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Abstract: The spectra of supergravity modes in anti de Sitter (AdS) space on a five-

sphere endowed with the round metric (which is the simplest 5d Sasaki-Einstein space) has

been studied in detail in the past. However for the more general class of cohomogeneity

one Sasaki-Einstein metrics on S2 × S3, given by the Y p,q class, a complete study of the

spectra has not been attempted. Earlier studies on scalar spectrum were restricted to only

the first few eigenstates. In this paper we take a step in this direction by analysing the full

scalar spectrum on these spaces. However it turns out that finding the exact solution of

the corresponding eigenvalue problem in closed form is not feasible since the computation

of the eigenvalues of the Laplacian boils down to the analysis of a one-dimensional operator

of Heun type, whose spectrum cannot be computed in closed form. However, despite this

analytical obstacle, we manage to get both lower and upper bounds on the eigenvalues of

the scalar spectrum by comparing the eigenvalue problem with a simpler, solvable system.

We also briefly touch upon various other new avenues such as non-commutative and dipole

deformations as well as possible non-conformal extensions of these models.
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1 Introduction

The gravity dual of N = 1 CFT has been studied earlier from many different perspectives

starting with [1] where the associated CFT, endowed with a simple product gauge group

and a simple quartic superpotential, appeared from N D3-branes placed at the tip of a coni-

fold geometry. One way to change the gauge group and the superpotential structure is to

change the underlying conifold geometry itself by either an orbifolding or an orientifolding

action. A subsequent T-duality, mapping these actions to either the interval [2, 3] or the

brane-box models [4, 5], then gives us simple ways to analyse the underlying N = 1 CFTs.

An alternative way to change the gauge group and the superpotential structure is to

change the Calabi-Yau condition of the conifold itself, namely, change the Kähler class

– 1 –



J
H
E
P
0
5
(
2
0
1
2
)
0
0
9

and the complex structures so as to put different Ricci flat metrics on the conifold. Since

there are infinite ways of doing it, there would exist infinite variations of the conifold

that are all Calabi-Yau manifolds. All of these would lead to gravity duals of the form

AdS5×Y p,q where Y p,q are the so-called Sasaki-Einstein manifolds. These ideas, including

the underlying gauge/gravity duality, were developed few years ago in [6–9].

In this paper we study spectrum of Sasaki-Einstein manifold Y p,q, using spectral-

theoretic methods, continuing the work of [10]. More precisely, we study the Laplacian

operator of a Y p,q manifold, associated to its scalar spectrum, using the framework laid

out in [10]. The authors of [10] analyzed the Cauchy problem, and presented a Fourier-type

decomposition for the eigenfunction. In order to use spectral-theoretic methods, they used

the Friedrichs extension of the Laplacian operator to rule out logarithmic singularities.

This way a self-adjoint extension of unbounded symmetric operator could be determined.

Our starting point, in this paper, is to use this operator to study its eigenmodes.

The lowest eigenmodes of the Laplacian were first studied in [11] for Y p,q, wherein they

also tried to construct an AdS/CFT dictionary. This work was followed by [12] where they

studied the lowest eigenmodes for more generic manifolds like the La,b,c examples. An im-

portant progress in [11] was the realization that the Laplacian operator could be expressed

in terms of a Heun type operator, whose lowest modes are easily computable. However, for

higher modes not much progress has been made in the literature. Even numerical studies do

not look simple. In [13], the spectrum is studied numerically for S5 case, which is the sim-

plest Sasaki-Einstein manifold in 5d, but an equivalent work for the Y p,q case is still lacking.

In this paper, we will use mathematical tools developed in analysis and spectral theory,

to address the question of finding all the eigenmodes. However, as it will turn out, finding

the exact solution of the eigenvalue problem in closed form does not seem feasible since

the computation of the eigenvalues of the Laplacian boils down to the analysis of a one-

dimensional differential operator (of Heun type), which has four regular singular points.

What we will do, therefore, is to find bounds for the eigenvalues of the operator, which will

allow us to approximate the conformal dimensions of the dual CFTs. In our approach, we

will get results in two different regimes, which match in their overlap. The first is for highly

excited modes (by focussing on the leading terms in mode number k), and the second is for

small a, where 0 < a < 1 parametrizes Y p,q geometry by implicitly parametrizing (p, q).

The parameter a is determined by p, q, and a≪ 1 is equivalent to q ≪ p.

Our work uses some techniques in analysis and spectral theory that may not be too fa-

miliar to some readers in the physics community. Additionally, a more physical motivation

to study Sasaki-Einstein manifolds is never spelled out in the literature, although detailed

mathematical reviews exist. Therefore in the following sub-sections we will introduce two

concepts to the reader. First will be the motivation to study Sasaki-Einstein manifolds in

general; and the second will be the minimal mathematical background necessary to sketch

the mathematical techniques used in this paper.

1.1 Motivation to study Sasaki-Einstein manifolds

Here we will introduce and motivate the study of Sasaki-Einstein manifolds, mostly sum-

marizing the extensive reviews in [14, 15] in a language slightly more appropriate for
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the physicists. A Sasaki-Einstein manifold is both Sasakian and Einstein, and it is an

odd-dimensional cousin of Kähler-Einstein manifold, and sandwiched between two Kähler-

Einstein manifolds of one dimension lower and higher respectively [14]. Einstein condition

of Sasaki/Kähler manifold is inherited between lower and higher dimensions (see [16] for

examples for d = 4, 5, 6).

Two mathematical facts about these manifolds are readily available: Cone over Sasaki-

Einstein is Kähler-Einstein manifold with one dimension higher; and Kähler geometry is

a symplectic geometry, while Sasakian is a contact geometry. Extra physical motivation

comes from the fact that in Hamiltonian mechanics phase space with n momentum and n

position forms a 2n dimensional symplectic manifold. By adding one more direction, i.e

the time evolution, we get 2n+1 dimensional contact manifold. Contact geometry (there-

fore also Sasakian geometry) is just as important as symplectic geometry for physicists, as

one can see in [17] for example. Extensive details on contact geometry are given in the

handbook [18] for the enthusiastic readers to dwell upon.

Another property of these manifolds is associated to their Reeb vectors. If, for example,

the Reeb vector fields have compact orbits forming circles and if the U(1) actions are free

(not free, resp.), then the Sasakian manifolds are regular (quasi-regular, resp.). If, on the

other hand, the orbits are non-compact, the Sasakian manifolds are irregular.

In contrast to the fact that there are abundant four and six-dimensional Kähler-

Einstein manifolds, until recently there were only two known Sasaki-Einstein manifolds

in 5d, namely the S5 and T 1,1. Using the M-theory solution of [6], the authors of [7] found

examples of new 5d Sasaki-Einstein metrics Y p,q on S2 × S3. These examples contain

both quasi-regular and regular cases, and the corresponding CFT duals have rational and

irrational central charges respectively [8, 9, 19]. These Sasaki-Einstein metrics are also

critical points of volume functional [14, 20]. Note that a bigger group of 5d Sasaki-Einstein

manifolds namely the Labc manifolds contain the Y p,q manifolds as a subset. The metric

for this bigger class of manifolds were constructed from Kerr Black hole solutions by taking

some scaling limits (see [21] for more details).

Finally, another motivation to study these manifolds will be to build brane construc-

tions in flat space which are T-duals to the Y p,q geometries (much like the one for the T 1,1

case in [2, 3]). This will not only help us to analyze the corresponding gauge theories but

will also provide new brane constructions in string theory.

1.2 A brief sketch of the mathematical techniques for the physicists

After having discussed the physical motivations to study the Y p,q manifolds, let us sum-

marise the key mathematical concepts that we will be using throughout the paper, i.e the

concept of unbounded operators and Friedrichs extensions. For completeness we will also

give a brief discussion of the Sturm-Liouville theory.

1.2.1 Quantum mechanical observables and unbounded operators

As in many parts of quantum mechanics, unbounded self-adjoint operators will play an

important role in this paper. For the benefit of the reader, we will briefly review some

basic ideas that we will touch upon later. We recall that a linear operator L between two
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normed vector spaces X and Y is bounded, or continuous, if the ratio of the norm of Lv

to that of v remains bounded. We will be mainly interested in the case when X = Y is

a Hilbert space, usually some L2 space. It is well known that linear operators between

finite-dimensional vector spaces are always bounded.

A bounded linear operator is self-adjoint if and only if it is symmetric (i.e., Hermitian).

For unbounded operator, this is not the case: there are examples of unbounded symmetric

operators which are not self-adjoint, due to subtleties regarding the domain of the opera-

tor. Since self-adjointness (and not mere symmetry) is key for the validity of the spectral

theorem, for the purposes of quantum mechanics it is often crucial to ensure that a given

unbounded operator is self-adjoint with a given domain of definition. We remark as well

that the domain of an unbounded operator can never be the whole Hilbert space, but only

dense in it. (Incidentally, let us remark that observables in quantum mechanics, includ-

ing the free Hamiltonian in R
d, the Coulomb Hamiltonian, and the position, momentum

and angular momentum operators, are unbounded, self-adjoint operators, and this was the

motivation for von Neumann and M. Stone’s original work in this area.)

The need to have bona fide self-adjoint operators leads to the theory of self-adjoint

extensions. Given a symmetric operator densely defined in a Hilbert space, it does not nec-

essarily admit a self-adjoint extension, and even when it does, this extension does not need

to be unique, and deciding which extension is physically relevant is nontrivial. Fortunately

for us, in this work all the self-adjoint extensions we shall need are of Friedrichs type, which

is the preferred, time-honored way to define self-adjoint extensions of lower-bounded oper-

ators. For our purposes, it is enough to know that the Friedrichs extension is a standard

procedure to derive a self-adjoint operator, densely defined in an L2 space, from an opera-

tor L whose action in the set of test functions is lower bounded (that is, 〈Lv, v〉 > −C‖v‖2
for all v ∈ C∞

0 ). The idea of this method is that L can be used to define a stronger norm

(in quantum mechanics, typically of Sobolev type) which allows to complete the minimal

domain of L to get a larger domain in which the operator is self-adjoint. This extension is

widely used in physics; for example, it is the usual way to define operators with Dirichlet

boundary conditions.

1.2.2 Sturm-Liouville theory

A one-dimensional Sturm-Liouville operator of second-order is of the form

Lf(t) =
1

W (t)

[
− d

dt

(
P (t)

df(t)

dt

)
+Q(t)f(t)

]
, (1.1)

with W,P nonnegative functions in an interval of the real line (a, b). The importance of

Sturm-Liouville operators is that it is a class of symmetric operators for which we have

a lot of information about their self-adjointness and spectra. In particular, and depend-

ing on the properties of the functions W,P,Q that define the operator and its domain of

definition, sometimes we have formulas for the essential spectrum of the operator or for

the asymptotic value of its eigenvalues. We will make use of some of them in forthcoming

sections but, as technical conditions are sometimes hard to express without a concrete
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example in view, we will refrain from stating them at this point. We recall that special

functions, such as Bessel functions or Laguerre polynomials, are often defined as solutions

to the eigenvalue problem of a Sturm-Liouville operator.

