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Abstract: We construct for arbitrary dimensions a universal T-duality covariant expres-

sion for the Wess-Zumino terms of supersymmetric String Solitons in toroidally compacti-

fied string theories with 32 supercharges. The worldvolume fields occurring in the effective

action of these String Solitons form either a vector or a tensor multiplet with 16 super-

charges. We determine the dimensions of the conjugacy classes under T-duality to which

these String Solitons belong. We do this in two steps. First, we determine the T-duality

representations of the p-forms of maximal supergravities that contain the potentials that

couple to these String Solitons. We find that these are p-forms, with D − 4 ≤ p ≤ 6 if

D ≥ 6 and with D − 4 ≤ p ≤ D if D < 6, transforming in the antisymmetric represen-

tation of rank m = p + 4 − D ≤ 4 of the T-duality symmetry SO(10 − D, 10 − D). All

branes support vector multiplets except when m = 10 − D. In that case the T-duality

representation splits, for D < 10, into a selfdual and anti-selfdual part, corresponding to 5-

branes supporting either a vector or a tensor multiplet. In a second step we show that only

certain well-defined lightlike directions in the anti-symmetric tensor representations of the

T-duality group correspond to supersymmetric String Solitons. These lightlike directions

define the conjugacy classes. As a by-product we show how by a straightforward procedure

all solitonic fields of maximal supergravity are derived using the Kac-Moody algebra E11.
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1 Introduction

Supergravity theories provide important information about the branes of string theory, of

which they are the low-energy limit. The (bosonic) physical states of IIA and IIB super-

gravity are described by the metric and a set of p-form potentials, with 0 ≤ p ≤ 4. These

latter fields couple to (half-supersymmetric) electric (p− 1)-branes whereas their Poincare

duals couple to (half-supersymmetric) magnetic (7− p)-branes.1 It turns out that IIA and

IIB supergravity can be extended with 9-form and 10-form potentials that do not describe

any physical degrees of freedom [1–4]. Nevertheless, the full (on-shell) supersymmetry al-

gebra can be realised on these fields. It is therefore perfectly legitimate to add them to

the supergravity theory and to see whether they couple to branes as well. Perhaps the

best known example of such a field is the 9-form potential of IIA supergravity [1]. Its

equation of motion follows from a duality relation between the 10-form curvature of this

potential and the Romans mass parameter m [5]. This potential couples to the D8-brane,

1This excludes the IIA/IIB dilaton, but includes the axion of IIB supergravity which couples to the

D-instanton, or “D(-1)-brane”, whereas its dual RR 8-form potential couples to the D7-brane. The IIA/IIB

dilatonic dual 8-form potential will be discussed in this paper.
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or domain-wall, of Type IIA string theory. One can also add a set of 10-form potentials to

IIA/IIB supergravity [2–4]. In the case of IIB supergravity one of these fields couples to the

D9-brane. But there are more 10-form potentials on which the IIA/IIB supersymmetry

algebra can be realised. Whether these other potentials couple to branes as well is less

clear. Recently, the U-duality representations of the (D − 1)-form and D-form potentials

of maximal supergravity in D < 10 dimensions have been determined by using the embed-

ding tensor technique [6]. Independently, they have been determined [7, 8] by making use

of the properties of the very extended Kac-Moody algebra E11 [9]. The number of these

potentials becomes quite large in lower dimensions.

In this paper we wish to address the question of which p-form potentials of maximal

supergravities correspond to supersymmetric branes in (compactified) string theory. In

doing so it is important to first specify which kind of branes we wish to consider. We

will only consider branes for which we can construct a gauge-invariant Wess-Zumino (WZ)

term describing the coupling of the supergravity potentials to the brane. The construc-

tion of such a gauge-invariant WZ term in itself is straightforward. All one needs is the

transformation rules of the potentials under the different gauge symmetries where for every

(pull-back of the) gauge parameters one introduces a corresponding worldvolume potential.

We will impose the non-trivial requirement that these worldvolume potentials fit into a su-

permultiplet with 16 supercharges. The branes satisfying this condition have the necessary

ingredients to make the construction of a kappa-symmetric worldvolume action possible. It

is therefore suggestive that these branes are well-defined in string theory.2 We stress that

this does not imply that the remaining p-form potentials have nothing to do with branes

at all. Their mere existence as part of maximal supergravity is suggestive and perhaps,

when a proper non-perturbative formulation of string theory has been developed, we will

understand how these potentials couple to some class of branes.

It is insightful to classify the branes according to the way their tension T scales with

the string coupling constant gs in the string frame. This can be specified by an integer

number α via

T ∼ (gs)
α . (1.1)

It turns out that in string theory α ≤ 0. The highest values of α correspond to the following

kind of branes:

α = 0 : Fundamental Branes; α = −1 : D-branes; α = −2 : Solitonic Branes . (1.2)

Our understanding of the branes with α = −3,−4, · · · is rather limited. In the lower

dimensional theories, which result from dimensional reduction from eleven dimensions, we

may write gs =< eφ > where the dilaton φ refers to any of the compactified directions.

Selecting this dilaton direction corresponds to decomposing the D-dimensional U-duality

group with respect to T-duality as

E11−D(11−D) ⊃ SO(10 − D, 10 − D) × R+ . (1.3)

2For branes with co-dimension 2 one needs to integrate over the moduli space to obtain finite-energy

configurations. Branes with co-dimension 0, i.e. space-time filling branes, need to be combined with orien-

tifold planes to define string theories with 16 supercharges. In this paper we will not consider these issues

but only consider single branes by themselves.
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The dependence of the brane tension on this dilaton, i.e. the number α, is determined by

the rank p of the corresponding p-form potential and the weight w with which this potential

transforms under the R+-symmetry [10].3 This conserved number is thus defined for any

supergravity field, regardless of whether it corresponds to a brane or not.

In this work we will consider the Wess-Zumino terms of branes in D ≤ 10 dimensions

for a fixed value of α, i.e. according to T-duality representations. This is to be distinguished

from the vast literature on S-duals of brane actions (including the kinetic terms) in D = 10

dimensions, see, e.g., [13–18]. In our previous work we only considered the Fundamental

Branes and D-branes of (compactified) string theory [10]. Since the Fundamental Branes

have the highest value of α, only Fundamental Branes themselves can end on them. In

practice, we find that only Fundamental 0-Branes, i.e. wrapped strings, may end on the

Fundamental String. The construction of a gauge-invariant WZ term therefore only requires

world-volume scalars that fit into a scalar multiplet. In D = 10 dimensions only embedding

scalars are needed and the WZ term is given by the well-known expression

LD=10
WZ (Fundamental String) = B2 , (1.4)

where B2 is the (pull-back of the) NS-NS 2-form. In D < 10 wrapped strings can end on

the Fundamental String and the corresponding WZ term gets accordingly modified with

extra world-volume scalars [19–21]:

LD<10
WZ (Fundamental String) = B2 + ηABF1,AB1,B , (1.5)

where B1,A are the NS-NS 1-forms and F1,A are the 1-form world-volume curvatures of

the extra scalars. Both transform as a vector, indicated by the index A, under the T-

duality group SO(d, d) with d = 10 − D. The number of extra scalars is twice the number

of compactified dimensions in line with doubled geometry [19–21]. The WZ term for the

Fundamental 0-branes themselves does not contain these extra scalars and is given by

(omitting the explicit vector-index A)

LD<10
WZ (Fundamental 0-Branes) = B1 . (1.6)

We next consider the D-branes. Since they have the one-to-highest value of α, only

Fundamental Branes can end on them.4 In D = 10 dimensions there are only Fundamental

Strings that can end on D-branes and, accordingly, the WZ term gets deformed by an extra

Born-Infeld worldvolume vector, with 2-form curvature F2:

LD=10
WZ (D-branes) = eF2C . (1.7)

3The number α has a natural group theory interpretation in terms of the Kac-Moody algebra E11 [11]

(see also [12]). We assume here that the brane tension contains a leading term which only depends on the

dilaton. In general, this need not be the case. To determine the full dependence of T on all fields we need

the supersymmetry rules of the p-form potentials. We will not investigate this further in this work.
4Here and in the rest of the paper we only consider the objects that are electrically charged with respect

to the worldvolume fields. For each such object there is a corresponding magnetic object that can end on

the same brane. For instance, in the case of a Dp-brane, the magnetic version of the fundamental string is

a D(p − 2)-brane and the magnetic version of a fundamental particle is a D(p − 1)-brane.
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Here C stands for the formal sum of all RR potentials. In [10] we derived the T-duality-

covariant expression of the D-brane WZ terms in D < 10 dimensions. Since now both

wrapped and un-wrapped Fundamental Strings can end on the D-branes we get a further

deformation by the extra worldvolume scalars [10]:

LD<10
WZ (D-branes) = eF2eF1,AΓA

C , (1.8)

where ΓA are the gamma-matrices of SO(d, d). The reason for the existence of the general

expression (1.8) is that in any dimension the fundamental potentials transform as a sin-

glet (2-form) and vector (1-form) under T-duality while the D-brane potentials (p-forms)

transform as (chiral) spinor representations of the same duality group.

In this paper we wish to continue the analysis of [10] and consider the next set of

branes, i.e. the String Solitons. The analysis becomes now more subtle due to two reasons.

First of all, both Fundamental Branes as well as D-branes may end on String Solitons.

This leads to many world-volume p-form potentials which must fit into one of the two

available world-volume supermultiplets with 16 supercharges: the vector multiplet in ten

dimensions or less (with 1 vector) or the six-dimensional tensor multiplet (with 1 self-

dual 2-form potential). In general, we will obtain too many world-volume potentials to fit

any of these two multiplets. There are two ways to lower the number of the world-volume

potentials. One way is to impose world-volume duality relations. Another way is by making

suitable redefinitions of the target space solitonic, i.e. α = −2, potentials with terms that

are quadratic in the α = −1 RR potentials. In many cases this lowering of the number

of world-volume potentials turns out not to be enough. Unlike the Fundamental Branes

and the D-branes we find that many of the solitonic potentials of maximal supergravity

do not satisfy our criterion that they must couple to a String Soliton via a gauge-invariant

WZ term that only contains world-volume potentials that fit into a vector or a tensor

multiplet. The fact that we find branes that satisfy our criterion is possible due to a

beautiful and intricate interplay between target space and worldvolume supersymmetry

and electromagnetic duality.

To classify the cases in which supersymmetric String Solitons exist we proceed in two

steps. First, we determine the T-duality representations of the potentials that contain the

ones that couple to supersymmetric String Solitons. We find that these are antisymmet-

ric tensor representations. Next, we determine the conjugacy classes within the T-duality

representations to which the supersymmetric String Solitons belong. We will show that

these conjugacy classes are defined by a specific set of lightlike directions within the an-

tisymmetric tensor representation. The phenomenon that branes only form a conjugacy

class within a given T-duality representation does not occur for Fundamental Branes and

D-branes simply because in these cases the T-duality representations involved do not con-

tain non-trivial conjugacy classes. It has however a well-known analogue in the case of

ten-dimensional 7-branes with respect to the S-duality group SL(2,R). The 8-form poten-

tials of IIB supergravity that contain the potential that couples to the D7-brane are in the

3 representation of SL(2,R).5 It turns out that the D7-brane and its S-dual belong to a

5The IIB supersymmetry algebra closes on a triplet of 8-forms provided that a duality relation with the
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2-dimensional conjugacy class within this triplet. The remaining component of the triplet

does not correspond to a brane. To see this it is convenient to use a real SO(2, 1) notation

since that resembles most the discussion in the case of T-duality. The crucial point is that

in the construction of the WZ term for the triplet of 7-branes there is a coupling between

the curvatures of the worldvolume 1-forms and the target space 6-forms of the form

LD=10
WZ (7-branes) ∼ A8,i + F2ΓiA6 + · · · , i = 1, 2, 3 . (1.9)

Here F2 and A6 transform as two-component spinors of SO(2, 1), that contain the Born-

Infeld vector and the RR 6-form together with their S-duals, respectively. We want the

F2ΓiA6 term to describe only a coupling between the Born-Infeld vector and the RR 6-form

or the S-dual version of this. In particular, worldvolume supersymmetry requires that the

Born-Infeld vector and its S-dual do not occur at the same time. Therefore, we want the

2×2 gamma matrix Γi to act as a projection operator which picks out the correct component

of the 2-dimensional spinor F2. To achieve this it is convenient to introduce a lightcone

basis i = (+,−, 3). One can easily convince oneself that the lightlike directions Γ+ and

Γ− that square to zero define the conjugacy class containing the D7-brane and its S-dual,

which is an α = −3 object. We will confirm in this paper that the remaining solitonic

8-form potential A8,3, which has weight α = −2, does not couple to a supersymmetric

String Soliton.6 Our analysis of the conjugacy classes with respect to T-duality is very

similar to the S-duality discussion above except that one is now dealing with the group

SO(d, d) instead of SO(2, 1).

