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1 Introduction

There has recently been interest in studying quantum field theories with a nontrivial in-

frared fixed point (IRFP), both in continuum and on the lattice. Under the renormalization

group evolution, the coupling of these theories shows asymptotic freedom at small distances,

analogously to QCD, but flows to a fixed point at large distances where the theory looks

conformal. Such theories have applications in beyond Standard Model model building.

These include unparticles, i.e. an infrared conformal sector coupled weakly to the Standard

Model [1–4], and extended technicolor scenarios, that explain the masses of the Standard

Model gauge bosons and fermions via strong coupling gauge theory dynamics [5–9].

In addition to direct applications to particle phenomenology, the phase diagrams of

gauge theories, as a function of the number of colours, N , flavours Nf and fermion rep-

resentations, are interesting from the purely theoretical viewpoint of understanding the

nonperturbative gauge theory dynamics from first principles. In figure 1 we show a sketch

of such phase diagram for SU(N) gauge theory [10]. In addition to the fundamental repre-

sentation, the figure shows the phase structure in the cases of two-index (anti)symmetric

and adjoint representations. The shaded regions in the figure depict the conformal win-

dows for each of these fermion representations; below the conformal window the theory is in

the chiral symmetry breaking and confining phase, while above the conformal window the

theory is in the non-Abelian QED-like Coulomb phase. The upper boundary in each case

corresponds to the loss of asymptotic freedom, i.e. to the value of Nf where the one-loop

coefficient β0 = 11/3N − 4/3NfT (R) of the β-function vanishes. The group theory factor

T (R) is defined for each representation as

Tr(T aT b) = T (R)δab. (1.1)

For fundamental (F), two-index symmetric (2S), two-index antisymmetric (2AS) and ad-

joint (A), the concrete values are, respectively, T (F ) = 1/2, T (2S) = (N−2)/2, T (2AS) =

(N + 2)/2 and T (A) = N .
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Figure 1. The phase diagram of SU(N) gauge theory as a function of the number of colours,

flavours and fermion representations (F = Fundamental, 2A = 2-index antisymmetric, 2S = 2-

index symmetric, Adj = Adjoint). The shaded bands indicate the estimated conformal windows.

For values of N and Nf inside the conformal window, the theory is expected to have

a nontrivial IRFP. Near the upper boundary one expects the value of the coupling at the

fixed point, α∗, to be small and perturbation theory to be applicable [11]. However, as one

moves deeper into the conformal window, by e.g. lowering Nf at fixed N , the fixed point

coupling grows, and nonperturbative methods are required for the analysis. In figure 1 we

have used the traditional estimate of evaluating the critical coupling for chiral symmetry

breaking in the ladder approximation and setting it equal to the fixed point value of the

two-loop coupling. In other words, at the lower boundary of the conformal window the

fixed point coupling becomes supercritical with respect to the critical coupling for the onset

of chiral symmetry breaking.

Explicitly, at two loops we have

β(g) ≡ µ
dg

dµ
= − β0

16π2
g3 − β1

(16π2)2
g5,

β0 =
11

3
N − 4

3
T (R)Nf ,

β1 =
34

3
N2 − 20

3
N T (R)Nf − 4C2(R)T (R)Nf , (1.2)

which implies that IRFP is at

α∗ = −β0
β1

(4π). (1.3)

Above, C2(R) is the quadratic Casimir operator in representation R and, for the representa-

tions we consider, it assumes values C2(F ) = (N2−1)/(2N), C2(2(A)S) = (N±1)(N∓2)/N

and C2(A) = N . The estimated critical coupling on the other hand is αc = π/(3C2(R)) [12].

Solving α∗ = αc, one obtains the lower boundary of the conformal window, denoted by

dashed lines in figure 1. The phase diagram in the figure 1 is therefore a conjecture which

must be checked by nonperturbative analysis. Since currently the lattice simulations pro-
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vide the only robust nonperturbative method for nonsupersymmetric four dimensional

gauge theories, such a check provides an interesting challenge for the lattice community.

In this work we study SU(2) gauge field theory with Nf = 4, 6 and 10 massless flavours

of fermions in the fundamental representation on the lattice using O(a) improved Wilson-

clover fermions. On the basis of two-loop beta-function six and ten flavour SU(2) theories

may have a fixed point and be within the conformal window, while the four flavour theory

is expected to confine. The model with ten fermions is chosen because it is close to the

upper edge of the conformal window (Nf = 11, where asymptotic freedom is lost) and is

expected to have a fixed point at a rather small coupling. Thus, in this case we can compare

the results from lattice simulations with those obtained from perturbative computations.

The universal 2-loop β-function has a zero at g2 ≈ 2.90, and at 3 or 4 loops in the MS-

scheme it is at g2 ≈ 2.47 or 2.52, respectively [13]. While the MS-scheme results cannot be

directly compared with the Schrödinger functional results, the convergence indicates that

the perturbative result should be reasonably accurate.

