional derivatives. In

this paper, all 6d actions are to be interpreted in this weak sense.5

We will always restrict ourselves to the bosonic content of the model, and adopt no-

tations described below. First of all, we denote all 6d two-forms collectively as B̂α, where

α = 1, . . . nT + 1.6 The scalars coming from the nT tensor multiplets parameterize the

quotient

SO(1, nT )/ SO(nT ) . (3.1)

It is customary to describe this coset scalar manifold by means of a vielbein formalism. We

refer the reader to e.g. [6] for a detailed account. For our present discussion we need only

to recall that a constant SO(1, nT ) metric Ωαβ is introduced, along with a set of nT + 1

scalar fields jα. The metric Ωαβ has mostly minus Lorentzian signature (1, nT ), and the

scalars jα are subject to the constraint

Ωαβj
αjβ = 1 . (3.2)

Moreover, the scalar manifold is endowed with another non-constant, positive definite

metric gαβ , which is given in terms of Ωαβ , j
α by

gαβ = 2jαjβ − Ωαβ , (3.3)

where jα = Ωαβj
β . This metric is needed to write down the (anti)-self-duality condition

for B̂α in a SO(1, nT ) covariant way, as we will see in equation (3.21).

As far as vectors are concerned, in this section we consider a supergravity model

with simple gauge group G. Let g be the Lie algebra of G. We denote the g-valued

gauge one-form by Â, and matrix multiplication will always be understood. Moreover,

we use anti-Hermitian generators, and the expression for the non-Abelian field strength

two-form reads

F̂ = dÂ+ Â ∧ Â = dÂ+
1

2
[Â, Â] . (3.4)

5This formalism is usually applied to Type IIB supergravity in ten dimensions to deal with the self-dual

four-form in the RR sector.
6Later on we will identify nT +1 = h1,1(B2) in the duality to M-theory. This provides the match of the

indices of the present section with the ones of section 2.2.
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Let us recall the definition of the Chern-Simons three-form

ω̂CS = tr

(

Â ∧ dÂ+
2

3
Â ∧ Â ∧ Â

)

, (3.5)

where the trace is taken in a suitable representation of g. More details about our normali-

zation for gauge traces can be found in appendix B. It is also useful to point out two key

properties of the Chern-Simons three-form,

δω̂CS = tr dλ̂ ∧ dÂ , dω̂CS = tr F̂ ∧ F̂ . (3.6)

Next, let us make some remarks about the hyper sector. Each hypermultiplet contains

four real scalars, and therefore we use the notation qU (U = 1, . . . , 4nH). These scalar

fields can be considered as real coordinates for a quaternionic manifold, whose metric

we write as hUV . The geometric structures of quaternionic manifolds have been studied

intensively, see e.g. [40, 41]. Since our main focus will be on the tensor and vector multiplet

structure, we will refrain from giving a detailed account of these results here. However, in

the following we will need to consider some aspects of charged hypermultiplets. The only

piece of information relevant to our discussion is the 6d covariant derivative, which reads

schematically

D̂qU = dqU + ÂI(TR

I q)
U , (3.7)

where the index I runs over all generators of the gauge group G, and TR

I are the group

generators acting on the scalars qU in the representation R. Several examples of gauged

6d (1, 0) supergravities are known. We refer the reader to [42–45] and references therein

for a detailed account on the subject.

Finally, gravitational degrees of freedom are described by means of the vielbein formal-

ism. The analogue of the one-form gauge connection Â is provided by the so(1, 5)-valued

spin connection one-form ω̂, determined by the vielbein through the usual torsionless con-

dition

dê+ ω̂ ∧ ê = 0 , (3.8)

where matrix multiplication is understood. If ℓ̂ is a so(1, 5)-valued zero-form which we

interpret as infinitesimal parameter of a local Lorentz transformation, we have

δω̂ = dℓ̂+ [ω̂, ℓ̂] . (3.9)

The correct covariant field strength is the curvature two-form R̂, which is constructed out

of the spin connection according to

R̂ = dω̂ + ω̂ ∧ ω̂ , (3.10)

and is related to the components of the 6d Riemann tensor R̂λ̂
τ̂ µ̂ν̂ by

R̂â
b̂
=

1

2
êâ
λ̂
êτ̂
b̂
R̂λ̂

τ̂ µ̂ν̂ dx̂
µ̂ ∧ dx̂ν̂ , â, b̂,= 0, . . . , 5 . (3.11)

We also define a gravitational Chern-Simons three-form

ω̂CS
grav = tr

(

ω̂ ∧ dω̂ +
2

3
ω̂ ∧ ω̂ ∧ ω̂

)

. (3.12)
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This definition implies the identities

δω̂CS
grav = tr dℓ̂ ∧ dω̂ , dω̂CS

grav = tr R̂ ∧ R̂ . (3.13)

Note that the right hand side of the last equation is proportional to a characteristic class

build from the curvature two-form. In general, the proportionality constant is fixed by

the requirement that suitable integrals of such classes take integer values. This standard

normalization is achieved by inserting a factor of (2π)−1 for each occurrence of the curvature

two-form R̂ specified by (3.11). In order to improve readability, we will never write down

these factors of (2π)−1 in the following. Similar remarks apply to the 5d curvature two-form

introduced in section 3.2.

As we have seen above, the spectrum of a general 6d (1,0) supergravity model contains

chiral fermions and (anti)-self-dual two-forms. As a result, gauge, gravitational, and mixed

anomalies may appear once one-loop effects are taken into account. Nonetheless, a general-

ization of 10d Green-Schwarz mechanism, due to Sagnotti [15, 16, 22], can be implemented

to generate consistent, anomaly-free theories: it is reviewed concisely in appendix B. Let

us just recall now that, under suitable conditions on the matter content of the model, the

anomaly polynomial factorizes,

Î8 =
1

2
ΩαβX̂

α
4 ∧ X̂β

4 , (3.14)

where

X̂α
4 =

1

2
aαtr R̂ ∧ R̂+ 2bαtr F̂ ∧ F̂ . (3.15)

If this is the case, even if Î8 is non-vanishing, anomalies can be counterbalanced by adding

the so-called Green-Schwarz term to the action,

ŜGS = −1

2

∫

M6

ΩαβB̂
α ∧ X̂β

4 . (3.16)

In order for this generalized Green-Schwarz mechanism to work, we have to assign the

following non-trivial transformation rules to the fields of the model:

δÂ = dλ̂+ [Â, λ̂] , (3.17)

δB̂α = dΛ̂α − 1

2
aαtr ℓ̂dω̂ − 2bαtr λ̂dÂ . (3.18)

In the second equation, Λα is a collection of one-forms which are the parameters of the

usual Abelian gauge invariance of two-form potentials. The correct, gauge-invariant field

strength three-form for B̂α turns out to be

Ĝα = dB̂α +
1

2
aαω̂CS

grav + 2bαω̂CS, (3.19)

and satisfies a non-standard Bianchi identity,

dĜα = X̂α
4 . (3.20)
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The self-duality constraint for the two-forms is written in terms of the three-form field

strengths as

gαβ ∗̂Ĝα = ΩαβĜ
β , (3.21)

where gαβ is the positive-definite, non-constant metric introduced in (3.3).

We are now in a position to write down the pseudo-action for 6d (1, 0) supergravity

with simple gauge group G. Its purely bosonic terms relevant to us are given by

Ŝ(6) =

∫

M6

+
1

2
R̂∗̂1− hUV D̂qU ∧ ∗D̂qV − 1

4
gαβĜ

α ∧ ∗̂Ĝβ − 1

2
gαβdj

α ∧ ∗̂djβ

− 2Ωαβj
αbβtr F̂ ∧ ∗̂F̂ − 1

2
ΩαβB̂

α ∧ X̂β
4 − V̂ ∗̂1 . (3.22)

In the second line, V̂ is a potential generated by gauging the hypermultiplet scalars qU .

Its explicit form can be found e.g. in [45], but will not be crucial for our discussion. Recall

that this action has to be supplemented by the duality constraint (3.21) imposed on the

level of the equations of motion. Note that the second-order equation obtained through

variation of B̂α is equivalent to the exterior derivative of (3.21) thanks to (3.20). This

action contains a two-derivative part which yields the equations of motion discussed in [7–

9]. We included in (3.22) one additional higher derivative term which is the generalized

Green-Schwarz term (3.16) required for 6d anomaly cancellation.

It is appropriate to point out that the Green-Schwarz term is a possible source of non

gauge-invariance of this classical action. Indeed, one computes

δŜ(6) =
1

2

∫

M6

Ωαβ

(

1

2
aαtr ℓ̂dω̂ + 2bαtr λ̂dÂ

)

∧ X̂β
4 , (3.23)

which in general is not just a surface contribution. It is precisely this failure of gauge

invariance at tree-level which cancels one-loop anomalies. We summarize the anomaly

conditions in appendix B. For completeness let us point out that there is a simple special

case where the action is already classically gauge invariant. It is enforced by the conditions

Ωαβa
αaβ = 0 , Ωαβa

αbβ = 0 , Ωαβb
αbβ = 0 . (3.24)

These conditions on aα, bα can be related to the spectrum of fields, in particular the charge

matter content, through the anomaly cancellation conditions (B.4)–(B.9) of appendix B.

As we argue in section 5, the match between the F-theory set-up and the M-theory com-

pactification is simpler in this special case.

3.2 Kaluza-Klein reduction on the circle

Let us now study the supergravity model outlined above on a background with one compact

spatial dimension, i.e. with topology R
5 × S1. Degrees of freedom along the circle can be

analysed in terms of their Fourier expansion, giving rise to an infinite tower of Kaluza-Klein

modes. As discussed above, we restrict ourselves to zero-modes only.

Our metric Ansatz reads

dŝ2(6) = g̃µνdx
µdxν + r2Dy2, Dy = dy −A0, (3.25)
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where A0 = A0
µdx

µ, and all 5d field are independent of the coordinate y along S1. A twiddle

is used to stress that this form of the metric gives rise to a non-canonically normalized action

for gravity, so that a Weyl rescaling has to be performed. As usual, A0 is a 5d vector with

Abelian U(1) symmetry A0 → A0 + dχ coming from S1 diffeomorphisms y → y+χ, which

leave the derivative Dy invariant. The field strength of A0 reads

F 0 = dA0. (3.26)

It is useful to write down the Kaluza-Klein Ansatz for the metric in the vielbein formalism,

too. Up to local Lorentz transformations, we can take

êa = ẽaµdx
µ, ê5 = r Dy , (3.27)

where Dy is given in (3.25), and ẽaµ, a = 0, . . . , 4 is the 5d vielbein (independent of y) before

Weyl rescaling.

Let us now turn to the one-forms and two-forms, and take into account zero-modes only.

In order to get 5d fields which are uncharged under the aforementioned U(1) symmetry,

we expand all fields on Dy defined in (3.25). To begin with, we set

Â = A+ ζ Dy , (3.28)

where ζ is a g-valued 5d zero-form. The gravitational analogue of this relation consists of

the expression for the spin connection components, which can be computed from (3.27):

ω̂ab = ω̃ab + ã
(0)
ab Dy , ω̂a5 = b̃(1)a + c̃(0)a Dy , (3.29)

where ω̃ is the 5d spin connection determined by ẽaµ. The zero-forms ã
(0)
ab , c̃

(0)
a , and the

one-form b̃
(1)
a are given by

ã
(0)
ab =

1

2
r2ẽµa ẽ

ν
bF

0
µν , b̃(1)a =

1

2
rẽλaF

0
λµ dx

µ, c̃(0)a = −ẽλa∇̃λr , (3.30)

where ∇̃λ is the 5d Levi-Civita connection before Weyl rescaling.

We are now in a position to write down the Kaluza-Klein Ansatz for the two-forms

B̂α. Care has to be taken because the 6d transformation rule (3.18) entangles the degrees

of freedom encoded in B̂α with those of vectors and gravity. Thus, we set

B̂α = Bα −
[

Aα − 1

2
aα tr (ã(0)ω̃)− 2bα tr (ζA)

]

∧Dy . (3.31)

In this way Aα, Bα have the simplest possible gauge transformations,

δAα = dµα, (3.32)

δBα = dΛα + µαF 0 − 1

2
aα tr (ℓdω̃)− 2bα tr (λdA) , (3.33)

where the infinitesimal parameters are a g-valued 5d zero-form λ, a so(1, 4)-valued 5d zero-

form ℓ, 5d zero-, one-forms µα,Λα. The first relation implies that Aα has a standard,

Abelian field strength

Fα = dAα. (3.34)
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However, the näıve field strength dBα is not gauge invariant, and must be improved by

setting

Gα = dBα −Aα ∧ F 0 +
1

2
aαω̃CS

grav + 2bαωCS, (3.35)

where

ω̃CS
grav = tr

(

ω̃ ∧ dω̃ +
2

3
ω̃ ∧ ω̃ ∧ ω̃

)

, (3.36)

ωCS = tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

. (3.37)

The corresponding non-standard Bianchi identity reads

dGα = −Fα ∧ F 0 +
1

2
aαtr R̃ ∧ R̃+ 2bαtrF ∧ F . (3.38)

In the rest of this subsection, we will only focus on the two-derivative Lagrangian. As a

consequence, we drop higher curvature terms from the 6d pseudo-action, and we also neglect

gravitational contribution to the gauge transformation of Bα and to the field strength Gα.