1.3 Organization of the paper

The paper is organized in the following way. In section 2 we review the basics of Y p,q

geometry. Section 3 studies the scalar spectrum of Y p,q geometry by analysing the solution

of the Laplacian operator. In subsection 3.1, we present how the spectrum of Type IIB on

AdS5 × Y p,q is related to the scalar spectrum of Y p,q geometry. In subsection 3.2 scalar

modes in Y p,q are studied, by separating the variables in the wave function for the scalar

modes. Behaviour of the eigenvalues for highly excited modes is studied in subsection 3.2.1

using Sturm-Liouville theory. In subsection 3.2.2, we compare Laplacian operator with

simpler solvable operators in order to give upper and lower bounds for the all eigenvalues,

which works best for a ≪ 1 or equivalently q ≪ p. Section 4 discusses examples of var-

ious other modes and analyze cases that may take us beyond the scalar spectra of IIB.

Subsection 4.1 studies possible type IIA brane realisation, and subsection 4.2 discusses

non-commutative and dipole deformations. One may note that in this section (and also

the next) we will not address the spectra of the theory. To analyse the spectra we would

not only need to go beyond the scalar fields, but would also require exact eigenvalues of the

KK modes for all spin-states of the theory — a calculation that will be relegated for future

works. In section 5 we go beyond the conformal cases to study new non-conformal duals

that may arise from possible geometric transitions. Earlier results in this direction were

more along the lines of cascading theories of Klebanov-Strassler type. To study geometric

transitions for our case, we need both the resolved and the deformed cone over the Y p,q

manifolds. In subsection 5.1, we review the metric for the cone Y p,q after resolution and

then discuss the possibility of generating deformed cones over Y p,q base. We briefly argue

why these deformations may not give rise to Kähler or complex manifolds. In subsection 5.2

we discuss the first step of geometric transitions, namely, constructions of the backgrounds

with wrapped D5 branes on the resolved cones over the Y p,q manifolds. In subsection 5.3

we discuss the actual process of geometric transitions briefly and point our possible issues

that may make the underlying calculations highly non-trivial. Finally in 6 we conclude

by pointing out various future directions. In appendix A, eigenvalues of the differential

operator S (Laplacian) are discussed, mostly borrowing some results from [10].

2 Y p,q geometry

The Y p,q metrics are Sasaki-Einstein and therefore a cone over them is Calabi-Yau. We

start with the local metric

ds2 =
1− cy

6
(dθ2 + sin2 θdφ2) +

1− cy

2f(y)
dy2 +

f(y)

9(a− y2)
(dψ − cos θdφ)2

+
2(a− y2)

1− cy

[
dα+

ac− 2y + y2c

6(a− y2)
(dψ − cos θdφ)

]2
(2.1)
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where f(y) = 2cy3− 3y2+ a. As in [7] one can show that Ric = 4g for all values of a and c

therefore satisfying Einstein condition. For c = 0 and a = 3 the metric is exactly the local

form of the standard metric on T 1,1. For c 6= 0 one can always rescale y (y → y/c, and

also a→ a/c2, f → f/c2, etc) to set c = 1 which we will take in the following.

It is obvious that the first two terms give the metric of an S2 for a fixed y, if the

periodicity of θ and φ are π and 2π respectively. To study the (y, ψ) space one first requires

1− y > 0, a− y2 > 0

f = a− 3y2 + 2y3 > 0. (2.2)

In order for y to have solutions a must satisfy 0 < a < 1. The negative solution of f = 0

and the smallest positive solution are denoted by y− and y+ respectively. Then y needs to

take values between y− < y < y+ , (so that all the terms in the metric come with positive

sign). When a = 1 the metric (2.1) is the local round metric of S5. If ψ has the period of

2π then (y, ψ) is topologically a 2-sphere.1

In order to have a compact manifold one takes the period of α to be 2πl. Then l−1A,

where A is the last term in the second line of (2.1), becomes a connection on a U(1) bundle

over S2×S2 which puts constraints on A. In general such U(1) bundles are completely spec-

ified topologically by the gluing on the equator of the two S2 cycles, C1 and C2. These are

measured by the corresponding Chern numbers in H2(S2,Z) = Z which will be labeled as p

and q. The Chern numbers are given by the integrals of l−1A/2π over C1 and C2, namely:

p =
1

2πl

∫

C1

A =
y− − y+
6y−y+

, q =
1

2πl

∫

C2

A =
(y− − y+)

2

9y−y+
(2.3)

From their ratio p
q = 3

2(y+−y−) , it follows

a =
1

2
− p2 − 3q2

4p3

√
4p2 − 3q2, l =

q

3q2 − 2p2 + p
√
4p2 − 3q2

(2.4)

Metric (2.1) can be written in a canonical way if one makes the coordinate change

α = −β/6− cψ′/6, ψ = ψ′ (2.5)

to (2.1). This converts (2.1) to the following metric:

ds2 =
1− cy

6
(dθ2 + sin2 θdφ2) +

1− cy

2f(y)
dy2 +

f(y)

18(1− cy)
(dβ + c cos θdφ)2

+
1

9
(dψ − cos θdφ+ y(dβ + c cos θdφ))2. (2.6)

1The range of y is taken to be [y−, y+]. This ensures that w (defined in (3.11)) is strictly positive in

this interval and r > 0, vanishing only at the endpoints y±. If we identify ψ periodically, the part of gB
(gB is only defined in [10] but not in this paper) given by

1− cy

2f(y)
dy2 +

f(y)

9(a− y2)
dψ2

describes a circle fibered over the interval (y−, y+), the size of the circle shrinking to zero at the endpoints.

Remarkably, the (y, ψ) fibers are free of conical singularities if the period of ψ is 2π, in which case the

circles collapse smoothly and the (y, ψ) fibers are diffeomorphic to a 2-sphere.
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The Killing vector

∂

∂ψ′
=

∂

∂ψ
− 1

6

∂

∂α
(2.7)

is globally well defined. For a generic value of a its orbit is not closed, in which case the

Sasaki-Einstein metric is irregular. It is quasi-regular, if and only if 4p2−3q2 = m2,m ∈ Z.

3 The spectrum of the Y p,q manifolds

After our brief discussion of the geometry of the Y p,q manifolds, let us come to the main

analysis of paper: the study of scalar spectrum of these manifolds. We will start by

analysing the solution of the Laplacian operator arising from the Fourier decomposition of

functions as discussed earlier in [10]. However, as it will turn out, finding the exact solution

of the eigenvalue problem in closed form does not seem feasible since the computation of

the eigenvalues of the Laplacian boils down to the analysis of a one-dimensional differential

operator (which we call S) of Heun type, which has four regular singular points. What

we will do, therefore, is to find bounds for the eigenvalues of S, which will allow us to

approximate the conformal dimensions of the theory. In subsection 4, we will study some

examples of these modes and discuss cases that may take us beyond the scalar spectra.

3.1 Harmonic expansion on Y p,q

We will follow the argument in [22] which gives the spectrum of Type IIB on AdS5 × T 1,1.

The background solution in Type IIB is

ds2 =
r2

R2
(−dx20 + dx2i ) +

R2

r2
dr2 +R2ds2Y p,q (3.1)

with the self-dual 5-form flux F5 = (1 + ∗)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ d
(
r4

R4

)
.

When Kaluza-Klein reducing this solution to AdS5, we first have to compute the

fluctuations of the 10-dimensional fields. The fluctuation of the gravitational fields are

parametrized as

g̃µν = gµν + hµν −
1

3
gµνh

a
a, g̃µa = hµa, g̃ab = gab + hab (3.2)

where µ, ν denote the AdS5 space time while a, b denote the internal space, and g denotes

the background metric while h is the fluctuation.

Now we expand the fields hµν , hµa, hab and h
a
a into a complete set of harmonic func-

tions on Y p,q. With the de Donder and Lorentz-type gauge conditions Dah(ab) = 0 and

Dahaµ = 0 we have the following expansions:2

hµν(x, y) =
∑

{λ}

H{λ}
µν (x)Y {λ}(y), haa(x, y) =

∑

{λ}

π{λ}(x)Y {λ}(y)

haµ(x, y) =
∑

{λ}

B{λ}
µ (x)Y {λ}

a (y), h(ab)(x, y) =
∑

{λ}

φ{λ}(x)Y
{λ}
(ab) (y) (3.3)

2(x, y) denote coordinates of the AdS5 and Y p,q spaces respectively and therefore should not be confused

with the y coordinates that we will be using to write the metric etc of the Y p,q spaces.
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where [λ] ≡ [λ1, · · · , λ[5/2]] denotes the SO(5) representation. Similarly with the gauge

condition DaAaµ = 0 and DaAab = 0 we can expand the type IIB complex zero and the

two-forms, B and Amn respectively, as

Aµν(x, y) =
∑

{λ}

a{λ}µν (x)Y {λ}(y), Aaµ(x, y) =
∑

{λ}

a{λ}µ (x)Y {λ}
a (y)

Aab(x, y) =
∑

{λ}

a{λ}(x)Y
{λ}
[ab] (y), B(x, y) =

∑

{λ}

B{λ}(x)Y {λ}(y) (3.4)

For the four-form flux we can do the same thing by imposing the conditions Daaabcd = 0,

Daaabcµ = 0, Daaabµν = 0 and Daaaµνγ = 0,

aabcd =
∑

{λ}

b{λ}(x)Y
{λ}
abcd(y), aabcµ =

∑

{λ}

b{λ}µ (x)Y
{λ}
abc (y)

aabµν =
∑

{λ}

b{λ}µν (x)Y
{λ}
ab (y), aaµνγ =

∑

{λ}

b{λ}µνγ(x)Y
{λ}
a (y)

aµνγρ =
∑

{λ}

b{λ}µνγρ(x)Y
{λ}(y) (3.5)

Notice that Y p,q is topologically S2 × S3, the same as T 1,1, so we can argue similarly as

in [22] to simplify the expansion,

aabcd =
∑

{λ}

b{λ}(x)ǫeabcdDeY
{λ}(y) (3.6)