In the model with six fermions, however, the fixed point determined by the two loop

beta function is at much larger coupling, where we cannot expect the perturbation theory

to hold. Indeed, the location of the fixed point varies significantly at different loop levels:

using the MS-scheme β-function at 2, 3 and 4 loops, the location is g2FP ≈ 140, 21 and

30, respectively. Such a large value of the fixed point coupling may be supercritical with

respect to the critical coupling for the onset of spontaneous chiral symmetry breaking; this

is explicitly illustrated in figure 1, where the two colour and six flavour theory is already

outside the conformal window. However, due to the nonperturbative nature of the lower

boundary of the conformal window, one cannot exclude the possibility that the six flavour

theory is very close or even within the conformal window. In addition, if we treat Nf

as a continuously variable parameter, the fixed point vanishes from the 4-loop β-function

when Nf is lowered only slightly from 6 to 5.945. In the proximity of this value the 4-

loop β-function obtains a shape typical of walking coupling, i.e. the β-function has a local

maximum with a small negative value. Clearly, these results imply that the six flavour case

can be resolved only with non-perturbative calculations.

On the other hand, the four flavour case is expected to be QCD-like, with confinement

and chiral symmetry breaking. It is included here for comparison with the larger Nf cases.

On the lattice, SU(2) gauge field theory with Nf > 2 fundamental representation

fermions has been recently studied in refs. [14–16].1 The study by Bursa et al. [14] of SU(2)

with six fundamental flavours suggested a possibility of an IRFP at much smaller coupling

than expected from perturbation theory. However, this work used unimproved Wilson

fermions which can be expected to be subject to large discretization errors. Indeed, as

described below, the leading order perturbative analysis reveals that the running coupling

measurement (step scaling using Schrödinger functional) using unimproved Wilson action

can have finite cutoff effects of order 30-60%, whereas the improved action reduces these to

a few percent level using lattices presently within computational reach. In our simulations

1In related work, the existence of the infrared fixed point in SU(2) gauge theory with two adjoint

representation fermions (which is of interest for technicolor model building) has been studied in [17–27],

and SU(3) gauge with various fermion representations and numbers of flavours in [28–43].
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using O(a) improved Wilson-clover fermions we indeed observe large deviations from the

unimproved results.

We measure the running coupling using the Schrödinger functional method in theories

with four, six and ten flavours, and the mass anomalous dimension in the phenomenolog-

ically most interesting six flavour case. Unfortunately, in the six flavour case we are not

able to fully resolve whether the fixed point exists, but the possible locations of the fixed

point moves to significantly larger coupling (g2 >∼ 10) than the unimproved lattice action

results indicate.

This paper is structured as follows: In section 2 we introduce the model and describe

the Schrödinger functional method, and present the perturbative step scaling function

results. The lattice simulations and results are presented in section 4 and in section 5 we

conclude.

2 The model and the Schrödinger functional method

The theory is defined by the action

S = SG + SF , (2.1)

where SG is the standard Wilson single plaquette gauge action for the SU(2) Yang Mills

theory

SG = βL
∑

x;µ<ν

(

1− 1

2
Tr [Uµ(x)Uν(x+ aµ̂)U †

µ(x+ aν̂)U †
ν (x)]

)

, (2.2)

with βL = 4/g20. The part SF is the clover improved Wilson fermion action

SF = a4
Nf
∑

α=1

∑

x

[

ψ̄α(x)(iD +m0)ψα(x) + acswψ̄α(x)
i

4
σµνFµν(x)ψα(x)

]

, (2.3)

where D is the standard Wilson-Dirac operator

D =
1

2
[γµ(∇∗

µ +∇µ)− a∇∗
µ∇µ], (2.4)

with the gauge covariant forward and backward lattice derivatives

∇µψ(x) = 1/a[Uµ(x)ψ(x+aµ̂)−ψ(x)], ∇∗
µψ(x) = 1/a[ψ(x)−U †

µ(x−aµ̂)ψ(x−aµ̂)]. (2.5)

The clover improvement term contains the usual symmetrized field strength tensor. We

set the improvement coefficient csw to the Nf -independent perturbative value [44]

csw = 1 + 0.1551(1)g20 +O(g40). (2.6)

While csw can be determined nonperturbatively [45], in our tests we observed that at strong

lattice coupling the nonperturbatively determined csw is close to the perturbative one at

Nf = 6 and 10. The situation is very different at Nf = 2 [46, 47], where csw diverges as g20
increases. Thus, while the perturbative result (2.6) does not give full cancellation of the

– 4 –
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O(a) discretization effects, it is a concrete recipe which we expect to eliminate most of the

O(a) effects. We also include the perturbative improvement at the Schrödinger functional

boundaries as described in [47, 48].

We measure the running coupling using the Schrödinger functional method [49–52].

The coupling is defined as a response to the change of the background field and the scale

is set by the finite size of the lattice. We consider a lattice of volume V = L4 = (Na)4.

The spatial links at the t = 0 and t = L boundaries are fixed to [50]

Uµ(x̄, t = 0) = e−iησ3a/L (2.7)

Uµ(x̄, t = L) = e−i(π−η)σ3a/L (2.8)

with σ3 the third Pauli matrix. The spatial boundary conditions are periodic for the gauge

field. The fermion fields are set to vanish at the t = 0 and t = L boundaries and have

twisted periodic boundary conditions to spatial directions: ψ(x+ Lî) = exp(iπ/5)ψ(x).