A second feature that makes the analysis of String Solitons more subtle is that, whereas

all Fundamental Branes and D-branes in D < 10 dimensions can be obtained via dimen-

sional reduction of the D = 10 Fundamental String and D-branes, the same is not the

case for the String Solitons. One way to understand the 10-dimensional origin of all

lower-dimensional T-duality multiplets of solitonic potentials is to add to the standard

supergravity fields extra solitonic fields of mixed symmetry without upsetting the counting

of degrees of freedom. At the end of this paper we will show that the ten-dimensional

mixed-symmetry solitonic fields that are needed to generate all the solitonic fields in lower

dimensions are precisely the ones predicted by the very extended Kac-Moody algebra E11.

It is not understood how to realise the full IIA/IIB supersymmetry algebra on these mixed

symmetry potentials. This can only be achieved for linearised supersymmetry. However,

these mixed-symmetry fields contain important information in the sense that, after reduc-

tion, they give rise to standard p-form potentials on which the non-linear supersymmetry

two scalars of IIB supergravity holds [22, 23]. This relation implies that one combination of the curvatures

of the three 8-form potentials (multiplied by scalar-dependent factors) vanishes, in agreement with the fact

that the theory contains only two scalars. This relation does not play a role in the present discussion.
6Using SL(2,R) notation the conjugacy classes of SL(2,R) are labelled by detQ where Q is the 2 × 2

charge matrix. The D7-brane and its S-dual belong to the det Q = 0 conjugacy class while the remaining

8-form potential, the one that does not correspond to a brane, belongs to a det Q < 0 conjugacy class, see

the last reference of [13–18]. This is to be distinguished from the 7-branes at the three orbifold points in

the SL(2,R) moduli space. One of these branes is the D7-brane and belongs to the det Q = 0 conjugacy

class while the branes at the other 2 orbifold points belong to the detQ > 0 conjugacy class. The latter

branes can be viewed as bound states of the D7-brane with the S-dual of the D7-brane or anti-D7 brane,

see e.g. [24].
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algebra can be realised. In this paper we will derive a useful procedure of how to collect all

(i.e. both p-form and mixed-symmetry) fields, predicted by E11, for a given value of α. We

will find that for α odd the representations of the IIA and IIB fields differ but that for α

even they coincide. This applies in particular to the fundamental and solitonic potentials.

It is instructive to see how in D = 10 dimensions the construction of a gauge-invariant

WZ term can be achieved with a supermultiplet of world-volume potentials. Both Type IIA

and Type IIB string theory contain a single solitonic 6-form potential D6, which couples

to the NS5A-brane and NS5B-brane, respectively. The corresponding gauge-invariant WZ

terms are given by (see section 3)

LD=10
WZ (NS5A-brane) = D6 + G5C1 − G3C3 + G1C5 , (1.10)

LD=10
WZ (NS5B-brane) = D6 + G4C2 − G2C4 , (1.11)

where Cp is a target space RR p-form potential and where we have introduced world-volume

p-form potentials cp with curvatures Gp+1. These expressions can be straightforwardly

obtained by applying a Noether procedure, replacing each parameter in the transformation

rule of D6 by a corresponding world-volume potential. The NS5A-brane contains the

worldvolume potentials c0, c2 and c4. Imposing a duality relation between them we are left

with a scalar and a self-dual 2-form. Together with the 4 embedding scalars these form

the bosonic sector of an 8+8 tensor multiplet in the six-dimensional worldvolume. The

extra c0 scalar indicates that this solitonic 5-brane has an 11-dimensional origin as the

M5-brane. On the other hand, the NS5B-brane contains the worldvolume potentials c1

and c3. Imposing a duality relation between them we are left with one vector. Together

with the 4 embedding scalars these form the bosonic sector of an 8+8 vector multiplet in

the six-dimensional worldvolume.

It turns out that in D = 10 there are three more solitonic p-form potentials D8 ,D10

and D′
10, see table 8. However, unlike D6, these potentials cannot be associated with

a supersymmetric String Soliton. These findings are consistent with our earlier analysis

of Supersymmetric String Solitons, see [2–4, 25] and the last reference of [13–18]. The

criterion we imposed in these references was that a cancellation under supersymmetry was

taking place between the Nambu-Goto kinetic term and the leading solitonic potential in

the WZ term. This requirement leads to an expression for the brane tension and the BPS

condition. The conclusion based upon this criterion was that no Supersymmetric Soliton

could be associated with D8 ,D10 and D′
10. In this work we reach the same conclusion

based upon the independent criterion that a gauge-invariant WZ term must exist with

worldvolume potentials that fit into a supersymmetry multiplet.

We find that in D < 10 dimensions the above results generalise in a T-duality covariant

way as follows. In D dimensions the T -duality representations of the potentials of maximal

supergravity that contain the potentials that couple to supersymmetric String Solitons are

anti-symmetric tensor representations of the T-duality group. More precisely, we find that

these potentials are p-forms, with D − 4 ≤ p ≤ 6 if D ≥ 6 and with D − 4 ≤ p ≤ D if

D < 6, transforming in the antisymmetric representation of rank m = p+4−D ≤ 4 of the

T-duality symmetry SO(10 − D, 10 − D). We have summarised this result in table 1. As

– 6 –
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p solitonic potential vector/tensor vector

D − 4 DD−4 IIB/IIA 4 ≤ D < 10

D − 3 DD−3,A D = 9 3 ≤ D < 9

D − 2 DD−2,AB D = 8 2 ≤ D < 8

D − 1 DD−1,ABC D = 7 1 ≤ D < 7

D DD,ABCD D = 6 0 ≤ D < 6

Table 1. The T-duality multiplets of solitonic potentials that contain the ones that couple to

supersymmetric String Solitons. The indices A, B, . . . are vector indices of SO(d, d), and they

are always meant to be antisymmetrised. The last two columns indicate for which dimensions

the worldvolume dynamics is described by a vector/tensor multiplet or by vector multiplets only,

see the text.

discussed above the Supersymmetric Solitons form conjugacy classes within these T-duality

representations. These conjugacy classes are described in table 9. The 10-dimensional ori-

gin of these conjugacy classes comes from D6, together with a number of mixed-symmetry

fields. The fact that these conjugacy classes contain among its components reductions of the

known supersymmetric NS5A and NS5B branes of string theory guarantees that all other

components of the same conjugacy class correspond to Supersymmetric String Solitons as

well. All the remaining T-duality multiplets that do not contain potentials that can be asso-

ciated with supersymmetric String Solitons, see table 2, come from either D8 ,D10 and D′
10,

together with a number of the mixed symmetry fields, or from mixed symmetry fields only.

Only 5-brane String Solitons can have both vector and tensor world-volume multiplets.

The corresponding 6-form potentials have the peculiarity of always transforming as the

reducible representation of SO(d, d) with d antisymmetric indices, which splits in self-dual

and anti self-dual irreducible representations. We will see that the self-dual representations

correspond to String Solitons with vector multiplets, like the NS5B-brane, whereas the

anti-selfdual representations correspond to String Solitons with tensor multiplets, like the

NS5A-brane:

D+
6,A1···Ad

: vector multiplets , D−
6,A1···Ad

: tensor multiplets . (1.12)

The D = 10 case is special in the sense that the two 6-form potentials belong to two

different theories (IIA and IIB), see table 1.

In all cases we find that the gauge-invariant WZ term of the Supersymmetric Solitons

is given by (omitting the anti-symmetric A-indices)

LD≤10
WZ (susy soliton) = eF1

(

D + GΓC
)

, (1.13)

where C and D represent the RR and solitonic target space potentials, respectively, while

F1 and G are the worldvolume curvatures of the fundamental worldvolume scalars and RR

worldvolume potentials, respectively. In this expression, whose precise form (containing all

indices and signs) can be found in eq. (5.8), it is understood that the String Solitons form

a conjugacy class within the full T-duality representation. This conjugacy class is defined

by specifying a certain set of lightlike directions, see eq. (5.9). Formula (1.13), together

– 7 –
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with a description of the conjugacy classes, constitutes the main result of this paper. This

formula includes the ten-dimensional expressions (1.10) and (1.11) as special cases with the

understanding that in the IIA (IIB) case we only consider the even-form (odd-form) world-

volume potentials. The special feature of the WZ-term (1.13), which is only possible for

the antisymmetric T-duality representations of table 1, is that the gauge-invariance of the

WZ-term can be achieved without introducing a Born-Infeld vector b1 on the world-volume,

i.e. no fundamental string can end on these supersymmetric String Solitons. For all the

other T-duality multiplets, see table 2, one must introduce this Born-Infeld vector and this

leads to too many worldvolume potentials that cannot fit into a vector or tensor multiplet.

This paper is organised as follows. In section 2 we derive in any dimension the solitonic

potentials by decomposing the U-duality representations of all the potentials of any max-

imal supergravity theory with respect to T-duality. The result is summarised in table 2.

In section 3 we review and discuss the properties of the ten-dimensional String Solitons.

In particular, we show why the solitonic potentials D8 ,D10 and D′
10 do not couple to su-

persymmetric String Solitons. Next, in section 4, we derive the gauge transformations of

all solitonic potentials in D < 10 dimensions. This will be used in section 5 to derive the

different gauge-invariant WZ terms of all D < 10 String Solitons. The final result is given

in eq. (5.8). In the same section we define the lightlike directions that define the conjugacy

class to which the supersymmetric String Solitons belong, see eq. (5.9). In section 6 we

show that our results agree with the classification of central charges of the supersymmetry

algebra in any dimension. In section 7 we discuss how a possible ten-dimensional origin of

the D < 10 solitons leads one to consider mixed-symmetry fields in ten dimensions hinting

at an underlying E11 structure. We explain a procedure of how to extract out of E11 all

fields of IIA and IIB, both p-forms and mixed symmetry fields, for a given value of α. As a

side-result we will show that for IIA/IIB these fields coincide for even α but are different for

odd α. Finally, in section 8 we present our conclusions and discuss different consequences

of our work. We also include an appendix, in which we discuss the properties of the spinors

of SO(d, d) that are used in sections 4 and 5.

2 Solitonic fields in D < 10 dimensions

In recent years it has been established that maximal supergravity theories do not only con-

tain p-form potentials, together with their duals, that describe physical degrees of freedom

but also (D − 1)-form and D-form potentials that do not describe any physical degree of

freedom. The U-duality representations of these p-form potentials have been established

by different means, all leading to the same answer. In D = 10 dimensions all 9-form and

10-form potentials that are consistent with the closure of the IIA or IIB supersymmetry

algebra have been determined [2–4]. Upon toroidal reduction this leads to similar (D− 1)-

form and D-form potentials in D < 10 dimensions. Their U-duality representations have

been independently determined by a classification of gauged maximal supergravities [6] as

well as by making use of E11 techniques [7, 8].