The full linearlized equation of motion can be found in [23]. In this paper we are only in-

terested in scalar harmonics which means that we are only looking at the following modes

in AdS5, coming from first line of (3.3), (3.4), and the last line of (3.5):

hµν(x, y) =
∑

{λ}

H{λ}
µν (x)Y {λ}(y), haa(x, y) =

∑

{λ}

π{λ}(x)Y {λ}(y)

A(i)
µν(x, y) =

∑

{λ,i}

a{λ}µν (x)Y {λ}(y), B(j)(x, y) =
∑

{λ}

B{λ,j}(x)Y {λ}(y)

aµνγρ =
∑

{λ}

b{λ}µνγρ(x)Y
{λ}(y) (3.7)

where A
(i)
µν(x, y) would be the NS and RR two-forms respectively and B(j)(x, y), where

i, j = 1, 2, would be the axion and the dilaton respectively. The other two quantities π

and b that appear respectively from the expansion of haa in (3.3) and from the expansion

of aabcd in (3.6), are related to the metric and the four-form respectively. Therefore taking

all these into account, we are left with the following equations:

(�x +⊠y)H
{λ}
µν = 0

(�x +⊠y)B
{λ,j} = 0

– 8 –
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(Max +⊠y)a
{λ,i}
µν +

2i

R
ǫ στγ
µν ∂σa

{λ,i}
τγ = 0

�x

( π{λ}
b{λ}

)
+
(

⊠y − 32R−2 80R−1⊠y

−4
5R

−1 ⊠y

)( π{λ}
b{λ}

)
= 0 (3.8)

where Max denotes the Maxwell operator and �x, ⊠y are the kinetic operators in the AdS5
space time and Y p,q spaces respectively. In our case the latter is exactly given by the action

of the covariant Laplacian operator on the corresponding SO(5) representation,3 which can

be formally written as

⊠y ≡
�yY

{λ}

Y {λ}
(3.9)

Our next step then is to analyze the eigenvalues of the Laplacian operator in order to find

the mass spectrum for these fields.

3.2 Scalar modes in Y p,q

As we discussed in detail in the above subsection, our goal is to compute the eigenvalues λn
of the Laplacian in the manifold Y p,q. These eigenvalues enter the scalar wave equation on

AdS5×Y p,q as masses, so that the conformal dimensions of the associated fields at infinity

(i.e for the CFT dual) are given by Witten’s formula [24]:

∆k = 2 +
√
4 + λk .

It is well known that the Laplacian on Y p,q, which we denote by �y, defines a nonnegative,

self-adjoint operator whose domain is the Sobolev space H2(Y p,q) of square-integrable func-

tions with square-integrable second derivatives. The Laplacian is given in local coordinates

as [10]:4

�y ≡ gij∇i∇j =
1

ρ(y)

∂

∂y
ρ(y)w(y) r(y)

∂

∂y
+

1

w(y)

∂2

∂α2
+

9

r(y)

(
∂

∂ψ
− h(y)

∂

∂α

)2

+
6

1− y

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

(
∂

∂φ
+ cos θ

∂

∂ψ

)2
]

(3.10)

where the various coefficients appearing above can be identified from (2.1) after rescaling

to set c = 1, i.e.,

w(y) ≡ 2(a− y2)

1− y
, r(y) ≡ 2y3 − 3y2 + a

a− y2
, h(y) ≡ y2 − 2y + a

6(a− y2)
, ρ(y) ≡ 1− y

18
(3.11)

The scalar mode Φ(y, θ, φ, ψ, α) in the internal space now takes the following wave-

functional form that was derived in [10]:

Φ = u(y)v(θ)ei(nφ+2mψ+lσα/τ) (3.12)

3For more details on the Maxwell and the Laplacian operator see [22, 23].
4Note that y denotes different things on l.h.s. and r.h.s. of (3.10). See footnote 2.
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which means that the Laplacian satisfies:

�yΦ = [Snmlju(y)] v(θ)e
i(nφ+2mψ+lσα/τ) (3.13)

where we saw in [10] that the analysis of the eigenvalues of the Laplacian on Y p,q is

reduced to that of (the Friedrichs extension of) the one-dimensional operators

Snmlj ≡ − 1

ρ(y)

∂

∂y
ρ(y)w(y) r(y)

∂

∂y
+

1

w(y)

(
σl

τ

)2

+
9

r(y)

(
2m− h(y)

σl

τ

)2

+
6Λnmj
1− y

,

= − 2

1− y

∂

∂y
(a− 3y2 + 2y3)

∂

∂y
+
γ2(1− y)

4(a− y2)
+

6Λnmj
1− y

(3.14)

+
9(a− y2)

a− 3y2 + 2y3

(
2m− γ(a− 2y + y2)

6(a− y2)

)2

,

densely defined on L2((y−, y+), ρ dy). We refer to the aforementioned paper for more

detailed discussions on the derivation of the above formula.5 We have set γ ≡ σl/τ , and

the function v(θ) defined in (3.12) satisfies the eigenvalue equation that comes from the

angular direction θ as:
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
−
(
n+ 2m cos θ

sin θ

)2
]
vnmj = −Λnmjvnmj . (3.15)

The eigenvalues Λnmj are given by the explicit formula:

Λnmj ≡ 2
[
2j(j+1)+

(
|n+2m|+ |n−2m|

)
(2j+1)+ |n+2m||n−2m|+2m2+n2

]
. (3.16)

In what follows we will drop the indices when there is no risk of confusion.

Before going on, it is worth recalling that the integers n,m, l that label the operators

S arise from the (quite subtle) Fourier decomposition of functions we discussed in [10] and

given above in (3.12), while the label j (also an integer) was obtained by explicitly solving

an auxiliary eigenvalue problem associated with the geometry of the sphere bundles (which

had three regular singular points). However, as we have already mentioned, there is little

hope of solving the eigenvalue problem for S in closed form, since the spectral problem for

the operator S is governed by a Heun differential equation. What we will do, therefore,

is to obtain some estimates for the eigenvalues of S that will allow us to approximate the

conformal dimensions of the corresponding CFT.

5The approach taken in [10] exploits the separability of the AdS5 × Y p,q metrics to compute the

eigenfunctions of the Laplace operator in Y p,q in quasi closed form, by expressing them in terms of the

eigenfunctions of the Friedrichs extension of a single second-order ordinary differential operator with four

regular singular points. The subtle geometry of the spaces Y p,q introduces additional complications in the

analysis, since the ‘angular’ variables in which the metric of Y p,q separates are not defined globally. In order

to circumvent this problem the steps taken in [10] is to start by constructing a Fourier-type decomposition

of the space of square-integrable functions on Y p,q adapted to the global structure of the manifold and to

the action of the Laplacian. Once the eigenfunctions of the Laplacian in Y p,q have been computed, the

analysis of the Klein-Gordon equation in AdS5×Y p,q can be reduced to that of a family of linear hyperbolic

equations in anti-de Sitter space. In [10] a detailed discussion of the existence and uniqueness of causal

propagators for these equations using Ishibashi and Wald’s spectral-theoretic approach to wave equations

on static space-times based on [25–27] were presented. Note that for our purpose, this presents several

advantages over the classical method of Riesz transforms, since the latter method only yields local solutions

to the Cauchy problem in the case in which the underlying space-time is not globally hyperbolic [28].
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3.2.1 Behaviour of large eigenvalues (highly excited modes)

In this subsubsection, we give an asymptotically exact result for large energies (highly

excited modes) of the operator S ≡ Snmlj . The basic idea is that, if we label the

eigenfunctions of this operator by an integer k = 1, 2, . . . , the kth eigenvalue is very close

to a constant multiple of k2 for large k. To put it in a different way, the eigenvalues tend

to those of an infinite well, the width of the well determined by the functions P,Q,W that

define the Sturm-Liouville operator S. Very informally, the justification would be that

at high energies the leading terms are the derivatives; this kind of asymptotic results are

usually proved using pseudo-differential operators.

The first observation is that, without any further assumptions, we have an asymp-

totic formula (for large k, for highly excited modes) for the eigenvalues of S namely: the

eigenvalues λk ≡ λk(n,m, l, j) of S are asymptotically given by following expansion6

λk = C0k
2 + o(k2) , (3.17)

where the constant

C0 ≡ 2π2
[ ∫ y+

y−

(
1− y

a− 3y2 + 2y3

)1/2

dy

]−2

(3.18)

depends on the geometry of the manifold (that is, on p and q) through y± but not on the

Fourier modes n,m, l, j. (So that only the error term knows about these indices.)

The above statement is a consequence of general results in the theory of singular Sturm-

Liouville operators. Indeed, it suffices to note that S is a lower-bounded one-dimensional

self-adjoint operator, so it follows from [29, section 10.8] that (3.17) holds true with

C0 ≡
(
1

π

∫ y+

y−

(
w(y) r(y)

)−1/2
dy

)
. (3.19)

An easy computation shows that this integral takes the above form, which can in turn be

expressed in terms of elliptic functions.

Before ending this subsection, let us make the following remark. Weyl’s law7 ensures

that, when the eigenvalues of all the one-dimensional operators corresponding to the various

6A word of caution about the notation: The error term is o(k2), and not O(k2). The respective no-

tations mean different things, and o(k2) ≪ O(k2) for large k. The notation f(k) = o(g(k)) means that

limk→∞
f(k)
g(k)

= 0. On the other hand the notation f(k) = O(g(k)) means that that there exists a positive

constant C such that for k sufficiently large |f(k)| 6 C|g(k)|. Simply, O(kn) means that a term scaling like

kn in the proper limit of k, as familiar to physicists. Here k → ∞ is appropriate, and later in (3.41) a→ 0

is so. The two notions are different and in particular the o(k2) notation above indicates that the error term

grows slower than quadratically in k. If it had a power-law behaviour, it would be o(k2) = O(k2−ǫ) with

ǫ > 0. In some sense O is used when we know the power scaling of a term, and o is when we know only the

upper bound of the scaling.
7The Weyl law states that the first term in the asymptotic expansion for the k-th eigenvalue λk of the

Laplacian on an n-dimensional compact Riemannian manifold is:

λk = Cnk
2/n/(Vol M)2/n + o(k2/n)

as k → ∞. This was proved by Weyl in [30]. The second term was conjectured by Weyl in 1913 [31] and

proved only in 1980 by Ivrii [32].
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Fourier modes are taken into account, the eigenvalues of the Laplace operator on Y p,q (let’s

call them λ̃k) obey the asymptotic law

λ̃k = (2π)2
(

5k

|S4|Vol(Y p,q)

)2/5

+ o(k2/5) (3.20)

where |S4| denotes the volume of the unit 4-sphere and the volume of the manifold being

given by [7]

Vol(Y p,q) =
π2q2[2p+ (4p2 − 3q2)1/2]

3p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]
. (3.21)

Eq. (3.17) provides a somewhat more tangible way of presenting this asymptotic result in

the sense that the asymptotics is separated into families labeled by additional “quantum

numbers”. A straightforward but tedious computation shows that, of course, when

degeneracies are taken into account, the asymptotics (3.17) can be summed with respect

to the additional “quantum numbers” to obtain (3.20).

