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aDepartamento de F́ısica Teórica and Instituto de F́ısica Teórica,
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∆MBs . After taking into account these constraints we find sizable corrections to the Higgs
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mass measurement these corrections might be used to set further constraints on δXY
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1 Introduction

The Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) [1–3] with two

scalar doublets accommodates five physical Higgs bosons. In lowest order these are the

light and heavy CP-even h and H, the CP-odd A, and the charged Higgs bosons H±. The
Higgs sector of the MSSM can be expressed at lowest order in terms of the gauge couplings,

MA and tanβ ≡ v2/v1, the ratio of the two vacuum expectation values. All other masses

and mixing angles can therefore be predicted. Higher-order contributions can give large

corrections to the tree-level relations (see e.g. ref. [4, 5] for reviews).

The MSSM predicts scalar partners for each fermionic degree of freedom in the Stan-

dard Model (SM), and fermionic partners for Higgs and gauge bosons. So far, the direct

search for SUSY particles has not been successful. One can only set lower bounds of sev-

eral hundreds of GeV, depending on the particle and the model specifications [6, 7]. To lift
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the masses of the SUSY partners from the corresponding SM values, soft SUSY-breaking

terms are introduced [1–3]. The most general flavor structure of the soft SUSY-breaking

sector with flavor non-diagonal terms would induce large flavor-changing neutral-currents,

contradicting the experimental results [8]. Attempts to avoid this kind of problem include

flavor-blind SUSY-breaking scenarios, like minimal Supergravity or gauge-mediated SUSY-

breaking. In these scenarios, the sfermion-mass matrices are flavor diagonal in the same

basis as the quark matrices at the SUSY-breaking scale. However, a certain amount of flavor

mixing is generated due to the renormalization-group evolution from the SUSY-breaking

scale down to the electroweak scale. In a more agnostic approach all flavor-violating terms

are introduced as free parameters, and each model point, i.e. each combination of flavor-

violating parameters, is tested against experimental data.

Similarly strong bounds exist for the MSSM Higgs sector from the non-observation of

Higgs bosons at LEP [9, 10], the Tevatron1 and most recently from LHC searches [12]. The

LHC has good prospects to discover at least one neutral Higgs boson over the full MSSM

parameter space. A precision on the mass of a SM-like Higgs boson of ∼ 200 MeV is ex-

pected [13–15]. At the ILC a determination of the Higgs boson properties (within the kine-

matic reach) will be possible, and an accuracy on the mass could reach the 50 MeV level [16–

19]. The interplay of the LHC and the ILC in the neutral MSSM Higgs sector is discussed

in ref. [20, 21].

For the MSSM2 the status of higher-order corrections to the masses and mixing angles

in the neutral Higgs sector is quite advanced. The full one-loop and potentially all leading

two-loop corrections are known, see ref. [24] for a review. Most recently leading three-loop

corrections became available [25–27].

However, the impact of non-minimal flavor violation (NMFV) on the MSSM Higgs-

boson masses and mixing angles, entering already at the one-loop level, has not been

explored very deeply so far. A one-loop calculation taking into account the LL-mixing

between the third and second generation of scalar up-type quarks has been performed in

ref. [28]. A full one-loop calculation of the Higgs-boson self-energies including all NMFV

mixing terms had been implemented into the Fortran code FeynHiggs [23, 24, 29–31],

however no cross checks or numerical evaluations analyzing the effects of the new mixing

terms were performed. Possible effects from NMFV on Higgs boson decays were investi-

gated in [32–36]. Within a similar context of NMFV there have been also studied some

effects of scharm-stop flavor mixing in top-quark FCNC processes [37] and charged Higgs

processes [38] as well as the implications for LHC [38, 39]. Some previous studies on the

induced radiative corrections on the Higgs mass from scharm-stop flavor mixing have also

been performed in [37, 39], but any effects from mixing involving the first generation of

scalar quarks have been neglected. The numerical estimates in [37, 39] also neglect all the

flavor mixings in the scalar down-type sector, except for those of LL-type that are induced

from the scalar up-type sector by SU(2) invariance. In [39] they also consider one example

with a particular numerical value of non-vanishing s̃L − b̃R mixing.

1See [11] and references therein.
2We concentrate here on the case with real parameters. For complex parameters see refs. [22, 23] and

references therein.
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We study in this paper the consequences from NMFV for the MSSM Higgs-boson spec-

trum, where our results are obtained in full generality, i.e. all generations in the scalar up-

and down-type quark sector are included in our analytical results. In the numerical anal-

ysis we focus particularly on the flavor mixing between the second and third generations

which is the relevant one in B physics. Our estimates include all type of flavor mixings,

LL, LR, RL, and RR. We devote special attention to the LR/RL sector. These kind of

mixing effects are expected to be sizable, since they enter the off-diagonal A parameters,

which appear directly in the coupling of the Higgs bosons to scalar quarks.

Concerning the constraints from flavor observables we take into account the most

up-to-date evaluations in the NMFV MSSM for BR(B → Xsγ),
3 BR(Bs → µ+µ−) and

∆MBs , based on the BPHYSICS subroutine included in the SuFla code.4 For the evalua-

tion of ∆MBs we have incorporated into this subroutine additional contributions from the

one-loop gluino boxes [44] which are known to be very relevant in the context of NMFV

scenarios [45–47].

In the first step of the analysis we scan over the NMFV parameters, and contrast

them with the experimental bounds on BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs .

In the second step we analyze the one-loop contributions of NMFV to the MSSM Higgs

boson masses, focusing on the parameter space still allowed by the experimental flavor

constraints. In this way the full possible impact of NMFV in the MSSM on the Higgs

sector can be explored. The paper is organized as follows: in section 2 we introduce our

notation for the NMFV MSSM and define certain benchmark scenarios that are used for

the subsequent analysis. Our implementation and new results on B-physics observables is

given in section 3, where we also analyze in detail which combination of NMFV parameters

are still allowed by current experimental constraints. The calculation of the corrections to

Higgs boson masses in the NMFV MSSM is presented in section 4. The numerical analysis

of the impact of the one-loop Higgs mass corrections is given in section 5. Our conclusions

can be found in section 6.

2 SUSY scenarios with Non-Minimal Flavor Violation

We work in SUSY scenarios with the same particle content as the MSSM, but with gen-

eral flavor mixing hypothesis in the squark sector. Within these SUSY-NMFV scenarios,

besides the usual flavor violation originated by the CKM matrix of the quark sector, the

general flavor mixing in the squark mass matrices additionally generates flavor violation

from the squark sector. These squark flavor mixings are usually described in terms of a set

of dimensionless parameters δXY
ij (X,Y = L,R; i, j = t, c, u or b, s, d), which for simplicity

in the computations are frequently considered within the Mass Insertion Approximation

(MIA) [48]. We will not use here this approximation, but instead we will solve exactly the

diagonalization of the squark mass matrices.

3Subleading NLO MSSM corrections were evaluated in [40, 41] . However, their effect on our evaluations

would be minor.
4See [42, 43] and references therein.

– 3 –



J
H
E
P
0
5
(
2
0
1
2
)
0
1
5

In this section we summarize the main features of the squark flavor mixing within the

SUSY-NMFV scenarios and set the notation.

The relevant MSSM superpotential terms are:

W = ǫαβ

[

Ĥα
2 Q̂

βY uÛ − Ĥα
1 Q̂

βY dD̂ + µĤα
1 Ĥ

β
2

]

, (2.1)

where the involved superfields are: Q̂, containing the quark (uL dL)
T and squark (ũL d̃L)

T

SU(2) doublets; Û , containing the quark (uR)
c and squark ũ∗R SU(2) singlets; D̂, containing

the quark (dR)
c and squark d̃∗R SU(2) singlets; and Ĥ1,2 containing the Higgs bosons SU(2)

doublets, H1 = (H0
1 H−

1 )
T and H2 = (H+

2 H0
2)

T , and their SUSY partners. f c denotes

here the particle-antiparticle conjugate of fermion f , and f̃∗ denotes the complex conjugate

of sfermion f̃ . We follow the notation of [49], but with the the convention ǫ12 = −1. The

generation indices in the superfields, Q̂i,Ûi, D̂i, quarks qi, squarks q̃i, (i = 1, 2, 3), and

Yukawa coupling 3×3 matrices, Y u
ij , Y

d
ij , (i, j = 1, 2, 3), have been omitted above for brevity.

Usually one starts rotating the quark fields from the SU(2) (interaction) eigenstate

basis, qintL,R, to the mass (physical), qphysL,R eigenstate basis by unitary transformations, V u,d
L,R:







uphysL,R

cphysL,R

tphysL,R






= V u

L,R







uintL,R

cintL,R

tintL,R






,







dphysL,R

sphysL,R

bphysL,R






= V d

L,R







dintL,R

sintL,R

bintL,R






, (2.2)

such that the fermion mass matrices in the physical basis are diagonal:

V u
L Y

u∗V u†
R = diag(yu, yc, yt) = diag

(

mu

v2
,
mc

v2
,
mt

v2

)

, (2.3)

V d
LY

d∗V d†
R = diag(yd, ys, yb) = diag

(

md

v1
,
ms

v1
,
mb

v1

)

, (2.4)

where v1 =
〈

H0
1

〉

and v2 =
〈

H0
2

〉

are the vacuum expectation values of the neutral Higgs

fields. The CKM matrix, which is responsible for the flavor violation in the quark sector,

is given as usual as,

VCKM = V u
L V

d†
L . (2.5)

A simultaneous (parallel) rotation of the squarks with the same above unitary matrices as

their corresponding quark partners leads to the so-called Super-CKM basis. In the NMFV

scenarios, contrary to the MFV ones, the Super-CKM basis does not coincide with the

physical squark basis, i.e, their corresponding squark mass matrices are not yet diagonal.

More concretely, rotating the squarks from the interaction basis, q̃intL,R to the Super-CKM

basis, q̃L,R, by






ũL,R
c̃L,R
t̃L,R






= V u

L,R







ũintL,R

c̃intL,R

t̃intL,R






,







d̃L,R
s̃L,R
b̃L,R






= V d

L,R







d̃intL,R

s̃intL,R

b̃intL,R






, (2.6)

one gets the soft-SUSY-breaking Lagrangian transformed from:

Lsoft =− Ũ int∗
i m2

Ũij
Ũ int
j − D̃int∗

i m2
D̃ij

D̃int
j − Q̃int†

i m2
Q̃ij

Q̃int
j

−
[

Q̃int
i Āu

ijŨ int∗
j H2 − Q̃int

i Ād
ijD̃int∗

j H1 + h.c.
]

(2.7)
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to:

Lsoft = −Ũ∗

Rim
2
ŨRij

ŨRj − D̃∗

Rim
2
D̃Rij

D̃Rj − Ũ∗

Lim
2
ŨLij

ŨLj − D̃∗

Lim
2
D̃Lij

D̃Lj (2.8)

−
[

ŨLiAu
ijŨ∗

RjH0
2−D̃Li(VCKM)kiAu

kjŨ∗

RjH+
2 −ŨLi(V

∗

CKM)ikAd
kjD̃∗

RjH−

1 +D̃LiAd
ijD̃∗

RjH0
1+h.c.