In this section we will derive the T-duality representations of the solitonic potentials in

any dimensions by decomposing these U-duality representations with respect to T-duality

– 8 –
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(D − 4)-form DD−4

(D − 3)-form DD−3,A

(D − 2)-form DD−2 + DD−2,AB

(D − 1)-form DD−1,A + DD−1,ABC

D-form DD + D′
D + DD,AB + DD,ABCD

Table 2. Forms with α = −2 in any dimension D ≥ 3 (In three dimensions the first line is absent

because the corresponding field does not exist). The indices A, B, . . . are vector indices of SO(d, d),

and they are always meant to be antisymmetrised.

according to eq. (1.3) and by picking out the solitonic fields. In any dimension α, the

number that determines how the brane tension scales with the string coupling constant,

is related to the R+ weight in the decomposition (1.3) and to the rank of the form. We

will explicitly perform our analysis in dimensions higher than four, but as we will see in

section 7 our results are general and apply to four and three dimensions as well. The

resulting T-duality representations take on a universal form for any dimension which we

have summarised in table 2. Here and in the rest of the paper we denote the solitonic

fields with D, simply because the α = 0 fields and the α = −1 fields are denoted in the

literature and in this paper with B and C respectively. The solitonic fields should not be

confused with the dimension of spacetime, which is also denoted with D. Actually, in [10]

the decomposition of the U-duality representations with respect to the T-duality group

SO(d, d) was already performed, and the D-brane fields with α = −1 were listed. Here we

have refined that analysis. We have listed the result in tables 3–7 where we have given

the value of α corresponding to all T-duality representations in dimensions 5 ≤ D ≤ 9. In

these tables w denotes the R+ weight, and the U-duality group decomposes as in eq. (1.3).

The conventions for the representations and the w weights are those of [10], which, in turn,

are taken from [26].

We now proceed with an analysis of all the α = −2 fields listed in tables 3–7 and

summarized in table 2. In all cases, the form of lowest rank is a D−4 form, that transforms

as a singlet under T-duality. This form is the magnetic dual of the Fundamental 2-form

B2, and we denote it by DD−4.

Increasing the rank by one unit, one can see from the tables that in any dimension

one has solitonic D − 3-forms transforming as vectors under T-duality. These fields are

the duals of the Fundamental fields B1,A, and we denote them by DD−3,A. A particular

case is the nine-dimensional one, in which the T-duality group is SO(1, 1) and the vector

representation splits into its selfdual and anti-selfdual part. This can be seen in table 3,

which shows that the U-duality representation of the 6-form is reducible and each of the

two irreducible components contain either the selfdual or the anti-selfdual representation

when decomposed under T-duality.

The T-duality representation of the solitonic D − 2-forms is reducible in all cases.

The reader can derive in all cases by looking at the tables that the fields are DD−2 and

DD−2,AB , transforming as a singlet and as an antisymmetric tensor respectively under T-

duality. In D = 9 these are actually two singlets, and each singlet arises from each of the
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field U repr α = 0 α = −1 α = −2 α = −3 α = −4

1-form 20 (1, 0) (−1, 0)

11 (0, 1)

2-form 21 (1, 1) (−1, 1)

3-form 11 (0, 1)

4-form 12 (0, 2)

5-form 22 (1, 2) (−1, 2)

6-form 23 (1, 3) (−1, 3)

12 (0, 2)

7-form 33 (2, 3) (0, 3) (−2, 3)

13 (0, 3)

8-form 34 (2, 4) (0, 4) (−2, 4)

23 (1, 3) (−1, 3)

9-form 44 (3, 4) (1, 4) (−1, 4) (−3, 4)

2 × 24 2 × (1, 4) 2 × (−1, 4)

Table 3. The decomposition of the n-form potentials of D = 9 maximal supergravity. The U-

duality is SL(2,R) × R+. We denote with (w1, w2) the weights associated to R+ × R+. The weight

under T-duality is w1 − w2. The value of α is given by α = 1

2
(w1 + w2 − n).

two irreducible U-duality representations of the 7-forms. In D = 8 the singlet and the

selfdual part of D6,AB arise from the decomposition of the 6-form in the (8,1) U-duality

representation, while the anti-selfdual part of D6,AB is the 6-form in the (1,3) U-duality

representation. In dimensions lower than eight DD−2 and DD−2,AB arise from the same

U-duality representation.

Proceeding in the same way, one finds that the solitonic D − 1-forms are DD−1,A

and DD−1,ABC , that is a vector and an antisymmetric tensor with three indices under T-

duality. In seven dimensions the field DD−1,ABC splits into a selfdual and an anti-selfdual

part. Clearly, such a three-index antisymmetric tensor does not occur in nine dimensions

due to the fact that the corresponding SO(1, 1) T-duality representation does not exist.

Finally, one can see that in all cases the solitonic D-forms are two singlets DD and

D′
D, an antisymmetric tensor with two indices DD,AB and and antisymmetric tensor with

four indices DD,ABCD. The latter field does not exist in nine dimensions. To summarise,

one can see from the tables that the column corresponding to α = −2 gives in all cases the

general result given in table 2.

There are some general conclusions that one can draw by looking at the representations

occurring in table 2. First of all, the 6-forms have the peculiarity of always containing the

reducible representation of SO(d, d) with d antisymmetric indices, which splits in self-dual

and anti self-dual irreducible representations. As we will see, this corresponds to the fact

that the world-volume multiplet for a 5-brane can either be a vector or a tensor multiplet.

The representations of the forms of rank higher than 6, which can only occur in 7, 8 and

9 dimensions, always occur at least in pairs. In nine dimensions the T-duality group is

SO(1, 1), which means that out of the fields in table 2, only those with at most 2 indices
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field U repr α = 0 α = −1 α = −2 α = −3 α = −4

1-form (3,2) (2,2)1 (1,2)−2

2-form (3,1) (1,1)2 (2,1)−1

3-form (1,2) (1,2)0

4-form (3,1) (2,1)1 (1,1)−2

5-form (3,2) (1,2)2 (2,2)−1

6-form (8,1) (2,1)3 (1,1)0 + (3,1)0 (2,1)−3

(1,3) (1,3)0

7-form (6,2) (1,2)4 (2,2)1 (3,2)−2

(3,2) (2,2)1 (1,2)−2

8-form (15,1) (2,1)5 (3,1)2 + (1,1)2 (4,1)−1 + (2,1)−1 (3,1)−4

(3,3) (1,3)2 (2,3)−1

2 × (3,1) 2 × (1,1)2 2 × (2,1)−1

Table 4. The decomposition of the n-form potentials of D = 8 maximal supergravity. The U-

duality symmetry is SL(3,R)×SL(2,R) and the T-duality is SL(2,R)×SL(2,R), while the subscript

denotes the R+– charge w, which is related to α by the equation α = − 1

3
(n − w).

field U repr α = 0 α = −1 α = −2 α = −3 α = −4

1-form 10 62 4−3

2-form 5 14 4−1

3-form 5 41 1−4

4-form 10 43 6−2

5-form 24 45 150 + 10 4−5

6-form 40 47 102 + 62 20−3

15 102 4−3 1−8

7-form 70 49 154 + 14 36−1 + 4−1 10−6

45 154 20−1 + 4−1 6−6

5 14 4−1

Table 5. The decomposition of the n-form potentials of D = 7 maximal supergravity. The U-

duality group is SL(5,R) and the T-duality group is SL(4,R). We denote as a subscript the R+–

charge (notation from [26]). The value of α is given by α = 1

5
(w − 2n).

survive. The representations of the 7-forms are two singlets, the representation of the

8-form is a vector which decomposes in self-dual and anti self-dual representations, and

finally the 9-forms are three singlets. In eight dimensions the T-duality is SO(2, 2), which

means that the two representations of the 7-forms are the same, while the representation

with four indices of the 8-form is a scalar and the representation with two indices splits

in self-dual and anti self-dual. In seven dimensions the T-duality is SO(3, 3), and thus the

representation of the 7-form with two indices and the one with four indices coincide.
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field U repr α = 0 α = −1 α = −2 α = −3 α = −4 α = −5

1-form 16 (8C)1 (8S)−1

2-form 10 12 (8V)0 1−2

3-form 16 (8S)1 (8C)−1

4-form 45 (8V)2 280 + 10 (8V)−2

5-form 144 (8S)3 (8C)1 + (56C)1 (8S)−1 + (56S)−1 (8C)−3

6-form 320 (8V)4 (35V)2 + 282 2 × (8V)0 (35V)−2+ (8V)−4

+12 +(160V)0 28−2 + 1−2

126 (35S)2 (56V)0 (35C)−2

10 12 (8V)0 1−2

Table 6. The decomposition of the n-form potentials of D = 6 maximal supergravity. The U-

duality is SO(5, 5), while the T-duality is SO(4, 4). The relation between α and w is α = 1

2
(w −n).

field U repr α = 0 α = −1 α = −2 α = −3 α = −4 α = −5

1-form 27 10−2 161 14

2-form 27 1−4 16−1 102

3-form 78 16−3 450 + 10 163

4-form 351 16−5 120−2 + 10−2 161 + 1441 454

5-form 1728 16−7 1−4 + 45−4 2 × 16−1+ 102 + 1202+ 1445

+210−4 144−1 + 560−1 3202 + 1262

27 1−4 16−1 102

Table 7. The decomposition of the n-form potentials of D = 5 maximal supergravity. The U-

duality is E6 and the T-duality is SO(5,5). The relation between α and the weight w is given by

the equation α = − 1

3
(w + 2n).

3 String solitons in ten dimensions

The purpose of this section is to consider the solitonic D-fields of IIA and IIB supergravity

and to investigate which of these fields can couple to a solitonic brane with a worldvolume

supersymmetric field content. We have summarised these D-fields in table 8. The results

of this investigation will not be surprising: we will find that the only solitonic branes

are the NS5A-brane, with a worldvolume tensor multiplet, and the NS5B-brane, with a

worldvolume vector multiplet. More precisely, only one of the 4 solitonic IIA (IIB) D-fields

in table 8 corresponds to a supersymmetric solitonic IIA (IIB) brane.

An important lesson we learn from this analysis is that, even in ten dimensions, the

requirement of a worldvolume supersymmetric field content excludes most of the D-fields

as potentials suggesting new solitonic branes. The status of these D-fields at present is

unclear. As already stressed in the introduction this does not necessarily imply that these

D-fields have nothing to do with branes at all. In this paper, however, we will restrict

our attention to the solitonic branes of string theory that have a known supersymmetric

worldvolume field content.
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field IIA brane/multiplet IIB brane/multiplet

D6 NS5A/tensor multiplet NS5B/vector multiplet

D8 – –

D10 ,D′
10 – –

Table 8. The solitonic D-fields of IIA and IIB supergravity. The second and third column indicate

which D-fields couple to the known solitonic branes of string theory. The worldvolume multiplets

of these branes are indicated.

The restriction we find on the allowed solitonic D-fields results from a clash between

the known supersymmetric worldvolume multiplets with 16 supercharges, i.e. the vector

multiplet and the tensor multiplet, and the number of worldvolume fields that we need to

construct a gauge-invariant Wess-Zumino term. Since the tensor multiplet only exists in 6

dimensions, only 5-branes can have a worldvolume dynamics governed by a tensor multiplet.