Let us elaborate this a little bit more. We have seen that the analysis of the

eigenvalues of the Laplacian in Y p,q can be reduced to that of the eigenvalues of a family

of one-dimensional operators S = Snmlj . These operators are labeled by three integers

n,m, l and a nonnegative integer j. Notice that if any of the quantum numbers n,m or l

is nonzero (“higher Fourier modes”), all the eigenvalues of the Laplacian corresponding to

these quantum numbers are necessarily degenerate, as mapping (n,m, l) to (−n,−m,−l)
leaves the eigenvalue equation invariant. A convenient way of understanding the behavior

of the eigenvalues if the Laplacian in geometric terms is the Weyl’s law. For this, let’s

denote by λ̃k the k-th lowest eigenvalue of the Laplacian in Y p,q, where each eigenvalue is

repeated according to its multiplicity. Obviously, for each k there are “quantum numbers”

(n,m, l, j) such that λ̃k = λk′(n,m, l, j) for some k′.8 Weyl’s law then ensures that the

asymptotic distribution of the eigenvalues λ̃k of the Laplacian is related to the volume of

the manifold through the relation (3.20).

3.2.2 Bounds for the eigenvalues for small a

In the previous subsubsection we obtained an asymptotic formula for the eigenvalues,

which is asymptotically exact for large energies. It does not provide any information

on low-lying eigenvalues, however. So our goal in this subsubsection is to provide some

estimates for the whole spectrum in an appropriate regime. This regime will be the case

when the parameter a is small; as we will see, then we can obtain two-sided bounds for

the eigenvalues that provide an adequate control of the energies.

The technique we apply here is that, using the fact that a is small 0 < a < 1, we can

Taylor expand the Laplacian operator in terms of small a and drop higher orders of a (as

in (3.25)). Obviously this works the best if a is very small, or equivalently when q ≪ p,

but even moderately small a, it is a valid Taylor expansion. Instead of trying to obtain

8It is worth emphasizing that one cannot explicitly compute the degeneracy of the eigenvalues, as there

could be non-geometric degeneracies in the sense that λk0(n0,m0,l0,j0) = λk1(n1,m1,l1,j1) for some pair of

indices not related by a symmetry of the equation.
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the spectrum of the original Laplacian operator, we use another operator (3.30) whose

spectrum is exactly known as in (3.31). With an appropriate constant C which does not

depend on the parameters of the equation, we can compute the upper and lower bounds

of the eigenvalues of Laplacian.9

Before passing to the actual derivation of the bounds, let us discuss the meaning of

the smallness of a. It should be noticed that this is in fact a geometric hypothesis on the

manifold. In order to see this, let us recall the connection between the parameter a and

the integers p, q that controlled the geometry of the bundle. In [7, section 3] it is explained

that the relationship between p, q and the endpoints y± is that

y+ − y− =
3q

2p
(3.22)

The idea now is that it can be easily seen that for any value of the latter quotient we can

find an a for which (3.22) is satisfied; indeed, a can be chosen as

a =
3

4

[
1− 3q

2p
−
(
1− 1

3

(
3q

2p

)2)1/2]2
− 1

4

[
1− 3q

2p
−
(
1− 1

3

(
3q

2p

)2)1/2]3
(3.23)

Hence it is not hard to see that a ≪ 1 is equivalent to q ≪ p, so this condition translates

immediately as a condition on the geometry of the bundles. It this case,

a =
27q2

16p2
+O(q3/p3) (3.24)

A closer look at the subsection on rational roots in [7] reveals that there is also an infinite

number of solutions with rational roots and arbitrarily small values of a (recall that in

this case the Sasaki-Einstein structure is quasi-regular.)

The idea now is that, for very small a, the operator −S should be very similar to

the one we obtain by dropping higher powers of a (e.g. in the Taylor expansion of the

coefficients), namely

− 2
∂

∂y
(a− 3y2)

∂

∂y
+

γ2

2(a− y2)
+ 6Λ +

18(a− y2)

a− 3y2

(
m+

γy

6(a− y2)

)2

(3.25)

This expression defines a self-adjoint operator on L2(−(a/3)1/2, (a/3)1/2) via its Friedrichs

extension (notice we still have too many singular points to solve the eigenvalue equation for

S). It is convenient to make things independent of a by rescaling. For future convenience,

we introduce the variable t ≡ a−1/2y and, noticing that

γ = σlq(3a)1/2 (1 +O(a)) (3.26)

we set γ̄ ≡ a−1/2γ (observe that γ̄ still depends on a, although it tends to a well-defined

nonzero limit as a → 0). Here and in what follows, by O(a) we will denote quantities

9An interesting question is how small C can be, because if C becomes large, the bound is very loose.

Furthermore, by comparing with the known low-lying scalar spectrum, we may learn something useful about

C. The former and the latter points will be addressed in footnotes 10 and 19 respectively.

– 13 –



J
H
E
P
0
5
(
2
0
1
2
)
0
0
9

bounded by a constant (independent of any labels and of the geometry) times a, and

whose derivatives satisfy analogous bounds (i.e., behave like symbols with respect to these

bounds). We are thus led to consider (the Friedrichs extension of) the operator

T ≡ − ∂

∂t
P (t)

∂

∂t
+Q(t) (3.27)

in L2(I), with I ≡ (−3−1/2, 3−1/2) and

P (t) ≡ 2(1− 3t2) ,

Q(t) ≡ γ̄2

2(1− t2)
+ 6Λ +

18(1− t2)

1− 3t2

(
m+

γ̄t

6(1− t2)

)2

.

In order to relate the spectral properties of S (as an unbounded self-adjoint operator on

L2((y−, y+), ρ dy) to those of T (on the space L2(I) with the standard Lebesgue measure

dt), it is convenient to start by relating these two L2 spaces. An obvious way to do so is

through the following a-dependent change of variables:

t ≡ − 1√
3
+

2√
3

∫ y
y−
ρ(y′) dy′

∫ y+
y−

ρ(y′) dy′
≡ Ta(y) . (3.28)

This induces a unitary transformation L2((y−, y+), ρ dy) → L2(I, dt), which transforms S

into the Sturm-Liouville operator of the form:

S̃ ≡ − ∂

∂t
P̃ (t)

∂

∂t
+ Q̃(t) . (3.29)

To derive the bounds, we start with the following observation: the spectrum of the

auxiliary operator

Tµ ≡ − ∂

∂t
P (t)

∂

∂t
+

µ

1− 3t2
(3.30)

on L2(I), as a function of the parameter µ, is given by

ℓk(µ) ≡ 3

2

(
1 +

√
8µ

3
+ 2k

)2

− 3

2
(3.31)

The proof of the above statement can be argued using a straightforward computation. To

start, observe that it suffices to see that the exponents of the equation Tµf = −ℓf are

±
√

µ

24
,

1

2

(
1±

√
1 +

2λ

3

)
(3.32)

at (0 and at 1) and at ∞ respectively. The eigenvalues then arise as the necessary

condition for

(1− 3t2)−(µ/24)1/2f(t) (3.33)

to be a polynomial in t, thus proving the required statement.
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After developing the necessary mathematical preliminaries, we are now ready to com-

pute bounds for the eigenvalues of S (which coincide with those of S̃, by definition). Notice

that we cannot obtain bounds using a relative compactness argument, as any perturbation

of the function P will lead to corrections that are not relatively compact with respect to the

original operator (because they have the same number of derivatives as the initial opera-

tor). What we can do is to exploit monotonicity using the following two observations. The

first observation is that there is a constant C, which does not depend on the parameters

of the equation, such that the following bounds for P̃ (t) hold for all t ∈ I:

(1− Ca)P (t) 6 P̃ (t) 6 (1 + Ca)P (t) . (3.34)

This inequality is obvious in view of the formula (3.28) for the map y 7→ t, and simply

asserts (roughly speaking) that the map does not alter the singularities too much.

Our second observation is somewhat similar to the first one in the sense that we again

claim that there is a constant C, which does not depend on the parameters of the equation,

such that the following bounds for Q̃(t) hold for all t ∈ I:

Q̃(t) > (1− Ca)

(
µ−

1− 3t2
+

1 + γ̄2

2
+ 6Λ− Ca

)
,

Q̃(t) 6 (1 + Ca)

(
µ+

1− 3t2
+

3(1 + γ̄2)

4
+ 6Λ + Ca

)
, (3.35)

where µ+ and µ− are defined in the following way:

µ− ≡ 12max

{
0,m− γ̄

4
√
3

}2

, µ+ : ≡ 18

(
m+

γ̄

4
√
3

)2

. (3.36)

The proof of the above two inequalities are a straightforward consequence of the fact that

(1− Ca)(Q(t)− Ca) 6 Q̃(t) 6 (1 + Ca)(Q(t) + Ca) . (3.37)

(One might wonder why we included an additive error Ca here and not in the estimate

for P̃ . The reason is that P̃ does not vanish in the interval I, and this is enough for us to

control the error via a multiplicative constant.)

It is standard that if we take nicely behaved functions Pj(t) and Qj(t) on I, with

j = 1, 2 and Pj(t) > 0, and suppose that P1(t) > P2(t) and Q1(t) > Q2(t) (resp.

P1(t) 6 P2(t) and Q1(t) 6 Q2(t)), then the k-th eigenvalue of (the Friedrichs extension

of) the operator − d
dtP1(t)

d
dt + Q1(t) is larger or equal (resp. smaller or equal) than those

of − d
dtP2(t)

d
dt +Q2(t). Hence it is elementary to derive the bounds

Λ
[−]
k 6 λk 6 Λ

[+]
k (3.38)

where

Λ
[−]
k = (1− Ca)

(
ℓk(µ−) +

1 + γ̄2

2
+ 6Λ− Ca

)
,

Λ
[+]
k = (1 + Ca)

(
ℓk(µ+) +

3(1 + γ̄2)

4
+ 6Λ + Ca

)
, (3.39)
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from the inequalities (3.34) and (3.35), the formula for the eigenvalues ℓk(µ) of the

auxiliary operator Tµ derived in (3.31) and elementary inequalities in I such as

1 6 (1− t2)−1
6 3/2 . (3.40)

The bounds (3.38), in which C stands for an a-independent constant and ℓk(µ) is given

by (3.31), constitute the main result of this subsection.10

As a remark, notice that the above bounds also ensure that the eigenvalues have the

asymptotic behavior

λk = 6(1 +O(a))k2 +O(k) . (3.41)

This is precisely the growth rate computed in (3.17), since it is easy to see that the constant

C0 ≡ 2π2
[ ∫ y+

y−

(
1− y

a− 3y2 + 2y3

)1/2

dy

]−2

(3.42)

entering Weyl’s law (3.18) tends to 6 as the constant a tends to 0.