]

,

where we have used calligraphic capital letters for the squark fields with generation indexes,

Ũ int
1,2,3 = ũintR , c̃intR , t̃intR ; D̃int

1,2,3= d̃
int
R , s̃intR , b̃intR ; Q̃int

1,2,3=(ũintL d̃intL )T , (c̃intL s̃intL )T , (t̃intL b̃intL )T ; (2.9)

ŨL1,2,3= ũL, c̃L, t̃L; D̃L1,2,3 = d̃L, s̃L, b̃L; ŨR1,2,3 = ũR, c̃R, t̃R; D̃R1,2,3 = d̃R, s̃R, b̃R; (2.10)

and (q = u, d)

Aq=V q
LĀqV q†

R ,m2
ŨR

=V u
Rm

2
Ũ
V u†
R ,m2

D̃R
=V d

Rm
2
D̃
V d†
R ,m2

ŨL
=V u

Lm
2
Q̃
V u†
L ,m2

D̃L
=V d

Lm
2
Q̃
V d†
L .

(2.11)

The usual procedure to introduce general flavor mixing in the squark sector is to include the

non-diagonality in flavor space at this stage, namely, in the Super-CKM basis. Thus, one

usually writes the 6× 6 non-diagonal mass matrices, M2
ũ and M2

d̃
, referred to the Super-

CKM basis, being ordered respectively as (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R),

and write them in terms of left- and right-handed blocks M2
q̃ AB (q = u, d, A,B = L,R),

which are non-diagonal 3× 3 matrices,

M2
q̃ =

(

M2
q̃ LL M2

q̃ LR

M2 †
q̃ LR M2

q̃ RR

)

, q̃ = ũ, d̃. (2.12)

where:

M2
ũ LL ij =m

2
ŨL ij

+
(

m2
ui

+ (T u
3 −Qu sin

2 θW )M2
Z cos 2β

)

δij ,

M2
ũ RR ij =m

2
ŨR ij

+
(

m2
ui

+Qu sin
2 θWM

2
Z cos 2β

)

δij ,

M2
ũ LR ij =

〈

H0
2

〉

Au
ij −mui

µ cotβ δij ,

M2
d̃ LL ij

=m2
D̃L ij

+
(

m2
di
+ (T d

3 −Qd sin
2 θW )M2

Z cos 2β
)

δij ,

M2
d̃ RR ij

=m2
D̃R ij

+
(

m2
di
+Qd sin

2 θWM
2
Z cos 2β

)

δij ,

M2
d̃ LR ij

=
〈

H0
1

〉

Ad
ij −mdiµ tanβ δij , (2.13)

with, i, j = 1, 2, 3, Qu = 2/3, Qd = −1/3, T u
3 = 1/2 and T d

3 = −1/2. θW is the weak angle,

MZ is the Z gauge boson mass, and (mu1
,mu2

,mu3
) = (mu,mc,mt), (md1 ,md2 ,md3) =

(md,ms,mb). It should be noted that the non-diagonality in flavor comes from the values

of m2
ŨL ij

, m2
ŨR ij

, m2
D̃L ij

, m2
D̃R ij

, Au
ij and Ad

ij for i 6= j.

The next step is to rotate the squark states from the Super-CKM basis, q̃L,R,

to the physical basis, q̃phys. If we set the order in the Super-CKM basis as above,

(ũL, c̃L, t̃L, ũR, c̃R, t̃R) and (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R), and in the physical basis as ũ1,...6 and
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d̃1,...6, respectively, these last rotations are given by two 6× 6 matrices, Rũ and Rd̃,



















ũ1
ũ2
ũ3
ũ4
ũ5
ũ6



















= Rũ



















ũL
c̃L
t̃L
ũR
c̃R
t̃R



















,



















d̃1
d̃2
d̃3
d̃4
d̃5
d̃6



















= Rd̃



















d̃L
s̃L
b̃L
d̃R
s̃R
b̃R



















, (2.14)

yielding the diagonal mass-squared matrices as follows,

diag{m2
ũ1
,m2

ũ2
,m2

ũ3
,m2

ũ4
,m2

ũ5
,m2

ũ6
} = Rũ M2

ũ R
ũ† , (2.15)

diag{m2
d̃1
,m2

d̃2
,m2

d̃3
,m2

d̃4
,m2

d̃5
,m2

d̃6
} = Rd̃ M2

d̃
Rd̃† . (2.16)

The corresponding Feynman rules in the physical basis for the vertices needed for

our applications, i.e. the interaction of one and two Higgs or gauge bosons with two

squarks, can be found in the appendix A. This new set of generalized vertices had been

implemented into the program packages FeynArts/FormCalc [50, 51, 53]5 extending the

previous MSSM model file [54]. The extended FeynArts version was used for the evaluation

of the Feynman diagrams along this paper to obtain the general analytical results.

In the numerical part of the present study we will restrict ourselves to the case where

there are flavor mixings exclusively between the second and third squark generation.

These mixings are known to produce the largest flavor violation effects in B meson physics

since their size are usually governed by the third generation quark masses. On the other

hand, and in order to reduce further the number of independent parameters, we will focus

in the following analysis on constrained SUSY scenarios, where the soft mass parameters

fulfill universality hypothesis at the gauge unification (GUT) scale. Concretely, we will

work with the so-called Constrained MSSM (CMSSM) and Non Universal Higgs Mass

(NUHM) scenarios, which are defined by(see [56] and references therein),

CMSSM : m0,m1/2, A0, sign(µ), tanβ

NUHM : m0,m1/2, A0, sign(µ), tanβ,mH1
,mH2

, (2.17)

where, A0 is the universal trilinear coupling, m0, m1/2, mH1
, mH2

, are the universal scalar

mass, gaugino mass, and H1 and H2 Higgs masses, respectively, at the GUT scale, sign(µ)

is the sign of the µ parameter and again tanβ = v2/v1. The soft Higgs masses in the

NUHM are usually parametrized as m2
H1,2

= (1 + δ1,2)m
2
0, such that by taking δ1,2 = 0

one moves from the NUHM to the CMSSM.

It should be noted that the condition of universal squark soft masses,

m2
ŨLij

= m2
ŨRij

= m2
D̃Lij

= m2
D̃Rij

= m2
0δij , is fulfilled just at the GUT scale. When run-

ning these soft mass matrices from the GUT scale down to the relevant low energy, they will

generically turn non-diagonal in flavor. However, in MFV scenarios the non-diagonal terms

are exclusively generated in this running by off-diagonal terms in the VCKM, and therefore

5The program and the user’s guide are available via [52].
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they can be safely neglected at low energy. Contrary, in NMFV scenarios, the universal

hypothesis in these squark mass matrices is by definition not fulfilled at low energies.

Our final settings for the numerical evaluation of the squark flavor mixings in NMFV

scenarios are fixed (after RGE running) at low energy as follows,

m2
ŨL

=







m2
ŨL11

0 0

0 m2
ŨL22

δLL23 mŨL22
mŨL33

0 δLL23 mŨL22
mŨL33

m2
ŨL33






(2.18)

v2Au =







0 0 0

0 0 δLRct mŨL22
mŨR33

0 δRL
ct mŨR22

mŨL33
mtAt






(2.19)

m2
ŨR

=







m2
ŨR11

0 0

0 m2
ŨR22

δRR
ct mŨR22

mŨR33

0 δRR
ct mŨR22

mŨR33
m2

ŨR33






(2.20)

m2
D̃L

= V †
CKMm

2
ŨL
VCKM (2.21)

v1Ad =







0 0 0

0 0 δLRsb mD̃L22
mD̃R33

0 δRL
sb mD̃R22

mD̃L33
mbAb






(2.22)

m2
D̃R

=







m2
D̃R11

0 0

0 m2
D̃R22

δRR
sb mD̃R22

mD̃R33

0 δRR
sb mD̃R22

mD̃R33
m2

D̃R33






(2.23)

It is worth mentioning that the relation between the two soft squark mass matrices in the

’Left’ sector (2.21) is due to SU(2) gauge invariance. Eq. (2.21) can be derived from the

two last relations of eq. (2.11). This dependence between the non-diagonal terms of these

squark mass matrices is the reason why is introduced δLL23 instead of two independent

deltas δLLct and δLLsb . To get the needed running of the soft parameters from the GUT scale

down to low energy, that we set here 1TeV, we solve numerically the one-loop RGEs with

the code SPHENO [57]. The diagonalization of all the mass matrices is performed with

the program FeynHiggs [23, 24, 29–31].

In CMSSM and other SUSY-GUT scenarios the flavor changing deltas go (in the

leading logarithmic approximation) as δLL23 ≃ − 1
8π2

(3m2
0+A2

0)
m̃2 (Y q†Y q)23 log(

MGUT

MEW
) (m̃2 is

usually taken as the geometric mean of the involved flavor diagonal squared squark mass

matrix entries, see eq. (2.24)), whereas the LR, RL and RR deltas are suppressed instead

by small mass ratios, ∼ (mqA0)
m̃2 and ∼ (m2

q)

m̃2 , respectively. Furthermore, in these scenarios

the mixing involving the first generation squarks is naturally suppressed by the smallness

of the corresponding Yukawa couplings. In order to keep the number of free parameters

manageable, this motivated our above choice of neglecting in the numerical analysis the

mixing of the first generation squarks. However, we will not assume any explicit hierarchy

in the various mixing terms between the second and third generation.
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It should be noted that in the ’Left-Right’ sector we have normalized the trilinear

couplings at low energies as Aq
ij = yqiA

q
ij (with Au

33 = At and Ad
33 = Ab) and we have

neglected the Ai couplings of the first and second generations. Finally, it should be noted

that the dimensionless parameters δXY
ij defining the non-diagonal entries in flavor space

(i 6= j) are normalized respect the geometric mean of the corresponding diagonal squared

soft masses. For instance,

δLL23 = m2
ŨL23

/(mŨL22
mŨL33

), δRR
ct = m2

ŨR23
/(mŨR22

mŨR33
),

δLRct = (v2Au)23/(mŨL22
mŨR33

), δRL
ct = (v2Au)32/(mŨR22

mŨL33
), etc. (2.24)

For definiteness and simplicity, in the present work we will perform our estimates in

specific constrained SUSY scenarios, CMSSM and NUHM, whose input parameters m0,

m1/2, A0, tanβ, sign(µ), δ1,2, are summarized in table 1,6 and supplemented with δXY
ij

as described above. Regarding CMSSM, we have chosen six SPS benchmark points [58],

SPS1a, SPS1b, SPS2, SPS3, SPS4, and SPS5 and one more point with very heavy spectra

(VHeavyS). It should be noted that several of these SPSX points are already in conflict

with recent LHC data [6, 7], but we have chosen them here as reference points to study the

effects of SUSY on the Higgs mass corrections, since they have been studied at length in

the literature. At present, a heavier SUSY spectrum, as for instance our point VHeavyS is

certainly more realistic and compatible with LHC data. In general an analysis of LHC data

including NMFV effects in the squark sector would be very desirable. Regarding NUHM,

we have chosen a point with heavy SUSY spectra and light Higgs sector (HeavySLightH)

and a point (BFP) that has been proven in [59] to give the best fit to the set of low energy

observables. For later reference, needed in our posterior analysis of the Higgs mass correc-

tions, we also include in the table the corresponding MSSM Higgs masses, computed with

FeynHiggs [23, 24, 29–31] and with all flavor changing deltas switched off, i.e., δXY
ij = 0.