Both fundamental objects as well as D-branes can end on the Solitonic Brane and this leads

to many worldvolume p-form potentials. It is non-trivial to fit all these potentials into a

vector or tensor multiplet. Since vector multiplets already occur in the case of D-branes

we expect these solitonic branes to be the S-duals of D-branes. In contrast, we expect the

solitonic 5-branes with tensor multiplets to be related, via dimensional reduction, to the

M5-brane of M-theory which also has a worldvolume tensor multiplet.

We now consider the occurrence of worldvolume p-form fields for the ten-dimensional

solitonic branes in more detail and show in which cases they fit a vector or tensor multiplet.

Both IIA and IIB supergravity contain the Fundamental 2-form potential B2, with curva-

ture H3, that couples to the Fundamental String. They differ however in the RR-potentials

in the sense that IIA (IIB) supergravity contain odd-form (even-form) RR potentials. All

RR potentials couple to the D-branes. Using the same compact notation as in [10] we can

write the transformation rules of the IIA and IIB RR potentials and the expressions for

their curvatures as

δC = dλ + H3λ (3.1)

and

G = dC + H3C , (3.2)

respectively. Here λ denote the RR gauge parameters. It is understood that in the IIA

case we pick out the odd-form potentials whereas in the IIB case we take the even-form po-

tentials. One then introduces a worldvolume 1-form field b1 associated to the fundamental

2-form B2, whose gauge-invariant curvature is

F2 = db1 + B2, (3.3)

and constructs a gauge-invariant WZ-term which was written in the introduction in

eq. (1.7).

Using the same short-hand notation the gauge transformations of the solitonic D-fields

can be written as (here Gλ denotes the various contributions of the right rank; we will give

precise coefficient of this term in the two subsections below)

δD = dΛ + Gλ + H3Λ , (3.4)
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where Λ denote the solitonic gauge parameters. The corresponding gauge-invariant curva-

tures are given by

F = dD + GC + H3D , (3.5)

where again GC schematically denotes the various terms such that the rank of G plus the

rank of C equals the rank of F .

Given that the RR field strengths occur in the gauge transformations of the D fields,

in order to write down a gauge-invariant WZ term one introduces worldvolume fields c

associated to the RR fields. These worldvolume fields are even forms for IIA and odd-forms

for IIB. Note that this is the opposite of the target-space potentials. The gauge-invariant

worldvolume curvatures for the c potentials are given by

G = dc + H3c + C , (3.6)

with δc = −λ. They satisfy the Bianchi identities

dG = −H3 G + G . (3.7)

Using the above formulae one can show that the following candidate WZ-term is (triv-

ially) gauge-invariant:

LWZ(solitonic) = eF2 (D + GC) . (3.8)

The danger of this Ansatz is that it contains many worldvolume potentials hidden in the

worldvolume curvatures F2 and G and they are difficult to fit into a vector or tensor

multiplet.

Below we will scan the different cases for IIA and IIB supergravity separately, give

the precise formulae, and see in which cases we can put all worldvolume fields into a

given multiplet.

3.1 The IIB solitonic WZ terms

We first consider the 6-form potential D6 corresponding to the NS5B-brane. The gauge

transformations and curvatures are given by

δD6 = dΛ5 + G5λ1 − G3λ3 (3.9)

and

F7 = dD6 + G5C2 − G3C4 , (3.10)

respectively. The gauge-invariant WZ term is given by

LWZ = D6 + G4C2 − G2C4 ≡ D6 , (3.11)

which contains the worldvolume potentials c1 and c3. Imposing a duality relation between

them we are left with one vector. Together with the 4 embedding scalars these form the 8

bosonic degrees of freedom of an 8+8 vector multiplet in the six-dimensional worldvolume.

We next consider the solitonic 8-form D8. An important difference with the previ-

ous case is that D8 transforms to H3 under a solitonic gauge transformation. Basically,
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this means that fundamental strings can end on this soliton and, hence, there exists a

corresponding Born-Infeld vector b1 in the worldvolume. As we will see, this will lead to

too many worldvolume fields to fit a multiplet. Partially, this effect is cancelled (but not

enough) in this case due to the fact that the transformation rule and curvature contain

a free real parameter α. Indeed, the general form of the gauge transformation and field

strength in eqs. (3.4) and (3.5), requiring gauge invariance of the field strength leads to

δD8 = dΛ7 + (1 − α)G7λ1 + αG5λ3 − (1 + α)G3λ5 + H3Λ5 (3.12)

and

F9 = dD8 + (1 − α)G7C2 + αG5C4 − (1 + α)G3C6 + H3D6 . (3.13)

The free parameter α can be reabsorbed by the redefinition

D8 → D8 + α(C2C6 −
1
2C4C4) . (3.14)

That this is an allowed redefinition can be seen from the fact that

d(C2C6 −
1
2C4C4) = G3C6 + G7C2 − G5C4 , (3.15)

which means that the terms H3CC vanish, and therefore adding this term preserves the

structure of eq. (3.5). A gauge-invariant WZ term for this case is given by

LWZ = D8 + (1 − α)G6C2 + αG4C4 − (1 + α)G2C6 + F2D6 ≡ D8 + F2D6 , (3.16)

which contains the worldvolume fields c1, c3, c5 and b1. The problem is now that there are

too many worldvolume fields to fit into a multiplet. Even if we impose a duality relation

between c1 and c5 we are left with two vectors and one 3-form potential. The free parameter

α may be used to eliminate one of the vectors or the 3-form potential but not both. Hence,

for no choice of α will the worldvolume fields fit into a vector multiplet. We can without

loss of generality choose a value for the parameter α, and we choose it to vanish, so that

the field strength and gauge transformation are symmetric with respect to electromagnetic

duality on the worldvolume, that is

δD8 = dΛ7 + G7λ1 − G3λ5 + H3Λ5 . (3.17)

Finally, we consider the 10-form potentials. These are determined by formally requiring

that their field strength is gauge invariant, although this is actually identically zero. Taking

α = 0 in eq. (3.12), that is using eq. (3.17), one obtains

δD10 = dΛ9 + βG9λ1 + (1 − β)G7λ3 − (1 − β)G5λ5 − βG3λ7 + H3Λ7 , (3.18)

where β is an arbitrary real parameter. Given that no field redefinition is possible in this

case, this parameter is the relative normalisation of the two independent 10-forms. The

corresponding gauge-invariant WZ term is given by

LWZ = D10 + βG8C2 + (1 − β)G6C4 − (1 − β)G4C6 − βG2C8 + F2D8 + 1
2F2F2D6 . (3.19)

This WZ term contains the potentials c1, c3, c5, c7 and b1, which after imposing duality

relations on the c fields corresponds to a vector (multiplied by β) and a 3-form (multiplied

by 1 − β) plus another scalar. For no choice of the parameter β can the field content be

the bosonic sector of a ten-dimensional vector multiplet.
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3.2 The IIA solitonic WZ terms

We next consider the solitonic potentials of IIA supergravity (for zero Romans mass pa-

rameter). We first consider the 6-form potential D6 corresponding to the NS5A brane.

The gauge transformations and curvature for this case are given by

δD6 = dΛ5 + G6λ0 − G4λ2 + G2λ4 (3.20)

and

F7 = dD6 − G6C1 + G4C3 − G2C5 , (3.21)

respectively. The corresponding gauge-invariant WZ term is given by

LWZ = D6 − G5C1 + G3C3 − G1C5 ≡ D6 , (3.22)

which contains the worldvolume potentials c0, c2 and c4. Imposing a duality relation be-

tween them we are left with a scalar and a self-dual 2-form. Together with the 4 embed-

ding scalars these form the bosonic sector of an 8+8 tensor multiplet in the six-dimensional

worldvolume. The extra c0 scalar indicates that this solitonic 5-brane has an 11-dimensional

origin as the M5-brane.

We next consider the 8-form D8. Like in the IIB case D8 transforms to H3 under

a solitonic gauge transformation. Furthermore, the transformation rules and curvature

contain a free real parameter α:

δD8 = dΛ7 + αG8λ0 + (1 − α)G6λ2 − (2 − α)G4λ4 + (3 − α)G2λ6 + H3Λ5 (3.23)

and

F9 = dD8 − αG8C1 − (1 − α)G6C3 + (2 − α)G4C5 − (3 − α)G2C7 + H3D6 . (3.24)

As in the IIB case the presence of the free parameter α is related to the field redefinition

D8 → D8 + α(C1C7 − C3C5) . (3.25)

This a consistent redefinition due to the fact that

d(C1C7 − C3C5) = G2C7 − G4C5 + G6C3 − G8C1 . (3.26)

The gauge-invariant WZ term is given by

LWZ = D8−αG7C1−(1−α)G5C3+(2−α)G3C5−(3−α)G1C7+F2D6 ≡ D8+F2D6 , (3.27)

which contains the worldvolume fields c0, c2, c4, c6 and b1. Imposing a duality relation on

the c fields we are left with a scalar, a (non-self-dual) 2-form and a vector. For no choice

of α can we get rid of both the scalar and the 2-form and therefore these fields will not

fit into a vector multiplet. As in the IIB case, there is a choice of α for which the gauge

transformations look the most symmetric. This choice is α = 3/2, which gives

δD8 = dΛ7 + 3
2G8λ0 −

1
2G6λ2 −

1
2G4λ4 + 3

2G2λ6 + H3Λ5 . (3.28)
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Finally, we consider the two 10-form potentials. In this case one obtains that the

transformations depend on a real parameter β, and in particular using eq. (3.28) one gets

δD10 = dΛ9 + βG10λ0 +
(

3
2 − β

)

G8λ2 − (2 − β)G6λ4 +
(

3
2 − β

)

G4λ6

+ βG2λ8 + H3Λ7 . (3.29)

Given that no field redefinition is possible, the parameter β signals the presence of two

independent 10-forms. The corresponding gauge-invariant WZ term is given by

LWZ = D10 − βG9C1 −
(

3
2 − β

)

G7C3 + (2 − β)G5C5 −
(

3
2 − β

)

G3C7 − βG1C9

+F2D8 + 1
2F2F2D6 , (3.30)

which contains the potentials c0, c2, c4, c6, c8 and b1. This corresponds to a scalar multiplied

by β, a 2-form multiplied by 3
2 − β, a self-dual 4-form multiplied by 2 − β plus a vector,

and for no choice of the parameter β one obtains the bosonic sector of a ten-dimensional

vector multiplet.

4 Gauge algebra of solitonic fields in any dimension

In this section we want to determine the gauge algebra of the fields in table 2. In [10] the

gauge algebra of the α = 0 and α = −1 fields in any dimension was considered. Because of

conservation of the R+ weight, the α = −2 fields, which are the D fields, transform among

themselves and into the B fields and C fields of [10], but not into fields with lower α. In

order to proceed, we first review the results and the notation of [10]. The α = 0 fields are

B1,A and B2, and their corresponding gauge transformations and fields strengths are

δB1,A = dΣ0,A

δB2 = dΣ1 − H2,AΣA
0 (4.1)

and

H2,A = dB1,A

H3 = dB2 + H2,ABA
1 . (4.2)

This implies the Bianchi identity

dH3 = H2,AHA
2 . (4.3)

The α = −1 fields C are spinors of SO(d, d), of plus or minus chirality according to whether

the form has odd or even rank. That is, following the notation explained in appendix A,

C2n+1,α =

(

C2n+1,a

0

)

, C2n,α =

(

0

C2n,ȧ

)

. (4.4)

Similarly, the gauge parameters are

λ2n,α =

(

λ2n,a

0

)

, λ2n−1,α =

(

0

λ2n−1,ȧ

)

. (4.5)
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The gauge transformations and field strengths are

δCn,α = dλn−1,α + H3λn−3,α − H2,AΓA
α

βλn−2,β (4.6)

and

Gn+1,α = dCn,α + H3Cn−2,α + H2,AΓA
α

βCn−1,β . (4.7)

This implies

dGn+1,α = −H3Gn−1,α + H2,AΓA
α

βGn,β . (4.8)

In the following we will consider bilinears made out of these SO(d, d) spinors. We thus

define G as

G
α

= iGβCβα for d = 2, 3 G
α

= GβCβα for d = 1, 4, 5 , (4.9)

where Cαβ is the charge conjugation matrix, whose properties for all d are described in

appendix A. In the following we will also need the relations

G
α
n+1 = dC

α
n + H3C

α
n−2 + H2,AC

β
n−1Γ

A
β

α (4.10)

and

dG
α
n+1 = −H3G

α
n−1 + H2,AG

β
nΓA

β
α , (4.11)

where we have made use of eq. (A.20). The bilinears in our expressions will always have

all their spinor indices contracted, and we will always write them without indices, so that

the contraction will always be understood.