4 Examples of scalar and other modes

Now that we have discussed the spectrum of scalar modes in the internal Y p,q space, it is

time to study some examples of these modes. However before moving ahead we should point

out that in this section (and also the next) we will not address the spectra of the theory.

To analyse the spectra (for example along the lines of [33–35]) we would not only need to

go beyond the scalar fields, but would also require exact eigenvalues of the KK modes for

all spin-states of the theory — a calculation that will be relegated for future works. The

advances that we made in the previous section is a good starting point and we will benefit

from further development. At this point we will suffice ourselves by studying some basics

aspects of scalar and other modes from supergravity perspective in this section. In the next

section we will discuss possible non-conformal extensions of our model. Again the emphasis

therein would be to study the supergravity background and not the matching of spectra.

The simplest examples of scalar and other modes that appear for our case are from

the decomposition of the 2-forms in (3.4). These decompositions lead to two possible

theories on the boundary where we define the CFTs.

10One might worry about the strength of our bounds. For example a question would be whether the

bounds could be loose if constant such as C is large. To answer this we first note that the constants

do not arise exactly from a power series expansion, but rather as the Taylor formula with estimates for

the remainder (which is essentially the mean value theorem). Therefore, the constant C can be explicitly

computed as the (sum of the) supremum (for t and a between certain values) of the derivative of some

functions appearing in P or Q with respect to the parameter a. For this reason, the behavior of this

constant is controlled, and can be computed explicitly. For example, a rough computation reveals that the

constant C can be chosen to be of order 10 when a is smaller than 10−n−1, so the relative error is at most

of order 10−n. Since a = (q/p)2 up to some inessential factors, it is enough that q/p < 10−(n+1)/2. These

estimates can be refined easily.
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• Non-commutative geometry: Let us consider the NS B field with both components

along the boundary, i.e we can switch on Bij(x) where i, j = 1, 2, 3 and xµ specify

coordinates in AdS5 space, leading to non-commutative geometry in the dual gauge

theory. For example, a B-field component of the form Bij(r), with r being the radial

direction in the AdS5 space, would be able to generate non-commutative theory on

the boundary. Clearly this mode is a scalar mode in the internal Y p,q space.

• Dipole theory: This time we consider the NS B-field which has one component along

the boundary and the other component either along the radial r direction or along the

internal Y p,q directions. Consider first a component of the NS B field of the form Bir.

However if this component is only a function of xµ, then we can make a gauge trans-

formation to rotate the NS B field components along the boundary which in turn will

convert the boundary theory to a non-commutative theory. The other alternative is

to make it gauge equivalent to zero for the B field component of the form Bir(r). Thus

the only non-trivial cases appear to be of the form Bir(y), Bia(x, y) and they both lead

to the dipole theories. However none of these are scalar modes in the internal Y p,q.

The special case where the NS B field is of the form Bia(x, y) fits in with our decom-

position (3.4), and leads to a simple vector decomposition of the boundary theory.

Thus the simplest scalar mode leading to noncommutativity can be specified by a 2-

form θij such that the commutator of the coordinates on the boundary theory is [xi, xj ] =

iθij . The parameter θij has dimensions −2. At low-energies, noncommutative super Yang-

Mills theory (NCSYM) can be described by augmenting the action with:

∫
θijOij(x)d

4x, (4.1)

where Oij is an operator of dimension 6 in the superconformal SYM on a commutative

space. In the conventions such that the SYM Lagrangian is:

LSYM = tr

[
1

2g2

6∑

I=1

∂iφ
I∂iφI +

1

4g2
FijF

ij +
1

2g2

∑

I<J

[
φI , φJ

]2
]
+ fermions, (4.2)

the bosonic part of the operator Oij can be written as:

tr

[
1

2g2
FjkF

klFli −
1

2g2
FijF

klFkl +
1

g2
Fik

6∑

I=1

∂jφ
I∂kφI − 1

4g2
Fij

6∑

I=1

∂kφ
I∂kφ

I

]
. (4.3)

Here, g is the SYM coupling constant, Fij is the U(N) field-strength, and φI (I = 1 . . . 6)

are the scalars.

For the second case we expect the boundary theory to be deformed by an operator of

the form Oi. The deformation by LiOi (where L
i is a constant vector) is the low-energy

expansion of a nonlocal field-theory, the so-called dipole-theory, described in [36–38].

Furthermore, as discussed in [36] (see also [37–39]), the bosonic part of the SYM

operator Oi can be calculated by changing to local variables (see [36] for more details). We
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can write it in N = 1 superfield notation as [36]:

Oi =
i

g2YM

∫
d2θǫabtr

[
σαα̇i WαΦaDα̇Φb +ΦΦaDiΦb

]
+ c.c. (4.4)

Here, we denote the N = 1 chiral field as Φ and the N = 1 vector-multiplet with the

field-strength Wα. The original N = 2 hypermultiplet is now written in terms of the two

N = 1 chiral multiplets Φa (a = 1, 2). Finally, σαα̇i are Pauli matrices. As expected, the

operator Oi has conformal dimension 5.

4.1 Possible type IIA brane realisation

In the following we will discuss these backgrounds in somewhat more details by switching

on appropriate B fields. This is slightly different from allowing the B field as a fluctuation.

A non-trivial background B field will change the geometry in some particular way which

would reflect the corresponding backreactions. To analyse the corresponding backreactions

we have to study the scenario directly from N D3-branes probing the geometry given by

a cone over the Y p,q spaces. This starting point in fact has many intriguing possibilities in

addition to the ones related to generating non-local field theories. One of the possibilities

is to see whether a brane realisation of the form [3] in type IIA can also be made for our

case. We will therefore start by analysing this interesting possibility first and then go for

the non-local theories.

To study D3-branes at the tip of a cone over the Y p,q manifolds, we will assume the

usual ansatz for the D3-brane metric given in terms of a harmonic function H which is

typically a function of r and the Y p,q coordinates. Let us therefore take the following

metric ansatz:

ds2IIB = H−1/2ds20123 +H1/2(dr2 + r2dM2
5 ), (4.5)

where dM2
5 is the same in eq. (2.1) and F5 = (1 + ∗)dβ0 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 with

H = 1 +
r40
r4

≡ β0. We also assume the dilaton is zero. As in [3], the internal metric has

three isometries along the α, ψ and φ directions. We first do a T-duality along α direction.

The metric becomes

ds2IIA = H− 1
2ds20123 +H

1
2

{
dr2 + r2

[
1− cy

6
(dθ2 + sin2 θdφ2) +

1− cy

2f(y)
dy2

+
f(y)

9(a− y2)
(dψ2 − cos θdφ)2 +

(1− cy)

2Hr4(a− y2)
dα2

]}

= H− 1
2

[
dx20123 +

1− cy

2r2(a− y2)
dα2

]
+H

1
2

{
dr2 + r2

[
1− cy

6
(dθ2 + sin2 θdφ)2

+
1− cy

2f(y)
dy2 +

f(y)

9(a− y2)
(dψ − cos θdφ)2

]}
, (4.6)

with the following two components of the B-fields:

Bαψ =
ac− 2y + y2c

6(a− y2)
, Bαφ = −ac− 2y + y2c

6(a− y2)
cos θ, (4.7)
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and the original D3 branes become D4 branes. The existence of the two B-fields might

indicate the possibility of two NS5 branes, provided HNS = dB is a source term and

the integral of HNS over a three-cycle is an integer. The first one is harder to determine

because the knowledge of the global behavior of the two B-field components is lacking,

although the metric that we are dealing with is global. This is because we delocalized along

the α direction to make the harmonic function H independent of that direction so that

T-duality rules of [40] could be implemented. This is of course a slight oversimplification

as this works well for some purposes, but not others. The harmonic function should be

taken to be a function of α as well, and then one may T-dualise the background using

the technique illustrated in [41]. Under such a T-duality both the B-field components will

pick up dependences on H as well. We will discuss more on this a little later.

For the second case, one may do better by converting the three-forms to two-forms

and integrating over two-cycles. This can be easily achieved by making a U-duality

transformation of the form TαST3 where S denotes a S-duality transformation and Tm
denotes a T-duality along xm direction. Thus making a T-duality along x3 direction we

get the following metric in type IIB theory:

ds2 = H− 1
2dx2012 +H

1
2

{
dx23 + dr2 + r2

[
1− cy

6
(dθ2 + sin2 θdφ2) +

1− cy

2f(y)
dy2

+
f(y)

9(a− y2)
(dψ2 − cos θdφ)2 +

(1− cy)

2Hr4(a− y2)
dα2

]}
. (4.8)

Under this T-duality the D4 branes become D3 branes but extending along x0, x1, x2 and

α directions. However the B-fields remain unchanged. If these B-fields are coming from

some source NS5-branes, then the NS5-branes would not change under the T-duality.

Let us now do the S-duality under which the NS B-fields become RR B-fields and the

metric gets an overall factor from the dilaton field
√

2r2(a−y2)
1−cy while the D3 branes remain

the same. When we T-dualise this background along α direction, the metric becomes

ds2 = H− 1
2dx2012 +HH− 1

2

{
dx23 + dr2 + r2

[
1− cy

6
(dθ2 + sin2 θdφ2) +

1− cy

2f(y)
dy2

+
f(y)

9(a− y2)
(dψ2 − cos θdφ)2 + dα2

]}
, (4.9)

and the RR three-form fields become the type IIA gauge fields. We have also defined

H = H
2r2

1−cy
a−y2

as our modified harmonic function. If these gauge fields are sourced by D6

branes then they are the ones that come from the type IIB D5 branes. The D3 branes

on the other hand become D2 branes. Lifting this configuration to M-theory the eleventh

direction has the required local ALE fibration with M2 branes at a point on the four-fold.