A discussion of the higher curvature corrections can be found in subsection 3.5.

Dimensional reduction of action (3.22) is performed in appendix C, to which we refer

the reader for more details. However, let us just stress here that the resulting 5d action

is a proper action, without any need for auxiliary self-duality conditions. This is possible

because the 6d two-forms B̂α dimensionally reduce to two-forms Bα and vectors Aα as

seen in (3.31). At the same time, we also have to dimensionally reduce the self-duality

constraint (3.21). Explicitly we find

rgαβ ∗̃Gβ = −ΩαβFβ , (3.39)

where we have introduced the shorthand notation

Fα = Fα − 4bαtr (ζF ) + 2bαtr (ζζ)F 0. (3.40)

The key point is that the 5d duality condition (3.39) now relates two-forms and vectors.

Since it does not involve a self-duality, it can be imposed on the level of the action itself.

Hence, in computing the 5d action we proceed in the two steps:

1. We rewrite the 5d pseudo-action S
(5)F
pseudo resulting from reduction of (3.22) in a form

such that Bα only appears through its field strength Gα. Moreover, Gα can be treated

as an independent variable which enters the action only algebraically.

2. The 5d pseudo-action S
(5)F
pseudo can be replaced by an actual action by adding terms of

the schematic form ΩαβdB
α ∧F β to the action to impose the condition (3.39). More

precisely, the modification is of the form

∆S(5)F = −
∫

M5

1

2
Ωαβ(G

α +Aα ∧ F 0 − 2bαωCS) ∧ F β . (3.41)

The first term proportional to Gα acts as Lagrangian multiplier term to link Gα with

its dual Fα. The remaining two terms act as source terms which ensure compatibility
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with the modified Bianchi identity (3.38) of Gα. Including these modifications, both

the self-duality constraint and the Bianchi identity for Gα follow from the equations

of motion. We are thus able to integrate Gα out and obtain a 5d proper action S(5)F,

written in terms of the vectors Aα only.

The 5d action which results from this algorithm can be found in (C.8). It is interesting

to note that these two steps can be performed even if we reintroduce the gravitational

part of the generalized Green-Schwarz term, and all gravitational contributions to Gα, as

discussed in section 3.5.

3.3 Moving to the Coulomb branch

In the following sections, we will explore the dynamics of F-theory in six dimensions by

means of the duality with M-theory on a Calabi-Yau threefold, as introduced in section 2.

In this framework, we can access directly only the Coulomb branch of our non-Abelian

gauge sector. The full gauge group G is spontaneously broken down to U(1)rank(G), which

is spanned by the Cartan generators Ti, i = 1, . . . , rank(G). We take them to be normalized

in such a way that

tr (TiTj) = Cij , (3.42)

where Cij is the Cartan matrix of G.

The spontaneous break down of gauge symmetry is triggered by non-vanishing VEVs

of some adjoint scalars ζ in the vector multiplets. In particular, inspection of the terms

− 2r2/3Ωαβj
αbβtrF ∧ ∗F − 2r−2Ωαβj

αbβtrDζ ∧ ∗Dζ (3.43)

in the non-Abelian 5d action (C.8) shows that the usual Higgs mechanism originates a

mass term for the vectors lying outside of the Cartan subalgebra. We refer to these massive

vectors as W-bosons. Their scalar partners acquire a mass, as well. From an effective field

theory perspective, we are thus left only with the massless fields Ai, ζi associated to the

Cartan subalgebra of the full gauge algebra. As a result, replacements such as

tr (F ∧ ∗F ) → CijF
i ∧ ∗F j , tr (Dζ ∧ ∗Dζ) → Cijdζ

i ∧ ∗dζj

ωCS → CijA
i ∧ F j (3.44)

have to be made in (C.8) to get the relevant 5d action.

In a similar fashion, charged hypermultiplets acquire a mass through the 5d scalar

potential

V = r−1V̂ + r−8/3hUV ζ
IζJ(TR

I q)
U (TR

J q)
V (3.45)

given in the last line of (C.8). Note that the second term originates directly from dimen-

sional reduction of the 6d kinetic term hUV D̂qU ∧ ∗̂D̂qV . It is quadratic in the scalars of

the charged hypermultiplets and is the source for their masses once gauge symmetry is

spontaneously broken. Following the effective field theory paradigm, one should integrate

out the massive hypermultiplets and only keep neutral hypermultiplets in the 5d action in
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the Coulomb branch. We use lower-case indices u, v = 1, . . . , 4nneutralH to enumerate them.

Hence, we have the replacement rule

hUV DqU ∧ ∗DqV → huvdq
u ∧ ∗dqv, (3.46)

where huv is a quantum corrected hypermultiplet metric. Determining huv after integrating

out the massive states is in general a complicated task, but we will later give the M-theory

expression for huv where certain corrections have been taken into account implicitly via

the geometry. In accord with supersymmetry we also drop the scalar potential from the

effective action for the massless modes.

The interested reader can find the explicit expression for the effective action in the

Coulomb branch in (C.9). However, it is crucial to recast this result in a more transparent

form in order to implement the F-theory lift discussed in section 5. The aim of the following

section is precisely the reformulation of the 5d action in terms of new variables, in such

a way to exploit the underlying supersymmetric structure. Hence, we begin our analysis

with a concise review of 5d N = 2 supergravity.

3.4 The 5d effective action and its canonical form

Let us briefly recall the field content of 5d N = 2 (8 real supercharges) supersymmetry

multiplets [46]:

• gravity multiplet: the graviton, one vector (referred to as ‘graviphoton’), one Dirac7

gravitino;

• vector multiplet: one vector, one scalar, one Dirac gaugino;

• hypermultiplet: 2 complex scalars, one Dirac hyperino.

Let the spectrum consist of the gravity multiplet, n
(5)
V vector multiplets, n

(5)
H hyper-

multiplets, and let us focus on the bosonic sector. We are not going to study gauged

supergravity models, and therefore the framework outlined in [47] is general enough for

our purposes.8 As usual, each hypermultiplet contributes four real scalars to the spectrum,

and we will use notation qu with u = 1, . . . , 4n
(5)
H . The hypersector is entirely specified once

a quaternionic structure with metric huv is given. Since the graviphoton and the vectors

from the vector multiplets are naturally entangled by the dynamics of the theory, let us

denote them collectively as AI where I = 0, . . . , n
(5)
V . The scalars coming from the vector

multiplets parameterize a n
(5)
V -dimensional manifold which is most conveniently described

in terms of so-called very special coordinatesMI . These are n
(5)
V +1 real coordinates which

describe an auxiliary (n
(5)
V + 1)-dimensional manifold in which the actual scalar manifold

is embedded as an hypersurface, as explained below.

7It is customary to replace one Dirac fermion by a SU(2) doublet of Dirac fermions satisfying a symplectic

Majorana condition. This explains the notation N = 2.
8In order to compare formulae below with the reference, the reader should be aware that we have changed

notation, should recall our conventions on Riemann tensor contractions (cf. appendix A), and should also

note that Cthere
IJK =

√
6

8
Chere

IJK.
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The dynamics of gravity-vector sector at two-derivative level is entirely specified once

the cubic potential

N =
1

3!
CIJKM

IMJMK (3.47)

is given in terms of very special coordinates and of a constant symmetric tensor CIJK. First

of all, the scalar manifold is identified with the hypersurface described by the so-called very

special geometry constraint

N = 1 . (3.48)

Second of all, the gauge coupling function and the metric on the scalar manifold coincide

and are constructed out of second derivatives of the cubic potential,

GIJ =

[

− 1

2
∂MI∂MJ logN

]

N=1

=

[

− 1

2
NIJ +

1

2
NINJ

]

N=1

. (3.49)

In this expression, and in the following, downstairs indices I,J , . . . denote partial derivative
with respect to coordinates NI ,MJ , . . .

Finally, the constant tensor CIJK itself appears in the action as Chern-Simons cou-

pling. Indeed, the action is given by

S(5)can =

∫

M5

+
1

2
R ∗ 1− 1

2
GIJ dM

I ∧ ∗dMJ − huvdq
u ∧ ∗dqv

− 1

2
GIJF

I ∧ ∗FJ − 1

12
CIJKA

I ∧ FJ ∧ FK. (3.50)

Let us now discuss the relation between the spectrum of a 6d supergravity model

and the spectrum of its Kaluza-Klein reduction on a circle. Suppose the numbers of 6d

tensor, vector and hypermultiplets are nT , nV , nH respectively. To begin with, we note

that the bosonic part of a hypermultiplet behaves trivially under dimensional reduction on

S1. Hence, we can conclude that the number n
(5)
H of 5d hypermultiplets is given simply by

n
(5)
H = nneutralH , (3.51)

where the label ‘neutral’ has been added to remind the reader that charged 6d hypermul-

tiplets are integrated out and do not appear in the 5d effective theory.

As far as 5d vectors are concerned, they are generated by three different mechanisms.

First of all, one vector A0 is introduced by the off-diagonal component of the Kaluza-Klein

Ansatz for the 6d metric. Second of all, nT + 1 vectors Aα come from the (anti)-self-

dual two-forms in six-dimensions. Finally, reduction of 6d vectors gives us nV additional

Ai. We thus have a total of 1 + (nT + 1) + nV vectors, which we denote collectively as

AI = (A0, Aα, Ai). They fit into

n
(5)
V = nV + nT + 1 (3.52)

5d vector multiplets, because one linear combination of {A0, Aα} has to be identified with

the graviphoton and sits in the gravity multiplet.9 The corresponding scalar degrees of

9We include Aα because we cannot exclude a contribution from the 6d anti-self-dual two-form in the

gravity multiplet.
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freedom are provided by jα, ζi, r for a total of (nT +1)+nV +1 variables. However, they are

subject to one constraint, which in 6d language is given by (3.2). This counting is consistent

with the existence of very special coordinates MI = (M0,Mα,M i) satisfying (3.48).

In the remaining part of this section we discuss in which way, and to which extent,

the results of the dimensional reduction performed in 3.2 can be expressed in canonical

form (3.50). The first step towards this direction is provided by the correct identification

of the very special coordinates MI on the vector multiplet scalar manifold. It turns out

that these new coordinates are defined in terms of the old coordinates (r, jα, ζi) by relations

M0 = r−4/3,

Mα = r2/3(jα + 2bαr−2Cijζ
iζj) ,

M i = r−4/3ζi. (3.53)

Next, let us define

NF = ΩαβM
0MαMβ − 4Ωαβb

αCijM
βM iM j + 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
. (3.54)

Expressions (3.53) and (3.54) are engineered in such a way that

NF = Ωαβj
αjβ = 1 (3.55)

holds identically. In particular, note that this identity depends on the non-trivial interplay

of the non-linear bα-shifted redefinition of the coordinates Mα (3.53) and the fact that

there is a non-polynomial term in the definition (3.54) of NF, including an inverse power

of M0. This non-polynomial term in N is a significant deviation from the canonical case,

in which N is a cubic polynomial, and will be discussed further in the following. However,

note that NF is still a homogeneous function of degree three in the coordinates MI .

Once the new coordinates MI are introduced, the 5d effective action takes the form

S(5)F =

∫

M5

+
1

2
R ∗ 1− huvdq

u ∧ ∗dqv − 1

2
GIJ dM

I ∧ ∗dMJ

− 1

2
GIJF

I ∧ ∗FJ − 1

12
XIJKA

I ∧ FJ ∧ FK, (3.56)

where the metric GIJ and the coefficients XIJK = XI(JK) are functions of the scalar

fields MI . Note that the gauge coupling function and the metric in the kinetic term for

scalarsMI coincide, as expected for a 5dN = 2 theory. Moreover, both GIJ andXIJK are

completely determined by the function NF introduced above, as explained in the following.

As far as the metric GIJ is concerned, it is given precisely by (3.49). It is interesting

to point out that the non-polynomial term in the definition of NF is crucial for (3.49) to

hold for the Kaluza-Klein reduced action.

The Chern-Simons term in (3.56),

S
(5)F
CS = − 1

12

∫

M5

XIJKA
I ∧ FJ ∧ FK, (3.57)
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deserves more discussion. Its variation under an Abelian gauge transformation δAI = dλI

can be written as a boundary term, plus

δS
(5)F
CS = − 1

12

∫

M5

λIdXIJK ∧ FJ ∧ FK. (3.58)

For each value of indices I,J ,K, two possibilities may occur:

1. XIJK is constant: the corresponding contribution to the Chern-Simons term is gauge

invariant in five dimensions;

2. XIJK depends non-trivially on the scalars MI : the corresponding contribution to

the Chern-Simons term breaks 5d gauge invariance explicitly.

Usually, only the first case is encountered in supergravity models. As a consequence, only

the totally symmetric part of XIJK effectively enters the action, because we are allowed

to integrate by parts and permute indices on the vector and the field strengths in (3.57).

This symmetry argument breaks down if some components of XIJK are non-constant. In

fact, the first slot of this tensor plays a distinguished role: exactly those gauge symmetries

are broken, whose gauge vector has index I such that not all components {XIJK}J ,K are

constant, as can be see from (3.58).