3 Constraints on Non-Minimal Flavor Violating SUSY scenarios from

B-physics

In this section we analyze the constraints on Non-Minimal Flavor Violating SUSY scenarios

from B-Physics. Since we are mainly interested in the phenomenological consequences of

the flavor mixing between the third and second generations we will focus7 on the following

three B meson observables: 1) Branching ratio of the B radiative decay BR(B → Xsγ), 2)

Branching ratio of the Bs muonic decay BR(Bs → µ+µ−), and 3) Bs − B̄s mass difference

∆MBs . Another B observable of interest in the present context is BR(B → Xsl
+l−).

However, we have not included this in our study, because the predicted rates in NMFV-

SUSY scenarios for this observable are closely correlated with those from BR(B → Xsγ)

due to the dipole operators dominance in the photon-penguin diagrams mediating BR(B →
6We adopt here the definition in terms of the GUT-scale input parameters, while the original definition

in [58] was based on the weak-scale parameters.
7We have checked that electroweak precision observables, where NMFV effects enter, for instance, via

∆ρ [28], do not lead to relevant additional constraints on the allowed parameter space. Our results on this

constraint are in agreement with ref. [37].
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points m1/2 m0 A0 tanβ δ1 δ2 mh mH MA mH±

SPS1 a 250 100 -100 10 0 0 112 394 394 402

SPS1 b 400 200 0 30 0 0 116 526 526 532

SPS2 300 1450 0 10 0 0 115 1443 1443 1445

SPS3 400 90 0 10 0 0 115 573 572 578

SPS4 300 400 0 50 0 0 114 404 404 414

SPS5 300 150 -1000 5 0 0 111 694 694 698

VHeavyS 800 800 -800 5 0 0 120 1524 1524 1526

HeavySLightH 600 600 0 5 −1.86 +1.86 114 223 219 233

BFP 530 110 -370 27 −84.7 −84.7 120 507 507 514

Table 1. Values of m1/2, m0, A0, tanβ, δ1, δ2 and Higgs boson masses mh, mH , MA and mH±

for the points considered in the analysis. All parameters with mass dimension are in GeV, and

sign(µ) > 0 for all points.

Xsl
+l−) decays. It implies that the restrictions on the flavor mixing δXY

ij parameters from

BR(B → Xsl
+l−)are also expected to be correlated with those from the radiative decays.

The summary of the relevant features for our analysis of these three B meson

observables is given in the following.

3.1 BR(B → Xsγ)

The relevant effective Hamiltonian for this decay is given in terms of the Wilson coefficients

Ci and operators Oi by:

Heff = −4GF√
2
V ts∗
CKMV

tb
CKM

8
∑

i=1

(CiOi + C ′
iO

′
i). (3.1)

Where the primed operators can be obtained from the unprimed ones by replacing L↔ R.

The complete list of operators can be found, for instance, in [55]. In the context of

SUSY scenarios with the MSSM particle content and MFV, only two of these operators

get relevant contributions, the so-called photonic dipole operator O7 and gluonic dipole

operator O8 given, respectively, by:

O7 =
e

16π2
mb (s̄Lσ

µνbR)Fµν , (3.2)

O8 =
g3

16π2
mb (s̄Lσ

µνT abR)G
a
µν . (3.3)

We have omitted the color indices here for brevity. Within NMFV also O′
7,8 have to be

taken into account:

O′
7 =

e

16π2
mb (s̄Rσ

µνbL)Fµν , (3.4)

O′
8 =

g3
16π2

mb (s̄Rσ
µνT abL)G

a
µν . (3.5)
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The Wilson coefficients at the SUSY scale are obtained as usual by the matching

procedure of the proper matrix element being computed from the previous effective

Hamiltonian to the corresponding matrix elements being computed from the SUSY model

operating at that SUSY scale, the NMFV-MSSM in our case. These Wilson coefficients

encode, therefore, the contributions to BR(B → Xsγ) from the loops of the SUSY and

Higgs sectors of the MSSM. The effects from squark flavor mixings that are parametrized

by the δXY
ij , are included in this observable via the squark physical masses and rotation

matrices, given in the previous section, that appear in the computation of the matrix

element at the one loop level and, therefore, are also encoded in the Wilson coefficients.

The explicit expressions for these coefficients in the MSSM, in terms of the physical basis,

can be found, for instance, in refs. [60–62]. We have included in our analysis the most

relevant loop contributions to the Wilson coefficients, concretely: 1) loops with Higgs

bosons, 2) loops with charginos and 3) loops with gluinos. It should be noted that, at

one loop order, the gluino loops do not contribute in MFV scenarios, but they are very

relevant (dominant in many cases) in the present NMFV scenarios.

Once the Wilson coefficients are known at the SUSY scale, they are evolved with

the proper Renormalization Group Equations (RGEs) down to the proper low-energy

scale. As a consequence of this running the previous operators mix and the corresponding

Wilson coefficients, C7,8 get involved in the computation of the B → Xsγ decay rate. The

RGE-running is done in two steps: The first one is from the SUSY scale down to the

electroweak scale, and the second one is from this electroweak scale down to the B-physics

scale. For the first step, we use the LO-RGEs for the relevant Wilson coefficients as

in [62] and fix six active quark flavors in this running. For the second running we use the

NLO-RGEs as in [63] and fix, correspondingly, five active quark flavors. For the charged

Higgs sector we use the NLO formulas for the Wilson coefficients as in [64].

The resummation of scalar induced large tanβ effects is performed, as usual, by the

effective Lagrangian approach that parametrizes the one-loop generated effective couplings

between theH2 Higgs doublet and the down type quarks in softly broken SUSY models [65].

A necessary condition to take into account all tanβ-enhanced terms in flavor changing am-

plitudes is the diagonalization of the down-type quark mass matrix in the presence of

these effective couplings [66–68]. A summary of this effective Lagrangian formalism for the

resummation of large tanβ effects in the three B observables of our interest, within the con-

text of MFV scenarios, can be found in [69]. We follow here the treatment of [70] where the

resummation of large tanβ effects via effective Lagrangians is generalized to the case where

the effective d̄iRd
j
LH0

2 coupling contains also non-minimal sources of flavor mixing. It should

be noted that the most relevant scalar induced large tanβ effects for the present work are

those generated by one-loop diagrams with gluino-sbottom and chargino-stop inside the

loops. The large tanβ resummation effects and the relevance of other chirally enhanced

corrections to FCNC processes within the NMFV context have recently been studied ex-

haustively also in [71, 72] (previous studies can be found, for instance, in refs. [73–75]).

The total branching ratio for this decay is finally estimated by adding the new

contributions from the SUSY and Higgs sectors to the SM rate. More specifically, we use

eq. (42) of [63] for the estimate of BR(B → Xsγ) in terms of the ratios of the Wilson
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coefficients C7,8 and C ′
7,8 (including all the mentioned new contributions) divided by the

corresponding CSM
7,8 in the SM.

For the numerical estimates of BR(B → Xsγ) we use the FORTRAN subroutine

BPHYSICS (modified as to include the contributions from C ′
7,8 which were not included in

its original version) included in the SuFla code, that incorporates all the above mentioned

ingredients [42, 43].

Finally, for completeness, we include below the experimental measurement of this

observable [8, 76],8 and its prediction within the SM [77]:

BR(B → Xsγ)exp = (3.55± 0.26)× 10−4 (3.6)

BR(B → Xsγ)SM = (3.15± 0.23)× 10−4 (3.7)

3.2 BR(Bs → µ+µ−)

The relevant effective Hamiltonian for this process is [78, 79]:

Heff = −GFα√
2π
V ts∗
CKMV

tb
CKM

∑

i

(CiOi + C ′
iO

′
i), (3.8)

where the operators Oi are given by:

O10 = (s̄γνPLb) (µ̄γνγ5µ) , O′
10 = (s̄γνPRb) (µ̄γνγ5µ) ,

OS = mb (s̄PRb) (µ̄µ) , O′
S = ms (s̄PLb) (µ̄µ) ,

OP = mb (s̄PRb) (µ̄γ5µ) , O′
P = ms (s̄PLb) (µ̄γ5µ) . (3.9)

We have again omitted the color indices here for brevity.

In this case, the RG running is straightforward since the anomalous dimensions of

the above involved operators are zero, and the prediction for the decay rate is simply

expressed by:

BR(Bs → µ+µ−) =
G2

Fα
2m2

Bs
f2Bs

τBs

64π3
|V ts∗

CKMV
tb
CKM|2

√

1− 4m̂2
µ

×
[(

1− 4m̂2
µ

)

|FS |2 + |FP + 2m̂2
µF10|2

]

, (3.10)

where m̂µ = mµ/mBs and the Fi are given by

FS,P = mBs

[

CS,Pmb − C ′
S,Pms

mb +ms

]

, F10 = C10 − C ′
10.

Within the SM the most relevant operator is O10 as the Higgs mediated contributions

to OS,P can be safely neglected. It should be noted that the contribution from O10 to

the decay rate is helicity suppressed by a factor of m̂2
µ since the Bs meson has spin zero.

In contrast, in SUSY scenarios the scalar and pseudo-scalar operators, OS,P , can be very

important, particularly at large tanβ & 30 where the contributions to CS and CP from

neutral Higgs penguin diagrams can become large and dominate the branching ratio,

8We have added the various contributions to the experimental error in quadrature.
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because in this case the branching ratio grows with tanβ as tan6β. The studies in the

literature of these MSSM Higgs-penguin contributions to BR(Bs → µ+µ−) have focused

on both MFV [68, 80, 81] and NMFV scenarios [45, 70, 75, 78]. In both cases the rates for

BR(Bs → µ+µ−) at large tanβ can be enhanced by a few orders of magnitude compared

with the prediction in the SM, therefore providing an optimal window for SUSY signals.

In the present context of SUSY-NMFV, with no preference for large tanβ values, there

are in general three types of one-loop diagrams that contribute to the previous Ci Wilson

coefficients for this Bs → µ+µ− decay: 1) Box diagrams, 2) Z-penguin diagrams and 3)

neutral Higgs boson H-penguin diagrams, where H denotes the three neutral MSSM Higgs

bosons. In our numerical estimates we have included what are known to be the dominant

contributions to these three types of diagrams [78]: chargino contributions to box and

Z-penguin diagrams and chargino and gluino contributions to H-penguin diagrams.

Regarding the resummation of large tanβ effects we have followed the same effective

Lagrangian formalism as explained in the previous case of B → Xsγ. In the case of

contributions from H-penguin diagrams to Bs → µ+µ− this resummation is very relevant

and it has been generalized to NMFV-SUSY scenarios in [70].

For the numerical estimates we use again the BPHYSICS subroutine included in the

SuFla code [42, 43] which incorporates all the ingredients that we have pointed out above.