The above set of manipulation is suggestive of NS5 branes in the original type IIA

configuration provided the gauge field EOM has a source term. Thus if we write the local

type IIA gauge field over a patch as:

A = Aψdψ +Aφdφ ≡ ac− 2y + y2c

6a− 6y2

[
F1(H)dψ −F2(H)cos θ dφ

]
, (4.10)
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where we have inserted the correction from the harmonic function as F1,2(H), then there

exists a global field strength F = dA. Now if it satisfies the two conditions mentioned

earlier, namely

d ∗ F = sources,

∫

S2

F = integer, (4.11)

then this would not only help us to identify the NS5 branes in the original type IIA set-up,

but also help us to count the number of the NS5 branes. Such a source term in (4.11)

may not be too difficult to see from our analysis if we take (4.10) seriously. The l.h.s.

of (4.11) will involve terms like d ∗ dF1(H) and d ∗ dF2(H). Since �H = ∗d ∗ dH lead to

source terms in the supergravity solution, it should be no surprise if the above two terms

in (4.11) coming from F1,2(H) lead to D6 brane source terms in our model.

The above analysis is definitely suggestive of this scenario, although the precise

orientations of the NS5 branes are not clear to us at this stage. Furthermore there is

the subtlety pointed out in [42] which we might have to consider too. Note also that

from (4.6) the D4 branes are wrapped along a non-trivial S1
α cycle. More details on this

will be relegated to future works.

Before we end this subsection, we would like to point out another scenario related to

the type IIB metric (2.6). As has been described earlier, (2.6) is related to (2.1) by a

series of coordinate transformations. Interestingly the metric (2.6) is closely related to the

conifold metric if one makes the following substitutions in (2.6):

c = 0, a = 3, y = −cos θ2, β = φ2, θ = θ1, φ = φ1 (4.12)

where β was defined in (2.5). So a natural question to ask would be what happens if one

makes a T-duality along the ψ direction. It is of course well known that, in the limit (4.12),

a T-duality along ψ direction leads to an orthogonal (not necessarily intersecting) NS5

branes configuration [3]. If we now make a T-duality along ψ direction, the metric that

we get in type IIA side is the following:

ds2 = H−1/2

[
dx20123 +

18(1− cy)

r2W
dψ2

]
+H1/2

[
dr2 + r2

(
1− cy

6
(dθ2 + sin2 θdφ2)

+
1− cy

2f
dy2 +

4f

W
dα2

)]
, (4.13)

where W = 3c2y2 − 6cy + 2 + ac2. Interestingly, we find the metric has the simpler form

without cross-terms at all. This is again reminiscent of [3]. We also find two NS B fields

whose components are given as:

Bψα =
6(ac− 2y + cy2)

W
, Bψφ = − cos θ. (4.14)

The absence of a cross-term is not a big surprise because we can rewrite (2.6) in a

suggestive way using the coordinates (4.12) and taking (c, a) away from the conifold value
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(0, 3). The metric (2.6) becomes:

ds2 = a1(dθ
2
1 + sin2 θ1dφ

2
1) +

[
a2 sin2 θ2dθ

2
2 + a3 (dφ2 + c cos θ1dφ1)

2
]

+
1

9

[
dψ + (1 + c cos θ2)cos θ1dφ1 − cos θ2dφ2

]2
, (4.15)

where a1, a2 and a3 are given by the following expressions:

a1=
1 + c cos θ2

6
, a2=

1

2
· 1 + c cos θ2
a−3cos2θ2−2c cos3θ2

, a3=
1

18
· a−3cos2θ2−2ccos3θ2

1 + c cos θ2
. (4.16)

A T-duality along ψ direction will give us the configuration that we discussed above (using

non-canonical coordinates).11 To see what (4.13) and (4.14) imply, let us again go to the

limit where c = 0 and a = 3. In this limit12 we recover the exact brane picture of type IIA

discussed in [3]. This may mean that we have some NS5 branes along the (θ, φ) directions

and some NS5 branes along (α, y) directions (or in a more canonical language, we have

a set of NS5 branes along (θ1, φ1) directions and another set of NS5 branes along (θ2, φ2)

directions). These two set of NS5 branes are locally orthogonal to each other, so as to

preserve N = 1 supersymmetry. The dψ fibration structure in (4.15) also tells us that

there are two local B-fields in type IIA side that would T-dualise to give us the required

background (4.15). The N type IIB D3-branes become N of D4 branes along ψ direction

suspended between these NS5 branes.

Unfortunately the c 6= 0 scenario is not quite the same as the simpler (c, a) =

(0, 3) scenario. In particular13 at y = y1 and y = y2 the metric (4.13) develops conical

singularities, in other words now y and α no longer form a sphere. This can be easily seen

by taking the limit y → yi where i = 1, 2. In this limit we can write the metric along the

y and α directions as:

1− yi
f ′i(y − yi)

dy2 +
4f ′i(y − yi)

Wi
dα2. (4.17)

This is not quite the metric of a 2-sphere. To see this more clearly, let us define a quantity

R in the following way:

R ≡ 2

√
(1− yi)(x− yi)

f ′i
. (4.18)

Using this defination we can rewrite the metric (4.17) in a bit more suggestive way:

dR2 +
f

′2
i R

2

(1− yi)Wi
dα2. (4.19)

11Note however that (4.13) and the T-dual of (4.15) may look different because in (4.13) one cannot

substitute the coordinate transformation directly as the coordinates of (4.13) are the T-dual coordinates

of (2.1). Thus a simple substitution of α = − 1
6
(φ2 + cψ) in (4.13) cannot be done.

12For all other purposes we set c = 1.
13We will henceforth use only the non-canonical coordinates by choice. An equivalent construction could

be easily done with the canonical coordinates (4.12).
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Clearly the above metric becomes the metric of a 2-sphere only when α is periodic with

a period of L ≡ 2π
√
(1− xi)Wi/f

′
i . However recall that instead α has a period of l 6= L.

This means we will always have two conical singularities at y = yi.

Let us now prove that there are no other singularities in this metric. Notice that other

singularities can happen only at W = 0, which has two roots:

y± = 1±
√

1− a

3
. (4.20)

Since y+ > 1, it is clear that y+ is already out of the range of y, while it is not so obvious

for 0 < y− < 1. To see the range of y−, we substitute y− into f to get:

f(y−) = − 2

3
√
3
(1− a)

√
1− a < 0, (4.21)

which means y− > y2 and therefore it is also out of the range. Therefore there are no

other singularities in this metric.

The above picture gives us an indication how the brane dual could be constructed

although the actual details are much harder to present than our previous construction. It

is also true that the delocalization effects are again present in the harmonic function but

this time, thanks to the canonical representation of the metric (4.15), a direct mapping to

the intersecting brane configuration for c = 0, a = 3 gives us a hope that similar brane dual

description does exist for generic cases (although at this stage one may need to consider the

subtleties pointed out in [42]). The interesting thing however is that a T-duality along α

also seems to lead to a similar configuration provided of course (4.11) holds. This shouldn’t

be a surprise because α and ψ are related by a linear coordinate transformation for c 6= 0.

4.2 Non-commutative and dipole deformations

The above T-duality arguments give us a way to study the underlying N = 1 gauge theory

from two different point of views: one directly from N D3 branes at the tip of the cone in

type IIB theory, and other from N D4 branes in a configuration of two orthogonal set of

NS5 branes in type IIA theory; although for the latter case the precise orientations of the

two NS5 branes still need to be determined.

The non-commutative and the dipole deformations could also be studied from these

two viewpoints. However in this paper we will not consider the type IIA brane interpre-

tations of these deformations. Here we will suffice with only the type IIB description and

a fuller picture will be elaborated in a forthcoming work.

Our starting point is the well known observation that once we have a solution we can

use TsT to deform it into various different solutions, where T is a T-duality transformation

and s is a shift.

Given the background metric (4.5) with D3 branes we have three kinds of deformations:

• T-dualise along one space direction say x3 then shift along another space direction

say x2 mixing (x2, x3) and then T-dualise back along x3 direction.
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• T-dualise along x3 and then shift14 along one of the internal directions that are

isometries of the background namely along α, φ or ψ and then T-dualise back along

x3 direction.

• T-dualise, shift and then T-dualise along internal directions.

The first of these operations would lead to the non-commutative gauge theory on the D3

branes whose details we discussed earlier. For the other two cases, the set of operations

may lead to non-local dipole theories on the D3 branes.

In this paper we only study the first kind of deformation, whose advantage is that the

internal metric remains unchanged so our scalar modes analysis in Y p,q is still valid. Of

course this still doesn’t help us to get the exact matching of spectra as we pointed out

earlier. Therefore, in the following, we will briefly spell out the supergravity background.

For the rest two kinds of deformations our analysis generally cannot be applied as

the internal metric will change quite a bit. We will leave a detailed analysis of dipole

deformations for future works.

For the non-commutative case, the starting point would be the choice of the shift after

a T-duality along the x3 direction. We choose the shift to be

x2 7→
x2
cos θ

+ x3 sin θ, x3 7→ x3 cos θ. (4.22)

After the series of duality transformations the background can be easily determined to

take the following form:

ds2 =
1√
H

[
− dx20 + dx21 + J(dx22 + dx23)

]
+
√
H(dr2 + dM2

5), (4.23)

which clearly tells us that the internal Y p,q space do not change, but the Lorentz invariance

along the x2 and x3 direction is broken as one would have expected. The metric has the

same form as in [43] and the gauge theory on D3 branes should be non-commutative in

x2 and x3 directions. The non-commutativity parameter, which is the B23 field, and the

Lorentz breaking term J , in (4.23), are defined in the following way:

J =
H

sin2 θ +H cos2 θ
, B23 =

tan θ

sin2 θ +H cos2 θ
. (4.24)

This completes our discussion of the conformal models related to the Y p,q spaces. In the

following section we will discuss the non-conformal extensions of the above models. We

will specifically concentrate on the possibility of geometric transitions in these models.

5 Non-conformal duals and geometric transitions

The non-conformal duals to the Y p,q spaces, along the lines of the cascading model of [44],

have already been addressed in the literature (see for example [45, 46] etc). The UV gauge

14Again mixing x3 with one of the internal directions.
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Figure 1. The duality map to generate the full geometric transitions in the supersymmetric global

set-up of type IIA and type IIB theories.

groups for Y p,1 and Y p,p−1 are respectively given in equations (75) and (87) of [45]. For

both the cases the IR gauge group is:

SU(M)× SU(2M)× ...× SU(2pM) (5.1)

where M denotes the number of D5 branes wrapping the two-cycles of Y p,1 and Y p,p−1

spaces. Such a gauge group is more complicated than the simple picture that we had

for [44] and therefore the far IR picture could be more involved: there could be non-trivial

baryonic branches. This story has not yet been fully clarified, and therefore it gives hope

that the brane picture that we developed here may help us to study the far IR picture in

more details.15 We will however not pursue the cascading story anymore here. Instead we

go to a slightly different direction that may provide us with an alternative way to study

the far IR physics of these models [48, 49].