As mentioned above, all data needed to construct (3.57) can be extracted from the

function NF introduced above. To this end, it is useful to note that NF naturally splits in

a polynomial part NF
p and a non-polynomial part NF

np,

NF
p = ΩαβM

0MαMβ − 4Ωαβb
αCijM

βM iM j

NF
np = 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
. (3.59)

On the one hand, since NF
p is a homogeneous polynomial of degree three, its third deriva-

tives with respect to coordinates MI are constants. In fact, they turn out to be sim-

ply related to the coefficients of the gauge invariant part of (3.57). On the other hand,

third derivatives of NF
np are non-constant, and indeed they are proportional to the coeffi-

cient functions appearing in the gauge-anomalous contributions to (3.57). More precisely,

we have

S
(5)F
CS = − 1

12

∫

M5

(NF
p )IJKA

I ∧ FJ ∧ FK − 1

16

∫

M5

(NF
np)iJKA

i ∧ FJ ∧ FK. (3.60)

Two remarks are due at this point. Firstly, observe that the first term fits into the canonical

form discussed above, since for a cubic polynomial as (3.47) one has precisely NIJK =

CIJK. Secondly, note that in the second term the first index never takes values 0, α. This

means that the U(1) gauge symmetries associated to vectors A0, Aα are unbroken, while

those associated to vectors Ai are broken.

It may be considered questionable, if not inconsistent, to construct a 5d effective action

which fails to be gauge invariant. However, this should not come as a surprise. Our starting

point in six dimensions (3.22) is not gauge invariant as well, because of the introduction of
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the Green-Schwarz terms. As discussed in section 3.1, these terms are needed in order to

implement the anomaly cancellation mechanism: they introduce tree-level gauge violations

which counterbalance one-loop anomalous diagrams generated by the chiral matter content

of the theory. As a result, the sum of the tree-level and one-loop contributions to the 6d

effective action is gauge invariant, while the two summands are not invariant separately.

This suggests that a gauge invariant 5d effective action could be obtained supplementing the

computation of this section with the reduction of the one-loop 6d effective action. However,

we do not need to address this ambitious task, since we will show that all relevant data

about the effective action of F-theory in six dimensions can already be extracted from the

reduction of the tree-level action only.

It is worth mentioning a crucial distinction between anomalous terms in six and five

dimensions. It is well known that 5d theories do not develop quantum anomalies. Indeed,

possible non-gauge invariant terms can always be cancelled by adding suitable local counter-

terms to the tree level action, in such a way that the full effective action at one-loop is

gauge-invariant. This kind of anomalies is referred to as ‘irrelevant’. The aforementioned

counterterms in 5d take the form
∫

A ∧ ∗J , where A is one of the vectors whose gauge

invariance is anomalous, and J is a gauge invariant 5d current, such that ∗J ∝ F ∧ F . It

is precisely the gauge invariance of this current which makes the anomaly irrelevant. If

we were to implement a similar mechanism to treat 6d anomalies, we would have ∗J ∝
A ∧ F ∧ F , which is manifestly non gauge invariant.

From this point of view, the non-gauge invariant Chern-Simons term which appears

in (3.60) has the same form as the counterterms discussed above. More precisely, the

corresponding gauge invariant current reads

∗ Ji = − 1

16
(NF

np)iJKF
I ∧ FK. (3.61)

Note that all scalar fields in (NF
np)iJK are neutral under the gauge group U(1)rank(G) after

spontaneous symmetry breaking to the Coulomb branch.

In summary, we are able to cast the Kaluza-Klein reduced action in canonical form,

even though some subtle points have to be stressed:

• N has to be promoted from a cubic polynomial to a homogeneous function NF of

degree three; the very special geometry constraint NF = 1 and the metric GIJ are

formulated in terms of this non-polynomial NF;

• the Chern-Simons term coming from Kaluza-Klein reduction and the Chern-Simons

term obtained through the canonical prescription CIJK = (NF)IJK share the same

gauge-invariant part, and differ only for non gauge-invariant terms; these can be

interpreted as local counterterms which make 5d anomalies irrelevant.

Since counterterms are completely specified by the classical data of the model, all infor-

mation about the effective 5d action is encoded in the polynomial part of NF and the

corresponding gauge-invariant Chern-Simons terms.
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3.5 Higher order curvature corrections

As we have seen in subsection 3.1, anomaly cancellation requires the introduction of a

higher curvature term in the 6d action,

Ŝ
(6)
R2 = −1

4

∫

M6

Ωαβa
αB̂β ∧ tr R̂ ∧ R̂ . (3.62)

Furthermore, local Lorentz transformations act non-trivially on the two-forms B̂α, in such

a way that the corresponding field strength Ĝα receives a gravitational contribution. Even

if we are not going to perform the dimensional reduction of the complete, higher-derivative

action, we can make general remarks about some interesting feature of the resulting 5d

action.

First of all, as stated in subsection 3.2, inclusion of gravitational contributions does

not interfere with the possibility to get rid of 5d two-forms Bα in favour of vectors Aα.

Indeed, gravitational terms modify the action in such a way that F β in

∆S(5)F = −1

2

∫

M5

ΩαβdB
α ∧ F β (3.63)

is replaced by a more complicated expression, which is nonetheless exact. ∆S(5)F is still

a total derivative, and the elimination of Bα can proceed along the same line as in the

two-derivative case.

Secondly, it can be verified that all possible non-gauge invariant terms in the final 5d

action are proportional to

Ωαβa
αaβ or Ωαβa

αbβ or Ωαβb
αbβ . (3.64)

This observation will be relevant for the discussion of F-theory lift, in section 5.

Finally, let us present one particular higher curvature contribution to the 5d action,

which will play a prominent role in the matching with M-theory on a Calabi-Yau threefold.

It is the ARR term coming from dimensional reduction of the B̂R̂R̂ 6d term written above.

In order to extract this term from the total 5d action, we can effectively set A0 to zero and

treat r as a constant:10

R̂ab = Rab + . . .

R̂a5 = 0 + . . . ,

where a, b,= 0, . . . , 4 are 5d flat spacetime indices, and ‘5’ refers to the compact direction.

As a consequence, we have

tr R̂ ∧ R̂ = trR∧R+ . . . . (3.65)

A first contribution to the term we are looking for is then given by

1

4

∫

M5

Ωαβa
αAβ ∧ trR∧R , (3.66)

10The Weyl rescaling g̃µν = r−2/3gµν has no effect on the leading, moduli-independent terms in the

expression of the curvature two-form.
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in which the change of sign comes from the Ansatz (3.31). Note however that an addition

contribution arises when ∆S(5)F is added in order to eliminate tensors from the 5d action,

as can be seen recalling the definition of Gα (3.35):

− 1

2

∫

M5

ΩαβdB
α∧F β ⊃ +

1

4

∫

M5

Ωαβa
αωgrav

CS ∧F β =
1

4

∫

M5

Ωαβa
αAβ∧trR∧R . (3.67)

In summary, we find the 5d higher curvature term

S
(5)F
ARR =

1

2

∫

M5

Ωαβa
αAβ ∧ trR∧R . (3.68)

We conclude this subsection describing the effect of higher curvature terms on the

canonical form of 5d supergravity. As done in [48], superconformal techniques can be used

to construct the 5d supersymmetric completion of the ARR term. In this formalism, the

supersymmetry algebra closes off-shell, at the expense of introducing auxiliary fields in the

gravity, vector and hypermultiplets. The scalar manifold associated to vector multiplets is

still described by constrained coordinates MI . However, the constraint is no longer

1

3!
CIJKM

IMJMK = 1 (3.69)

but gets corrected by terms proportional to the constants c2I appearing in front of AI ∧
trR∧R in the higher-derivative Lagrangian [49]:

1

3!
CIJKM

IMJMK = 1− 1

72
c2I

(

DMI + vµνF I
µν

)

, (3.70)

where D, vµν are the auxiliary bosonic fields in the gravity multiplet. It is possible to

integrate them out iteratively in a small c2I expansion; the result reads schematically

CM3 = 1 + cF 2.

4 M-theory on a Calabi-Yau threefold

In this section we recall the dimensional reduction of M-theory on a Calabi-Yau threefold

and adapt it to the case of elliptic fibrations with resolved singularities. The basics of the

Kaluza-Klein reduction restricted to the zero-modes are presented in subsection 4.1, with

more details summarized in appendix E. We also discuss the the specification to a resolved

elliptically fibred Calabi-Yau threefold. In subsection 4.2 we perform the dimensional

reduction of a higher curvature correction to 11d supergravity focusing on the terms needed

in the matching with the 5d higher curvature terms of section 3.5.

4.1 M-theory action on an elliptic Calabi-Yau threefold

In this subsection, we start with the unique two-derivative action for 11d supergravity [50],

whose purely bosonic part is

Ŝ(11) =

∫

M11

1

2
R̂∗̂1− 1

4
F̂4 ∧ ∗̂F̂4 −

1

12
Ĉ3 ∧ F̂4 ∧ F̂4 , (4.1)
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where F̂4 = dĈ3. In this subsection a hat will always denote 11d fields. Supergravity

compactified from eleven to five dimensions is discussed e.g. in [34].

Following the standard recipe for dimensional reduction on a Calabi-Yau threefold Y3,

we expand 11d fields on a basis of zero-modes of the appropriate differential operator on

the internal manifold. We refer the reader to appendix D for an account on our notations

for Calabi-Yau threefolds. The background metric has a line element

ds211 = g̃µν(x)dx
µdxν + 2gı̄j(y)dȳ

ı̄dyj (4.2)

where the external metric g̃µν describes a maximally symmetric spacetime (Minkowski, dS,

AdS) and a twiddle reminds us that a Weyl rescaling will be performed later. Fluctuations

of the internal metric gı̄j are zero-modes of the Lichnerowicz operator and are expanded

onto the (1, 1) and (1, 2) cohomologies,

δgī = −i(ωΛ)ī δv
Λ, δgij = (b̄κ̄)ij δz̄

κ̄, (4.3)

in which

(b̄κ̄)ij =
i

‖Ω‖2 (χ̄κ̄)ik̄l̄Ω
k̄l̄
j , (4.4)

where Ω is the holomorphic (3, 0)-form, and χκ is a basis of (2, 1)-forms on Y3. The

variations (4.3) are parameterized by the complex structure moduli zκ, and the Kähler

moduli vΛ which are obtained in the expansion of the Kähler form

J = vΛωΛ . (4.5)

The excitations of the three-form Ĉ3 are zero-modes of the internal Laplacian, and are

therefore expanded on a cohomology basis of the internal manifold,

Ĉ3 = ξKαK − ξ̃Kβ
K +AΛ ∧ ωΛ + C3 , (4.6)

where (αK , β
K) is a real symplectic basis of the middle cohomology of Y3. The zero-modes

(ξK , ξ̃K) are scalars, AΛ are vectors, and C3 is a three-form in five dimensions.

Let us now discuss how these fields fit into 5d N = 2 supersymmetry multiplets. As a

preliminary remark, recall that in five dimensions three-forms can be dualized into scalars,

so that we are allowed to trade C3 for a real scalar field Φ. The gravity multiplet consists

of g̃µν and of one (linear combination) of the AΛ vectors. The remaining vectors fit into

n
(5)
V = h1,1(Y3)− 1 (4.7)

vector multiplets, along with the Kähler moduli vΛ. It seems like there is a mismatch of

degrees of freedom, since we have h1,1(Y3) scalars. This seeming difficulty is overcome by

the following observation. We introduce the total volume of the Calabi-Yau threefold as

V =
1

3!

∫

Y3

J ∧ J ∧ J =
1

3!
VΛΣΘv

ΛvΣvΘ, (4.8)

where VΛΣΘ are the intersection numbers of the Calabi-Yau threefold introduced in (2.18).

Then, V actually sits in the universal hypermultiplet, leaving effectively h1,1(Y3)− 1 scalar

degrees of freedom in the vector sector.
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To discuss hypermultiplets we need to recall the decomposition of the third cohomology

into complex cohomologies,

H3(Y3) =
[

H1,2(Y3)⊕H2,1(Y3)
]

⊕
[

H0,3(Y3)⊕H3,0(Y3)
]

. (4.9)

Real scalars ξK , ξ̃K provide h1,2(Y3) + 1 complex degrees of freedom: h1,2(Y3) of these

correspond to the H1,2(Y3)⊕H2,1(Y3) component and combine with the complex structure

moduli zκ to give h1,2(Y3) hypermultiplets; the remaining complex degree of freedom lives in

H0,3(Y3)⊕H3,0(Y3) and combines with V ,Φ in the universal hypermultiplet. In conclusion,

we have found

n
(5)
H = h1,2(Y3) + 1 (4.10)

hypermultiplets, which will be collectively denoted by qu.

The dimensional reduction is carried out in detail in appendix E. Since the overall

volume sits in the universal hypermultiplet it is natural to define scalar fields

LΛ = V− 1

3 vΛ, (4.11)

which are the real scalars in the vector multiplets. They only parameterize h1,1(Y3) − 1

degrees of freedom, since due to their definition they are subject to the constraint

1

3!
VΛΣΘL

ΛLΣLΘ = 1 . (4.12)

We are naturally led to interpret LΛ as 5d very special coordinates, in term of which the

cubic potential reads

N =
1

3!
VΛΣΘL

ΛLΣLΘ. (4.13)

Some additional details of this 5d formalism have been already given in section 3.4.