We now proceed with deriving the gauge algebra of the D fields, which are listed in

table 2. We denote the gauge parameters of the D fields with Λ, and the field strengths

with F . We want to determine the gauge algebra of the D fields in the abelian basis, that

is we require that the gauge transformations only contain gauge invariant quantities. Up

to field redefinitions, the gauge transformations can then always be written schematically

as δD = dΛ + GΓλ + HΛ, where here Γ schematically denotes the antisymmetric product

of a number of gamma matrices equal to the number of SO(d, d) indices of the field D.

Before one determines the gauge transformations of the D fields, one has to be sure that the

abelian basis that one chooses is not redundant, that is that there are no field redefinitions

within the basis. What we are looking after is the possibility that a bilinear CΓC in the

C fields is such that d(CΓC) = GΓC. When this occurs, we have to subtract this to the

number of D fields that close the algebra in the abelian basis to get the actual counting

right. We want to determine an m-form given by the combination

[m
2
]

∑

n=1

αnCm−nΓA1...ApCn (4.12)

such that when computing its curl all terms of the form HCΓC vanish. Given the chirality

of the fields and the form of the C matrix in any d, given in eq. (A.8), the only possibility

is that m + p + D must be even. We first consider the case p = 0, that is the case of a
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T-duality singlet. By direct inspection, one can show that in any D there is a solution for

m = D − 2, and the whole set of solutions is

m = 2 : C1C1 (D = 4, 8)

m = 3 : C2C1 (D = 5, 9)

m = 4 : C3C1 −
1
2C2C2 (D = 6)

m = 5 : C4C1 + C3C2 (D = 7)

m = 6 : C5C1 − C4C2 −
1
2C3C3 (D = 8)

m = 7 : C6C1 + C5C2 − C4C3 (D = 9) (4.13)

One can then show that for p 6= 0 there are no solutions. To summarise, this analysis

shows that this field redefinition will only affect the counting of the D − 2-forms that are

singlets of SO(d, d). By looking at table 2, we expect to find a single field DD−2 after

this field redefinition is taken into account. As we will see, this will be confirmed by our

explicit computations.

We now determine the gauge algebra of the fields given in table 2. We start by analysing

the fields with the highest amount of T-duality indices for each rank. These fields are

DD−4+m,A1...Am m = 0, 1, . . . , 4 , (4.14)

and one can see that the redundancy of eq. (4.13) does not affect these fields. We write

the gauge transformation of these fields as

δDD−4+m,A1...Am = dΛD−5+m,A1...Am +

D−6+m
∑

n=0

a(m)
n GD−4+m−nΓA1...Amλn

−mH2,[A1
ΛD−6+m,A2...Am] (4.15)

and the corresponding field strength as

FD−3+m,A1...Am = dDD−4+m,A1...Am +
D−6+m
∑

n=0

b(m)
n GD−4+m−nΓA1...AmCn+1

+mH2,[A1
DD−5+m,A2...Am] . (4.16)

The gauge invariance with respect to the gauge parameters Λ and Σ is already implied by

the form in which we have written the last term in eqs. (4.15) and (4.16), while the real

parameters a
(m)
n and b

(m)
n can be determined by imposing gauge invariance of the curvatures

FD−3+m,A1...Am with respect to the parameters λ. Formally, this applies to the D-forms

as well, although their field strengths are actually identically zero. Using equation (4.11),

the reader can see that the variation of FD−3+m,A1...Am produces terms of four different

structures, that is the dλ terms GΓA1...Amdλ, two types of H2 terms HB
2 GΓBA1...Amλ and

H2,[A1
GΓA2...Am]λ, and finally the H3 terms H3GΓA1...Amλ. Putting to zero all of them one
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obtains the equations

a(m)
n (−)D+m−n + b(m)

n = 0 n = 0, . . . ,D − 6 + m

a(m)
n − b

(m)
n+1(−)m = 0 n = 0, . . . ,D − 7 + m

m(a(m)
n + b

(m)
n+1(−)m + a(m−1)

n ) = 0 n = 0, . . . ,D − 7 + m

−a(m)
n + b

(m)
n+2(−)D+m−n = 0 n = 0, . . . ,D − 8 + m . (4.17)

Fixing the normalisation so that a
(0)
0 = 1, the solution of this set of equations is

a
(m)
0 =

(

−1
2

)m

a
(m)
1 =

(

−1
2

)m
(−)D

b
(m)
0 = −

(

1
2

)m
(−)D

b
(m)
1 =

(

1
2

)m
(4.18)

while all other values are given by the relation

a
(m)
n+2 + a(m)

n = 0 b
(m)
n+2 + b(m)

n = 0 . (4.19)

This gives the gauge algebra of all the fields in equation (4.14).

Next, we consider the other fields in table 2, that are DD−2, DD−1,A and DD, D′
D and

DD,AB . We first consider the fields

DD−2+m,A1...Am m = 0, 1, 2 , (4.20)

while the D-form singlets will be separately discussed later. We write the gauge transfor-

mation as

δDD−2+m,A1...Am = dΛD−3+m,A1...Am +
D−4+m
∑

n=0

c(m)
n GD−2+m−nΓA1...Amλn (4.21)

+H3ΛD−5+m,A1...Am − mH2,[A1
ΛD−4+m,A2...Am] − HB

2 ΛD−4+m,BA1...Am

while the field strength is

FD−1+m,A1...Am = dDD−2+m,A1...Am +
D−4+m
∑

n=0

d(m)
n GD−2+m−nΓA1...AmCn+1 (4.22)

+H3DD−4+m,A1...Am + mH2,[A1
DD−3+m,A2...Am] + HB

2 DD−3+m,BA1...Am ,

where c
(m)
n and d

(m)
n are real parameters. Again, we have written the field strengths and

gauge transformations so that gauge invariance of the field strengths with respect to the

parameters Σ and Λ is already implied, while imposing gauge invariance with respect to λ

leads to the equations

c(m)
n (−)D+m−n + d(m)

n = 0 n = 0, . . . ,D − 4 + m

c(m)
n − d

(m)
n+1(−)m + a(m+1)

n = 0 n = 0, . . . ,D − 5 + m

m(c(m)
n + d

(m)
n+1(−)m + c(m−1)

n ) = 0 n = 0, . . . ,D − 5 + m

−c(m)
n + d

(m)
n+2(−)D+m−n + a(m)

n = 0 n = 0, . . . ,D − 6 + m . (4.23)
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The reader can realise by direct inspection that there is a one parameter family of solutions

in each dimension. This is expected from eq. (4.13), which shows that in each dimension one

can add to the (D− 2)-form a suitable combination quadratic in the C fields such that the

gauge transformation of the resulting field is still in the abelian basis. Taking into account

this redundancy, one finds the solutions corresponding to the DD−2+m,A1...Am as in table 2.

We consider explicitly here as a prototype example the five-dimensional case. Denoting

with α the undetermined parameter, we have that the algebra of the D3 form closes if

c
(0)
0 = α c

(0)
1 = −α + 1

2

d
(0)
0 = α d

(0)
1 = α − 1

2 . (4.24)

We choose to fix the value of α such that the solution looks the most symmetric. This

value is α = 1
4 , as can be seen from eq. (4.24). This gives

c
(0)
0 = 1

4 c
(0)
1 = 1

4

d
(0)
0 = 1

4 d
(0)
1 = −1

4 . (4.25)

Plugging this solution back in equation (4.23) one then finds

c
(1)
0 = −1

4 c
(1)
1 = 0 c

(1)
2 = −1

4

d
(1)
0 = 1

4 d
(1)
1 = 0 d

(1)
2 = 1

4 (4.26)

for the D − 1-form and

c
(2)
0 = 3

16 c
(2)
1 = − 1

16 c
(2)
2 = 1

16 c
(2)
3 = − 3

16

d
(2)
0 = 3

16 d
(2)
1 = 1

16 d
(2)
2 = 1

16 d
(2)
3 = 3

16 (4.27)

for the D-form. Similarly, it is straightforward to derive the solutions of eq. (4.23) in other

dimensions.

Finally, we consider the two D-form singlets in table 2. We write the gauge trans-

formations and the fields strength (again, the gauge transformations for these fields can

be determined imposing the formal gauge invariance of a field strength, although this is

actually identically zero) as

δDD = dΛD−1 +
D−2
∑

n=0

enGD−nλn + H3ΛD−3 − HA
2 ΛD−2,A (4.28)

and

FD+1 = dDD +

D−2
∑

n=0

fnGD−nCn+1 + H3DD−2 + HA
2 DD−1,A , (4.29)

with en and fn real parameters, and gauge invariance with respect to Σ and Λ already

implied. Imposing gauge invariance with respect to λ leads to the equations

en(−)D−n + fn = 0 n = 0, . . . ,D − 2

en − fn+1 + c(1)
n = 0 n = 0, . . . ,D − 3

−en + fn+2(−)D−n + c(0)
n = 0 n = 0, . . . ,D − 4 . (4.30)

– 21 –



J
H
E
P
0
5
(
2
0
1
1
)
1
3
1

The reader can verify by directly solving the equations that in each dimension there are

two solutions. Given that there are no possible field redefinitions, as shown in eq. (4.13),

this implies that there are two D-form singlets, in agreement with table 2. As an example,

we give again the solution for the five-dimensional case, using the solution (4.25) and (4.26)

for the coefficients c
(0)
n and c

(1)
n . That is

e0 = β e1 = −β + 1
4 e2 = −β + 1

4 e3 = β

f0 = β f1 = β − 1
4 f2 = −β + 1

4 f3 = −β . (4.31)

This solution contains an arbitrary real parameter β, which is the relative normalisation

of the two D-forms.

To conclude, we have determined the gauge transformations of all the fields in table 2

for any dimension. In the next section we will use these results to determine the corre-

sponding WZ terms, and by analysing the world-volume field content we will show in which

cases we expect these WZ terms to be describing supersymmetric branes.

5 String solitons in any dimension

The aim of this section is to derive a universal expression for the WZ terms that we claim

to describe the charge sector of the effective action of string solitons in any dimension. This

analysis is the generalisation to any dimension of the one performed in section 3 in the

ten-dimensional case. For any of the forms given in table 2, whose gauge transformations

have been determined in the previous section, one can introduce suitable world-volume

fields that lead to a gauge invariant WZ term. We expect the world-volume fields to occur

in a democratic formulation together with their electromagnetic duals. We stress that

this is a world-volume duality relating fields in the effective action, which has nothing

to do with the target space electromagnetic duality relating the various bulk fields in D

dimension. After this electromagnetic duality is taken into account, we expect the world-

volume fields of supersymmetric branes to belong to half-supersymmetry multiplets. These

multiplets are vector multiplets in all cases, with the exception of the 5-branes, for which

either a vector multiplet or a tensor multiplet can occur. This will thus be our selection

criterion, we select all WZ terms whose corresponding world volume fields fit within a

half-supersymmetry multiplet.