Finally, for completeness, we include below the present experimental upper bound for

this observable [82], and the prediction within the SM [83]:

BR(Bs → µ+µ−)exp < 1.1× 10−8 (95% CL) (3.11)

BR(Bs → µ+µ−)SM = (3.6± 0.4)× 10−9 (3.12)

3.3 ∆MBs

The relevant effective Hamiltonian for Bs − B̄s mixing and, hence, for the Bs/B̄s mass

difference ∆MBs is:

Heff =
G2

F

16π2
M2

W

(

V tb∗
CKMV

ts
CKM

)2∑

i

CiOi. (3.13)

In the SM the most relevant operator is:

OV LL = (b̄αγµPLs
α)(b̄βγµPLs

β). (3.14)

Where we have now written explicitly the color indices. In scenarios beyond the SM, as

the present NMFV MSSM, other operators are also relevant:

OLR
1 = (b̄αγµPLs

α)(b̄βγµPRs
β), OLR

2 = (b̄αPLs
α)(b̄βPRs

β), (3.15)

OSLL
1 = (b̄αPLs

α)(b̄βPLs
β), OSLL

2 = (b̄ασµνPLs
α)(b̄βσµνPLs

β), (3.16)

and the corresponding operators OV RR and OSRR
i that can be obtained by replacing

PL ↔ PR in (3.14) and (3.16). The mass difference ∆MBs is then evaluated by taking the

matrix element

∆MBs = 2|〈B̄s|Heff |Bs〉|, (3.17)
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where 〈B̄s|Heff |Bs〉 is given by

〈B̄s|Heff |Bs〉 =
G2

F

48π2
M2

WmBsf
2
Bs

(

V tb∗
CKMV

ts
CKM

)2∑

i

PiCi (µW ) . (3.18)

Here mBs is the Bs meson mass, and fBs is the Bs decay constant. The coefficients

Pi contain the effects due to RG running between the electroweak scale µW and mb as

well as the relevant hadronic matrix element. We use the coefficients Pi from the lattice

calculation [84, 85]:

P V LL
1 =0.73, PLR

1 =− 1.97, PLR
2 =2.50, PSLL

1 =− 1.02, PSLL
2 =− 1.97. (3.19)

The coefficients P V RR
1 , etc., may be obtained from those above by simply exchanging

L↔ R.

In the present context of SUSY-NMFV, again with no preference for large tanβ values,

and besides the SM loop contributions, there are in general three types of one-loop diagrams

that contribute to the previous Ci Wilson coefficients for Bs−B̄s mixing: 1) Box diagrams,

2) Z-penguin diagrams and 3) double Higgs-penguin diagrams. In our numerical estimates

we have included what are known to be the dominant contributions to these three types of

diagrams in scenarios with non-minimal flavor violation (for a review see, for instance, [45]):

gluino contributions to box diagrams, chargino contributions to box and Z-penguin dia-

grams, and chargino and gluino contributions to doubleH-penguin diagrams. As in the pre-

vious observables, the total prediction for ∆MBs includes, of course, the SM contribution.

Regarding the resummation of large tanβ effects we have followed again the effective

Lagrangian formalism, generalized to NMFV-SUSY scenarios [70], as in the previous

cases of B → Xsγ and Bs → µ+µ−. It should be noted that, in the case of ∆MBs , the

resummation of large tanβ effects is very relevant for the double H-penguin contributions,

which grow very fast with tanβ.

For the numerical estimates we have modified the BPHYSICS subroutine included in

the SuFla code [42, 43] which incorporates all the ingredients that we have pointed out

above, except the contributions from gluino boxes. These contributions are known to be

very important for Bs−B̄s mixing in SUSY scenarios with non-minimal flavor violation [45–

47] and therefore they must be included into our analysis of ∆MBs . Concretely, we have

incorporated them into the BPHYSICS subroutine by adding the full one-loop formulas for

the gluino boxes of [44] to the other above quoted contributions that were already included

in the code. In order to illustrate the relevance of these gluino contributions in our analysis

of ∆MBs , we show in figure 1 each separate contribution as a function of tanβ in a particular

example with δLL23 = δRR
sb = 0.1, that we have chosen for comparison with [45]. The other fla-

vor changing deltas are set to zero, and the other relevant MSSM parameters are set tomq̃ =

500 GeV, At = −mq̃, mg̃ =
√
2mq̃, µ = mq̃, and mA = 300 GeV, as in figure 24 of [45].

We clearly see in figure 1 that it is just in the very large tanβ region where double Higgs-

penguins dominate. For moderate and low tanβ values, tanβ ≤ 20 (which is a relevant

region for our numerical analysis, see below) the gluino boxes fully dominates the SUSY

corrections to ∆MBs and compete with the SM contributions. Our numerical estimate in
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Figure 1. Relevant contributions to ∆MBs
in NMFV-SUSY scenarios as a function of tanβ.

They include: SM, Double Higgs penguins, gluino boxes and chargino boxes. The total pre-

diction for ∆MBs
should be understood here as ∆MBs

= |Total|. The parameters are set to

δLL
23 = δRR

sb = 0.1,mq̃ = 500 GeV, At = −mq̃, mg̃ =
√
2mq̃, µ = mq̃, and mA = 300 GeV. The

other flavor changing deltas are set to zero.

this plot is in complete agreement with the results in [45] (see, in particular, figure 24 of

this reference) which analyzed and compared in full detail these corrections. Finally, for

completeness, we include below the experimental measurement of this observable [8],9 and

its prediction within the SM (using NLO expression of [86] and error estimate of [87]):

∆MBsexp = (117.0± 0.8)× 10−10 MeV , (3.20)

∆MBsSM = (117.1+17.2
−16.4)× 10−10 MeV . (3.21)

3.4 Numerical results on B observables

In the following of this section we present our numerical results for the three B observables

in the NMFV-SUSY scenarios and a discussion on the allowed values for the flavor

changing deltas, δXY
ij .

The predictions for BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs versus the various

δXY
ij , for the six selected SPS points, are displayed respectively in figures 2, 3 and 4. For this

analysis, we have assumed that just one at a time of these deltas is not vanishing. Results for

two non-vanishing deltas will be shown later. The following 7 flavor changing deltas are con-

sidered: δLL23 , δLRct , δLRsb , δRL
ct , δRL

sb , δRR
ct and δRR

sb ; and we have explored delta values within

the interval −1 < δXY
ij < 1. In all plots, the predictions for δXY

ij = 0 represent our estimate

of the corresponding observable in the MFV case. This will allow us to compare easily the

9We have again added the various contributions to the experimental error in quadrature.
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results in the two kind of scenarios, NMFV and MFV. It should be noted also, that some

of the predicted lines in these plots do not expand along the full interval −1 < δXY
ij < 1,

and they are restricted to a smaller interval; for some regions of the parameter space a too

large delta value can generate very large corrections to any of the masses, and the mass

squared turns negative. These problematic points are consequently not shown in our plots.

We have also included in the right vertical axis of these figures, for comparison, the

respective SM prediction in (3.7), (3.12), and (3.21). The error bars displayed are the

corresponding SM uncertainties as explained below. The shadowed horizontal bands in

the case of BR(B → Xsγ) and ∆MBs are their corresponding experimental measurements

in (3.6), and (3.20), expanded with 3σexp errors. In the case of BR(Bs → µ+µ−) the

shadowed area corresponds to the allowed region by the upper bound in (3.11).

The main conclusions extracted from these figures for the three B observables are

summarized as follows:

• BR(B → Xsγ):

- Sensitivity to the various deltas:

We find strong sensitivity to δLRsb , δRL
sb , δLL23 , δRR

sb and δLRct , in all the studied

points, for both high and low tanβ values. The order found from the highest

to the lowest sensitivity is, generically: 1) δLRsb and δRL
sb the largest, 2) δLL23 the

next, 3) δLRct and δRR
sb the next to next, and 4) slight sensitivity to δRR

ct and δRL
ct .

- Comparing the predictions with the experimental data:

If we focus on the five most relevant deltas, δLRsb , δRL
sb , δLL23 , δRR

sb and δLRct , we

see clearly that tiny deviations from zero (i.e., deviations from MFV) in these

deltas, and specially in the first three, produce sizeable shifts in BR(B → Xsγ),

and in many cases take it out the experimental allowed band. Therefore, it is

obvious from these plots that BR(B → Xsγ) sets stringent bounds on the deltas

(when varying just one delta), which are particularly tight on δLRsb , δRL
sb , δLL23 ,

δRR
sb , and δLRct , indeed for all the studied SPS points. There are just two excep-

tions, where the predicted central values of BR(B → Xsγ) are already outside

the experimental band in the MFV case (all deltas set to zero), and assuming

one of these three most relevant deltas to be non-vanishing, the prediction

moves inside the experimental band. This happens, for instance, in the points

SPS4 and SPS1b that have the largest tanβ values of 50 and 30 respectively.

Interestingly, it means that some points of the CMSSM, particularly those with

large tanβ values, that would have been excluded in the context of MFV, can

be recovered as compatible with data within NMFV-SUSY scenarios.

- Intervals of δXY
ij allowed by data:

In order to conclude on the allowed delta intervals we have assumed that

our predictions of BR(B → Xsγ) within SUSY scenarios have a some-

what larger theoretical error ∆theo(BR(B → Xsγ)) than the SM prediction

∆theo
SM (BR(B → Xsγ)) given in (3.7). As a very conservative value we

use ∆theo(BR(B → Xsγ)) = 0.69 × 10−4. A given δXY
ij value is then
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considered to be allowed by data if the corresponding interval, defined by

BR(B → Xsγ)±∆theo(BR(B → Xsγ)), intersects with the experimental band.

It corresponds to adding linearly the experimental uncertainty and the MSSM

theoretical uncertainty. In total a predicted ratio in the interval

2.08× 10−4 < BR(B → Xsγ) < 5.02× 10−4, (3.22)

is regarded as allowed. Our results for these allowed intervals are summarized

in table 2. In this table we see again that the less constrained parameters by

BR(B → Xsγ) are δRL
ct , and δRR

ct . Therefore, except for the excluded SPS4

case, these two deltas can be sizeable, |δXY
ij | larger than O(0.1), and compatible

with BR(B → Xsγ) data.

• BR(Bs → µ+µ−):

- Sensitivity to the various deltas:

We find significant sensitivity to the NMFV deltas in scenarios with very large

tanβ, as it is the case of SPS4 and SPS1b. This sensitivity is clearly due to the

Higgs-mediated contribution that, grows as tan6 β. The largest sensitivity is to

δLL23 . In the case of SPS4, there is also significant sensitivity to δLRsb , δRR
sb and

δLRct . In the SPS1b scenario there is also found some sensitivity to δLRsb , δRR
ct ,

δRR
sb and δLRct .

- Comparing the predictions with the experimental data:

Figure 3 clearly shows that most of the |δXY
ij | ≤ 1 explored values are allowed by

experimental data on BR(Bs → µ+µ−). It is in the points with very large tanβ,

i.e SPS4 and SPS1b, where there are some relevant differences between the MFV

and the NMFV predictions. First, all predictions for MFV scenarios except for

SPS4, are inside the experimental allowed area. In the case of SPS1b, the com-

parison of the NMFV predictions with data constraints specially δLL23 , but also

δLRsb , δRR
ct , δRR

sb and δLRct . In the case of SPS4 some input non-vanishing values of

δLL23 , δLRsb or δRR
sb can place the prediction inside the experimental allowed area. In

the case of the SPS1a and SPS3 scenarios some constraints for δLL23 can be found.

- Intervals of δXY
ij allowed by data:

As in the previous observable, we assume here that our predictions for BR(Bs →
µ+µ−) have a slightly larger error as the SM prediction in (3.12), where, how-

ever, the theory uncertainty is very small in comparison with the experimental

bound. We choose ∆theo(BR(Bs → µ+µ−)) = 0.12 × 10−8. Then, a given

δXY
ij value is allowed by data if the predicted interval, defined by BR(Bs →
µ+µ−) + ∆theo(BR(Bs → µ+µ−)), intersects the experimental area. The upper

line of the experimental area in this case is set by the 95% CL upper bound

given in (3.11). It implies that for a predicted ratio to be allowed it must fulfill:

BR(Bs → µ+µ−) < 1.22× 10−8. (3.23)
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Figure 2. Sensitivity to the NMFV deltas in BR(B → Xsγ) for the SPSX points of table 1. The

experimental allowed 3σ area is the horizontal colored band. The SM prediction and the theory

uncertainty ∆theo(BR(B → Xsγ)) (red bar) is displayed on the right axis.