Once the cubic potential N is known, the only missing ingredient to specify the model

is the quaternionic metric huv on the hypermultiplet scalar manifold: its expression in

terms of V ,Φ, ξK , ξ̃K , zκ can be found in appendix E. In summary, the reduced bosonic

action reads

S(5)M =

∫

M5

+
1

2
R ∗ 1− 1

2
GΛΣdL

Λ ∧ ∗dLΣ − huvdq
u ∧ ∗dqv (4.14)

− 1

2
GΛΣF

Λ ∧ ∗FΣ − 1

12
VΛΣΘA

Λ ∧ FΣ ∧ FΘ,

where, as expected,

GΛΣ =

[

− 1

2
∂LΛ∂LΣ logN

]

N=1

. (4.15)

When restricted to elliptic fibrations as discussed next, it will be this form of the 5d action

which can be matched to the circle reduced action of section 3.4.

Let us now specify this result to the elliptically fibred geometry introduced in subsec-

tion 2.2. We first split the index Λ into (0, α, i) and write

LΛ = (R,Lα, ξi) , AΛ = (A0, Aα, Ai) . (4.16)
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Combining this notation with the intersection numbers (2.19) of an elliptic fibration we get

N =
1

2
ηαβRL

αLβ +
1

2
ηαβK

αR2Lβ +
1

6
ηαβK

αKβR3

− 1

2
ηαβC

αCijL
βξiξj +

1

6
Vijkξ

iξjξk. (4.17)

As we will discuss in section 5 couplings of the form R2Lα in (4.17) are not compatible

with the 6d/5d lift. However, there is as simple field redefinition which allows us to get rid

of these R2Lα terms. More precisely, one introduces the shifted fields11

Ľα = Lα +
1

2
KαR , Ǎα = Aα +

1

2
KαA0, (4.18)

where the shift of the vectors is required by supersymmetry. Clearly, the new Ľα, and new

vectors can be obtained by expanding J and C3 in a new basis of two-forms

ω̌0 = ω0 −
1

2
Kαωα , ω̌α = ωα , ω̌i = ωi . (4.19)

In fact, this new basis is better suited to identify the vectors Ǎα as dualizable into 5d

tensors. The cubic potential in the new coordinates given by

NM =
1

2
ηαβRĽ

αĽβ +
1

24
ηαβK

αKβR3

− 1

2
ηαβC

αCijĽ
βξiξj +

1

4
ηαβC

αCijK
βRξiξj +

1

6
Vijkξ

iξjξk. (4.20)

Using this expression of N the Chern-Simons term takes the form

S
(5)M
CS =

∫

M5

− 1

4
ηαβA

0 ∧ F̌α ∧ F̌ β +
1

4
ηαβC

αCijǍ
α ∧ F i ∧ F j

− 1

48
ηαβK

αKβA0 ∧ F 0 ∧ F 0 − 1

8
ηαβC

αCijK
βA0 ∧ F i ∧ F j

− 1

12
VijkA

i ∧ F j ∧ F k, (4.21)

where F̌α is the usual field strength of the vectors Ǎα introduced in (4.18).

4.2 Higher-order curvature corrections

Several higher-derivative corrections to the 11d M-theory action (4.1) are known [52, 53].

In the following, we will focus on the mixed gauge-gravitational correction12

Ŝ
(11)
CR4 =

1

96

∫

M11

Ĉ3 ∧
[

tr R̂4 − 1

4
(tr R̂2)2

]

(4.22)

11This field redefinition is also crucial in the 4d/3d treatment of F-theory on Calabi-Yau fourfolds as

discussed in [32, 51].
12As discussed in section 3.1, factors of (2π)−1 are understood in R̂. Moreover, the relative normalization

of this higher-derivative term and the two-derivative action (4.1) depends on the value of the 11d gravita-

tional constant. It is suppressed everywhere, adopting a convention which is best suited to make contact

with the 6d Green-Schwarz term, in which the 6d gravitational constant has been equally suppressed.
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because this terms allows us to make direct contact to the higher-derivative corrections

studied in subsection 3.5.

Rather than performing a complete dimensional reduction of (4.22), we will extract the

relevant terms and we will systematically neglect all contributions which involve gradients

of the Kähler and complex structure moduli. This means that we can effectively neglect

fluctuations and compute curvature invariants on the background, which is the product

space M11 = M5 × Y3. As a result, we have simply13

R̂ = R+RY3
, (4.23)

whereRY3
is the curvature two-form on the Calabi-Yau threefold, andR is the 5d curvature

two-form. A straightforward computation gives then

(tr R̂2)2 = 2trR2 ∧ trR2
Y3

+ . . . , tr R̂4 = 0 + . . . , (4.24)

where the dots are a reminder of the moduli-dependent, neglected terms. It is useful to

recall the definition of the first Pontryagin class of the Calabi-Yau threefold Y3,

p1(Y3) = −1

2
trR2

Y3
, (4.25)

and its relation with the second Chern class,

p1(Y3) = −2c2(Y3) . (4.26)

Combining these equations with the three-form expansion (4.6), we can deduce that the

11d correction (4.22) yields, among other terms, the following 5d correction [35]

S
(5)M
ARR =

1

48
čΛ

∫

M5

ǍΛ ∧ trR2, (4.27)

where we have defined

čΛ =

∫

Y3

ω̌Λ ∧ c2(Y3) . (4.28)

To make further progress it is crucial to specialize to the case of an elliptically fibred

Calabi-Yau threefold Y3. Let us discuss a smooth fibration first. The second Chern class

of the total space can then be expressed in term of Chern classes on the base space B2, by

means of [55]

c2(Y3) = c2(B2) + 11c21(B2) + 12ω0 ∧ c1(B2) . (4.29)

Making use of (2.12) we get
∫

Y3

ω0 ∧ c2(Y3) =
∫

Y3

ω0 ∧
[

c2(B2)− c21(B2)
]

=

∫

B2

c2(B2)− c21(B2) . (4.30)

This equation can be evaluated further by using the explicit expressions of the integrals of

c2 and c21 on B2 given in (2.14) as
∫

Y3

ω0 ∧ c2(Y3) = 2h1,1(B2)− 8 . (4.31)

13Just like in the reduction from six to five dimensions, performing the Weyl rescaling on the 5d metric

does not affect the moduli-independent terms in the expression of the curvature two-form.
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Furthermore, we can also evaluate the second Chern class on the basis ωα as

∫

Y3

ωα ∧ c2(Y3) =
∫

Y3

ωα ∧
[

c2(B2) + 11c21(B2) + 12ω0 ∧ c1(B2)
]

. (4.32)

Since the first two terms have all their indices on the base, only the last term provides a

non-vanishing contribution. Using c1(B2) = −Kαωα, as introduced in subsection 2.2, we

compute

čα =

∫

Y3

ω̌α ∧ c2(Y3) = −12ηαβK
β , (4.33)

where we have used ω̌α = ωα. In order to obtain č0 from (4.31), (4.32) we have to recall

the definition (4.19) of ω̌0, and find

č0 = 52− 4h1,1(B2) . (4.34)

So far we have worked on a smooth elliptic fibration. We now include the effects of

singularities and their resolution. Clearly, the presence of resolved singularities induces

new couplings

či =

∫

Ỹ3

ω̌i ∧ c2(Y3) . (4.35)

One expects that this expression evaluated for a given gauge group has a group theoretic

interpretation. Giving its precise form is beyond the scope of this work. However, let us

note that also the other couplings č0 and čα could be corrected by the inclusion of blow-up

divisors. Indeed, a general shift of c2(Ỹ3) with the blow-up divisors induces

∫

Ỹ3

ω0 ∧∆c2(Ỹ3) = 0 ,

∫

Ỹ3

ωα ∧∆c2(Ỹ3) = Cij

∫

Ỹ3

ωα ∧ ωi ∧ ωj , (4.36)

where we have used the vanishing of the intersections (2.19) with only one ωi and two ωα,

and ωi∧ω0 = 0. Note that a shift in č0 could still be induced due to the basis change (4.19)

inducing a term proportional to čα. We claim that also čα is uncorrected, and thus č0 and

čα remain unchanged. Despite that we do not have a general proof, we have checked for

many examples that (4.33) and (4.34) are still true:

čα = −12ηαβK
β , č0 = 52− 4h1,1(B2) . (4.37)

As we will show later, the fact that čα is not changed is consistent with the F-theory lift.

The fact that č0 does not change in this case follows from (4.36).

5 F-theory lift and one-loop corrections

In this section we compare the result of the circle reduction of the general 6d (1, 0) super-

gravity theory with the M-theory reduction on an elliptically fibred Calabi-Yau threefold.

We identify terms which appear at classical level on both sides and can be immediately

matched as discussed in subsection 5.1. We also comment on the matching of certain

higher-derivative terms. It is crucial insight that both reductions contain additional terms
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which have no immediate analogue in the dual reduction. We suggest in subsection 5.2

that these terms arise at the quantum level and encode the same information about the

underlying fully quantized theory. In particular, we argue that certain intersections on the

M-theory side correspond in the 6d/5d reduction on a circle to one-loop corrections with

charged matter fermions and Kaluza-Klein modes of all 6d chiral fields running in the loop.

In conclusion this allows us to extract all data from M-theory required to specify the 6d

action including the complete information about 6d anomalies.

5.1 Classical action in the F-theory lift

In order to extract information about F-theory in six dimensions, we have to compare the

5d action coming from Kaluza-Klein reduction from six dimensions with the 5d action of

M-theory on an elliptically fibred Calabi-Yau threefold. Our strategy will be similar to the

4d/3d treatment of F-theory on Calabi-Yau fourfolds presented in [32].

As a first step, we present the match of the number of multiplets in five dimensions

in order to give the number of 6d multiplets in terms of the topological data of the F-

theory compactification manifold Y3. This was already implicit in our choice of indices in

sections 3 and 4. More precisely, for the α-index we find that the number of 6d tensors is

given by

nT + 1 = h1,1(B2) , (5.1)

where we recall that there are nT 6d tensor multiplets and 1 tensor in the gravity multiplet.

In the F-theory reduction the tensors arise from the reduction of the Type IIB RR four-

form into a base of H2(B2). Since A
i parameterize the Coulomb branch of the 6d/5d gauge

theory, one finds

rank(G) = h1,1(Ỹ3)− h1,1(B2)− 1 , (5.2)

which counts the number of independent blow-up divisors induced to resolve the singular

elliptic fibration to obtain Ỹ3. Note that for ADE gauge groups G the number of 6d vector

multiplets is then given by

nV = (cG + 1)rank(G) , (5.3)

where cG is the dual Coxeter number of G. In F-theory these vectors arise from the seven-

brane gauge potentials. Finally, one can match the number of hypermultiplets, simply by

noting that a 6d hypermultiplet becomes a 5d hypermultiplet in the circle reduction. This

leads to the following number of neutral 6d multiplets

nneutralH = h2,1(Ỹ3) + 1 . (5.4)

In F-theory on Y3 these neutral hypermultiplets contain the complex deformations of the

seven-branes and their Wilson line moduli.14 The universal hypermultiplet in the F-theory

reduction contains as one complex scalar the volume of the base together with the scalar

of the Type IIB RR four-form expanded in the volume form of B2. The remaining two real

scalar degrees of freedom in the universal hypermultiplet arise in the expansion of the Type

IIB RR and NSNS two-forms into the universal two-form mode present for any B2. The

14See ref. [56], for a detailed matching with the orientifold picture with D7-branes.
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proof of the match (5.1)–(5.4) follows from the match of the effective theories presented in

the following.

In order to systematically approach the match of the effective action, we would first

like to identify the terms which are classical on both sides. This is not hard for the

6d/5d reduction. More complicated is the distinction of the various terms in the M-theory

potential. We will address the two sides in turn.

In the 6d/5d reduction performed in section 3 we found that there is a potential NF

given in (3.54) which encodes the kinetic terms of the gauge coupling functions and the

Chern-Simons terms in the 5d reduced action. It is crucial to recall the natural decompo-

sition of NF in (3.54) into a polynomial and a non-polynomial part:

NF
p = ΩαβM

0MαMβ − 4Ωαβb
αCijM

βM iM j ,

NF
np = 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
. (5.5)

The terms in NF
p are cubic and hence encode a standard N = 2 5d action. In contrast NF

np

is only homogeneous of degree three, but non-polynomial. As argued in section 3.4 it can

be interpreted as a counterterm of the 5d one-loop effective action. Its 6d origin is related

to the classical lack of gauge invariance of the 6d action. In fact, it vanishes precisely when

Ωαβb
αbβ = 0 . (5.6)

This corresponds to the case where the 6d action is gauge invariant as inferred from (3.24),

and is consistent with the absence of 6d anomalies as discussed in appendix B.

Let us now turn to the M-theory reduction. Here the identification of the classical

terms is more subtle. We have worked on the resolved space with finite size elliptic fibre.