Our starting point would be to ask whether the far IR physics of the non-conformal

set-up could be likened to the geometric transtion story [50] that we developed in the

series of papers starting with [51] and culminating with [49]. For the geometric transition

picture to hold, we need few essential ingredients:

15For example the brane picture developed for the T 1,1 case in [47] clearly showed how the far IR physics

for cascading theory could be understood. We expect similar story to unfold here too.
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• Resolution and deformation for the cone over Y p,q. These resolved and deformed

spaces are not required to be Calabi-Yau spaces, but they should have at least SU(3)

structures (in the presence of branes and fluxes) so that supersymmetric models

could be constructed.

• Supersymmetric configurations with D5 branes wrapped on two-cyles of the resolved

Y p,q and D6 branes wrapped on three-cycles of the deformed Y p,q including super-

symmetric configurations without branes but with fluxes. Again the overall pictures

for both cases should preserve SU(3) structures.

• Two kinds of G2 structure manifolds should exist in M-theory. One, the lift of the

deformed Y p,q space with wrapped D6 branes in type IIA, and two, the lift of the

resolved Y p,q space with fluxes but without branes again in type IIA. Additionally

these two G2 structure manifolds should be related by a flop transition, similar to

the one constructed for the T 1,1 case in [52].

If all the three ingredients discussed above are present then one would be able to describe

geometric transition using the resolved and the deformed Y p,q manifolds via the duality

map given in figure 1. In the following we will describe a possible realisation of these

scenarios. Our starting point would be the resolution and the deformation of the cones

over Y p,q manifolds, which lie in the heart of these scenarios.

5.1 Resolution and deformation of the cones over Y p,q

A natural question is whether there can be resolutions for the cone over Y p,q as the resolved

conifold. The answer is in the affirmative and the metric on the resolved cone over Y p,q

was obtained explicitly in [53, 54] and [55]. The metric is,

ds2RS =
(1− y)(1− x)

3
(dθ2 + sin2 θdφ2) +

(y − x)(1− y)

h(y)
dy2 +

(x− y)(1− x)

f(x)
dx2

+
f(x)

9(1− x)(x− y)

[
dψ − cos θdφ+ y(dβ + cos θdφ)

]2

+
h(y)

9(1− x)(y − x)

[
dψ − cos θdφ+ x(dβ + cos θdφ)

]2
, (5.2)

where f(y) = 2y3− 3y2+a and h(x) = 2x3− 3x2+ b. We will also take the sechsbein ea to

be the ones given in eq (2.8) of [48] with appropriate redefinations of the variables therein.

As explained in the subsection 2, y− < y < y+. One can take x to be non-compact

and denote two consecutive roots of h(x) by x− and x+. We focus on the case where the

resolution is obtained by blowing up a CP 1, referred to as small partial resolutions in [55].

For this type of resolution we have x− = y− which requires a = b. Thus we get,

−∞ < x < y−, y− < y < y+, a = b. (5.3)

If one takes x = −r2/2 and expand the metric (5.2) in the large r it becomes ds2RS →
dr2 + r2ds2 where ds2 is exactly (2.6), so it is a cone over Y p,q.
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Having got the resolution of the cone over Y p,q, we now want to study the defor-

mation of the cone over Y p,q, which should be a mirror of the resolved cone over Y p,q.

Strominger, Yau, and Zaslow conjectured that the mirror manifold can be obtained by

three T-dualities [56]. There are three isometric directions ψ, β and φ, so we will first do

T-dualities along these directions. The metric we get after three T-dualities is:

ds2SYZ =
(1− y)(1− x)

3
(dθ2 + sin2 θdφ2) +

(y − x)(1− y)

h(y)
dy2 +

(x− y)(1− x)

f(x)
dx2

+
f(x)h(y)(x− y) cos θ

9(f(x)y(1−y)2)−h(y)x(1−x)2
(
dψ+

f(x)y2(1−y)−h(y)x2(1−x)
f(x)y(1− y)− h(y)x(1− x)

dβ+
dφ

cos θ

)

+
9h(y)(1− x)

f(x)h(y)(x− y) cos2 θ

[
(1− x) cos θdβ + xdφ

]2

+
9f(x)(1− y)

f(x)h(y)(y − x) cos2 θ

[
(1− y) cos θdβ + ydφ

]2
. (5.4)

The above metric however cannot be the full answer as T-dualities à la [56] require us to

take the base to be very large. In [49] (see also [51]) we saw that making the base large

actually mixes the isometry directions, leading eventually to the generation of additional

cross-terms missing from the metric obtained by making naive T-dualities. Thus the actual

mirror metric will have cross-terms in addition to what we already have in (5.4).

The complete picture is rather involved as the recipe for making the base bigger using

coordinate transformations à la [49] is not readily available now. However despite this

obstacle, one thing is clear from the analysis of [49]: the resultant metric will not be

a Kähler manifold, in fact, it may not even be a complex manifold. This is consistent

with the result of [57, 58] (see also [59] where certain obstructions to the existence of

Sasaki-Einstein metrics on this manifold is shown). It will also be interesting to compare

our result with the one got in [60].

5.2 D5 branes on the resolved Y p,q manifold

The technical obstacle that we encountered in the previous subsection doesn’t prohibit us

to write the metric of N D5 branes wrapped on the two-cycle of the resolved cone over

Y p,q manifold. Recently the NS5 brane picture has been studied in [48]. The analysis

of [48] is similar in spirit to the one discussed in [49], both the analyses being motivated

by the work of [61]. The complete background for N D5 branes wrapped on the resolution

two-cycle is given by:

F3 = h cosh β e−2φ ∗ d
(
e2φJ

)
, H3 = −hF 2

0 sinh β e
−2φd

(
e2φJ

)

F5 = −1

4
(1 + ∗)dA0 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (5.5)

ds2 = F0ds
2
0123 +

6∑

a=1

fae
2a, φ = log F0 +

1

2
log h,

where ea are the sechsbein defined in [48] and J is the fundamental form associated with

the internal metric. The above background is supersymmetric by construction and since
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the RR three-form F3 is not closed, it represents precisely the IR configuration of wrapped

D5-branes on warped non-Kähler resolved Y p,q manifold. The two warp factors (h, F0) as

well as the coefficients fa in the internal metric are all functions of (r, y, x) which, in turn,

preserve the three isometries of the internal space. Notice also that the background has a

non-trivial dilaton, with the internal space being a non-Kähler resolved cone over Y p,q. The

form of the background (5.5) is similar to the one that we had in [49] except now the internal

space is different. This is of course expected if one had to preserve N = 1 supersymmetry.

The five-form, which is switched on to preserve the susy, has the form F5 in (5.5) with:

A0 =
cosh β sinh β(1− e−2φh−2F−4

0 )

e2φh−2F−4
0 cosh2β − sinh2β

= (F 2
0 − 1)tanh β

[
1 +

(
1− F 2

0

F 2
0

)
sech2β +

(
1− F 2

0

F 2
0

)2

sech4β

]
. (5.6)

Let us now make a few observations. The parameter β that we have in the background

is in general constant and could take any value. This means that there is a class of

allowed backgrounds satisfying the supersymmetry condition. Imagine also that we define

a six-dimensional internal space in the following way:

ds26 =

(
NF0cosh

2β

1 + F 2
0 sinh

2β

) 6∑

a=1

fae
2a, (5.7)

then one could easily argue that there are a series of dualities16 that would convert the

following background

ds2 = ds20123 +Nds26, HNS = e−2Φ ∗ d
(
e2ΦJ

)
, Φ = −φ (5.8)

to the one given earlier in (5.5). The above background (5.8) is of course the one studied

in [48]. Although this is no big surprise, but it is satisfying to see that our picture can be

made consistent with both [48] as well as [49].

16Starting with the background (5.8), we perform a S-duality that transforms the NS three-form to

RR three-form F3 and converts the dilaton Φ to φ without changing the metric in the Einstein frame.

We now make three T-dualities along the spacetime directions x1,2,3 that takes us to type IIA theory.

Observe that this is not the mirror construction. We then lift the type IIA configuration to M-theory and

perform a boost (with a parameter β) along the eleventh direction. This boost is crucial in generating

D0-brane gauge charges in M-theory. A dimensional reduction back to IIA theory does exactly what we

wanted: it generates the necessary number of D0-brane charges from the boost, without breaking the

underlying supersymmetry of the system. Finally, once we have the IIA configuration, we go back to type

IIB by performing the three T-dualities along x1,2,3 directions. From the D0-brane charges, we get back

our three-brane charges namely the five-form. The duality cycle also gives us NS three-form H3 as well

as the expected RR three-form F3. Therefore the final configuration is exactly what we required for IR

geometric transition: wrapped D5s with necessary sources on a non-Kähler globally defined resolved Y p,q

background (5.5). Also as expected, the background preserves supersymmetry and therefore should be our

starting point. One may also note that the thee-forms that we get in (5.5) satisfy

coshβ H3 + F 2
0 sinhβ ∗ F3 = 0

which is the modified ISD (imaginary self-duality) condition. For more details, see [49, 61].
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5.3 Toward geometric transitions for Y p,q manifolds

Once we have the background (5.5) and (5.6) we should be able to use directly the duality

cycle shown in figure 1. This however will turn out to be more subtle than the story that

we developed in [49]. But before we go about elucidating the issues, let us clarify certain

things about generalized SYZ. The original work of SYZ [56] is based on two facts: (a)

all Calabi-Yau manifolds can be written in terms of a T 3 fibration over a base B, and (b)

in the limit where B is much larger than the T 3 fiber, mirror of the given CY manifold is

given by three simultaneous T-dualities along the T 3 fiber directions.

For our case, the starting manifold (5.5) is not a CY manifold but instead is a

six-dimensional manifold with an SU(3) structure and torsion H3. For this case there

does exist a generalisation of the SYZ technique: it is again given by three T-dualities

along the T 3 fiber [62–64]. The difference now is that we cannot claim that all SU(3)

structure manifolds can be expressed in terms of T 3 fibrations over some base manifolds

(although [63–65] has discussed more generic cases by applying local T-dualities). This

generalization of the SYZ technique is called the generalized mirror rule.17

Our method now would be to use the generalized SYZ technique to go to the type

IIA mirror manifold with wrapped D6-branes. Unfortunately now there are two subtleties

that make the analysis much more non-trivial than the one that we had in [49]. The

first one is already been discussed earlier: we don’t know exactly what kind of coordinate

transformations we should do to make the base bigger than the T 3 fiber. Recall that

in [49], out of infinite possible coordinate transformations available, we could find a class of

transformations that can not only make the base bigger but also lead us to the right mirror

manifold. The main reason why we could find that particular class of transformations

earlier was solely based on the fact that we knew the existence of a deformed conifold

solution. This privileged information, unfortunately, is not available to us now.