At the classical level the boundary conditions generate a constant chromoelectric field

and the derivative of the action with respect to η can be easily calculated:

∂Scl.

∂η
=

k

g20
, (2.9)

where k is a function of N = L/a and η [50]. At the full quantum level the coupling is

defined by

〈∂S
∂η

〉 = k

g2
. (2.10)

To quantify the running of the coupling we use the step scaling function Σ(u, s, L/a)

introduced in [49]. It characterises the change of the measured coupling when the linear

size of the system is changed from L to sL while keeping the bare coupling g20 (and hence

lattice spacing) constant:

Σ(u, s, L/a) = g2(g20, sL/a)
∣

∣

g2(g2
0
,L/a)=u

(2.11)

σ(u, s) = lim
a/L→0

Σ(u, s, L/a) (2.12)

In this work we choose s = 2. To obtain the continuum limit σ(u, s) we calculate

Σ(u, s, L/a) at L/a = 6 and 8. Since we expect the discretisation errors to be (mostly)

removed to the first order in the improved action, we use quadratic extrapolation to find

the limit a→ 0.

The step scaling function is related to the β-function by

−2 ln(s) =

∫ σ(u,s)

u

dx√
xβ(

√
x)
. (2.13)

Close to the fixed point, where the running is slow and |β| small, we can approximate the

β-function by

β(g) ≈ β∗(g) =
g

2 ln(s)

(

1− σ(g2, s)

g2

)

. (2.14)
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The estimating function β∗(g) is exact at a fixed point but deviates from the actual β-

function as |g − g∗| becomes large.

We also measure the mass anomalous dimension γ = d lnmq/d lnµ of the theory with

6 fermion flavours using the pseudoscalar density renormalization constant. The mass

anomalous dimension is of interest for this case, because the possible infrared fixed point

is at non-perturbative value of the coupling. It is defined on the lattice as [53]

ZP (L) =

√
3f1

fP (L/2)
, (2.15)

where f1 and fP are correlation functions of the pseudoscalar density

f1 =
−1

12L6

∫

d3ud3vd3yd3z〈ζ̄ ′(u)γ5λaζ ′(v)ζ̄(y)γ5λaζ(z)〉, (2.16)

fP (x0) =
−1

12L6

∫

d3yd3z〈ψ̄(x0)γ5λaψ(x0)ζ̄(y)γ5λaζ(z)〉. (2.17)

For these measurements the boundary matrices at t = 0 and t = L are set to unity; thus,

separate simulations are needed. The mass step scaling function is then defined as in [54]:

ΣP (u, s, L/a) =
ZP (g0, sL/a)

ZP (g0, L/a)

∣

∣

∣

∣

g2(g0,L/a)=u

(2.18)

σP (u, s) = lim
a/L→0

ΣP (u, s, L/a), (2.19)

and we choose again s = 2. We find the continuum step scaling function σP by measuring

ΣP at L/a = 6, 8 and 10 and doing a quadratic extrapolation.

The mass step scaling function is related to the anomalous dimension by (see [53])

σP (u, s) =

(

u

σ(u, s)

)d0/(2b0)

exp

[

−
∫

√
σ(u,s)

√
u

dx

(

γ(x)

β(x)
− d0
b0x

)

]

, (2.20)

where b0 = β0/(16π
2) in terms of the one-loop coefficient β0 = 22/3 − 2Nf/3 of the beta

function and d0 = 3C2(F )g
2/(8π2) = 9/(32π2) is the corresponding one-loop coefficient for

the anomalous dimension, γ = −d0g2. Close to the fixed point (2.20) simplifies consider-

ably. Denoting the function estimating the anomalous dimension γ(u) by γ∗(u), we have

log σP (g
2, s) = −γ∗(g2)

∫ sµ

µ

dµ′

µ′
= −γ∗(g2) log s, (2.21)

⇒ γ∗(g2) = − log σP (g
2, s)

log s
. (2.22)

The estimator γ∗(g2) is exact only at a fixed point where β(g2) vanishes and deviates from

the actual anomalous dimension when β is large.

The Schrödinger functional boundary conditions enable one to run at vanishing quark

mass. The Wilson fermion action breaks the chiral symmetry explicitly and allows additive

– 6 –
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Nf = 4 Nf = 6 Nf = 10

βL κc Ntraj βL κc Ntraj βL κc Ntraj

1.8 0.14162 108755 1.39 0.144351377 215119 1 0.14199 216356

1.9 0.139914 89064 1.4 0.139914 221273 1.3 0.13922 232495

2 0.138638 55031 1.44 0.14350583 209124 1.5 0.13762 100476

2.2 0.136636 13294 1.5 0.142446 233273 1.7 0.13627 99792

2.4 0.135205 23359 1.8 0.1385229 25886 2 0.13466 213290

3 0.132548 64035 2 0.1367336 54710 3 0.13146 99918

4 0.130326 58879 2.4 0.1342875 33818 4 0.12981 100328

3 0.132115 41221 6 0.1282 98042

4 0.13014328 47419 8 0.12739 99255

5 0.1290368 41440

8 0.1274578 7116

Table 1. Parameter κ used in the simulations at each βL = 4/g2
0
and the number of measurements

performed on the largest lattice.