The results for the allowed δXY
ij intervals are collected in table 2. We conclude

from this table that, except for scenarios with large tanβ ≥ 30, like SPS4 and

SPS1b, the size of the deltas can be sizeable, |δXY
ij | larger than O(0.1), and

compatible with BR(Bs → µ+µ−) data.

• ∆MBs :

- Sensitivity to the various deltas:
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Figure 3. Sensitivity to the NMFV deltas in BR(Bs → µ+µ−) for the SPSX points of table 1. The

experimental allowed region by the 95% CL bound is the horizontal colored area. The SM prediction

and the theory uncertainty ∆theo(BR(Bs → µ+µ−)) (red bar) is displayed on the right axis.

Generically, we find strong sensitivity to most of the NMFV deltas in all the

studied points, including those with large and low tanβ values. The pattern

of the ∆MBs predictions as a function of the various δXY
ij differs substantially

for each SPS point. This is mainly because in this observable there are two

large competing contributions, the double Higgs penguins and the gluino boxes,

with very different behavior with tanβ, as we have seen in figure 1. In the

case of SPS4 with extremely large tanβ = 50, the high sensitivity to all deltas
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is evident in this figure. In the case of SPS5 with low tanβ = 5, there is

important sensitivity to all deltas, except δRR
ct , δLRct and δRL

ct . Generically, for

all the studied points, we find the highest sensitivity to 1) δLRsb , δRL
sb and δLL23 ;

2) δRR
sb the next, 3) δLRct the next to next; and 4) the lowest sensitivity is to δRL

ct

and δRR
ct . Consequently, these two later will be the less constrained ones.

- Comparing the predictions with the experimental data:

In this case, the experimental allowed 3σexp band is very narrow, and all the

central predictions at δXY
ij = 0, i.e. for MFV scenarios, lay indeed outside this

band. However, if we assume again that our predictions suffer of a similar large

uncertainty as the SM prediction, given in (3.21), then the MFV predictions

are all compatible with data except for SPS4. It is also obvious from this

figure that the predictions within NMFV, as compared to the MFV ones, lie

quite generically outside the experimental allowed band, except for the above

commented deltas with low sensitivity.

- Intervals of δXY
ij allowed by data:

We consider again, that a given δXY
ij value is allowed by ∆MBs data if the

predicted interval ∆MBs ±∆theo(∆MBs), intersects the experimental band. It

corresponds to adding linearly the experimental uncertainty and the theoretical

uncertainty. Given the present controversy on the realistic size of the theoretical

error in the estimates of ∆theo(∆MBs) in the MSSM (see, for instance, [88]), we

choose a very conservative value for the theoretical error in our estimates, con-

siderably larger than the SM value in (3.21), of ∆theo(∆MBs) = 51×10−10MeV.

This implies that a predicted mass difference in the interval

63× 10−10 < ∆MBs(MeV) < 168.6× 10−10, (3.24)

is regarded as allowed.

The allowed intervals for the deltas that are obtained with this requirement are

collected in table 2. As we have already commented, the restrictions on the

b-sector parameters from ∆MBs are very strong, and in consequence, there are

narrow intervals allowed for, δLRsb , δRL
sb , and δLL23 . In the case of δRR

sb there are

indeed sequences of very narrow allowed intervals, which in some cases reduce

to just a single allowed value. The parameters that show a largest allowed

interval, with sizeable |δXY
ij |, larger than O(0.1), are δRR

ct , δRL
ct and δLRct .

Total allowed δXY
ij intervals

We finally summarize in table 3 the total allowed intervals for all the NMFV deltas, δXY
ij ,

where now we have required compatibility with the present data of the three considered

B observables, BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs . It is obvious, from the

previous discussion, that the most restrictive observables are BR(B → Xsγ) and ∆MBs ,

leading to a pattern of allowed delta intervals which is clearly the intersect of their two

corresponding intervals. The main conclusion from this table is that, except for SPS4 (the

point SPS4 is practically excluded), the NMFV deltas in the top-sector can be sizeable
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Figure 4. Sensitivity to the NMFV deltas in ∆MBs
for the SPSX points of table 1. The ex-

perimental allowed 3σexp area is the horizontal colored band. The SM prediction and the theory

uncertainty ∆theo(∆MBs
) (red bar) is displayed on the right axis.

|δXY
ct | larger than O(0.1) and still compatible with B data. In particular, δRL

ct , and δRR
ct

are the less constrained parameters, and to a lesser extent also δLRct . The parameters on

the bottom-sector are, in contrast, quite constrained. The most tightly constrained are

clearly δLRsb and δRL
sb , specially the first one with just some singular allowed values: either

positive and of the order of 3 − 5 × 10−2, or negative and with a small size of the order

of −7× 10−3; for the second the limits are around 2× 10−2 for both positive and negative

values. δRR
sb is the less constrained parameter in the bottom sector, with larger allowed

intervals of |δRR
sb | . 0.4− 0.9 depending on the scenario.
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All SPS points are defined with a positive µ value. We have checked the effect

of switching the sign of µ. While the numerical results are changing somewhat, no

qualitative change can be observed. Consequently, confining ourselves to positive µ does

not constitute a general restriction of our analysis. Similar observations are made in the

Higgs-sector analysis below.

The intervals allowed by B data that we have presented above will be of interest

for the following study in this work, where we will next explore the size of the radiative

corrections to the MSSM Higgs masses within these NMFV-MSSM scenarios and we will

require compatibility with B data. In the final analysis of these corrections, we will use

the constraints from B data as extracted from two non-vanishing deltas. As expected,

these constraints vary significantly respect to the ones with just one non-vanishing delta.

4 Radiative corrections to MSSM Higgs masses within NMFV scenarios

In this section we present our computation of the one-loop radiative corrections to MSSM

Higgs boson masses within the NMFV scenarios. For completeness and definiteness, we

first shortly review the relevant features of the MSSM Higgs sector at tree-level. Then we

summarize the main one-loop renormalization issues that are involved in the computation

and finally we present the analytical results for the one-loop corrected Higgs masses.

4.1 The Higgs boson sector at tree-level

Contrary to the SM, in the MSSM two Higgs doublets are required. The Higgs potential [89]

V = m2
1|H1|2 +m2

2|H2|2 −m2
12(ǫabHa

1Hb
2 + h.c.)

+
1

8
(g21 + g22)

[

|H1|2 − |H2|2
]2

+
1

2
g22|H†

1H2|2 , (4.1)

contains m1,m2,m12 as soft SUSY breaking parameters; g2, g1 are the SU(2) and U(1)

gauge couplings, and ǫ12 = −1.

The doublet fields H1 and H2 are decomposed in the following way:

H1 =

(

H0
1

H−
1

)

=

(

v1 +
1√
2
(φ01 − iχ0

1)

−φ−1

)

,

H2 =

(

H+
2

H0
2

)

=

(

φ+2

v2 +
1√
2
(φ02 + iχ0

2)

)

. (4.2)

The potential (4.1) can be described with the help of two independent parameters (besides

g1 and g2): tanβ = v2/v1 and M2
A = −m2

12(tanβ + cotβ), where MA is the mass of the

CP-odd Higgs boson A.
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BR(B → Xsγ) BR(Bs → µ+µ−) ∆MBs

δLL
23

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(-0.51:-0.43) (-0.034:0.083)

(-0.33:-0.27) (-0.014:0.062)

(-0.43:0.34) (0.90:0.92)

(-0.73:-0.65) (-0.083:0.12)

(-0.14:-0.11) (0.0069:0.034)

(-0.26:0.50)

(-0.53:0.92)

(-0.014:0.16)

(-0.99:0.99)

(-0.90:0.97)

(0.028:0.055)

(-0.60:0.57)

(-0.73:-0.65) (-0.41:0.55) (0.73:0.79)

(-0.090:-0.069) (-0.021:0.097) (0.14:0.17)

(-0.37:0.37)

(-0.86:-0.79) (-0.56:0.66) (0.83:0.89)

(-0.0069)(0.021:0.055)(0.076)

(-0.37:0.39)

δLR
ct

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(-0.89:-0.86) (-0.12:-0.097)

(-0.062:0.28)

(-0.083:0.36)

(-0.46:0.46)

(-0.43:0.61)

(-0.61:-0.51) (0.041:0.23)

(-0.27:0.58)

(-0.89:0.89)

(-0.44:0.67)

(-0.46:0.46)

(-0.68:0.68)

excluded

(-0.59:0.61)

(-0.89:0.89)

(-0.67:0.67)

(-0.46:0.46)

(-0.68:0.68)

(-0.39:-0.021) (0.74:0.77)

(-0.59:0.61)

δLR
sb

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(0)(0.034)

(-0.0069:0) (0.048:0.055)

(-0.0069:0) (0.048:0.055)

(-0.0069:0) (0.048:0.055)

(-0.0069)(0.034)

(-0.0069:0) (0.041)

(-0.60:0.60)

(-0.43:0.54)

(-0.48:0.48)

(-0.61:0.61)

(0.49)

(-0.71:0.71)

(-0.076:0.076)

(-0.15:0.14)

(-0.19:0.19)

(-0.12:0.12)

(-0.29:-0.24) (-0.10:-0.014) (0.12:0.18)

(-0.090:0.090)

δRL
ct

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(-0.84:0.84)

(-0.63:0.63)

(-0.39:0.39)

(-0.63:0.63)

excluded

(-0.53:0.53)

(-0.84:0.84)

(-0.63:0.63)

(-0.39:0.39)

(-0.63:0.63)

excluded

(-0.53:0.53)

(-0.84:0.84)

(-0.63:0.63)

(-0.39:0.39)

(-0.63:0.63)

(-0.72:-0.21) (0.21:0.72)

(-0.53:0.53)

δRL
sb

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(-0.014:0.014)

(-0.021:0.021)

(-0.014:0.014)

(-0.021:0.021)

(-0.021:-0.014)(0.014:0.021)

(-0.014:0.014)

(-0.71:0.71)

(-0.58:0.58)

(-0.55:0.55)

(-0.63:0.63)

excluded

(-0.72:0.72)

(-0.069:0.069)

(-0.14:0.14)

(-0.17:0.17)

(-0.11:0.11)

(-0.21:-0.17) (0.16:0.21)

(-0.083:0.083)

δRR
ct

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(-0.93:-0.67) (-0.64:0.93)

(-0.93:-0.61) (-0.56:0.90)

(-1.0:0.99)

(-0.97:0.97)

excluded

(-0.60:0.60)

(-0.93:0.93)

(-0.95:0.94)

(-1.0:0.99)

(-0.97:0.97)

excluded

(-0.60:0.60)

(-0.93:0.93)

(-0.98:0.98)

(-1.0:0.99)

(-0.98:0.97)

(-0.85:-0.22) (0.22:0.85)

(-0.60:0.60)

δRR
sb

SPS1a

SPS1b

SPS2

SPS3

SPS4

SPS5

(-0.65:0.68)

(-0.71:0.74)

(-0.99:0.99)

(-0.98:0.98)

(-0.45:-0.18) (0.19:0.46)

(-0.77:0.80)

(-0.96:0.96)

(-0.73:0.98)

(-0.99:0.99)

(-0.98:0.98)

excluded

(-0.97:0.97)