As discussed in the introductory section 2, the F-theory limit corresponds to both shrinking

the blow-up divisors as well as the size of the elliptic fibre. One expects that this selects

classical terms in the potential NM of equation (4.20). It turns out to be useful to introduce

an ǫ-scaling to distinguish various terms in NM. For the volumes v0, vα, vi appearing in

the Kähler form J = vΛωΛ, we make the formal replacements

v0 7→ ǫv0, vα 7→ ǫ−1/2vα, vi 7→ ǫ1/4vi. (5.7)

Note that these scalings satisfy some important consistency checks. Firstly, the size of the

elliptic fibre v0 and the blow-up fibres vi vanish for ǫ → 0. Secondly, the total volume V
of Y3 is finite, which is required by the fact that V sits in a 5d hypermultiplet. Translated

into the variables R,Lα, ξi one finds the replacements

R 7→ ǫR , Lα 7→ ǫ−1/2Lα, ξi 7→ ǫ1/4ξi. (5.8)

Since the redefined scalars Ľα contain Lα linearly, they obey the same rescaling as Lα. In

the limit ǫ → 0 two terms in (4.20) survive which we collect in NM
class. We thus divide the

terms in (4.20) into

NM
class =

1

2
ηαβRĽ

αĽβ − 1

2
ηαβC

αCijĽ
βξiξj , (5.9)

NM
loop =

1

24
ηαβK

αKβR3 +
1

4
ηαβC

αCijK
βRξiξj +

1

6
Vijkξ

iξjξk.
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It is now straightforward to match NM
class with NF

p given in (5.5). Note that the second

term NM
loop in (5.9) will be later reinterpreted as a loop correction, which gives another

justification of the split induced by the F-theory limit (5.8).

Let us first start by matching the fields on the 6d/5d and the M-theory side. In order

to do that we have to fix the normalization of the fields, which cannot be uniquely extracted

by comparing (5.5) and (5.9). Supersymmetry relates the normalization of the real scalars

and vectors in the vector multiplets. Hence, given a fixed normalization of the vectors

the complete match of the scalar components can be inferred. On the one hand, in the

6d/5d compactification the vectors are normalized by the Green-Schwarz term (3.16), and

the fixed definition of the anomaly coefficients bα, aα. On the other hand, in M-theory the

normalization of the vectors is fixed by a choice of integral basis in the expansion (4.6) of

Ĉ3. Appropriately rescaling the 6d vectors to also adopt to an integral basis, one can infer

the map

M0 = 2R , Mα =
1

2
Ľα, M i =

1

2
ξi, (5.10)

while the constants are identified as

Ωαβ = ηαβ , bα = Cα. (5.11)

Note that our result are consistent with the findings of [22–26].

So far we have only discussed the vector and gravity sectors of the M-theory to F-

theory matching. Clearly, both the 6d/5d reduction as well as the M-theory reduction

contain a hypermultiplet sector. As discussed in section 3.3, we found that in the dimen-

sional reduction from six to five dimensions the charged hypermultiplets are massive in

the Coulomb branch. Therefore, they are not visible in the effective action of the massless

modes of M-theory. We will include them in the study of loop corrections in the next sub-

sections. However, the neutral hypermultiplets are massless and their moduli space could

be matched straightforwardly also leading to (5.4).

Let us close this subsection by also comparing the classical parts of the higher curvature

terms dimensionally reduced in sections 3.5 and 4.2. We have focussed on the terms

involving the 5d vectors and two 5d curvature forms R. In (3.66) and (4.27) we found that

such couplings are given by

S
(5)F
ARR = −1

2
Ωαβa

β

∫

M5

Aα ∧ trR2, S
(5)M
ARR =

1

48
čΛ

∫

M5

ǍΛ ∧ trR2. (5.12)

Recall that the coefficients čΛ have been determined in (4.37), and (4.35). Since in the

6d/5d reduction only the Aα appears, one suspects that, similar to the F-theory limit

discussed above, that these are the only classical terms in the reduction. Using čα =

−12ηαβK
β , as given in (4.37), we can apply the identification (5.11) to infer

aα = Kα. (5.13)

Note that this is precisely, the identification dictated by anomaly cancellation conditions as

found in [22–26]. On the M-theory side we also found the non-vanishing couplings involving
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či, č0. Similar to the split found for NM we believe that these couplings are induced by

one-loop corrections on the F-theory side. The remainder of this paper is devoted to the

discussion of such one-loop quantum corrections.

5.2 Completing the duality using one-loop corrections

As we have seen in the previous subsection, only some terms of the 5d cubic potential NM

of M-theory compactified on a Calabi-Yau threefold admit a straightforward dual in the

potential NF arising from circle compactification of 6d supergravity. In this subsection,

we will provide a framework for the interpretation of the remaining terms in NM, which

we record here again for the ease of the reader,

NM
loop =

1

24
ηαβK

αKβR3 +
1

4
ηαβC

αCijK
βRξiξj +

1

6
Vijkξ

iξjξk. (5.14)

Recall that 5d N = 2 supersymmetry ensures that exactly the same amount of informa-

tion is contained in the cubic potential N and in the Chern-Simons couplings of vectors.

The following discussion is conveniently formulated in terms of the latter. As already

anticipated, we relate these couplings to one-loop effects in the 6d/5d dual description.

In order to clarify the precise meaning of this statement, let us analyse in more detail

the origin of Chern-Simons couplings in the effective 5d theory arising from 6d supergravity

on a circle. A possible source of this kind of interactions is of course provided by dimen-

sional reduction of the Green-Schwarz term in the classical 6d action. These interactions

are precisely the ones which we have considered in the previous subsection. However, ad-

ditional contributions arise, which are understood in the framework of effective quantum

field theory. In fact, from a quantum perspective, the 5d effective action resulting from

compactification on a circle of 6d supergravity encodes all information about the low-energy

dynamics, including interactions induced by massive fields which have to be integrated out

when we restrict our attention to the lightest states of the theory.

In the case under examination, we identify two different families of massive fields which

can alter 5d effective couplings:

• Kaluza-Klein modes. All 6d fields can be schematically expanded into Kaluza-Klein

modes as

ϕ̂(x, y) =
∑

n∈Z

ϕ(n)(x)einy. (5.15)

The modes ϕ(n) with non-zero n appear in the 5d theory as massive fields, with mass

inversely proportional to the radius r of the compactification circle,15 m(n) ∼ |n|/r.
As argued in the introductory section 2.1, zero-modes only are sufficient to fix all

data needed to specify the 6d model we are compactifying, and this is why we have

systematically neglected excited modes so far. Nonetheless, Kaluza-Klein modes can

run in 5d loop diagrams.

15This holds before possible Weyl rescalings are taken into account.
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• Fields which are given a mass by gauge symmetry breaking. Recall that F-/M-theory

duality can be applied in a geometric regime only if the 5d gauge symmetry is spon-

taneously broken down to the Coulomb phase and the compactification threefold is

resolved. This amounts to giving non-vanishing VEVs to some scalars in the vector

multiplets. As described in subsection 3.3, these VEVs provide mass terms for the

W-bosons and the scalars in charged hypermultiplets. Supersymmetry implies that

their fermionic partners, gaugini and hyperini, get massive as well. We claim that

these fields can run in 5d loops in such a way as to induce effective Chern-Simons

couplings.

We are able to provide a geometric picture for these families in the F-theory set-up.

As recalled in the previous subsection, F-theory is conveniently analysed in a phase with

finite size of the elliptic fibre and of the exceptional divisors introduced by resolution of

singularities. However, F-/M-theory duality holds only in the limit in which these cycles

are shrunk to zero size. In the M-theory picture, M2-branes can wrap these shrinking

submanifolds. By means of the chain of dualities described in section 2.1, it is possible to

identify the states of M2-branes wrapping the elliptic fibre as Kaluza-Klein modes in the

6d/5d picture. Furthermore, 5d Higgsing to the Coulomb branch is dual to the blowing-up

of singularities provided by exceptional divisors. M2-branes wrapping such divisors provide

the degrees of freedom of both W-bosons and charged hypermultiplets, whose mass vanishes

as the divisor is blown-down.

We now turn to a more detailed description of the mechanism responsible for Chern-

Simons couplings in the effective 5d theory. We follow closely reference [37]. A term of

the form

A ∧ F ∧ F (5.16)

in the Lagrangian corresponds to an amplitude with three external vectors. If these carry

momenta p, q,−p− q and polarizations α, β, γ, the amplitude will be proportional to

ǫαβγµνpµqν . (5.17)

Suppose we compute a three-vector amplitude in the 5d theory with massive fields of the

kind listed above. General arguments imply that only one-loop diagrams provide correc-

tions to the classical Chern-Simons interactions. It is crucial to observe that the structure

of the Chern-Simons coupling we are interested in can be extracted unambiguously by look-

ing at the parity violating terms with quadratic dependence on the external momenta p, q.

In particular, a Chern-Simons effective coupling can arise only if a totally antisymmetric

tensor ǫαβγµν is found in the computation of the three-vector amplitude.

We argue that this tensorial structure can be generated if massive modes of 6d chiral

fields run in the loop. First of all, vertices between fermions and vectors are able to give

this kind of parity violating term. From a Feynman diagram perspective, this can be

seen as follows. In the computation of a one-loop amplitude with fermions running in the

loop, the trace of a string of 5d gamma matrices is involved. However, 5d Clifford algebra
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implies, e.g.

tr ΓaΓbΓcΓdΓe = 4ǫabcde ,

tr ΓaΓbΓcΓdΓeΓfΓg = 4ǫabcdeηfg + other terms . (5.18)

Indeed, as explained in [37], whenever a 5d fermion ψ runs in the loop, with standard

propagator and coupling to vectors of the form Aµψ̄Γµψ, a contribution to the effective

Chern-Simons coupling is found. Second of all, we claim that massive Kaluza-Klein modes

of tensors can contribute to the parity violating part of the loop amplitude. On very general

grounds, an electric coupling to the graviphoton A0 is expected for all excited Kaluza-Klein

modes. Moreover, the epsilon tensor can enter the diagram by means of a term of the form

B ∧ dB in the 5d effective action.

We are now in a position to state our claim about the quantum origin of terms (5.14):

they are generated by 5d one-loop diagrams with three external vectors and massive chiral

modes running in the loop. In order for this mechanism to work, we have to show that

the fields in the three massive families listed above interact with 5d vectors in the correct

way such that the result of [37] can be applied. A thorough derivation of (5.14) from

one-loop calculation in 5d dimensions is beyond the scope of this paper, and is left for

further investigation in future work. Nonetheless, we can give a schematic illustration of

the source of the relevant couplings and mass terms for the massive fermions in the two

families listed above. Massive modes of tensors would deserve further discussion, and the

authors hope to come back soon to this subject.

5.3 Origin of the one-loop Chern-Simons couplings

We start discussing fermionic Kaluza-Klein modes. Let ψ̂(±) denote a general 6d spinor

of given chirality. It is an 8-component spinor with complex entries, but the number of

degrees of freedom is halved by restriction to definite chirality. This counting agrees with

the number of degrees of freedom of the (off-shell) 5d reduced spinor ψ, which can be

represented as a 4-component vector with complex entries.

We can be more explicit. A representation of 6d gamma matrices Γ̂â, {Γ̂â, Γ̂b̂} = 2η̂âb̂,

â, b̂ = 0, 1, . . . , 5 can be found, such that

Γ̂a = σ1 ⊗ Γa , Γ̂5 = σ2 ⊗ I4 . (5.19)

In these equations, σi are the usual Pauli matrices, while Γa, {Γa,Γb} = 2ηab, a, b =

0, 1, . . . , 4 are 5d gamma matrices, satisfying

iΓ0Γ1Γ2Γ3Γ4 = I4 . (5.20)

As a result, the 6d chirality matrix is simply given by

Γ̂ = Γ̂0Γ̂1Γ̂2Γ̂3Γ̂4Γ̂5 = σ3 ⊗ I4 . (5.21)

We can thus write ψ̂(±) in the factorized form

ψ̂(±) = ι(±) ⊗ ψ , (5.22)

where ι(±) is a unit vector in C
2, such that σ3ι(±) = ±ι(±), and ψ is a 5d spinor.
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Using these conventions, dimensional reduction of the 6d standard kinetic term for

ψ̂(±) yields
16

∫

d6x̂ ˆ̄ψ(±)Γ̂
µ̂∂̂µ̂ψ̂(±) = 2π

∑

n∈Z

∫

d5x r

{

ψ̄(n)Γµ∂µψ
(n) ∓ n

r
ψ̄(n)ψ(n) + inA0

µψ̄
(n)Γµψ(n)

}

.

(5.23)

On the left hand side, a hat denotes 6d gamma matrices, indices, and coordinates. The

modes ψ(n) of the fermion ψ are defined as in (5.15). On the right hand side, we find a

result consistent with the general features of Kaluza-Klein models on a circle. In fact, the

n-th excited Kaluza-Klein mode has a mass proportional to n and is electrically charged

with respect to the vector A0. The charge is proportional to n as well.

We can now turn to fermions in the vector multiplets. Let λ̂ be a 6d spinor in the adjoint

representation of the simple gauge group G. Its gauge-covariant derivative is given by

D̂λ̂ = dλ̂+ [Â, λ̂] , (5.24)

where Â are the non-Abelian 6d vectors introduced in section 3.1. In order to keep the

discussion as simple as possible, we restrict our attention to Kaluza-Klein zero-modes only

in this paragraph. As a consequence, dimensional reduction of the 6d kinetic term for λ̂ is

of the form
∫

d6x̂tr
(ˆ̄λΓ̂µ̂D̂µ̂λ̂

)

= 2π

∫

d5x r

{

tr
(

λ̄ΓµDµλ
)

+
i

r
tr
(

λ̄[ζ, λ]
)

}

. (5.25)

On the right hand side, Dλ = dλ + [A, λ] is the 5d gauge-covariant derivative, while

ζ is the adjoint scalar introduced in the Ansatz (3.28). Note that the sign of the last

term is determined by the requirement of left-handedness for the gaugini, and that no

A0-coupling emerges for the Kaluza-Klein zero-modes precisely thanks to the shift of 5d

vectors described by (3.28). When the gauge symmetry is spontaneously broken to the

Coulomb branch, the scalars ζ acquire a non-vanishing VEV orthogonal to the Cartan

subalgebra. Furthermore, commutators [A, λ], [ζ, λ] vanish for the components of λ lying

in this subalgebra. However, they are non-trivial for the components orthogonal to it.