renormalization of the quark mass. We therefore find the quark mass from the PCAC

relation

aM(x0) =
1

4

(∂∗0 + ∂0)fA(x0)

fP (x0)
+ cA

a

2

∂∗0∂0fP (x0)

fP (x0)
. (2.23)

We have used here the improved axial current

f IA = fA + a cA
1

2
(∂∗µ + ∂µ)fP , (2.24)

fA(x0) =
−1

12L6

∫

d3yd3z〈ψ̄(x0)γ0γ5λaψ(x0)ζ̄(y)γ0γ5λaζ(z)〉. (2.25)

In this work use the perturbative expansion for the improvement coefficient cA [44]:

cA = −0.00567(1)C2(F )g
2
0 +O(g40), C2(F ) = 3/4. (2.26)

The Schrödinger functional boundary conditions remove the zero modes that would

normally make it impossible to run simulations at zero mass. We define κc as the value of

the parameter κ where the mass aM(L/2) vanishes. To find κc we measure the mass at

3 to 7 values of κ on lattices of size L/a = 16 and interpolate to find the point where the

mass becomes zero. We then use the same value of κc on all lattice sizes. The values of κc
used in the simulations are given in table 1. In practice we achieve |aM | < 0.01.

3 Improvement in perturbative analysis

The degree of improvement obtained with the clover term and boundary counterterms can

be quantified with one loop order perturbative analysis of the step scaling function (2.11).

Because the gauge action is identical with improved and unimproved fermions, to this order

– 7 –
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Figure 2. Contribution of a massless Wilson quark to the step scaling function normalized to its

continuum value at one loop order in perturbation theory. The top three curves show the result

for gauge groups SU(4), SU(3) and SU(2) (from top to bottom) for unimproved Wilson fermions,

while the lower three curves show the result after O(a) improvement has been taken into account.

it is sufficient to consider only the fermion contribution to the step scaling. To one loop

order the step scaling function (2.11) can be expanded as

Σ(u, s, L/a) = g2(g0, sL/a)|g2(g0,L/a)=u

= u+ (Σ1,0 +Σ1,1Nf )u
2. (3.1)

The fermion contribution is denoted by Σ1,1. To evaluate these perturbative contributions

we use the methods in [55, 56], and choose s = 2. The continuum limit of Σ1,1 is given by the

fermionic contribution to the one loop coefficient b0 = β0/(16π
2) of the beta function, i.e.

lim
L/a→0

Σ1,1 = 2b0,1 ln 2, (3.2)

where b0,1 = 1/(24π2).

In figure 2 we show δ ≡ Σ1,1/(2b0,1 ln 2) both for unimproved Wilson fermions and with

O(a) improvement. One immediately observes that without improvement, Σ1,1 depends

strongly on L/a and approaches the continuum limit only for presently impractically large

lattices, while with improvement the large lattice artefacts are absent. While this level of

improvement is probably not preserved at higher orders, this nevertheless strongly moti-

vates the use improved actions in the lattice studies of these theories with Wilson fermions.

4 Simulations

We use hybrid Monte Carlo (HMC) simulation algorithm with 2nd order Omelyan inte-

grator [57, 58] and chronological initial values for the fermion matrix inversions [59]. The

trajectory length is 1, and the step length is tuned to have acceptance rate larger than 80%.
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βL L/a = 6 L/a = 8 L/a = 12 L/a = 16

4 1.2394(18) 1.263(3) 1.300(3) 1.32(1)

3 1.832(5) 1.882(5) 1.971(18) 2.02(2)

2.4 2.629(7) 2.767(15) 2.94(2) 3.17(4)

2.2 3.113(7) 3.29(2) 3.58(3) 3.88(9)

2 3.93(2) 4.24(3) 4.77(8) 5.18(11)

1.9 4.65(2) 4.95(5) 5.48(7) 6.9(3)

1.8 5.78(4) 6.43(7) 8.15(17) 9.0(5)

Table 2. The measured values of g2 at each βL = 4/g2
0
and L/a with 4 flavours of fermions.

βL L/a = 6 L/a = 8 L/a = 10 L/a = 12 L/a = 16

8 0.5207(8) 0.5222(9) 0.5274(13) 0.528(4)

5 0.8585(15) 0.868(3) 0.875(3) 0.889(4)

4 1.095(3) 1.109(2) 1.112(4) 1.122(8) 1.135(7)

3 1.535(8) 1.555(10) 1.587(10) 1.623(15)

2.4 2.030(8) 2.087(16) 2.19(3) 2.25(4)

2 2.655(15) 2.84(6) 2.76(3) 2.95(5) 3.1(2)

1.8 3.25(3) 3.33(4) 3.45(5) 3.47(4) 3.57(11)

1.5 5.40(6) 5.59(6) 5.57(11) 5.75(11) 6.12(13)

1.44 7.21(10) 7.11(15) 7.2(3) 7.3(3) 7.5(2)

1.4 9.74(13) 9.82(13) 10.2(3) 9.8(3) 10.4(4)

1.39 11.48(16) 13.4(3) 13.5(6) 13.5(8)

Table 3. The measured values of g2 at each βL and L/a with 6 flavours of fermions.