(-0.91:-0.90) (-0.86:-0.80) (-0.41:0.41)

(0.81:0.86) (0.90:0.91)

(-0.94:-0.92) (-0.83:0.88) (0.93:0.94)

(-0.99) (-0.39:0.39) (0.99)

(-0.94:-0.93) (-0.88:0.88) (0.93:0.94)

(-0.80:-0.028) (0.461:0.71) (0.86:0.91)

(0.94:0.95)

(-0.92) (-0.87:-0.78) (-0.51:0.51)

(0.78:0.87) (0.92)

Table 2. Allowed delta intervals by BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs
.
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Total allowed intervals

δLL23

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(-0.034:0.083)
(-0.014:0.062)
(-0.37:0.34)
(-0.083:0.12)
(0.028:0.034)
(-0.26:0.39)

δLRct

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(-0.89:-0.86) (-0.12:-0.097) (-0.062:0.28)
(-0.083:0.36)
(-0.46:0.46)
(-0.43:0.61)
excluded

(-0.27:0.58)

δLRsb

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(0)(0.034)
(-0.0069:0) (0.048:0.055)
(-0.0069:0) (0.048:0.055)
(-0.0069:0) (0.048:0.055)

excluded
(-0.0069:0) (0.041)

δRL
ct

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(-0.84:0.84)
(-0.63:0.63)
(-0.39:0.39)
(-0.63:0.63)
excluded

(-0.53:0.53)

δRL
sb

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(-0.014:0.014)
(-0.021:0.021)
(-0.014:0.014)
(-0.021:0.021)

excluded
(-0.014:0.014)

δRR
ct

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(-0.93:-0.67) (-0.64:0.93)
(-0.93:-0.61) (-0.56:0.90)

(-1.0:0.99)
(-0.97:0.97)
excluded

(-0.60:0.60)

δRR
sb

SPS1a
SPS1b
SPS2
SPS3
SPS4
SPS5

(-0.41:0.41)
(-0.71:0.74)

(-0.99) (-0.39:0.39) (0.99)
(-0.94:-0.93) (-0.88:0.88) (0.93:0.94)

excluded
(-0.51:0.51) (0.78:0.80)

Table 3. Total allowed delta intervals by BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs
.
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The diagonalization of the bilinear part of the Higgs potential, i.e. of the Higgs mass

matrices, is performed via the orthogonal transformations
(

H

h

)

=

(

cosα sinα

− sinα cosα

)(

φ01

φ02 ,

)

(4.3)

(

G

A

)

=

(

cosβ sinβ

− sinβ cosβ

)(

χ0
1

χ0
2

)

, (4.4)

(

G±

H±

)

=

(

cosβ sinβ

− sinβ cosβ

)(

φ±1
φ±2

)

. (4.5)

The mixing angle α is determined through

α = arctan

[

−(M2
A +M2

Z) sinβ cosβ

M2
Z cos2 β +M2

A sin2 β −m2
h,tree

]

, − π

2
< α < 0 . (4.6)

One gets the following Higgs spectrum:

2 neutral bosons, CP = +1 : h,H

1 neutral boson, CP = −1 : A

2 charged bosons : H+, H−

3 unphysical Goldstone bosons : G,G+, G−. (4.7)

At tree level the mass matrix of the neutral CP-even Higgs bosons is given in the

φ1-φ2-basis in terms of MZ , MA, and tanβ by

M2,tree
Higgs =

(

m2
φ1

m2
φ1φ2

m2
φ1φ2

m2
φ2

)

=

(

M2
A sin2 β +M2

Z cos2 β −(M2
A +M2

Z) sinβ cosβ

−(M2
A +M2

Z) sinβ cosβ M2
A cos2 β +M2

Z sin2 β

)

, (4.8)

which by diagonalization according to eq. (4.3) yields the tree-level Higgs boson masses

M2,tree
Higgs

α−→
(

m2
H,tree 0

0 m2
h,tree

)

, (4.9)

where

(m2
H,h)tree =

1

2

[

M2
A +M2

Z ±
√

(M2
A +M2

Z)
2 − 4M2

ZM
2
A cos2 2β

]

. (4.10)

The charged Higgs boson mass is given by

m2
H±,tree =M2

A +M2
W . (4.11)

The masses of the gauge bosons are given in analogy to the SM:

M2
W =

1

2
g22(v

2
1 + v22); M2

Z =
1

2
(g21 + g22)(v

2
1 + v22); Mγ = 0. (4.12)
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4.2 The Higgs boson sector at one-loop

In order to calculate one-loop corrections to the Higgs boson masses, the renormalized

Higgs boson self-energies are needed. Here we follow the procedure used in refs. [23, 90]

(and references therein) and review it for completeness. The parameters appearing in the

Higgs potential, see eq. (4.1), are renormalized as follows:

M2
Z →M2

Z + δM2
Z , Th → Th + δTh, (4.13)

M2
W →M2

W + δM2
W , TH → TH + δTH ,

M2
Higgs →M2

Higgs + δM2
Higgs, tanβ → tanβ (1 + δtanβ ).

M2
Higgs denotes the tree-level Higgs boson mass matrix given in eq. (4.8). Th and TH are

the tree-level tadpoles, i.e. the terms linear in h and H in the Higgs potential.

The field renormalization matrices of both Higgs multiplets can be set up symmetri-

cally,

(

h

H

)

→
(

1 + 1
2δZhh

1
2δZhH

1
2δZhH 1 + 1

2δZHH

)

·
(

h

H

)

. (4.14)

For the mass counter term matrices we use the definitions

δM2
Higgs =

(

δm2
h δm2

hH

δm2
hH δm2

H

)

. (4.15)

The renormalized self-energies, Σ̂(p2), can now be expressed through the unrenormalized

self-energies, Σ(p2), the field renormalization constants and the mass counter terms. This

reads for the CP-even part,

Σ̂hh(p
2) = Σhh(p

2) + δZhh(p
2 −m2

h,tree)− δm2
h, (4.16a)

Σ̂hH(p2) = ΣhH(p2) + δZhH(p2 − 1
2(m

2
h,tree +m2

H,tree))− δm2
hH , (4.16b)

Σ̂HH(p2) = ΣHH(p2) + δZHH(p2 −m2
H,tree)− δm2

H . (4.16c)

Inserting the renormalization transformation into the Higgs mass terms leads to

expressions for their counter terms which consequently depend on the other counter terms

introduced in (4.13).

For the CP-even part of the Higgs sectors, these counter terms are:

δm2
h = δM2

A cos2(α− β) + δM2
Z sin2(α+ β) (4.17a)

+ e
2MZswcw

(δTH cos(α− β) sin2(α− β) + δTh sin(α− β)(1 + cos2(α− β)))

+ δtanβ sinβ cosβ (M2
A sin 2(α− β) +M2

Z sin 2(α+ β)),

δm2
hH = 1

2(δM
2
A sin 2(α− β)− δM2

Z sin 2(α+ β)) (4.17b)

+ e
2MZswcw

(δTH sin3(α− β)− δTh cos
3(α− β))

− δtanβ sinβ cosβ (M2
A cos 2(α− β) +M2

Z cos 2(α+ β)),

δm2
H = δM2

A sin2(α− β) + δM2
Z cos2(α+ β) (4.17c)
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− e
2MZswcw

(δTH cos(α− β)(1 + sin2(α− β)) + δTh sin(α− β) cos2(α− β))

− δtanβ sinβ cosβ (M2
A sin 2(α− β) +M2

Z sin 2(α+ β)) .

For the field renormalization we chose to give each Higgs doublet one renormalization

constant,

H1 → (1 + 1
2δZH1

)H1, H2 → (1 + 1
2δZH2

)H2 . (4.18)

This leads to the following expressions for the various field renormalization constants

in eq. (4.14):

δZhh = sin2α δZH1
+ cos2α δZH2

, (4.19a)

δZhH = sinα cosα (δZH2
− δZH1

), (4.19b)

δZHH = cos2α δZH1
+ sin2α δZH2

. (4.19c)

The counter term for tanβ can be expressed in terms of the vacuum expectation values as

δ tanβ =
1

2
(δZH2

− δZH1
) +

δv2
v2

− δv1
v1

, (4.20)

where the δvi are the renormalization constants of the vi:

v1 → (1 + δZH1
) (v1 + δv1) , v2 → (1 + δZH2

) (v2 + δv2) . (4.21)

Similarly for the charged Higgs sector, the renormalized self-energy is expressed in terms

of the unrenormalized one and the corresponding counter-terms as:

Σ̂H−H+

(

p2
)

= ΣH−H+

(

p2
)

+ δZH−H+

(

p2 −m2
H±,tree

)

− δm2
H± , (4.22)

where,

δm2
H± = δM2

A + δM2
W (4.23)

and,

δZH−H+ = sin2 β δZH1
+ cos2 β δZH2

. (4.24)

The renormalization conditions are fixed by an appropriate renormalization scheme.

For the mass counter terms on-shell conditions are used, resulting in:

δM2
Z = ReΣZZ(M

2
Z), δM2

W = ReΣWW (M2
W ), δM2

A = ReΣAA(M
2
A). (4.25)

For the gauge bosons Σ denotes the transverse part of the self-energy. Since the

tadpole coefficients are chosen to vanish in all orders, their counter terms follow from

T{h,H} + δT{h,H} = 0:

δTh = −Th, δTH = −TH . (4.26)

For the remaining renormalization constants for δ tanβ, δZH1
and δZH2

the most

convenient choice is a DR renormalization of δ tanβ, δZH1
and δZH2

,

δZH1
= δZDR

H1
= −

[

ReΣ′
HH |α=0

]div
, (4.27a)
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δZH2
= δZDR

H2
= −

[

ReΣ′
hh |α=0

]div
, (4.27b)

δtanβ = −1

2
(δZH2

− δZH1
) = δtanβ DR . (4.27c)

The corresponding renormalization scale, µDR, is set to µDR = mt in all numerical

evaluations.

Finally, in the Feynman diagrammatic (FD) approach that we are following here, the

higher-order corrected CP-even Higgs boson masses are derived by finding the poles of the

(h,H)-propagator matrix. The inverse of this matrix is given by

(∆Higgs)
−1 = −i

(

p2 −m2
H,tree + Σ̂HH(p2) Σ̂hH(p2)

Σ̂hH(p2) p2 −m2
h,tree + Σ̂hh(p

2)

)

. (4.28)

Determining the poles of the matrix ∆Higgs in eq. (4.28) is equivalent to solving the equation

[

p2 −m2
h,tree + Σ̂hh(p

2)
] [

p2 −m2
H,tree + Σ̂HH(p2)

]

−
[

Σ̂hH(p2)
]2

= 0 . (4.29)

Similarly, in the case of the charged Higgs sector, the corrected Higgs mass is derived by

the position of the pole in the charged Higgs propagator, which is defined by:

p2 −m2
H±,tree + Σ̂H−H+

(

p2
)

= 0. (4.30)

4.3 Analytical results of Higgs mass corrections in NMFV-SUSY

Following the previously detailed prescription for the computation of the one-loop

corrected Higgs boson masses, one finds the analytical results for these masses in terms of

the renormalized self-energies which, in turn, are written in terms of the unrenormalized

self-energies and tadpoles. To shorten the presentation of these analytical results, it is

convenient to report just on these unrenormalized self-energies and tadpoles.