We first review how the D-brane WZ terms in [10] were constructed. Given that the

gauge algebra reviewed in eqs. (4.1) and (4.6) only contains the field strengths of the α = 0

fields, one only needs to introduce world-volume fields b0,A and b1 associated to these fields,

that is

b0,A : δb0,A = −Σ0,A

b1 : δb1 = −Σ1 , (5.1)

and define the gauge invariant quantities

F1,A = db0,A + B1,A

F2 = db1 + B2 − H2,AbA
0 . (5.2)

This leads to the gauge-invariant WZ terms in eqs. (1.5) and (1.8).
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It is worth showing how eq. (1.8) leads to the correct number of worldvolume degrees

of freedom for any p-dimensional worldvolume in D dimensions. This analysis was not

performed in full detail in [10]. The WZ term (1.8) contains the worldvolume vector

b1 together with 2d worldvolume scalars b0,A. The vector corresponds to p − 2 degrees

of freedom, and considering also the D − p embedding scalars one needs d additional

worldvolume scalars to fill the bosonic sector of a vector multiplet in p dimensions, while

there are 2d scalar fields b0,A, that is twice as many. We now show that in eq. (1.8) only

half of the b0,A fields occur. To understand the mechanism, it is enough to expand (1.8)

and consider only the first F1,A term, that is

Cp,α + F1,AΓA
α

βCp−1,β + . . . . (5.3)

We move to an SO(d, d) lightcone basis, and we denote the light-cone directions as 1±,

2±,. . . , d±. The analysis of the properties of the SO(d, d) Gamma matrices in the lightcone

basis is performed in detail in appendix A. For a given value of the spinor index α, one can

show that for any fixed n = 1, . . . , d only one of the two matrices Γn±,α
β gives a non-zero

result when acting on a chiral spinor. This can be seen explicitly in the basis chosen in

appendix A, see e.g. eqs. (A.24), (A.26) or (A.27) and (A.28), and one can show using the

SO(d, d) Gamma matrices given in (A.10) and (A.11) and the lightcone ones given in (A.22)

that this result is completely general. This analysis proves that for any given D-brane only

half of the 2d worldvolume scalars actually occurs, and this results in the correct number

of degrees of freedom for a p-dimensional worldvolume vector multiplet.

We next consider the D fields, whose gauge algebra has been derived in the previous

section. The corresponding gauge transformations contain both the field strengths of the

B and of the C fields, which implies that in order to write down a gauge invariant WZ

term one has to introduce, together with the world-volume fields in (5.1), the world-volume

fields cn,α such that

δcn,α = −λn,α . (5.4)

This implies that these fields are SO(d, d) spinors of one chirality for n even and of opposite

chirality for n odd,

c2n,α =

(

c2n,a

0

)

, c2n−1,α =

(

0

c2n−1,ȧ

)

. (5.5)

One then introduces the gauge invariant world-volume curvatures

Gn,α = dcn−1,α + Cn,α − H2,AΓA
α

βcn−2,β + H3cn−3,α , (5.6)

whose curl is

dGn,α = Gn+1,α − H2,AΓA
α

βGn−1,β − H3Gn−2,α . (5.7)

Using this, one can define a gauge invariant WZ term in all cases.

We first consider the fields DD−4+m,A1...Am in eq. (4.14), whose gauge transformation is

given in eq. (4.15), with the coefficients given in eqs. (4.18) and (4.19). The corresponding
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WZ term is given by the universal expression

[

eF1 m!
m̃!

(

DD−4+m̃ −
D−6+m̃
∑

n=0

a(m̃)
n (−)D+m̃−nGD−5+m̃−nΓ(m̃)Cn+1

)]

D−4+m,A1...Am

. (5.8)

The rule in this expression is that we have to pick a D−4+m form, so for any D−4+m̃-form

in the term in curved brackets we have to pick m − m̃ powers of F1. The SO(d, d) indices

are always meant to be antisymmetrised, and we have denoted with Γ(m̃) the antisymmetric

product of m̃ Gamma matrices. The real coefficients a
(m̃)
n are given in eqs. (4.18) and (4.19).

Using eqs. (4.6) and (4.15), as well as eq. (5.7), one can show that the variation of eq. (5.8)

is a total derivative.

The cn,α fields that appear in eq. (5.8) are c0,α, c1,α,. . . , cD−6+m,α. We will impose in

all cases that the c fields are related by electromagnetic duality relations on the D−4+m-

dimensional world-volume, which implies that the field cn,α and the field cD−6+m−n,α are

duals. When D − 4 + m is even, the field of rank (D − 6 + m)/2 satisfies a self-duality

condition. The reason for assuming this is that we have already shown in section 3 that

this leads to the right counting of degrees of freedom in ten dimensions. When counting

the bosonic world-volume degrees of freedom, one has also to consider the 4−m embedding

scalars, together with the extra scalars b0,A. We are counting the degrees of freedom for

fixed A1 . . . Am, where the indices are all different because of antisymmetry. This implies

that the scalars b0,A contribute as m degrees of freedom. Therefore, the embedding scalars

plus the scalars b0,A contribute in total as four degrees of freedom in all cases.

We then count the degrees of freedom carried by the c fields. We recall that the

SO(d, d) chiral spinors cn,α have 2d−1 real components. As we will show in a case by case

analysis in the following, one needs 2d−m−1 chiral components to get the right counting

of the degrees of freedom in each case. When m = 1 the different light-cone SO(d, d)

directions correspond to independent branes. This is because, as shown in appendix A,

the light-cone Gamma matrices have the property of projecting out half of the components

of a spinor for each chirality. As already discussed, we denote the light-cone directions as

1±, 2±, . . . , d±. For m = 2, m = 3 and m = 4 the request that the degrees of freedom

collect in a multiplet, that is the request that the product of m Gamma matrices projects

a chiral spinor to 2d−m−1 chiral components, imposes that one has to consider only the

components corresponding to indices n1±n2±. . . nm±, with the ni all different. In formula,

we have

Γ(m) → Γn1±n2±...nm± , all ni different . (5.9)

As discussed in appendix A, this forms a conjugacy class, and the corresponding products of

m Gamma matrices satisfy the property of being nilpotent. In D = 9, . . . , 6 one has among

the rest the case m = d, which is special because in this case the Gamma matrices with

indices n1 ± . . . .nd± (n’s all different) map a chiral spinor to either zero or one component

(according to the chirality of the spinor). Given these rules, the outcome of our analysis

will be that eq. (5.8) leads to a world-volume vector multiplet for m < d, and to either

a vector or a tensor multiplet for m = d (which corresponds to a 5-brane), depending on
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D m = 2 m = 3 m = 4

8 3+ + 3− 2 + 2

7 15 12 10+ + 10− 4 + 4

6 28 24 56 32 35+ + 35− 8 + 8

5 45 40 120 80 210 80

Table 9. Table giving the dimension of the conjugacy classes of the solitonic branes in various

dimensions. For each m, we denote in the first column the SO(d, d) representation of the field

DD−4+m,A1...Am
, whose dimension is

(

2d
m

)

, and in the second column the dimension of the conjugacy

class, 2m
(

d

m

)

. For d = m the representation splits in selfdual and anti-selfdual, corresponding to

branes supporting either a vector or a tensor multiplet.

whether one takes the self-dual or the anti-self-dual part of the completely antisymmetric

SO(d, d) representation with d indices. We will also see that one cannot obtain the right

degrees of freedom for m > d, so we expect this case not to correspond to a brane. This

result is summarised in table 1. The branes are along the light-cone directions described

above, and their number for each dimension and for each m is given in table 9 (see also

appendix A for the details).

We now analyse the explicit form of eq. (5.8) in all the specific cases, that is for all

the different values of m from 0 to 4. The fact that the counting works for the case m = 0

actually already guarantees that it has to work for higher m. For instance, one gets for

m = 1 in D dimensions exactly the same counting as for m = 0 in D + 1 dimensions. The

reason is that when going from D+1 to D dimensions, the number of spinor components for

each c field doubles, which is compensated by the fact that each light-cone Gamma matrix

projects out half of the components. This gives the same counting for a D− 3-dimensional

world-volume. The same reasoning applies to the other values of m.

m = 0. For m = 0, eq. (5.8) collapses to the expression

DD−4 −

D−6
∑

n=0

a(0)
n (−)D−nGD−5−nCn+1 (5.10)

containing the world volume fields c0,α,. . . ,cD−6,α, with cn,α dual to cD−6−n,α. In addition

to these fields, one has to consider four embedding scalars in any dimension. We now

analyse this in different dimensions.

The ten-dimensional case has already been discussed in section 3. We have shown that

in the IIA case the fields are c0, c2 and c4. Imposing duality, one obtains one scalar plus

one self-dual tensor, that together with the four embedding scalars makes the bosonic field

content of a tensor multiplet in six dimensions. This is the WZ term of an NS5A brane.

In the IIB case, instead, one has c1 and c3, which corresponds to a vector, and together

with the four embedding scalars one obtains a vector multiplet, which is the WZ term of

an NS5B brane.

In nine dimensions one has a five-dimensional world volume. The world-volume field

content is c0, c1, c2 and c3 (there are no indices because the chiral spinors of SO(1, 1) are
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one-dimensional). Imposing duality, one obtains a vector and a scalar, that together with

the four embedding scalars makes a vector multiplet in five dimensions. We thus expect

this to be the WZ term of a 4-brane.

In eight dimensions the world-volume is four-dimensional, and the fields are c0,a, c1,ȧ

and c2,a, two-dimensional spinors of the T-duality group SO(2, 2). After duality, this

corresponds to two scalars and one vector, which together with the four embedding scalars

makes a vector multiplet in four dimensions. We consider this the WZ term of a 3-brane

in eight dimensions.

In seven dimensions one has a three-dimensional world-volume, with fields c0,a and

c1,ȧ, a, ȧ = 1, . . . , 4. These fields are dual in three dimensions, and together with the four

embedding scalars this makes the eight bosonic degrees of freedom of a three-dimensional

scalar multiplet. Similarly, in six dimensions one has a two-dimensional 8-component scalar

c0,a which satisfies a self-duality condition, that is four degrees of freedom. Again, together

with the embedding scalars this sums up to eight bosonic degrees of freedom.

To summarise, we thus expect in all cases the WZ term of eq. (5.10) to correspond to

a supersymmetric D − 5-brane.

m = 1. Eq. (5.8), evaluated for m = 1, gives

DD−3,A +

D−5
∑

n=0

a(1)
n (−)D−nGD−4−nΓACn+1

+F1,A

(

DD−4 −
D−6
∑

n=0

a(0)
n (−)D−nGD−5−nCn+1

)

. (5.11)

Clearly, this expression only makes sense in dimension lower than ten. To count the

expected degrees of freedom, one has to split the A index in light-cone coordinates, and

each light-cone coordinate corresponds to 2d−2 components for the chiral spinor.

In nine dimensions (that is for d = 1) each of the two light-cone coordinates project

on either one chirality or the opposite. Indeed, for SO(1, 1) splitting ΓA in light-cone

coordinates corresponds to taking the self-dual or the anti-self-dual combination (see ap-

pendix A). This means that in the anti-selfdual case one gets c0, c2 and c4, and in the

selfdual case one gets c1 and c3, in both cases together with 4 additional scalars. Imposing

duality one gets a 5-brane supporting a tensor multiplet in the former case and a vector

multiplet in the latter.