βL L/a = 6 L/a = 8 L/a = 12 L/a = 16

8 0.4700(2) 0.4706(4) 0.4705(5) 0.4707(10)

6 0.6148(3) 0.6159(5) 0.6180(9) 0.6181(19)

4 0.8897(9) 0.8897(13) 0.895(4) 0.895(3)

3 1.1528(16) 1.156(3) 1.150(2) 1.146(4)

2 1.651(4) 1.653(5) 1.637(6) 1.624(13)

1.7 1.924(4) 1.907(5) 1.905(11) 1.896(13)

1.5 2.183(3) 2.137(7) 2.116(11) 2.10(2)

1.3 2.542(8) 2.473(9) 2.382(11) 2.37(2)

1 4.03(2) 3.55(2) 3.23(3) 3.09(4)

Table 4. The measured values of g2 at each βL and L/a with 10 flavours of fermions.

The measured values of the running coupling squared in theories with 4, 6 and 10

fundamental representation fermions are given, respectively, in tables 2, 3 and 4 and shown

in figures 3 and 4. The measurements are taken after every trajectory, and the number

of trajectories for each point is up to 230,000 (for Nf = 6, volume 164 and largest βL-

values). For 6 and 10 flavours the strongest lattice couplings (smallest βL) are very close to
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Figure 3. The measured values of g2(g2
0
, L/a) against a/L with 4 and 6 flavours of fermions.

The black dashed line gives an example of the running in 2-loop perturbation theory at modest

coupling, normalised so that it matches the measurement at L/a = 6.
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Figure 4. The measured values of g2(g2
0
, L/a) against a/L with 10 flavours of fermions. The

black dashed line gives an example of the running in 2-loop perturbation theory.

the strongest practical values for our action; at smaller βL the simulations become either

too slow or unstable, possibly signaling a proximity of a bulk phase transition. These

transitions are a lattice artifact and limit the range of allowed lattice couplings.

One can immediately recognize the main features from figures 3 and 4: at Nf = 4,
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g2(g2
0
, 2L/a)/g2(g2

0
, L/a) for Nf = 6 calculated directly from the data in table 3. The black dashed

line is the continuum 2-loop perturbative result for σ(g2, 2).

the coupling becomes stronger as lattice size increases, and the running becomes faster at

stronger coupling. This agrees with the expected QCD-like behaviour. In contrast, with 10

flavours we observe basically no running at all within our statistical errors, except with the

strongest lattice coupling (βL = 1) used, where g2 becomes smaller as volume increases.

This is the expected behaviour if we are at the strong coupling side of an infrared fixed

point, where the β-function is positive. However, at βL = 1 the data differ qualitatively

from the larger βL measurements, possibly a signal of contamination from finite lattice

spacing effects at large bare coupling.

In the theory with 6 fermions the running remains small and slightly positive in the

studied range of couplings. To illustrate the running we show the scaled step scaling func-

tion Σ(g2, 2, L/a)/g2 = g2(g20, 2L/a)/g
2(g20, L/a) in figure 5 at L/a = 6 and 8. The running

is compatible with the perturbation theory at small g2, but deviates from it at large cou-

pling. The scaled step scaling measurements decrease at g2 >∼ 4 and may reach unity at

g2 >∼ 10, indicating an ultraviolet fixed point. However, there appears to be a systematic

difference between the L/a = 6 and 8 points at large g2. Thus, proper continuum limit

is necessary.

We also note that at L/a = 6 the very largest coupling βL = 4/g20 = 1.39 point

deviates substantially from other points. This is caused by the finite size effects at the

smallest volume, clearly visible in figure 3.

The continuum limit of the step scaling function Σ(g2, 2, L/a) has to be evaluated at

constant Schrödinger functional coupling g2. However, the measurements were performed
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Figure 6. The interpolating functions for six fermions. The plot on the left shows the polynomial

interpolation and the plot of the right shows the rational interpolation. For clarity, the graphs

are displaced up by 3,2,1 and 0 and left by 0.3,0.2,0.1 and 0 for lattice sizes L/a = 6,8,12 and 16

respectively.

Nf function L/a = 6 L/a = 8 L/a = 12 L/a = 16 d.o.f L/a = 10 d.o.f

4 Polynomial 1.565 6.063 18.961 3.854 3

Rational 2.512 3.623 5.175 3.771 3

6 Polynomial 35.25 72.76 30.20 16.11 6

Rational 8.030 5.897 6.968 4.661 7 3.545 2

10 Polynomial 13.744 8.087 13.802 5.732 5

Rational 9.896 6.271 12.704 6.301 6

Table 5. χ2 values and free degrees of freedom in the polynomial fits 4.1 and the rational fits 4.2.

at selected fixed values of g20 = 4/βL, which do not correspond to the same g2-values at

L/a = 6 and 8. Therefore, it is necessary to shift the measurements so that g2-values

match. This could be done by performing new simulations so that g2 at L/a = 6 and 8

match, or by reweighting in g20 and κ. However, a much more economical and convenient

way to achieve this is to interpolate the actual measurements of g2(g20, L/a) at each lattice

size L/a by fitting to a function of g20. This results in a “measurement” of g2(g20, L/a) over

a continuous range of g20.