These components receive a mass from the second term in (5.25), while the first term in

the same equation provides electric coupling to the Abelian vectors Ai associated to the

generators of the Cartan subalgebra. We can thus see that Higgsed gaugini have the correct

coupling to generate the effective Chern-Simons interaction under examination.

A similar argument can be used to conclude that charged hyperini can run in the loop

and furnish a non-vanishing contribution. More precisely, dimensional reduction of their

kinetic term gives
∫

d6x̂tr
[

hUV
ˆ̄ψU Γ̂µ̂(D̂µ̂ψ̂)

V
]

= 2π

∫

d5x r

{

hUV ψ̄
UΓµ(Dµ̂ψ)

V − i

r
hUV ψ̄

UζI(TR

I ψ)
V

}

.

In this expression, the 6d covariant derivative of the hyperino is defined as

(D̂µ̂ψ̂)
U = ∇̂µ̂ψ̂

U + ÂI
µ̂

(

TR

I ψ̂
)U
, (5.26)

16In order to keep the argument simple, we work in a flat background and we do not Weyl rescale the 5d

metric.
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and an analogous expression is understood for the 5d covariant derivative on the right hand

side. Note that the sign of the last term has changed with respect to the gaugino reduction,

because hyperini are right-handed. Upon spontaneous gauge symmetry breaking to the

Coulomb branch, this term provides a mass for charged hyperini, while neutral hyperini

are unaffected and remain in the massless 5d spectrum.

The reader might wonder whether there are massive fermions which are electrically

coupled to vectors Aα. Our analysis suggests that this is not the case. A thorough expla-

nation would require dimensional reduction of the full 6d pseudo-action, including fermionic

terms. Such a pseudo-action can be found e.g. in [7–9]. However, it is crucial to recall that

5d vectors Aα are obtained by dimensional reduction of 6d two-forms B̂α. Such two-forms

enter the 6d action in a qualitatively different way as 6d vectors. Geometrically, they are

not connection forms, and cannot be used to build 6d covariant derivatives. Therefore, the

reduced 5d action lacks electric couplings of vectors Aα to fermions. Nonetheless, different

couplings are possible, which can be referred to as magnetic. They read schematically

mαψ̄Γ
µνFα

µνψ where ψ stands for a 5d fermion. Even though these interactions may play

a role in the full one-loop 5d effective action, in the absence of electric vertices they are

not able to generate contributions to the Chern-Simons couplings.

It is interesting to point out the connection between this argument and the shift of

vectors performed in (4.18). As explained in section 4.1, this shift is crucial to identify prop-

erly 5d vectors coming from 6d two-forms. As we can see by comparing (4.17) and (4.20),

the field redefinition (4.18) is such that in the cubic potential NM the term R2Lα gets

replaced by the term Rξiξj . As argued in the previous paragraph, it would be impossible

to generate the former term using 5d fermion loops, while in the following we will show

how the latter term can emerge from such Feynman diagrams.

After these general remarks about massive fermions in the 5d theory, let us discuss in

more detail each term in (5.14). The first term corresponds to a Chern-Simons coupling

of the form A0 ∧ F 0 ∧ F 0. As we argued above, Kaluza-Klein modes are the fields which

are electrically charged under A0. We therefore claim that this 5d interaction is generated

by diagrams in which Kaluza-Klein excited modes coming from reduction of all chiral 6d

fields can run in the loops. In order to get a finite result, the sum over modes has to be

suitably regularized, e.g. by means of the Riemann zeta function. We expect the outcome

of the computation to be independent of the specific regularization scheme chosen, since it

describes a physical observable. It is intriguing to recall at this point the interplay between

the 6d anomaly coefficients and the numbers of multiplets in 6d the theory. In particular,

we can consider equations (B.4) and (B.6), which we record here again,

nH − nV = 273− 29nT , Ωαβa
αaβ = 9− nT . (5.27)

These relations can be combined with the identification Kα = aα found in the previous

subsection and strongly suggest that the prefactor of the first term in (5.14) can be ex-

tracted from 5d loop computations involving all species of chiral fields of the theory. Each

species gives a contribution proportional to number of the corresponding 5d multiplets.

Note that the relation between 5d and 6d multiplets has been worked out in section 3.4,

see (3.51), (3.52).
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The next term in (5.14) corresponds to a Chern-Simons vertex of the form A0∧F i∧F j .

In order to reproduce this effective coupling using 5d one-loop diagrams, we need fermions

which are electrically coupled both to the Kaluza-Klein vector A0 and to the Abelian

vectors Ai in the Coulomb branch. Our discussion above singles out Kaluza-Klein modes

of Higgsed gaugini and charged hyperini as natural candidates to run in the loop.

Finally, we focus our attention on the last term in (5.14), which gives rise to a Chern-

Simons term Ai ∧ F j ∧ F k. We identify the source of this coupling in the Higgsed gaugini

and the massive charged hyperini. The one-loop effect due to these fermions has been com-

puted [38] for a 5d N = 2 supersymmetric gauge theory decoupled from gravity. The full

result for the purely gauge part of the 5d cubic potential N , including quantum corrections,

reads

N gauge =
1

2
m0Cijξ

iξj+
1

6
cclassdijkξ

iξjξk+
1

12

(

∑

R

|R·ξ|3−
∑

f

∑

w∈Wf

|w·ξ+mf |3
)

. (5.28)

In this equation ξ is a vector whose component are the scalar fields ξi associated to vectors

Ai. In ξ · R it is contracted with a root of the simple gauge group G, while in ξ · w it

contracts with a weight of a the representation in which the charged fermions transform.

The first sum in (5.28) runs over all the roots of G, and arises from integrating out the

Higgsed gaugini, i.e. the fermionic partners of massive W-bosons. The second sum in (5.28)

runs over all massive charged fermions f and all weights in Wf , i.e. all elements of the

set of weights of the representation in which the fermion f transforms. mf is the classical

mass of the fermion f . Finally, the group theoretical invariants Cij and dijk are given by

Cij = trTiTj , dijk =
1

2
trTi(TjTk + TkTj) . (5.29)

To apply the formula (5.28) to our 6d/5d compactification, we recall the classical

expression (5.5) for NF. This leads to the identification

m0 = −8MαbβΩαβ , cclass = 0 , (5.30)

where we have used the fact that upon decoupling gravity the Mα are simply parameters.

Following the discussion of section 5.1 this matches the classical M-theory result. A careful

comparison of the loop terms in (5.28) and the intersection numbers Vijk of the resolved

Calabi-Yau threefold Ỹ3 would require the introduction of new technical tools and lies out

of the main line of development of this section. However, let us stress that the reader can

find a detailed discussion of this point in [33], appendix A: as explained there, the match

can be performed successfully in many examples of Calabi-Yau threefolds with SU(N)

singularities. The classical mass mf is zero in this case.

In summary, we are confident that all terms in the M-theory expression (5.14) arise

from one-loop quantum corrections in the 6d/5d dual picture. Moreover, it is tempting

to extend this analysis to some higher-derivative couplings which appear naturally in the

M-theory reduction on a Calabi-Yau threefold, but seem to be absent in the reduction of

6d supergravity on a circle. Since we have not addressed the problem of the full reduction
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of higher-derivative actions, we limit ourselves to an example. In section 4.2 we have

seen that M-theory higher curvature correction induce a term (4.27) which has a non-

vanishing contribution involving the Kaluza-Klein vector A0. It is proportional to the

shifted component č0 of the second Chern class of the Calabi-Yau threefold c2(Y3) and

reads schematically

A0 ∧ trR∧R , (5.31)

and corresponds to an amplitude with one Kaluza-Klein vector A0 and two 5d gravi-

tons. It is impossible to extract such a coupling from the higher-curvature Green-Schwarz

term (3.16) in the 6d pseudo-action. Hence, we are led to claim that on the 6d/5d side this

interaction emerges as quantum effect, in a similar fashion as the A0 ∧ F 0 ∧ F 0 coupling

analysed above. In particular, since the tensorial structure of this vertex involves the to-

tally antisymmetric symbol ǫµνρσλ, we can apply the same argument used above and infer

that the only non-vanishing contributions to this coupling are due to massive modes from

the reduction of 6d chiral fields. Given the universality of gravitational interactions and

Kaluza-Klein couplings involving A0, it is natural to expect that all species contribute to

this amplitude. A more systematic treatment of this issue is not possible in the context of

the present paper, and the authors regard it as possible subject for further research.

6 Conclusions

In this paper we derived the 6d (1, 0) effective action of F-theory compactified on a singular

elliptically fibred Calabi-Yau manifold Y3. Our strategy was to use an M-theory compact-

ification on the resolved space Ỹ3, and compare the effective 5d action with a general 6d

action reduced on a circle. We included an extensive discussion of 5d one-loop corrections

to the Chern-Simons term and their interplay with the 6d anomaly conditions.

In the first part of this work we performed the circle reduction of a general 6d (1, 0)

supergravity theory with a non-Abelian gauge group G. We performed the Kaluza-Klein

reduction in the non-Abelian phase and later discussed the modifications when the effective

5d theory is considered on the Coulomb branch. We argued that the charged hypermul-

tiplets and the vector multiplets containing the W-bosons are massive in this phase and

need to be integrated out when comparing with an M-theory reduction on Ỹ3. Moreover,

we presented a careful treatment of the self-dual and anti-self-dual tensors present in a

general 6d theory. While we used a 6d pseudo-action, which has to be accompanied by

the self-duality conditions on the level of the equations of motion, we showed in detail

that in the Kaluza-Klein reduced theory the self-duality can be imposed on the level of the

action now relating 5d vectors and tensors. However, due to the fact that the 6d theory

requires an anomaly cancelling Green-Schwarz term, the resulting 5d theory is also classi-

cally non-gauge invariant. We showed that its vector sector can nevertheless be encoded

by a single real function NF which is homogeneous of degree three. However, NF contains

a non-polynomial term which is required to encode the complete 5d metric for the vectors

and enforce NF = 1 consistent with the 6d supergravity constraint Ωαβj
αjβ = 1 imposing

a condition on the real scalars jα in the tensor multiplets. The non-polynomial term is

not present in a standard 5d N = 2 supergravity theory and induces a non-gauge invariant
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term. We identify this term as a one-loop counterterm. The 6d Green-Schwarz term also

contains a higher curvature coupling and we presented a partial dimensional 5d reduction

of this term.

In the second part of this paper we compared the circle reduced action with the 5d

effective action of M-theory on a Calabi-Yau threefold Ỹ3. To extract the 5d N = 2

characteristic data in a geometric regime one has to work with the resolved threefold Ỹ3,

where both the gauge group singularities at co-dimension one in B2, as well as the matter

singularities at co-dimension two in B2 are resolved. Accordingly all M2-brane states

wrapped on cycles in Ỹ3 are massive and do not arise as dynamical degrees of freedom

in the 5d effective theory. However, the 5d effective action of M-theory on Ỹ3 contains

terms which arise by consistently integrating out these massive states. To disentangle

these from the terms present in the classical 6d/5d reduction we introduced a scaling limit

corresponding to the F-theory limit. The finite terms in the M-theory reduction are readily

matched with the general 6d/5d result. This enabled us to determine the core characteristic

data required to evaluate the 6d (1, 0) F-theory effective action in terms of the geometric

data of Ỹ3. Also dimensionally reducing the known M-theory higher curvature terms we

were able to extract from a 5d comparison the integral vectors (aα, bα) encoding all 6d

anomalies.

In the treatment of the massive states we have discovered an intriguing interplay of

5d one-loop corrections and 6d anomalies. In fact, since the M-theory reduction is on the

resolved Ỹ3, all M2-brane states wrapped on the resolving P
1-fibres are massive. These M2-

brane states are dual in the F-theory limit of M-theory to the 6d charged hypermultiplets,

and 6d vector multiplets containing the W-bosons. Accordingly, one can only compare the

5d theories if these massive states are consistently integrated out also in the circle reduced

theory. This is equally true for the M2-brane states on the elliptic fibre itself which are mas-

sive for a finite fibre volume. Using the M-theory to F-theory lift we identify these modes as

certain Kaluza-Klein modes. More generally, this implies that also massive Kaluza-Klein

modes have to be integrated out consistently in the circle reduction to compare the 5d

result with the M-theory reduction. We have focused in this work on the investigation of

the 5d Chern-Simons couplings which only receive corrections due to massive 5d modes of

6d chiral fields in one-loop diagrams. The investigation of the various couplings allowed us

to identify the one-loop diagrams generating the classically absent couplings. In particular,

we argued that the couplings A0∧F 0∧F 0 and A0∧trR∧trR are generated by integrating

out massive Kaluza-Klein modes. We expect that both fermions and tensors can run in

this loop diagram. A detailed account of possible fermionic coupling has been given, while

we leave a proper discussion of massive tensors for future investigation. More familiar, are

the couplings Ai ∧ F i ∧ F j , which are generated by integrating out massive hyperini and

gaugini. The mixed terms, such as A0 ∧ F i ∧ F j , are induced by combining the vertices

and propagators of both sets of massive fermionic modes. We believe that comparing the

resulting coefficient functions to the geometric M-theory result leads to a 5d derivation of

the 6d anomaly cancellation conditions. While we have summarized the necessary tools

to perform these one-loop integrals, we leave the explicit evaluation of all Chern-Simons

coefficients to future work.
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There are various interesting directions for further research. Firstly, one can extend

the classical reduction on both the 6d/5d action and the M-theory side to more than one

non-Abelian gauge group. Also the extension to include Abelian U(1) gauge groups is

desirable. Additional U(1) gauge fields will modify the 6d anomaly constraints and lead to

new insights about the interplay of resolved geometries and 6d gauge theories.17 Beyond

the classical analysis it would be important to extend the study of loop corrections to

all terms in the 5d action obtained by circle reduction. This includes a detailed study of

the metric for the neutral hypermultiplets. Also a evaluation of the coefficient of the 5d

higher curvature corrections, generated at the quantum level, will be desirable. Comparing

the results with the coefficients či, č0 predicted by the geometry of Ỹ3 on the M-theory

side, will be a non-trivial test of the F-theory limit and its consistency with 6d anomaly

cancellation. Reversely, one might also be able to use known 6d higher curvature terms to

infer additional terms in the 11d supergravity action. This is particularly interesting since

the 6d/5d Kaluza-Klein vector is part of the M-theory three-form.