The second issue is even more non-trivial. Looking at the background (5.5) and

from H3 = dBNS, we see that the BNS fields will have components that are parallel to

the directions of the T 3 fiber. T-dualities with BNS fields along the directions of duality

lead to non-geometric manifolds! Therefore the type IIA dual manifold will most likely

be a non-geometric space which in turn means that the duality cycle depicted in figure 1

cannot be very straightforward.18

Existence of non-geometric space, however, does not mean that there is no underlying

gauge/gravity duality. In fact in the geometric transition set-up there were already

indications, even for the simplest resolved conifold case, that the full gauge/gravity

duality will involve non-geometric manifolds [67], although we argued in [49] that there is

17For more details as to why the generalized mirror rule would lead to another SU(3) structure manifold

that is the mirror of the original manifold is discussed in [63, 64].
18There is a third subtlety that has to do with the size of the T 3 fiber in the mirror manifold. If the size

of the fiber is small i.e of O(α′), then supergravity description may not be possible, and one might have

to go to a Gepner type sigma model description. For the model studied in [49, 51] this was not an issue

because we could study a class of manifolds parametrised by choice of warp factors that not only satisfy

EOMs but also lie in subspaces, where sugra descriptions are valid, on both sides of figure 3 in [66]. These

subspaces are related by geometric transitions. For generic choices of the warp factors in [49, 66], it would

be interesting to see if the subspaces could incorporate the Y p,q manifolds.
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small configuration space of fluxes where we expect the duality to be captured by purely

geometric manifolds. The question now is whether such a scenario, with only geometric

spaces, could be realised for the present case also. We will leave this for future work.

6 Conclusion and open question

In this paper we studied the scalar spectrum of Y p,q manifold. Earlier works in this

direction [11, 12] mostly studied the lowest eigenmodes of the scalar Laplacian, as finding

the exact eigenmodes in closed form for the full tower of states is practically impossible.

The main difficulty lies in the existence of four regular singular points for an operator

of Heun type that the scalar Laplacian can be reduced to. Despite this problem we have

managed to find both upper and lower bounds for all the eigenmodes λk of the scalar

Laplacian. Our result can be expressed as:

Λ
[−]
k 6 λk 6 Λ

[+]
k (6.1)

where k = 1, 2, . . . and Λ
[±]
k are given in (3.39). We also show that asymptotically, i.e for

large k, the eigenmodes grow quadratically as in (3.41). Note that this is the opposite

regime of the spectrum of [11], where they give exact lowest eigenvalues. Our analysis

presented here works best for a≪ 1 or equivalently q ≪ p. By comparing against the known

low-lying scalar spectrum for example those from [11], we may learn something useful about

the bound. Furthermore, our natural guess would be that the spectra contain all the BPS

and non-BPS states. As we saw earlier in (3.41), for large k, the masses are proportional

to k and are therefore additive to leading order. However for small k we don’t have the

precise behavior and therefore cannot pin-point their BPS or non-BPS nature. In fact, as we

wrote above, we expect both these states to show up. More details on this will be discussed

elsewhere. It will be also interesting to study the implications of the consistent massive

truncation along the line of [68–71] where they also focus on the lowest massive modes.

The absence of solution in closed form signifies the possibility of introducing numerical

techniques to solve the problem. This is along the lines of [13] where a numerical study was

done for the simplest Sasaki-Einstein manifold, namely the S5. Unfortunately the success

of the S5 case doesn’t necessarily guarantee the same for the Y p,q case, again precisely

due to the fact that the corresponding Heun equation has four regular singular points.

Therefore it seems at this stage, unless we know how to tackle these singularities, a closed

form solution via numerical analysis looks unfeasible. Any progress in this direction will

be a productive boost for completing the duality dictionary for this case.19 For example

computing the super-conformal index along the lines of [72], or even going beyond the

supergravity modes à la [73].

19In [11] the authors used AdS/CFT correspondence to map the Reeb Killing vector QR, K̂ = J(J + 1)

and pNα to the R-symmetry, SU(2) spin and U(1) flavor charge on the field theory side respectively. They

compared states with quantum numbers (QR, J , Nα) and chiral operators with the same charges under these

symmetries. With some chosen values of QR, J , pNα they found the eigenvalues for the scalar Laplacian of

Y p,q and from there claimed that the ground states satisfy the BPS condition. We find that the eigenvalues

Nψ and pNα are not always integers, and their results are covered in our spectrum with some specified

values of m, n, l, j. This can also be used to determine the range of the constant C .
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Another line of thought that we followed in this paper is the non-conformal exten-

sions of the conformal examples. These non-conformal models are closer to the geometric

transition models of [49–51] and therefore would require the existence of the corresponding

deformed cones over the Y p,q manifolds. The deformed cones over Y p,q manifolds, unfor-

tunately, couldn’t be Calabi-Yau manifolds [57–59] so the underlying picture cannot be as

simple as the ones studied in [49, 51]. Our analysis, however, reveals that the gravity duals

might not even be geometric manifolds, so that the obstructions pointed out in [57–59]

could be circumvented. Although no concrete examples exist at this stage, the above ap-

proach is a hopeful avenue to realise non-conformal duals. Additionally a success in this

direction would also be a good test for the generalized mirror symmetry that relate two

manifolds with SU(3) structures (i.e manifolds with intrinsic torsions and H3 fluxes).

Clearly what we opened up here is just the tip of an iceberg, and happily there are

more questions than answers right now. In future works we will address some of these

issues in more details.
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A Eigenvalues of the differential operator S

To make this paper self-contained, here we will borrow two lemmas proved in [10].

Let us consider the differential operator

Sml(Λ) :=
1

ρ(y)

∂

∂y
ρ(y)w(y) r(y)

∂

∂y
− 1

w(y)

(
σl

τ

)2

− 9

r(y)

(
2m−h(y) σl

τ

)2

− 6Λ

1− y
, (A.1)

arising from (3.14), which depends on a real parameter Λ ≥ 0. It is clear that we cannot

hope to express the solutions of the formal eigenvalue equation

Sml(Λ)w = −λw (A.2)

in closed form using special functions because (A.2) is a Fuchsian differential equation with

four regular singular points, located at the three roots of the cubic a− 3y2 + 2y3 = 0, at

1, at ±a1/2 and at infinity.20 However, the information contained in the following lemma

will suffice for our purposes.

20An ordinary differential equation whose only singular points, including the point at infinity, are regular

singular points is called a Fuchsian ordinary differential equation.
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Lemma 1. For all Λ ≥ 0, the differential operator (A.1) defines a nonnegative self-adjoint

operator in L2((y−, y+), ρ(y) dy), which we also denote by Sml(Λ), whose domain consists

of the functions w ∈ AC1((y−, y+)) such that Sml(Λ)w ∈ L2((y−, y+)) and

lim
yցy−

y w′(y) = 0 if m = (2p− q)σl/4 and lim
yրy+

y w′(y) = 0 if m = −qσl/4 .

Its spectrum consists of a decreasing sequence of eigenvalues (−ℓmlk(Λ))k∈N ց −∞ of mul-

tiplicity one whose associated normalized eigenfunctions wmlk(Λ) are O((y+ − y)|m+qσl/4|)

as y ր y+ and O((y − y−)
|m+(q−2p)σl/4|) as y ց y−.

Proof. Let yǫ be one of the endpoints of the interval (y−, y+) and set ζ := y − yǫ. An easy

computation shows that

a− 3y2 + 2y3 = −6yǫ(1− yǫ) ζ +O(ζ2) , r(y) = − ζ

3yǫ
+O(ζ2)

as y → yǫ, which shows that the differential equation (A.2) can be asymptotically written as

−
(
12yǫ ζ +O(ζ2)

)
w̃′′(ζ)−

(
12yǫ+O(ζ)

)
w̃′(ζ)+

[
3yǫ
ζ

(
2m−h(yǫ)

σl

τ

)2

+O(1)

]
w̃(ζ) = 0 ,

with w̃(ζ) := w(ζ + yǫ) standing for the expression of the function w(y) in the new

variable ζ.

It then follows that the characteristic exponents of the equation (A.2) at yǫ are ±νǫ,
with νǫ := |m− h(yǫ)σl/(2τ)|. Using

h(y+)− h(y−)

2h(y+)
=
p

q
, τ ≡ −2h(y+)/q , σ := lcm{2, pq, 2p− q} . (A.3)

one can immediately derive the more manageable formula

ν+ =
∣∣m+ qσl/4

∣∣ , ν− =
∣∣m+ (q − 2p)σl/4

∣∣ . (A.4)

Let us now consider the following lemma.

Lemma 2. Let Y be the complex Hilbert space

Y :=
{(
unml

)
n,m,l∈Z

: unml ∈ L2
(
(y−, y+), ρ(y) dy

)
⊗ L2

(
(0, π), sin θ dθ

)}
,

endowed with the norm

∥∥∥
(
Φnml ⊗Θnml

)
n,m,l∈Z

∥∥∥
2

Y
:=

∑

n,m,l∈Z

(∫ y+

y−

∣∣Φnml(y)
∣∣2ρ(y) dy

)(∫ 2π

0

∣∣Θnml(θ)
∣∣2 sin θ dθ

)
,

and with τ and σ defined as in (A.3). Then the map defined by

Y ∋
(
Φnml ⊗Θnml

)
n,m,l∈Z

7→
∑

n,m,l∈Z

Φnml(y)Θnml(θ)
ei(nφ+2mψ+σlα/τ)

(2π)3/2
∈ L2(Y p,q) , (A.5)

defines an isomorphism between Y and L2(Y p,q).
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Since σ is even by the above lemma, it stems from the latter equation that 2 νǫ is

a nonnegative integer. Therefore, it is standard that the symmetric operator defined

by (A.1) on C∞
0 ((y−, y+)) is in the limit point case at yǫ if and only if νǫ 6= 0. If ν+ν− 6= 0,

the latter operator is then essentially self-adjoint on C∞
0 ((y−, y+)), and has a unique

self-adjoint extension of domain [74]

D :=
{
w ∈ AC1((y−, y+)) : Sml(Λ)w ∈ L2((y−, y+))

}
. . .

When ν+ν− = 0, the above symmetric operator is not essentially self-adjoint. In this case,

in order to rule out logarithmic singularities we shall choose its Friedrichs extension [75],

whose domain consists of the functions w ∈ D such that

lim
yցy−

y w′(y) = 0 if ν− = 0 and lim
yրy+

y w′(y) = 0 if ν+ = 0 ,

It is well known [74] that Sml(Λ) is then a nonnegative operator with compact resolvent

and that its eigenvalues are nondegenerate.
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