It is necessary that the measurements cover the interpolated range densely enough;

otherwise the form of the fitted function ansatz may influence the final results. Obvi-

ously, the fit must also be statistically good in order to describe the true behaviour of the

data. The interpolating function also somewhat averages out fluctuations in individual

datapoints.

We have done the interpolation using polynomial and rational interpolating functions.

Polynomial function is a power series in the bare coupling, and it is commonly used in the
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literature [14, 30]:

1

g2(g20, L/a)
=

1

g20

[

1 +
n
∑

i=1

cig
2i
0

]

. (4.1)

In the case of 4 and 10 flavours we truncate the series at n = 4 and in the case of 6 flavours,

where more βL-values are available, at n = 5. These values were chosen to optimise the

confidence levels of the fits, while keeping the number of the fit parameters tolerably small.

We also kept the same number of terms for each L/a. The χ2-values of the fits are shown

in table 5, and, for Nf = 6, the fit is shown in figure 6, left.

It is clear that the polynomial fits do not fit the data very well, especially at the

strongest bare couplings where the measured g2 increases very rapidly. This leads us to

try a rational function interpolation:

1

g2(g20, L/a)
=

1

g20

[

1 +
∑n

i=1 aig
2i
0

1 +
∑m

i=1 big
2i
0

]

. (4.2)

For 4 and 6 fermions the number of terms were chosen to be n = m = 2 and for 10 fermions

n = 1 and m = 2.2 Again, these parameters were chosen to optimize the confidence level

without producing singularities within the range of g20 of the measurements. The stability

of the fits was checked by varying n or m. The rational interpolation captures the rapid

increase at strong bare couplings better, and the confidence levels of the fits are better in

all cases, as shown in table 5 and figure 6. Thus, we perform the subsequent analysis using

the rational interpolation functions.

The interpolating functions are used to calculate Σ(u, s, L/a) with L/a = 6, 8 in a

continuous range of values of u = g2. This enables us to perform a continuum extrapolation.

Since we expect most of the order a errors to have been removed, we fit the data at L/a = 6

and L/a = 8 with a function of the form

Σ(u, 2, L/a) = σ(u, 2) + c(u) (L/a)−2 (4.3)

independently at each value of u. This extrapolation is shown for Nf = 6 for three se-

lected values of u in figure 7. To estimate the systematic errors from the extrapolation

we compare with the result obtained by simply taking the largest volume step scaling,

σ(u, 2) = Σ(u, 2, 8).

Because we only have step scaling data at L/a = 6 and 8, we are naturally not able to

verify that the first order in L/a -term is indeed small or that the higher order contributions

can be neglected. However, we note that using a first order only extrapolation would give

results roughly comparable with the extrapolation (4.3), but with larger statistical errors

and further away from the largest volume result. The L/a = 10 results with Nf = 6 are

not used for the measurement of the step scaling for the runnign coupling, but are needed

for the measurement of the anomalous dimension.

2For Nf = 10 choosing n = 2 produces a singularity within the fitting range, which is not acceptable.
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Figure 7. The step scaling function extrapolated to the continuum limit with Nf = 6 and for

three chosen values of u = g2.

The final results of the step scaling functions are shown in figures 8, 9 and 10 for

4, 6 and 10 fermion flavours respectively. The errors shown include only the statistical

errors from the measurements, fits and extrapolation. A rough measure of the systematic

errors can be obtained from the comparison of the infinite volume extrapolated result and

the result using only the largest volume step scaling without extrapolation. The error

propagation is calculated using jackknife blocking throughout the whole analysis.

We have also calculated the estimator for the β-function, β∗, defined in eq. (2.14).

These are shown in figure 11, together with the 2-loop β-function and β∗ obtained from

the 2-loop perturbative step scaling function. Thus, the difference between the perturbative

curves gives a measure of the error made in the approximation in eq. (2.14).

What can we conclude from the results? From figure 8 we can observe that, in the

range of couplings studied, the Nf = 4 case behaves as expected: β-function is negative

and becomes smaller as the coupling increases, and agrees overall with the 2-loop perturba-

tive β-function. Naturally deviations from the perturbation theory are expected at larger

couplings. However, for our purposes it is sufficient to verify the QCD-like behaviour and

we did not attempt to reach smaller couplings.

For Nf = 6, the results in figure 9 show that the largest volume step scaling deviates

from the perturbative result already at g2 ∼ 4, after which it decreases. However, the

continuum extrapolation remains close to the perturbative curve up to g2 ∼ 7–8. After

this the curve turns sharply downwards; this behaviour is caused by the anomalous L/a = 6,

βL = 1.39 point visible in figures 3 and 5. The largest volume step scaling (shaded band)

can be compared to the corresponding L/a = 8 uninterpolated step scaling in figure 5.
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Figure 9. As in figure 8 but with 6 fermion flavours.