Let us close by noting that in this work we have only dealt with Abelian tensor fields

in the 6d action. We have found that in this case the couplings of the form Aα ∧ F β ∧ F γ

are not generated in the 5d effective theory. In a future project we hope to generalize the

transdimensional treatment of tensors to the non-Abelian case. It will be interesting to

investigate how the various terms expected for non-Abelian tensors are generated in the

M-theory picture.
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A Notations and conventions

For every spacetime dimension d, we adopt the mostly plus convention for the metric gµν ,

and the (+ + +) conventions of [57] for the Riemann tensor: explicitly,

Γρ
µν =

1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) ,

Rλ
τµν = ∂µΓ

λ
ντ − ∂νΓ

λ
µτ + Γλ

µαΓ
α
ντ − Γλ

ναΓ
α
µτ ,

Rµν = Rλ
µλν , R = Rµνg

µν . (A.1)

We use ǫµ1...µd
to denote the Levi-Civita tensor, and use the metric to raise its indices.

It is defined in such a way that, in any coordinate system (x0, x1, . . . , xd−1),

ǫ01...(d−1) = +
√

− det gµν . (A.2)

17See ref. [27, 28] for recent progress in this direction.
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Note that the following identity holds for arbitrary k = 0, . . . , d:

ǫµ1...µkλk+1...λd
ǫν1...νkλk+1...λd = −k!(d− k!)δν1[µ1

. . . δνkµk]
. (A.3)

Differential p-forms are expanded on the basis of differential of the coordinates as

λ =
1

p!
λµ1...µp dx

µ1 ∧ · · · ∧ dxµp , (A.4)

so that the wedge product of a p- and a q-form satisfies

(α ∧ β)µ1...µp+q =
(p+ q)!

p!q!
α[µ1...µp

βµp+1...µp+q ] . (A.5)

Exterior differentiation of a p-form is given by

(dα)µ0...µp = (p+ 1)∂[µ0
αµ1...µp] . (A.6)

The Hodge dual of p-form in real coordinates and arbitrary spacetime dimension d is defined

by expression

(∗α)µ1...µd−p
=

1

p!
αν1...νpǫν1...νpµ1...µd−p

. (A.7)

As a consequence,

α ∧ ∗β =
1

p!
αµ1...µpβ

µ1...µp ∗ 1 (A.8)

holds identically for arbitrary p-forms α, β.

B Anomalies in 6d supergravity

In subsection 3.1 we mentioned generalized Green-Schwarz mechanism [15, 16, 22] for

anomaly cancellation in a 6d supergravity model with simple gauge group G. In this

appendix we review this mechanism in the more general case in which the gauge group is

the direct product of several simple groups Gi. Possible Abelian factors are not take into

account.

In 6d models, tree-level exchange of B̂α quanta can counterbalance one-loop anomalous

diagrams. For this to be possible, the total anomaly polynomial must be of the form

Î8 =
1

2
ΩαβX̂

α
4 ∧ X̂β

4 , (B.1)

where

X̂α
4 =

1

2
aαtr R̂ ∧ R̂+

∑

i

2bαi λ
−1
i trf F̂i ∧ F̂i . (B.2)

In these expressions aα, bαi transform as vectors in the space R
1,T with symmetric inner

product Ωαβ . Furthermore, trf of F̂ 2
i denotes the trace in the fundamental representation,

and λi are normalization constants depending on the type of each simple group factor. In

the main text, this constant is always reabsorbed in the normalization of the trace of field

strengths, tr =λ−1trf . We refer the reader to [23–26] for the value of λ for various simple

gauge groups.
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If condition (B.1) is met, the theory can be made anomaly-free by introduction of the

generalized Green-Schwarz term

ŜGS = −
∫

M5

1

2
ΩαβB̂

α ∧ X̂β
4 . (B.3)

By computation of the anomaly polynomial Î8 in terms of the chiral matter content and

comparison with the factorized form (B.1), the following necessary conditions for anomaly

cancellation are found:

nH − nV = 273− 29nT (B.4)

0 = Bi
adj −

∑

R

xiRB
i
R (B.5)

Ωαβa
αaβ = 9− nT (B.6)

−Ωαβa
αbβi =

1

6
λi

(

∑

R

xiRA
i
R −Ai

adj

)

(B.7)

Ωαβb
α
i b

β
i =

1

3
λ2i

(

∑

R

xiRC
i
R − Ci

adj

)

(no sum over i) (B.8)

Ωαβb
α
i b

β
j = λiλj

∑

RS

xij
RS
Ai

RA
j
S

(i 6= j) . (B.9)

In these equations, nH , nV , nT are the numbers of hyper-, vector and tensor multiplets in

the model, AR, BR, CR are group theory coefficients defined through

trRF̂
2 = ARtrf F̂

2 (B.10)

trRF̂
4 = BRtrf F̂

4 + CR(trf F̂
2)2 , (B.11)

and xi
R
, xij

RS
denote the number of matter fields that transform in the irreducible repre-

sentation R of gauge group factor Gi, and (R,S) of Gi × Gj , respectively. Note that for

groups such as SU(2) and SU(3), which lack a fourth order invariant, BR = 0 and there is

no condition B.5.

C Two-derivative 6d (1,0) supergravity on a circle

In this appendix we discuss the dimensional reduction of 6d (1, 0) supergravity at two-

derivative level. Our starting point is therefore (3.22), which we write down again for

convenience,

Ŝ(6) =

∫

M6

+
1

2
R̂∗̂1− 1

4
gαβĜ

α ∧ ∗̂Ĝβ − 1

2
gαβdj

α ∧ ∗̂djβ − hUV D̂qU ∧ ∗̂D̂qV

− 2Ωαβj
αbβtr F̂ ∧ ∗̂F̂ − Ωαβb

αB̂β ∧ tr F̂ ∧ F̂ − V̂ ∗̂1 . (C.1)

The Kaluza-Klein Ansatz for the metric was given in (3.25), while vectors and two-forms

are expanded in 5d fields according to (3.28), (3.31). Consistently with our two-derivative
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approximation, we omit the gravitational contribution proportional to aα in eq. (3.31).

This implies that the gravitational part is dropped in Gα, too.

Standard dimensional reduction techniques can be applied to this pseudo-action, con-

sidered as a functional of both Aα and Bα independently. One computes

S
(5)F
pseudo =

∫

M5

+
1

2
rR̃ ∗̃1− 1

4
r3F 0 ∧ ∗̃F 0 − 1

2
rgαβdj

α ∧ ∗̃djβ − rhUV DqU ∧ ∗̃DqV

− 2rΩαβj
αbβtr (F − ζF 0) ∧ ∗̃(F − ζF 0)− 2r−1Ωαβj

αbβtrDζ ∧ ∗̃Dζ

− 1

4
rgαβG

α ∧ ∗̃Gβ − 1

4
r−1gαβFα ∧ ∗̃Fβ

− 1

2
ΩαβG

α ∧ (Fβ − F β) + Ωαβb
αAβ ∧ trF ∧ F

− 2Ωαβb
αbβωCS ∧ (2tr ζF − tr ζζF 0)

− 2Ωαβb
αbβtr ζA ∧ (trF ∧ F − 2tr ζF ∧ F 0 + tr ζζF 0 ∧ F 0)

−
[

rV̂ + r−1hUV ζ
IζJ(TR

I q)
U (TR

J q)
V
]

∗̃1 . (C.2)

In this expression, Dζ = dζ+[A, ζ] is the gauge covariant derivative for the adjoint scalars

ζ, while DqU = dqU +AI(TR

I q)
U are the 5d gauge covariant derivatives for the scalars qU

in the hypermultiplets. Furthermore, we have introduced the shorthand notation

Fα = Fα − 4bαtr ζF + 2bαtr ζζF 0. (C.3)

Dimensional reduction of the the self-duality constraint (3.21) gives

rgαβ ∗̃Gβ = −ΩαβFβ , (C.4)

where the minus sign comes from our Ansatz (3.31). This relation means that Aα and Bα

encode the same physical degrees of freedom. Let us now discuss in detail how we can

obtain a proper 5d action written in terms of vectors Aα only. The first step amounts to

adding a total derivative to the action above: S(5)F = S
(5)F
pseudo +∆S(5)F, where

∆S(5)F =

∫

M5

−1

2
ΩαβdB

α ∧ F β (C.5)

=

∫

M5

−1

2
ΩαβG

α ∧ F β +
1

2
Ωαβ(−AαF 0 + 2bαωCS) ∧ F β . (C.6)

If we now consider S(5)F as a functional of Gα, Aα, the equations of motion ensure both

the self-duality condition (C.4) and the non-standard Bianchi identity (3.38). Moreover,

Gα enters S(5)F only quadratically, and is therefore readily integrated out:

S(5)F =

∫

M5

+
1

2
rR̃ ∗̃1− 1

4
r3F 0 ∧ ∗̃F 0 − 1

2
rgαβdj

α ∧ ∗̃djβ − rhUV DqU ∧ ∗̃DqV

− 2rΩαβj
αbβtr (F − ζF 0) ∧ ∗̃(F − ζF 0)− 2r−1Ωαβj

αbβtrDζ ∧ ∗̃Dζ

− 1

2
r−1gαβFα ∧ ∗̃Fβ − 1

2
ΩαβA

0 ∧ Fα ∧ F β + 2Ωαβb
αAβ ∧ trF ∧ F

− 2Ωαβb
αbβωCS ∧ (2tr ζF − tr ζζF 0)

− 2Ωαβb
αbβtr ζA ∧ (trF ∧ F − 2tr ζF ∧ F 0 + tr ζζF 0 ∧ F 0)

−
[

rV̂ + r−1hUV ζ
IζJ(TR

I q)
U (TR

J q)
V
]

∗̃1 . (C.7)
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It is worth pointing out that −1
4rgαβG

α ∧ ∗̃Gβ − 1
4r

−1gαβFα ∧ ∗̃Fβ vanishes identically

after elimination of Gα, and that the kinetic term for vectors −1
2r

−1gαβFα ∧ ∗̃Fβ comes

from the Chern-Simons term −1
2ΩαβG

α ∧ Fβ . Moreover, the term +2Ωαβb
αAα ∧ trF ∧ F

has a different prefactor because two different contributions must be taken into account:

one was already present in (C.2), the other one is found in ∆S(5)F.

The last step consists of the Weyl rescaling g̃µν = r−2/3gµν , which brings the Einstein-

Hilbert term in (C.7) into canonical form:

S(5)F =

∫

M5

+
1

2
R ∗1− 2

3
r−2dr ∧ ∗dr − 1

2
gαβdj

α ∧ ∗djβ

− 2r−2Ωαβj
αbβtrDζ ∧ ∗Dζ − hUV DqU ∧ ∗DqV

− 1

4
r8/3F 0 ∧ ∗F 0 − 1

2
r−4/3gαβFα ∧ ∗Fβ

− 2r2/3Ωαβj
αbβtr (F − ζF 0) ∧ ∗(F − ζF 0)

− 1

2
ΩαβA

0 ∧ Fα ∧ F β + 2Ωαβb
αAβ ∧ trF ∧ F

− 2Ωαβb
αbβωCS ∧ (2tr ζF − tr ζζF 0)

− 2Ωαβb
αbβtr ζA ∧ (trF ∧ F − 2tr ζF ∧ F 0 + tr ζζF 0 ∧ F 0)

−
[

r−1V̂ + r−8/3hUV ζ
IζJ(TR

I q)
U (TR

J q)
V
]

∗ 1 . (C.8)

As explained in subsection 3.3, we are interested in the broken phase of the theory

corresponding to the Coulomb branch of the gauge sector. The fields which acquire a mass

during the spontaneous breaking of gauge symmetry are omitted from the final 5d effective

action. These include W-bosons and charged hypermultiplet scalars. As a consequence, the

lower-case indices u, v now only run over neutral hypermultiplets. For the same reason, the

scalar potential is omitted. The final form of the effective action in the Coulomb branch

thus reads

S(5)F =

∫

M5

+
1

2
R ∗1− 2

3
r−2dr ∧ ∗dr − 1

2
gαβdj

α ∧ ∗djβ

− 2r−2Ωαβj
αbβCijdζ

i ∧ ∗dζj − huvdq
u ∧ ∗dqv

− 1

4
r8/3F 0 ∧ ∗F 0 − 1

2
r−4/3gαβFα ∧ ∗Fβ

− 2r2/3ΩαβCijj
αbβ(F i − ζiF 0) ∧ ∗(F j − ζjF 0)

− 1

2
ΩαβA

0 ∧ Fα ∧ F β + 2ΩαβCijb
αAβ ∧ F i ∧ F j

− 2(Ωαβb
αbβ)(Cklζ

kζ l)Cijζ
iAj ∧ F 0 ∧ F 0

+ 2(Ωαβb
αbβ)(CijCklζ

kζ l + 2CikCjlζ
kζ l)Ai ∧ F j ∧ F 0

− 6(Ωαβb
αbβ)C(ijCk)lζ

lAi ∧ F j ∧ F k. (C.9)

D Calabi-Yau reference formulae

The main purpose of this appendix is fixing some notation about Calabi-Yau threefolds.