The relevant one-loop corrections have been evaluated with the help of FeynArts [50–

52] and FormCalc [53]. For completeness the new Feynman rules included in the model

file are listed in the appendix A. All the results for the unrenormalized self-energies

and tadpoles are collected in appendix B. We have shown explicitly just the relevant

contributions for the present study of the radiative corrections to the Higgs boson masses

within NMFV scenarios, namely, the one-loop contributions from quarks and squarks.

The corresponding generic Feynman-diagrams for the Higgs bosons self-energies, gauge

boson self-energy diagrams and tadpole diagrams are collected in the figure 15 in appendix

B. It should also be noticed that the contributions from the squarks are the only ones

that differ from the usual ones of the MSSM with MFV. It should be noted also that the

corrections from flavor mixing, which are the subject of our interest here, are implicit in

both the VCKM, and in the values of the rotation matrices, Rũ, Rd̃, and the squark masses,

mũi
, md̃i

(i = 1, . . . , 6) that appear in these formulas of the unrenormalized self-energies

and tadpoles and that have been introduced in section 2.

Finally, it is worth mentioning that we have checked the finiteness in our analytical

results for the renormalized Higgs self-energies. It is obviously expected, but it is not a
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trivial check in the present scenarios with three generations of quarks and squarks and

with flavor mixing. We have also checked that the analytical results of the self-energies in

appendix B agree with the formulas in FeynHiggs [23, 24, 29–31]. Each one of the terms

contained in the appendix B was compared with the corresponding term in FeynHiggs.

During this process and the check of the finiteness, discrepancies were found with the

charged Higgs part of FeynHiggs, leading to an updated version of the code.10

5 Numerical analysis

In this section we present our numerical results for the radiative corrections to the Higgs

boson masses from from flavor mixing within NMFV-SUSY scenarios. Since all one-loop

corrections in the present NMFV scenario are common to the MSSM except for the cor-

rections from squarks, which depend on the δXY
ij values, we will focus just on the results of

these corrections as a function of the flavor mixing parameters, and present the differences

with respect to the predictions within the MSSM. Correspondingly, we define:

∆mφ(δ
XY
ij ) ≡ mNMFV

φ (δXY
ij )−mMSSM

φ , φ = h, H, H±, (5.1)

where mNMFV
φ (δXY

ij ) and mMSSM
φ have been calculated at the one-loop level. It should be

noted that mNMFV
φ (δXY

ij = 0) = mMSSM
φ and, therefore, by construction, ∆mφ(δ

XY
ij = 0) =

0, and ∆mφ gives the size of the one-loop NMFV contributions to mφ. The numerical

calculation of mNMFV
φ (δXY

ij ) and mMSSM
φ has been done with (the updated version of)

FeynHiggs [23, 24, 29–31], which solves the eqs. (4.29) and (4.30) for finding the positions

of the poles of the propagator matrix. Previous results for ∆mh(δ
LL
23 ) can be found in [28].

5.1 ∆mφ versus one δXY
ij 6= 0

We show in figures 5, 6 and 7 our numerical results for ∆mh, ∆mH and ∆mH± ,

respectively, as functions of the seven considered flavor changing deltas, δLL23 , δLRct , δLRsb ,

δRL
ct , δRL

sb , δRR
ct and δRR

sb , which we vary in the interval −1 ≤ δXY
ij ≤ 1. In these plots we

have chosen the same six SPS points of table 1, as for the previous study of constraints

from B physics in 2. We do not take the experimental bounds into account here, since we

just want to show the general behavior of the masses with the deltas. The experimental

bounds will be taken into account in the next subsection. As before we have checked the

impact of switching the sign of µ and found a small quantitative but no qualitative effect.

The main conclusions from these figures are the following:

- General features:

All mass corrections, ∆mh, ∆mH and ∆mH± , are symmetric δXY
ij → −δXY

ij , as

expected. This feature is obviously different than in the previous plots of the B

observables. The sign of the mass corrections can be both positive and negative,

depending on the particular delta value. The size of the Higgs mass corrections, can

be very large in some δXY
ij 6= 0 regions, reaching values even larger than 10GeV in

10We especially thank T. Hahn for his efforts put into this update.
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some cases, at the central region with not very large delta values, |δXY
ij | < 0.5. In

fact, the restrictions from B physics in this central region is crucial to get a reliable

estimate of these effects.

For low tanβ, where the restrictions from B physics to the deltas are less severe,

the Higgs mass corrections are specially relevant. Particularly, ∆mh turns out to be

negative and large for tanβ = 5 (SPS5) for all deltas, except δRR
sb . For instance, at

|δXY
ij | ≃ 0.5, the mass correction ∆mh for SPS5 is negative and & 5 GeV in all flavor

changing deltas except δRR
sb where the correction is negligible. In the case of ∆mH

and ∆mH± the size of the correction at low tanβ is smaller, . 2 GeV in the central

region, except for δLRsb and δRL
sb that can also generate large corrections & 5 GeV.

In the cases with large tanβ (SPS4 and SPS1b), we also find large mass corrections

but, as already said, they are much more limited by B constraints. In particular, for

SPS4 all deltas are excluded, except for a very narrow window in δLL23 (see table 3).

In the cases with moderate tanβ = 10 (SPS1a, SPS2 and SPS3), we find large

corrections |∆mh| & 5 GeV in the central region of δLRsb , δRL
sb , δLRct and δRL

ct . The

other Higgs bosons get large corrections |∆mH |, |∆mH | & 5 GeV in the deltas

central region only for δLRsb and δRL
sb .

- Sensitivity to the various deltas:

We find very strong sensitivity in the three mass corrections ∆mh, ∆mH and ∆mH± ,

to δLRsb and δRL
sb for all the seven considered SPS points.

In the case of ∆mh there is also an important sensitivity to δLRct and δRL
ct in all the con-

sidered points. The strong sensitivity to LR and RL parameters can be understood

due to the relevance of the A-terms in these Higgs mass corrections. It can be noticed

in the Feynman rules (i.e. see the coupling of two squarks and one/two Higgs bosons

in appendix A) that the A-terms enter directly into the couplings, and in some cases,

as in the couplings of down-type squarks to the CP-odd Higgs boson, enhanced by

tanβ. Therefore, considering the relationship between the A-terms and these LR and

RL parameters as is shown in eq. (2.24), the strong sensitivity to these parameters

can be understood. A similar strong sensitivity to δLRct in ∆mh has been found in [37].

In SPS5 there is a noticeable sensitivity to all deltas except δRR
sb . In other points,

the effects of δLL23 , δRR
ct on ∆mh are only appreciated at the large delta region, close

to ±1. For instance, in SPS2, ∆mh = −5 GeV for δRR
ct = ±1.

In the case of ∆mH , apart from δLRsb and δRL
sb , there is only noticeable sensitivity to

other deltas in SPS5. The same comment applies to ∆mH± .

5.2 ∆mh versus two δXY
ij 6= 0

Our previous results on the Higgs mass corrections show that the corrections to the lightest

Higgs mass ∆mh are negative in many of the studied cases and can be very large for some

regions of the flavor changing deltas which are still allowed by present B data. These
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Figure 5. Sensitivity to the NMFV deltas in ∆mh for the SPSX points of table 1.

negative and large mass corrections, can lead to a prediction for the corrected one-loop

mass in these kind of NMFV-SUSY scenarios, mNMFV
h ≃ mMSSM

h +∆mh, which are indeed

too low and already excluded by present data [9, 10]. Therefore, interestingly, the study

of these mass corrections can be conclusive in the setting of additional restrictions on the

size of some flavor changing deltas which otherwise are not bounded from present B data.

In order to explore further the size of these ’dangerous’ mass corrections, we have

computed numerically the size of ∆mh as a function of two non-vanishing deltas and have

looked for areas in these two dimensional plots that are allowed by B data. We show in

figures 9, 10, 11, 12, 13, and 14 the numerical results of the ∆mh contour-lines in two
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Figure 6. Sensitivity to the NMFV deltas in ∆mH for the SPSX points of table 1.

dimensional plots, (δLL23 , δ
XY
ij ), for the respective points BFP, SPS2, SPS3, SPS5, VHeavyS

and HeavySLightH of table 1.

We have chosen in all plots δLL23 as one of these non-vanishing deltas mainly because

of two reasons. First, because it is one of the most frequently studied flavor changing

parameters in the literature and, therefore, a convenient reference parameter. Second,

because there are several well motivated SUSY scenarios, where this parameter gets the

largest value, as we explained in section 2.

In these two-dimensional figures we have included the allowed/disallowed by B data

areas that have been found by following the procedure explained in section 3, and the
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Figure 7. Sensitivity to the NMFV deltas in ∆mH± for the SPSX points of table 1.

allowed intervals are given in eqs. (3.22), (3.23) and (3.24). The color code explaining the

meaning of each colored area and the codes for the discontinuous lines are given in figure 8.

Contour lines corresponding to mass corrections above 60GeV or below -60GeV have not

been represented. In several scenarios the plots involving δLR,RL
sb show a seemingly abrupt

behavior for |δLR,RL
sb | & 0.3, corresponding to extremely large (one-loop) corrections to

mh. In general, in the case of very large one-loop corrections, in order to get a more

stable result further higher order corrections would be required, as it is known from the

higher-order corrections to mh in the MFV case (see, e.g., ref. [24]). However, we cannot

explore this possibility here. On the other hand, in order to understand the behavior of
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Figure 8. Legend for plots of Higgs mass corrections varying two deltas simultaneously displayed

in figures 9, 10, 11, 12, 13 and 14. Each colored area represents the disallowed region by the specified

observable/s inside each box. A white area placed at the central regions of the mentioned figures

represents a region allowed by the three B observables. A white area placed outside the colored areas

represent regions of the parameter space that generate negative squared masses. These problematic

points are consequently not shown in our plots, as we did in the previous plots. The discontinuous

lines in those figures represent the contour lines for the B observables corresponding to the maximum

and minimum allowed values: dash-dot-dash for the upper bound of BR(B → Xsγ)(eq. (3.22)),

dot-dash-dot for the lower bound of BR(B → Xsγ)(eq. (3.22)), dashed line for the upper bound of

∆MBs
(eq. (3.24)), a sequential three dotted line for the lower bound of ∆MBs

(eq. (3.24)), and a

dotted line for the upper bound of BR(Bs → µ+µ−)(eq. (3.23)).

mh as a function of δLR,RL
sb a simple analytical formula would have to be extracted from

the general result. However, this is beyond the scope of our paper.

The main conclusions from these two dimensional figures are summarized in the

following:

The points that have been chosen in these plots are quite representative of all the

different patterns found. The plots for SPS1a (not shown here) manifest similar patterns

as those of SPS3. The plots for SPS1b (not shown here) manifest similar patterns as those

of BFP. The plots for SPS4 are not included because they do not manifest any allowed

areas by B data.

The largest mass corrections ∆mh found, being allowed by B data occur in plots

(δLL23 , δ
LR
ct ) and (δLL23 , δ

RL
ct ). This applies to all the studied points. They can be as large

as (−50,−100)GeV at δLRct or δRL
ct close to the upper and lower horizontal bands in these

plots where δLRct or δRL
ct are close to ±0.5. Again these large corrections from the LR

and RL parameters are due to the A-terms, as we explained at the end of section 5.1.