The large difference between the largest volume and extrapolated step scaling functions

is naturally due to the fact that the step scaling Σ(g2, L/a) at L/a = 6 and L/a = 8 differ

substantially, and the lever arm to the continuum (a/L → 0) is long. The variation

between these two curves gives an estimate of the systematic errors in the extrapolation.

The largest values of the Schrödinger functional coupling we achieved was around g2 ≈
12 (α ≈ 0.96). Unfortunately, neither the coupling is strong enough nor the errors are

sufficiently small in order to unambiguously distinguish between an infrared fixed point at
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Figure 10. As in figure 8 but with 10 fermion flavours.

g2 >∼ 11 and “walking” behaviour, where the step scaling function starts to increase again

at stronger coupling. With our choice of the action we cannot reach stronger couplings

because simulations become rapidly impractical at smaller βL than 1.39, our strongest

lattice coupling at Nf = 6. Obviously, calculating the step scaling at volumes L/a = 10

and 20 (or larger) would be needed in order to stabilise the continuum extrapolation.

Finally, forNf = 10 the measured β-function is essentially compatible with zero or with

the perturbative β-function at g2 < 2.5. In this case the 2-loop perturbative β-function

is expected to be relatively accurate (higher order perturbative corrections in MS-scheme

are small [13]). The value of the β-function is very small, and clearly, the accuracy of

our results falls far short from being able to resolve the behaviour of the β-function in

this range. Nevertheless, theoretically we know that the β-function must be negative at

small coupling. At g2 >∼ 2.5 the measured β-function deviates significantly upwards from

the perturbative one. Combined with the knowledge that the β-function is negative at

small couplings, this indicates the presence of an infrared fixed point. The onset for this

behaviour is very close to the fixed point in the 2-loop β-function. This deviation is in

practice caused by the strongest coupling βL = 1 data from the lattice: from figure 4 we can

see that only at βL = 1 the measured coupling g2 > 2.5. At these couplings we can expect

strong lattice artifacts; thus, we believe that the deviation from the perturbative value is

caused by unaccounted for systematical errors in the continuum extrapolation. We still

emphasize that in absolute numbers the deviation is still rather small; in order to resolve

very slow running we would need extremely accurate measurements with correspondingly

very small systematic errors. This does not appear to be doable at Nf = 10 with the

methods used here.

We measure the anomalous dimension for the interesting case of SU(2) with 6 flavours

of fermions using the mass step scaling method described in section 2. This method is much
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Figure 11. The estimators for the β-function defined in eq. (2.14).

βL L/a = 6 L/a = 8 L/a = 10 L/a = 12 L/a = 16 L/a = 20

2.4 0.9666(8) 0.9353(9) 0.9171(19) 0.9014(19) 0.8870(15) 0.865(4)

2 0.8953(10) 0.857(3) 0.838(2) 0.823(3) 0.793(4) 0.766(6)

1.5 0.702(4) 0.669(3) 0.646(4) 0.618(6) 0.586(5) 0.573(6)

1.44 0.636(3) 0.610(3) 0.588(4) 0.572(4) 0.548(4) 0.517(6)

1.4 0.543(5) 0.547(5) 0.539(5) 0.534(5) 0.508(6) 0.480(8)

1.39 0.508(5) 0.515(7) 0.520(6) 0.517(6) 0.488(8) 0.476(9)

Table 6. The measured values of ZP at each βL and L with 6 flavours of fermions.

less noisy than the measurement of the coupling, and we can now reliably use lattices of

size 204. The measurements of Zp are listed in table 6.

We start the analysis by finding an interpolating function to the measured values of
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L/a = 6 L/a = 8 L/a = 10 L/a = 12 L/a = 16 L/a = 20

25.15 6.48 0.28 0.84 3.00 1.50

Table 7. χ2 values (2 degrees of freedom) for the ZP fits for Nf = 6 using eq. (4.4).

ZP by fitting with a power series

ZP (βL, L/a) = 1 +
n
∑

i=1

cig
2i
0 , (4.4)

where we have truncated the series at n = 4. The χ2 values for the fits are given in

table 7. We check the systematic errors of the interpolation by also truncating at n = 3;

the results remain essentially the same with somewhat increased statistical errors. From

the interpolated Zp(βL, L/a) we obtain the mass step scaling function ΣP (u, s, L/a) at

L/a = 6, 8 and 10 using eq. (2.18), using u = g2 from rational fit in eq. (4.2). The

continuum extrapolation is then done by fitting to the extrapolating function

ΣP (u, 2, L/a) = σP (u, 2) + c(u) (L/a)−2 . (4.5)

The fit is shown in figure 12. We check the systematic effects in the extrapolation by

leaving out the smallest volume step scaling at L/a = 6. The results remain compatible

with each other, but with naturally much smaller final statistical errors when L/a = 6 is

included. Step scaling function is converted to the estimate of the anomalous dimension

using eq. (2.22), and the results are shown in figure 13.