Therefore, it is not meant to be complete nor self-contained. We refer the reader to

e.g. [58, 59] for a more detailed account of the material covered hereafter.
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A Calabi-Yau threefold Y3 can be described locally either by means of six real coordi-

nates {ξ ı̂}ı̂=1̂,...6̂, or by means of three complex coordinates {yi}i=1,2,3, defined as

y1 =
1√
2

(

ξ1̂ + iξ2̂
)

, y2 =
1√
2

(

ξ3̂ + iξ4̂
)

, y3 =
1√
2

(

ξ5̂ + iξ6̂
)

. (D.1)

In the following, we will make use of complex coordinates, and their associated holomor-

phic indices i, j, . . . = 1, 2, 3 and antiholomorphic indices ı̄, ̄, . . . = 1̄, 2̄, 3̄. Accordingly, a

complex differential form of degree (r, s) is expanded on the basis of differentials of complex

coordinates as

α =
1

r!s!
αi1...ir ̄1...̄s dy

i1 ∧ · · · ∧ dyir ∧ dȳ̄1 ∧ · · · ∧ dȳ̄s . (D.2)

Being a Kähler threefold, Y3 is endowed with an Hermitian metric gī, whose Kähler

(1, 1)-form J = igī dy
i ∧ dȳ̄ is closed. The Calabi-Yau condition ensures the existence

of a globally defined, non-vanishing, holomorphic (3, 0)-form, which we denote by Ω. The

volume form, the Kähler form and the holomorphic (3, 0)-form are related by

∗ 1 =
1

3!
J ∧ J ∧ J =

i

‖Ω‖2Ω ∧ Ω̄ , where ‖Ω‖2 = 1

3!
ΩijkΩ̄

ijk. (D.3)

Since our definition of a Calabi-Yau threefold implies strict SU(3) holonomy, the only

independent Hodge numbers of Y3 are h1,1(Y3), h
1,2(Y3). Let us fix our notations for the

corresponding cohomology basis.

First of all, we choose an integral cohomology basis {ωΛ}Λ for H1,1(Y3), with Λ =

1, . . . , h1,1(Y3). The intersection numbers associated to this basis {ωΛ}Λ are

VΛΣΘ =

∫

Y3

ωΛ ∧ ωΣ ∧ ωΘ . (D.4)

Second of all, we takeH2,1(Y3) to be generated by the complex cohomology basis {χκ}κ,
where κ = 1, . . . , h1,2(Y3). It is also useful to consider an integral basis {αK , β

K}K for the

middle cohomology H3(Y3), with K = 1, . . . , h1,2(Y3) + 1. Since three-forms anticommute,

it is natural to introduce a symplectic structure on H3(Y3) choosing αK , β
K in such a

way that
∫

Y3

αK ∧ βL = δKL . (D.5)

In order to discuss the metric on the moduli space of neutral hypermultiplets, we need to

introduce matrices A L
K , BKL, C

KL, such that

∗ αK = A L
K αL +BKLβ

L, ∗βK = CKLαL −A K
L βL, (D.6)

where ∗ represents the Hodge star in Y3. These matrices can be conveniently expressed in

terms of a symmetric, complex matrix M:

A L
K = (ReM)KH(ImM)−1HL, (D.7)

BKL = −(ImM)KL − (ReM)KH(ImM)−1HM (ReM)ML , (D.8)

CKL = (ImM)−1KL. (D.9)

– 45 –



J
H
E
P
0
5
(
2
0
1
2
)
0
1
9

Let us now give a brief account on the moduli space of Calabi-Yau threefold Y3. It

is known that it can be written locally in a factorized form as the product of the Kähler

moduli space and the complex structure moduli space: M = MK ×Mcs. We discuss each

factor in turn.

On the one hand, the Kähler moduli space MK is parameterized by the Kähler moduli

vΛ which appear in the expansion of the Kähler form J on the basis {ωΛ}Λ,

J = vΛωΛ . (D.10)

Fluctuations of the Kähler moduli encode information about the variation of the mixed

components of the Ricci-flat metric as we move around in the moduli space of Y3, as

specified by

δgī = −i(ωΛ)ī δv
Λ. (D.11)

The Kähler moduli vΛ also appear in the expression of the volume V of Y3,

V =
1

3!

∫

Y3

J ∧ J ∧ J =
1

3!
VΛΣΘv

ΛvΣvΘ. (D.12)

For convenience, we introduce the shorthand notation

VΛ =
1

2!
VΛΣΘv

ΣvΘ = ∂vΛV , VΛΣ = VΛΣΘv
Θ = ∂vΛ∂vΣV . (D.13)

On the other hand, the complex structure moduli space Mcs is described by suitable

complex coordinates zκ. They are obtained as periods of the holomorphic (3, 0)-form Ω,

and their fluctuations correspond to variations of the components of the Ricci-flat metric

with the same kind of indices. More precisely, χ̄κ̄ ∈ H1,2(Y3) are used to construct b̄κ̄ ∈
H0,1(Y3;TY

1,0
3 ), where TY 1,0

3 is the holomorphic tangent bundle to Y3, and the b̄κ̄ encode

the metric fluctuations. In our conventions, we have

δgij = (b̄κ̄)ij δz̄
κ̄, (b̄κ̄)

̄
i =

i

‖Ω‖2 (χ̄κ̄)ik̄l̄Ω
k̄l̄̄. (D.14)

Both moduli spaces MK and Mcs are equipped with a natural metric, which can be

derived from a potential. These potentials are determined by

eKK =

∫

Y3

1

3!
J ∧ J ∧ J , eKcs = i

∫

Y3

Ω ∧ Ω̄ , (D.15)

and yield the metrics

GΛΣ(v) = −1

2
∂vΛ∂vΣKK(v) =

1

2V

∫

Y3

ωΛ ∧ ∗ωΣ =
1

2

VΛVΣ

V2
− 1

2

VΛΣ

V ,

gκκ̄(z, z̄) = ∂zκ∂z̄κ̄Kcs(z, z̄) = −
∫

Y3
χκ ∧ χ̄κ̄

∫

Y3
Ω ∧ Ω̄

. (D.16)
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E 11d supergravity on a Calabi-Yau threefold

This appendix is devoted to the presentation of the key points of the Kaluza-Klein reduction

of 11d supergravity on a Calabi-Yau threefold Y3. Zero-modes only are taken into account.

For ease of reference we record again the 11d supergravity action

Ŝ(11) =

∫

M11

1

2
R̂∗̂1− 1

4
F̂4 ∧ ∗̂F̂4 −

1

12
Ĉ3 ∧ F̂4 ∧ F̂4 , (E.1)

the Kaluza-Klein Ansatz for the three-form

Ĉ3 = ξKαK − ξ̃Kβ
K +AΛ ∧ ωΛ + C3 , (E.2)

and the background line element

〈dŝ2〉 = 〈g̃µν(x)〉dxµdxν + 2〈gī(y)〉dyidȳ̄. (E.3)

Let us starts discussing the reduction of the Einstein-Hilbert term. The full internal

metric gī, background and fluctuations, depends on the external coordinates through the

Kähler moduli vΛ and the complex structure moduli zκ, as can be seen from (D.11), (D.14).

Note that the off-diagonal dx dy components of the background metric cannot fluctuate

since a Calabi-Yau threefold has no continuous isometries. In order to get a 5d Einstein-

Hilbert term with canonical normalization, we have to perform the Weyl rescaling

g̃µν = V−2/3gµν . (E.4)

Straightforward calculation gives then
∫

M11

1

2
R̂∗̂1 =

∫

M5

1

2
R ∗ 1− 1

2
HΛΣ(v)dv

Λ ∧ ∗dvΣ − gκκ̄dz
κ ∧ ∗dz̄κ̄ (E.5)

where gκκ̄ is the metric in the complex moduli space, defined in (D.16), and

HΛΣ(v) = −GΛΣ(v)− V−1VΛΣ . (E.6)

We have singled out the expression

GΛΣ(v) = −1

2
∂vΛ∂vΣ logV(v) = −1

2
V(v)−1VΛΣΘv

Θ +
1

8
V(v)−2VΛΩΘVΣΨΞv

ΩvΘvΨvΞ

(E.7)

because it is the natural metric on the Kähler moduli space. It is useful to define

LΛ = V−1/3vΛ (E.8)

since, as we shall see, the kinetic term for vΛ expressed in these coordinates takes a par-

ticularly simple form. It is crucial to observe that the LΛ’s parameterize one degree of

freedom less than the vΛ’s, since they obey identically 1
3!VΛΣΘL

ΛLΣLΘ = 1. The kinetic

term we are interested in reads

− 1

2
HΛΣ(v)dv

Λ ∧ ∗dvΣ = −1

2
GΛΣ(L)dL

Λ ∧ ∗dLΣ − dD ∧ ∗dD . (E.9)
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In this expression, we have defined

D = −1

2
logV (E.10)

for future convenience, and we have introduced the symbol GΛΣ(L) to denote the metric

obtained by replacing vΛ by LΛ everywhere in (E.7). It is easily checked that GΛΣ(L) can

be written in a compact form as

GΛΣ(L) =

[

− 1

2
∂LΛ∂LΣ logN

]

N=1

=

[

− 1

2
NΛΣ +

1

2
NΛNΣ

]

N=1

(E.11)

provided that we introduce N = 1
3!VΛΣΘL

ΛLΣLΘ.

We are now in a position to describe the reduction of the other terms in the 11d La-

grangian. As far as the three-form kinetic term is concerned, a straightforward computation

shows that
∫

M11

−1

4
F̂4 ∧ ∗̂F̂4 =

∫

M5

+
1

4

(

dξ̃K −MKMdξ
M
)

(ImM)−1KL ∧ ∗̃
(

dξ̃L −MLNdξ
N
)

− 1

2
VGΛΣ(v)F

Λ ∧ ∗̃FΣ − 1

4
VF4 ∧ ∗̃F4 . (E.12)

See appendix D for the definition of M. For the Chern-Simons term, we find
∫

M11

− 1

12
Ĉ3∧ F̂4∧ F̂4 =

∫

M5

− 1

12
VΛΣΘA

Λ∧FΣ∧FΘ+
1

4

(

ξKdξ̃K− ξ̃KdξK
)

∧F4 . (E.13)

As mentioned in the main text, we can dualize the three-form C3 into a real scalar Φ.

To this end we add to the 5d action the term

∆S(5)M =

∫

M5

1

4
dΦ ∧ F4 (E.14)

which implements Bianchi identity dF4 = 0 if we consider F4 rather than C3 as independent

variable. After elimination of F4 via its equation of motion, we get

S(5)M
non-grav =

∫

M5

+
1

4

(

dξ̃K −MKMdξ
M
)

(ImM)−1KL ∧ ∗̃
(

dξ̃L −MLNdξ
N
)

(E.15)

− 1

2
VGΛΣ(v)F

Λ ∧ ∗̃FΣ − 1

12
VΛΣΘA

Λ ∧ FΣ ∧ FΘ

− 1

16V
[

ξKdξ̃K − ξ̃Kdξ
K + dΦ

]

∧ ∗̃
[

ξKdξ̃K − ξ̃Kdξ
K + dΦ

]

.

Let us stress here that we still have to take into account the Weyl rescaling of the

metric g̃µν . It is interesting to note that it is crucial to get the equality between the inverse

gauge coupling function and the metric of the moduli space of scalars LΛ, since

− 1

2
VGΛΣ(v)F

Λ ∧ ∗̃FΣ = −1

2
V 2

3GΛΣ(v)F
Λ ∧ ∗FΣ = −1

2
GΛΣ(L)F

Λ ∧ ∗FΣ. (E.16)

The final action was given in the main text in (4.14). We only need to specify the

quaternionic kinetic for hypermultiplets, which turns out to be

huvdq
u ∧ ∗dqv = +dD ∧ ∗dD + gκκ̄dz

κ ∧ ∗dz̄κ̄ (E.17)

+
1

4
e4D

[

dΦ+
(

ξKdξ̃K − ξ̃Kdξ
K
)]2

− 1

2
e2D

(

dξ̃K −MKMdξ
M
)

(ImM)−1KL
(

dξ̃L −MLNdξ
N
)

.
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