In eight dimensions each light-cone component selects a single spinor component out

of the two components for each chirality. This leaves the fields c0, c1, c2 and c3 in a

five-dimensional world-volume. Imposing duality, this leads to a vector multiplet for each

light-cone component. This shows how the halving of the number of spinor components

with respect to the m = 0 case is crucial to get the right counting.

In seven dimensions each light-cone Gamma matrix projects on two components out

of the four spinor components for each chirality. This gives two c0’s, two c1’s and two

c2’s. Imposing self-duality on the four-dimensional world-volume one gets a vector and two

scalars, that together with the additional four scalars makes the bosonic sector of a vector

multiplet in four dimensions.
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The same applies to the lower dimensional case. In general, as already stressed, in

each dimension D the counting of the degrees of freedom of the m = 1 branes is the same

as the counting of the degrees of freedom of the m = 0 branes in D + 1 dimensions.

m = 2. In this case in nine dimensions one would expect a 6-brane, that is a 7-

dimensional world-volume, but there is no way of selecting the fields of a seven-dimensional

vector multiplet, because there is no way of getting rid of the world-volume fields c2 and

c3, which would correspond to a seven-dimensional rank-2 tensor. We thus expect this not

to correspond to a brane. This applies to all the other cases m > d.

In eight dimensions, we take the light-cone directions 1 ± 2±. For each of these four

components one selects out of a 2-component chiral spinor either one component or zero,

according to the chirality. The directions 1 + 2+ and 1 − 2− select c1 and c3, while the

directions 1 + 2− and 1 − 2+ select c0, c2 and c4. In the first case one gets a vector

multiplet, and in the second a tensor multiplet. Therefore, there are two vector branes and

two tensor branes, as shown in table 9.

In seven dimensions, out of the 15 SO(d, d) components of D5,AB , one selects the 12

components 1±2±, 1±3± and 2±3±. The products of Gamma matrices in these directions

select a single components out of the four-component spinors cn,α, resulting in a vector mul-

tiplet in a five-dimensional world-volume. All the lower-dimensional cases are analogous,

one obtains in D dimensions the same counting of the case m = 1 in D + 1 dimensions.

m = 3. This case does not exist in nine dimensions, while in eight dimensions it does

not lead to a vector multiplet, exactly like the m = 2 case in nine dimensions. In seven

dimensions one considers the directions 1 ± 2 ± 3±, which is eight components. Four of

the corresponding Gamma matrices project on a single component of one chirality, and

the other four of a single component of the opposite chirality. This gives a six-dimensional

world-volume with either a vector or a tensor multiplet.

In lower dimensions D one gets (D − 2)-branes supporting vector multiplets. These

branes correspond to the light-like directions n1±n2±n3±, with n1, n2 and n3 all different,

and their number is given in table 9. Again, the counting is precisely the same as the one

of the previous case m = 2 in D + 1 dimensions.

m = 4. In this case the branes are spacetime-filling. One does not get a vector multiplet

in eight and seven dimensions, while in six dimensions one takes the 16 components 1±2±

3±4±. The corresponding products of Gamma matrices project on a single component of a

given chirality. This gives 8 branes supporting a vector multiplet and 8 branes supporting

a tensor multiplet.

In lower dimensions D one gets (D − 1)-branes supporting vector multiplets. These

branes correspond to the light-like directions n1 ± n2 ± n3 ± n4±, with n1, n2, n3 and n4

all different, and their number is given in table 9. Again, as for all the other cases the

counting is precisely the same as the one of the previous case m = 3 in D + 1 dimensions.

We finally comment on the possibility that the other fields in table 2 lead to WZ terms

that satisfy our criteria. One simple reason why this is not the case is that these WZ

term must contain the field strength F2, because the corresponding fields contain H3 in

– 27 –



J
H
E
P
0
5
(
2
0
1
1
)
1
3
1

D R-symmetry n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

IIA 1 1 1 1 – 1 1

IIB SO(2) – 2 – 1 – 1+ + 2+

9 SO(2) 1 + 2 2 1 1 1 + 2

8 U(2) 2 × 3 3 2 × 1 1 + 3 3+ + 3−

7 Sp(4) 10 5 1 + 5 10

6 Sp(4)×Sp(4) (4,4) (1, 1) (4, 4) (10,1)+

(1, 5) (1,10)−

(5, 1)

5 Sp(8) 1 + 27 27 36

4 SU(8) 28 + 28 63 36+ + 36
−

3 SO(16) 120 135

Table 10. This table indicates the R-representations of the n-form central charges of 3 ≤ D ≤ 10

maximal supergravity. If applicable, we have also indicated the space-time duality of the central

charges with a superscript ±. The central charges that are discussed in the text are indicated

in italic.

their field strengths and gauge transformations, differently from the fields DD−4+m,A1...Am

in eq. (4.14) (see section 4). This would thus lead to an additional world-volume vector,

which would make it impossible to form a world-volume multiplet.

In principle one should also consider the possibility of taking linear combinations of

fields in table 2 that belong to the same representation. This is the case for the two 7-forms

in 9 dimensions, that are both SO(1, 1) singlets, for the two 7-forms in 8 dimensions, that

are both SO(2, 2) vectors, and of (some of) the D-forms in nine, eight and seven dimensions.

We have investigated this possibility, and the outcome of our analysis is that there is no

possible linear combination that selects the right degrees of freedom.

To summarise, none of these additional fields give WZ terms that satisfy our criteria,

and therefore our final result is the one summarised in tables 1 and 9.

6 Central charges

It is interesting to compare our results with what we know about the central charges of the

target space Poincare supersymmetry algebra. These charges are n-forms that transform as

representations of the R-symmetry of the supersymmetry algebra, see table 10. In general

an n-form central charge relates to a p-brane with p = n or p = D−n. The relation between

central charges and branes [27] only applies to asymptotically flat branes and, therefore,

can only be applied to the solitonic DD−4 and DD−3,A fields but not to the higher-form

D-fields. We therefore only consider (D − 5)-branes and (D − 4)-branes implying that

we consider only solitonic branes for D ≥ 4. These particular branes, corresponding to

m = 0 and m = 1, do not transform in non-trivial conjugacy classes. Below we discuss the

different dimensions separately and show how all central charges correspond to the branes

we have been discussing in this paper.

– 28 –



J
H
E
P
0
5
(
2
0
1
1
)
1
3
1

IIA. In the ten-dimensional IIA theory we consider 5-branes and 6-branes which are

described by the 5-form and the dual of the 4-form central charges, respectively. We first

consider the 6-branes. The IIA theory contains only a Dirichlet 6-brane with a vector

multiplet. This D6-brane is described by (the dual of) the 1 4-form central charge. We

next consider the 5-branes which are described by the 5-form central charges. In the D-

brane sector there are no 5-branes. In the solitonic sector there is a solitonic 5-brane with a

tensor multiplet. Finally, in the gravitational sector there is a KK monopole with a vector

multiplet [28]. In total we find two 5-branes, one with a vector and one with a tensor

multiplet. These two branes are described by the 1 5-form central charge and its dual.

IIB. Like in the IIA case, we consider 5-branes and 6-branes which are described by the

5-form and the dual of the 4-form central charges, respectively. The IIB theory has no 6-

branes and, indeed there is no 4-form central charge. We next consider the 5-branes. In the

D-brane sector the IIB theory contains a D5-brane with a vector multiplet. In the solitonic

sector it contains a solitonic 5-brane with a vector multiplet and in the gravitational sector

it contains a KK monopole with tensor multiplet [28]. In total we find three 5-branes. The

KK monopole, with the tensor multiplet, is described by the singlet 1+ self-dual central

charge whereas the D5-brane and the solitonic 5-brane, with the vector multiplets, are

described by the S-doublet 2+ of self-dual central charges.

D = 9. In D = 9 dimensions we consider the 4-branes and 5-branes which are both de-

scribed by the 4-form central charges. We first consider the 5-branes. In the D-brane sector

there is a Dirichlet 5-brane with a vector multiplet that transforms as a one-dimensional

chiral spinor representation of SO(1, 1). In the soliton sector there is a 2-dimensional T-

duality vector of solitons that splits into a tensor soliton and a vector soliton. The tensor

soliton corresponds to the 1 dual 4-form central charge and the Dirichlet 5-brane together

with the vector soliton correspond to the 2 dual 4-form central charge. In the 4-brane

case we have in the D-brane sector a Dirichlet 4-brane with a vector multiplet that is a

one-dimensional chiral spinor of SO(1, 1) and in the soliton sector a singlet vector soliton.

Furthermore, in the gravitational sector we have a KK monopole with a vector multiplet.

The KK monopole corresponds to the 1 4-form central charge and the Dirichlet 4-brane

together with the vector soliton correspond to the 2 4-form central charge.

D = 8. In D = 8 dimensions we consider the 3-branes and 4-branes which are described

by the 3-form and 4-form central charges. From now on all branes have vector multiplets.

We first consider the 4-branes. In the D-brane sector there is a two-dimensional T-duality

spinor of Dirichlet 4-branes. In the soliton sector there is a 4-dimensional T-duality vector

of solitons. In total this gives 6 4-branes corresponding to the 6 3+ + 3− 4-form central

charges where each Dirichlet 4-brane together with 2 solitonic branes form a triplet. We

next consider the 3-branes. In the D-brane sector there is a 2-component T-duality spinor

of Dirichlet 3-branes. In the soliton sector there is a singlet solitonic 3-brane and in the

gravitational sector there is a single KK monopole. This adds up to 4 branes corresponding

to the 4 3-form central charges. The KK monopole corresponds to the 1 central charge while

the 2 Dirichlet branes together with the solitonic brane correspond to the 3 central charges.
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D = 7. In D = 7 dimensions we consider 2-branes and 3-branes corresponding to 2-

form and 3-form central charges. We first consider the 3-branes. From the D-brane sector

we have a 4-component T-duality spinor of Dirichlet 3-branes. In the solitonic sector we

have a 6-component T-duality vector of solitons. Together, they correspond to the 10

3-form central charges. We next consider the 2-branes. In the D-brane sector we have a 4-

component T-duality spinor of Dirichlet 2-branes while we have a singlet solitonic 2-brane

and KK monopole. The KK monopole corresponds to the 1 2-form central charge while

the 4 Dirichlet 2-branes and singlet soliton correspond to the 5 2-form central charge.

D = 6. In D = 6 dimensions we consider 1-branes and 2-branes corresponding to the 1-

form and 2-form central charges. We first consider the 2-branes. We have an 8-component

T-duality spinor of Dirichlet 2-branes and an 8-component T-duality vector of string soli-

tons. Together, they correspond to the 16 (4,4) 2-form central charges. We next consider

the 1-branes. In this case also the fundamental sector contributes with a singlet fundamen-

tal string. On top of that we have an 8-component T-duality spinor of Dirichlet 1-branes,

a singlet string soliton and a singlet KK monopole adding up to a total of 11 1-branes.

The KK monopole corresponds to the (1,1) 1-form central charge. Four Dirichlet branes

together with the fundamental string correspond to the (5,1) 1-form central charges while

the remaining 4 Dirichlet branes together with the string soliton correspond to the (1,5)

1-form central charges.

D = 5. In D = 5 dimensions we consider 0-branes and 1-branes corresponding to the

0-form and 1-form central charges. We first consider the 1-branes. We have a singlet fun-

damental string, a 16-component T-duality spinor of Dirichlet 1-branes and a 10-component

T-duality vector of string solitons. Together, these 27 1-branes correspond to the 27 1-

form central charges. We next consider the 0-branes. We have a 10-component T-duality

vector of fundamental 0-branes, a 16 component T-duality spinor of Dirichlet 0-branes, a

singlet string soliton and a singlet KK monopole adding up to a total of 28 branes. The

KK monopole correspond to the 1 0-form central charge while the remaining 27 0-branes

correspond to the 27 0-form central charge.