Comparing the different plots, it can be seen that the size of the allowed area by the

B data (the white area inside of the colored regions) can be easily understood basically

in terms of tanβ, and the heaviness of the SUSY and Higgs spectra. Generically, the

plots with largest allowed regions and with largest Higgs mass corrections correspond to

scenarios with low tanβ = 5 and heavy spectra. Consequently, the cases of VHeavyS and

– 33 –



J
H
E
P
0
5
(
2
0
1
2
)
0
1
5

Figure 9. ∆mh (GeV) contour lines from our two deltas analysis for BFP. The color code for the

allowed/disallowed areas by B data is given in figure 8.

HeavySLightH are the most interesting ones, exhibiting very large radiative corrections,

resulting from the heavy SUSY spectra. In the case of HeavySLightH the large corrections

are not only found for ∆mh, but also, though to a lesser extent, for the other Higgs

bosons, ∆mH and ∆mH± (not shown here). Consequently, in this scenario the deltas will

be very restricted by the mass bounds, especially by mh.
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Figure 10. ∆mh (GeV) contour lines from our two deltas analysis for SPS3. The color code for

the allowed/disallowed areas by B data is given in figure 8.

There are also important corrections in the allowed areas of the two dimensional plots

of (δLL23 , δ
RR
ct ) for some points, particularly for SPS5 (and to a lesser extent for SPS2).

Here the corrections can be as large as -50GeV in the upper and lower parts, i.e. for δRR
ct

close to ±0.5. In the case of SPS2 they can be up to -2GeV for this same region.

As for the remaining two-dimensional plots they do not show relevant allowed areas

where the mass corrections are interestingly large.
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Figure 11. ∆mh (GeV) contour lines from our two deltas analysis for SPS2. The color code for

the allowed/disallowed areas by B data is given in figure 8.

6 Conclusions

In this paper we have analyzed the one-loop corrections to the Higgs boson masses in

the MSSM with Non-Minimal Flavor Violation. We assume the flavor violation is being

generated from the hypothesis of general flavor mixing in the squark mass matrices, and

these are parametrized by a complete set of δXY
ij (X,Y = L,R; i, j = t, c, u or b, s, d).
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Figure 12. ∆mh (GeV) contour lines from our two deltas analysis for SPS5. The color code for

the allowed/disallowed areas by B data is given in figure 8.

In the first step of the analysis we scanned over the NMFV parameters, contrasting

them with the experimental bounds on BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs . We

take into account the most up-to-date evaluations in the NMFV MSSM for BR(B → Xsγ),

BR(Bs → µ+µ−) and ∆MBs , as included in the BPHYSICS subroutine of the SuFla

code [42, 43].

– 37 –



J
H
E
P
0
5
(
2
0
1
2
)
0
1
5

Figure 13. ∆mh (GeV) contour lines from our two deltas analysis for VHeavyS. The color code

for the allowed/disallowed areas by B data is given in figure 8.

For the evaluation of ∆MBs we have added the one-loop gluino boxes [44] which are

known to be very relevant in the context of NMFV scenarios [45–47]. We have estimated

the size of these corrections and compared them with the other relevant contributions

from chargino boxes and double Higgs penguins for all values of tanβ for the first time.

And we have concluded that gluino boxes dominate for moderate and low tanβ ≤ 20
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Figure 14. ∆mh (GeV) contour lines from our two deltas analysis for HeavySLightH. The color

code for the allowed/disallowed areas by B data is given in figure 8.

which is the interesting range for the present work. In the final part of the B physics

analysis, we have evaluated in one-dimensional scans which intervals for the δXY
ij are still

allowed in certain benchmark scenarios based on the SPS points.

In the second step we analyzed the one-loop contributions of NMFV to the MSSM

Higgs boson masses, focusing on the parameter space still allowed by the experimental
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flavor constraints and by current limits from Higgs boson searches. Here two relevant

δXY
ij were varied simultaneously, thus enlarging the allowed range for these parameters.

We found large corrections, mainly for the low tanβ case, up to several tens of GeV for

mh and somewhat smaller corrections for mH and mH± . These corrections are specially

relevant in the case of the light MSSM Higgs boson since they can be negative and up to

two orders of magnitude larger than the anticipated LHC precision. Consequently, these

corrections must be taken into account in any Higgs boson analysis in the NMFV MSSM

framework. Conversely, in the case of a Higgs boson mass measurement these corrections

might be used to set further constraints on δXY
ij . The present work clearly indicates that

the flavor mixing parameters δLRct and δRL
ct are severely constrained by the present bounds

on the lightest Higgs boson mass within the NMFV-MSSM scenarios.
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A Feynman rules

We list the new Feynman rules of the NMFV scenario that are involved in the present

computation. The corresponding couplings to the Higgs boson H are obtained from the

ones listened here for the lightest Higgs boson h by replacing

cα → sα ; sα → −cα ; sα+β → −cα+β ; c2α → −c2α (A.1)

The notation used for the formulas is the following: sx = sinx; cx = cosx; sw =

sin θW ; cw = cos θW = MW

MZ
; tβ = tanβ.
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1. Couplings of two squarks and one/two Higgs bosons
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ũj
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Rũ ∗
i,k

{

δklR
ũ
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ũ
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ũ
j,3+l

(

6cαcwm
2
uk

− 4MWMZsα+βsβs
2
w

)

+3cwR
ũ
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i,3+kR
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3. Couplings of two squarks and one/two gauge bosons
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Figure 15. Different topologies for Σφφ′ , ΣV V , Tφ.

B Tadpoles and self-energies

All the following Feynman diagrams have been calculated using FeynArts 3.5 [50–52] and

FormCalc 6.0 [53]. The notation used here is the same as in appendix A. Furthermore we

use the functions [92]

i

16π
A0

[

m2
]

≡
∫

µ4−DdDk

(2π)D
1

k2 −m2
(B.1)

i

16π
B0

[

p2,m2
1,m

2
2

]

≡
∫

µ4−DdDk

(2π)D
1

[

k2 −m2
1

]

[

(k + p)2 −m2
2

] (B.2)

i

16π
p2B1

[

p2,m2
1,m

2
2

]

≡
∫

µ4−DdDk

(2π)D
pk

[

k2 −m2
1

]

[

(k + p)2 −m2
2

] (B.3)

The generic diagrams have been ordered according to its topologies, and the particles

involved in the internal loops (quarks q or squarks q̃). The diagrams can be found in

figure 15. The complete self-energy can be expressed as a sum of three parts:

Σφφ′ = Σ2q
φφ′ +Σ2q̃

φφ′ +Σ1q̃
φφ′ ΣV V = Σ2q

V V +Σ2q̃
V V +Σ1q̃

V V Tφ = T q
φ + T q̃

φ (B.4)

where φ, φ′ = h, H, A, H± and V = W, Z. All the self-energies Σ correspond to Σ
(

p2
)

.

The self-energies for H are obtained by the replacements of eq. (A.1) on the results of h:

• h

Σ2q
hh = −

3
∑

i=1
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2
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4πM2
W s

2
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{
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[
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[
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]
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[
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]}
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∑
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di
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W c
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{
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[

m2
di
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[
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,m2
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]
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,m2

di
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(B.5)
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Rũ
l,iR

ũ∗
l,i

(

c2αm
2
ws

2
β

(

−3 + 4s2W
)

+ 6c2αc
2
Wm

2
ui

)

+2Rũ
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ũ∗
l,3+i

(

−4s2αM
2
W s

2
βs

2
W + 3s2αc

2
Wm

2
ui

)

}

−
6
∑

l=1

3
∑

i=1

1

16c2WM
2
Wπc

2
βs

2
W

αA0

[

m2
d̃l

]{

Rd̃
l,iR

d̃∗
l,i

(

s2αm
2
wc

2
β

(

−3+4s2W
)

+3s2αc
2
Wm

2
di

)

+Rd̃
l,3+iR

d̃∗
l,3+i

(

−2s2αM
2
W c

2
βs

2
W + 3s2αc

2
Wm

2
di

)

}

(B.10)

• A

Σ2q
AA = −

3
∑

i=1

3αm2
ui

4πM2
W t

2
βs

2
W

{

A0

[

m2
ui

]

+ p2B1

[

p2,m2
ui
,m2

ui

]}

−
3
∑

i=1

3αt2βm
2
di

4πM2
W s

2
W

{

A0

[

m2
di

]

+ p2B1

[

p2,m2
di
,m2

di

]}

(B.11)

Σ2q̃
AA = −

6
∑

m,n

3
∑

i,j,k,l

3

16M2
Wπt

2
βs

2
W

αB0

[

p2,m2
ũm
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mũl

]{

Rũ
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]}

(B.20)

Σ2q̃
WW = −

6
∑

m,n

3
∑

i,j,k,l

3α

12πs2W
V k,i
CKMV

l,j∗
CKMR

ũ
m,kR

ũ∗
m,lR

d̃
n,jR

d̃∗
n,i

{

A0

[

m2
d̃n

]

+2m2
ũm
B0

[

p2,m2
ũm
,m2

d̃n

]

+
(

p2 +m2
ũm

−m2
d̃n

)

B1

[

p2,m2
ũm
,m2

d̃n

]

− p2

3
+m2

ũm
+m2

d̃n

}

(B.21)

Σ1q̃
WW =

6
∑

l=1

3
∑

i=1

3

8πs2W
αA0

[

m2
ũl

]

Rũ
l,iR

ũ∗
l,i +

6
∑

l=1

3
∑

i=1

3

8πs2W
αA0

[

m2
d̃l

]

Rd̃
l,iR

d̃∗
l,i (B.22)

• Tadpoles

T q
h = −

3
∑

i

3

8π2MW sβsW
cαm

2
ui
eA0

[

m2
ui

]

(B.23)

T q̃
h =

6
∑

m

3
∑

i,j

1

32π2cWMW sβsW
eA0

[

m2
ũm

]

×
[{

δi,j
(

MWmZsα+βsβ
(

−3 + 4s2W
)

+ 6cαcWm
2
ui

)

Rũ
m,j

+3cW
(

cαA
u
i,j + µ∗sαδi,j

)

mui
Rũ

m,3+j

}

Rũ∗
m,i

+

{

3cαcWA
u∗
j,imuj

Rũ
m,j + 3cWµsαδi,jmui

Rũ
m,j

+2δi,j
(

−2MWmZsα+βsβs
2
W + 3cαcWm

2
ui

)

Rũ
m,3+j

}

Rũ∗
m,3+i

]

+
3
∑

i

3

8π2MW cβsW
sαm

2
di
eA0

[

m2
di

]

−
6
∑

m

3
∑

i,j

1

32π2cWMW cβsW
eA0

[

m2
d̃m

]

×
[{

δi,j
(

MWmZsα+βcβ
(

−3 + 2s2W
)

+ 6sαcWm
2
di

)

Rd̃
m,j

+3cW

(

sαA
d
i,j + µ∗cαδi,j

)

mdiR
d̃
m,3+j

}

Rd̃∗
m,i

+

{

3sαcWA
d∗
j,imdjR

d̃
m,j + 3cWµcαδi,jmdiR

d̃
m,j

−2δi,j
(

MWmZsα+βcβs
2
W − 3sαcWm

2
di

)

Rd̃
m,3+j

}

Rd̃∗
m,3+i

]
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The self-energies for TH are obtained using the replacements of eq. (A.1) on the

results of Th.
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[84] D. Becirevic, V. Giménez, G. Martinelli, M. Papinutto and J. Reyes, B parameters of the

complete set of matrix elements of ∆B = 2 operators from the lattice, JHEP 04 (2002) 025

[hep-lat/0110091] [INSPIRE].
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