In this case the non-trivial continuum extrapolation is essential in order to find the

monotonic growth of γ∗(g2). If we would take e.g. L/a = 8 step scaling alone to estimate

the continuum behaviour, γ∗ would decrease at g2 >∼ 6. This emphasizes the importance

of the controlled continuum limit.

The mass anomalous dimension we measure is somewhat smaller than the perturbative

one at strong coupling. It remains small at all measured values of the coupling, and if there

is a fixed point at g2 >∼ 12, the anomalous dimension is >∼ 0.25.

The behaviour of the anomalous dimension is in contrast with the results obtained

with an unimproved Wilson action [14], where γ∗ significantly larger than the perturbative

one was seen already at g2 ≈ 5, albeit with large errors. Both of the measurements were

done using the Schrödinger functional scheme, and thus should yield identical results in the

continuum limit. This again points to the importance of controlling the cutoff effects and

the continuum extrapolation. On the other hand, the behaviour we measure is qualitatively

similar to the one observed in SU(2) gauge theory with adjoint fermions using HYP-smeared

improved fermions [27].

For the Nf = 10 case we did not perform a measurement of the mass anomalous

dimension. Since our results for the coupling constant in the Nf = 10 case are compatible

with perturbative results, we expect this to hold also for the mass anomalous dimension.

In other words, we expect that γ∗ = 0.08 corresponding with a perturbative fixed point at

g2 ≃ 2.90.

– 18 –



J
H
E
P
0
5
(
2
0
1
2
)
0
0
3

0 0.01 0.02 0.03

(a/L)
2

0.8

0.85

0.9

0.95

1

Σ P(g
2 ,L

/a
)

g
2
=3.3

g
2
=5.5

g
2
=10

Figure 12. The mass step scaling function extrapolated to the continuum limit, using Nf = 6

data and shown for three chosen values of g2.
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Figure 13. The estimate of the mass anomalous dimension, γ∗(g2), with Nf = 6. Shown are the

continuum extrapolation using the mass step scaling Σ(L/a, 2, g2) with all three volumes L/a =

6, 8, 10 (hashed band) and only with L/a = 8, 10 (shaded band).

5 Conclusions

In this paper we have presented the results of a lattice study of SU(2) gauge theory with

Nf = 4, 6 or 10 flavours of Wilson fermions in the fundamental representation of the

gauge group. The numbers of fermion flavours were chosen according to the expected

boundaries of the conformal window: Nf = 10 is the largest value where the theory is still

asymptotically free, and hence it has a fixed point at small coupling where perturbation
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theory is expected to be accurate. On the other hand, Nf = 6 is expected to be close to

the lower boundary of the conformal window, whereas Nf = 4 should be safely below it

and hence QCD-like.

We have measured the β-functions of the above theories using the Schrödinger func-

tional scheme. We also measure the mass anomalous dimension γ for the Nf = 6 theory.

In our analysis we have used perturbatively improved Wilson-clover action, together with

the improvement of the boundary terms in the Schrödinger functional approach. With this

improvement we expect most of the O(a) errors to be eliminated.

Overall our findings agree with the expectations. For Nf = 10 we observe a very

small β-function at small couplings, and a positive β-function at larger (g2 >∼ 3) couplings.

Together with the fact that due to the asymptotic freedom the β-function must be negative

at small enough coupling, this indicates that the β-function has a zero somewhere at g2 <∼ 3.

This agrees with the perturbative 2-loop β-function which vanishes at g2 ≈ 2.90.

At the interesting case of six flavours we observe step scaling (or β-function) behaviour

compatible with the perturbation theory up to g2 ≈ 5. Above this the β-function starts

to approach zero, with a possible fixed point around g2 >∼ 12. However, our statistical

errors are too large in order to fully resolve the behaviour of the β-function: instead of

the fixed point, the β-function could as well start to decrease again at stronger couplings.

This kind of behaviour is characteristic for the walking coupling. It would be very in-

teresting to resolve the behaviour in this case: as discussed in the introduction, in the

ladder approximation the chiral symmetry breaking sets in around the critical coupling

g2c ∼ 4π2/(3C2(R)) ≈ 17. The estimated provisional fixed point is close to this value (al-

though computed with a different schema), and thus it is indeed plausible that either the

fixed point or the chiral symmetry breaking is realised.

Obviously, simulation at much larger volumes (closer to the continuum) would be

required to fully pin down the behaviour of the β-function. However, it is just barely

possible to reach these values of the Schrödinger functional scheme coupling with the action

we use: in order to reach strong Schrödinger functional coupling one has to use strong bare

lattice coupling, and the couplings used in this work are already near the largest values

which can be used in practice. Clearly, it is important to develop an action which can be

used at stronger couplings.

We also measured the mass anomalous dimension using six fermion flavours. The

dimension is seen to grow slowly as the coupling increases; somewhat slower than the

perturbative result at strong couplings, but overall the result in this case is as expected.

Finally, for four flavours the observed behaviour is unsurprising: the measurements

indicate a smoothly decreasing β-function and QCD-like behaviour.
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