D = 4. Finally, we consider D = 4 dimensions with 0-branes only. We have a 12-

component T-duality vector of fundamental 0-branes, a 32-component T-duality spinor

of Dirichlet 0-branes and a 12-component T-duality vector of solitonic 0-branes adding up

to a total of 56 branes. Sixteen of the Dirichlet 0-branes together with the 12 fundamen-

tal 0-branes correspond to the 28 0-form central charges while the remaining 16 Dirichlet

0-branes together with the 12 solitonic 0-branes correspond to the other 28 0-form central

charges.

We conclude that the T-duality properties of the fundamental branes, Dirichlet branes,

solitonic branes and KK monopoles precisely fit with the counting of the central charges

in the supersymmetry algebra. This nicely confirms the results obtained in this paper.
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7 E11 and a ten-dimensional origin

In section 2 we have derived the T-duality representations of all solitonic p-form potentials

in D < 10 dimensions by decomposing the known U-duality representations into T-duality

representations. Remarkably, unlike D-branes, these D < 10 T-duality representations

cannot be obtained by a toroidal reduction of the D = 10 solitonic p-form potentials. In

other words, the lower dimensional p-form potentials do not possess a ten-dimensional origin

in the context of the established IIA and IIB supergravity multiplets. One needs further

D = 10 representations to obtain the complete D < 10 T-duality multiplets. One way to

achieve this, is to assume that additional mixed-symmetry representations can be added

to the ten-dimensional supergravity multiplets without upsetting the counting of degrees

of freedom. It turns out that precisely those mixed-symmetry fields are needed that are

predicted by the Kac-Moody algebra E11. With the present technology, it is not known

how to extend the existing supergravity multiplets with mixed-symmetry fields at the level

of the full non-linear supersymmetry algebra. This is only understood at the linearized

level. Nevertheless, it is of interest to see that, once we assume that mixed-symmetry fields

can be included, the E11 Kac-Moody algebra predicts precisely which fields are needed to

re-obtain T-duality after toroidal compactification.

With the above motivation in mind we will show in this section how an E11 analysis

can be used not only to derive all solitonic p-form potentials of IIA and IIB supergravity

but also to derive all solitonic mixed symmetry fields that occur in the IIA and IIB E11

spectrum. In the first part of this section we will determine all solitonic fields, be it p-

form potentials or mixed-symmetry fields, that arise in the E11 decomposition relevant for

the IIA and the IIB theory. Once these fields have been determined, we will show in the

second part of this section how, after a toroidal reduction, they give rise to precisely the

same D < 10 solitonic T-duality multiplets derived earlier in section 2 by decomposing

in each dimension the U-duality representations of each p-form with respect to T-duality,

with the result summarised in table 2.7

7.1 E11 and mixed-symmetry fields

In this subsection we will construct a procedure that selects out of the IIA and IIB E11

spectrum precisely those p-forms and mixed-symmetry fields that are solitonic, i.e. corre-

spond to α = −2. For the reader who wants to skip the technical derivation the final result,

which coincides for the IIA and IIB theory, can be found in eq. (7.14).

Given the Dynkin diagram of E11 in figure 1, deleting any node in the horizontal line

other than node 10 (in the nine-dimensional case one has to delete both nodes 9 and 11)

results in a subgroup GL(D,R)×E11−D, and the positive level generators8 with completely

antisymmetric GL(D,R) indices are associated to the fields of the D dimensional supergrav-

ity theory. In particular, in [7] this decomposition was obtained by explicitly performing a

7The strategy here is similar to the one in [7], where all the eleven-dimensional E11 fields giving rise to

forms after dimensional reduction down to any dimension above two were determined.
8Given the decomposition of a positive root in terms of simple roots, the “level” associated to a given

simple root is the number of times this simple root occurs.
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Figure 1. The E11 Dynkin diagram.

dimensional reduction of the generators associated to eleven dimensions, that is the posi-

tive level generators that are representations of the GL(11,R) subgroup that results from

deleting node 11. Most of these generators do not belong to completely antisymmetric

representations, and therefore the corresponding fields are not forms. Nonetheless, some of

these fields give rise to forms after dimensional reduction. Correspondingly, the supersym-

metry algebra does not close on these fields in the eleven dimensional theory (it does only

at the linearised level), but it does in the lower dimensional one as long as in the lower

dimensional theory they are forms.

In [9] eleven dimensional supergravity was originally shown to be associated to the

E11 algebra after a decomposition that results from deleting node 11, while its dimensional

reduction to the IIA theory is obtained by considering the decomposition that results

from the further deletion of node 10 [9]. The IIB theory was shown to result from E11

decomposed via the deletion of node 9 [29], while the full form field content of both IIA

and IIB, including the 10-forms, was obtained in [30]. This was then shown [2–4] to be the

field content on which the IIA and IIB supersymmetry algebras close.

In this paper we want to determine how the fields of lower-dimensional maximal su-

pergravities form representations of the T-duality group, and we are thus interested in the

dilaton weight of the ten-dimensional E11 fields. We consider the decomposition of the E11

algebra which is appropriate to either the IIB or the IIA theory. As already recalled, the

IIB and the IIA generators correspond to decomposing the E11 algebra with respect to the

two A9 subalgebras that arise from either deleting node 9 (IIB case) or nodes 10 and 11

(IIA case). In both cases, the way the fields scale with respect to the dilaton is dictated by

the level associated to node 10, which we call m [11]. This means that in the corresponding

positive root of E11 the simple root α10 occurs m times. The relation between m and α is

simply [11]9

m = −α . (7.1)

We use now the strategy of refs. [31–33] to decompose the roots of E11 level by level

in terms of representations of a finite dimensional subalgebra. We first concentrate on the

IIB case. The decomposition of the E11 roots which is appropriate to IIB was performed

in [34], and here we review these results. We denote with αi the simple roots associated to

nodes 1-8 and node 11. These are the simple roots of the A9 of IIB. Given a positive root

9The parameter α should not be confused with the E11 roots, which are also denoted by α.
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α of E11, one can then write

α =
∑

i

niαi + lα9 + mα10 , (7.2)

where l and m are the levels associated to nodes 9 and 10. One then writes the simple root

α9 as

α9 = x −
1

2
α10 − λ8 , (7.3)

where x is a vector in the direction orthogonal to the simple roots αi and α10, and where

λ8 is the fundamental weight of the A9 subalgebra associated to node 8, that is

λ8 =
1

5
[α1 + 2α2 + 3α3 + . . . + 8α8 + 4α11] , (7.4)

and

λ2
8 =

8

5
. (7.5)

This gives

x2 = −
1

10
, (7.6)

given that all the simple roots have square length 2. In order to have a representation of

A9 denoted by the Dynkin indices pi in the adjoint of E11, a necessary condition is that

the highest weight
∑

i piλi occurs when one projects the positive roots along the space of

the simple roots αi of A9. This means that one must have

α =
∑

i

piλi + lx +

(

m −
l

2

)

α10 . (7.7)

As shown in [34], there is a relation between the level l and the number of GL(10,R)

indices of the corresponding generators. This relation is dictated by the fact that the root

α9 corresponds to a generator with 2 antisymmetric indices, and thus at level l one finds

that all generators must have 2l indices. Including also the possibility that there are groups

of 10 antisymmetric indices, one obtains the condition

10n +
∑

i

pi(10 − i) = 2l , (7.8)

where n is the number of groups of 10 antisymmetric indices. Another constraint comes

from imposing that the roots must have square length at most 2, or more precisely α2 =

2, 0,−2, . . . [35]. Using eq. (7.6) one gets10

α2 =
∑

ij

piA
−1
ij pj + FB(l,m) , (7.9)

where

FB(l,m) =
2

5
l2 + 2m2 − 2ml (7.10)

10This formula is identical to eq. (27) of ref. [34], as can be seen using eq. (26) in that paper, which

relates the level m to the SL(2,R) weight q.

– 33 –



J
H
E
P
0
5
(
2
0
1
1
)
1
3
1

and where A−1
ij is the inverse of the A9 Cartan matrix,

A−1
ij = (λi, λj) . (7.11)

For the general An−1 algebra the inverse matrix is given by

(Ajk)
−1 =

{

j(n−k)
n

, j ≤ k
k(n−j)

n
, j ≥ k

. (7.12)

The strategy is now to analyse all possible representations at levels l and m that

satisfy the condition of having 2l indices and such that α2 has one of the allowed values

2, 0,−2, . . .. This analysis does not give information about the actual multiplicity of the

representations, which one can obtain by comparison with listed results (see for instance

the tables in ref. [30]). One can immediately see by direct inspection that for m = 0 one

can only get a solution for l = 0 and l = 1. In particular, the generator corresponding to

the l = 1 solution is an object with 2 antisymmetric indices, and the corresponding field is

the fundamental 2-form B2. One has

FB(l, 0) > 2 for l > 2 (7.13)

and therefore there are no solutions for l > 2. Also the case l = 2 has no solution.

For m = 1 one has solutions for l = 0, 1, . . . , 5, the corresponding fields have completely

antisymmetric indices and are the RR fields C2l of the IIB theory. It is quite easy to see

that there are no solutions for l ≥ 6. Therefore we have shown that the only fields at level

m = 1 are the IIB RR forms. We will see that the same result applies to the IIA theory.

This is all in agreement with the results of [10], which show that all the RR forms in lower

dimension are obtained from dimensional reduction of the ten-dimensional ones.

Similarly, one can consider m = 2. In this case it is easy to see by direct substitution

that there are no solutions if l = 0, l = 1 and l = 2, as well as for l ≥ 8. The only solutions

are

l = 3 : A6

l = 4 : A7,1 A8

l = 5 : A8,2 A9,1 2 × A10

l = 6 : A9,3 A10,2

l = 7 : A10,4 , (7.14)

where the multiplicity 2 of the 10-form A10 is read from [30]. The above result summarizes

all solitonic p-form potentials and mixed symmetry fields contained in the IIB decomposi-

tion of E11.

We now consider the IIA case. We can obtain the IIA theory by first deleting node 11

and then further decomposing by deleting node 10, or the other way around. We denote

with l the level associated with the simple root α11, and with m the level associated with

the simple root α10, while the roots from 1 to 9 are denoted by αi (we deliberately use the

– 34 –



J
H
E
P
0
5
(
2
0
1
1
)
1
3
1

same notation as in the IIB case, although the decomposition of the algebra is different).

We write a generic positive root as

α =
∑

i

niαi + lα11 + mα10 . (7.15)

We first delete node 11, and we write

α11 = y − µ8 , (7.16)

where the vector y is orthogonal to the A10 space of simple roots α1, . . . α10, and µ8 is the

fundamental weight associated to node 8 in A10, that is

µ8 =
3

11

[

α1 + 2α2 + . . . . + 8α8 +
16

3
α9 +

8

3
α10

]

(7.17)

and

µ2
8 =

24

11
. (7.18)

This gives

y2 = −
2

11
. (7.19)

Once (7.16) is plugged into (7.15), one can see that the coefficient of the root α10 is m− 8
11 l.

If we now delete node 10, we write the simple root α10 as

α10 = z − λ9 , (7.20)

where z is a vector orthogonal to the simple roots of A9 (and orthogonal to y as well), and

where λ9 is the fundamental weight of A9 associated to node 9, that is

λ9 =
1

10
[α1 + 2α2 + . . . + 9α9] (7.21)

and

λ2
9 =

9

10
, (7.22)

which gives

z2 =
11

10
. (7.23)

Repeating the same argument as for IIB, in order to have a representation of highest

weight state
∑

i piλi, we must have

α =
∑

i

piλi + ly +

(

m −
8

11
l

)

z . (7.24)

Using (7.19) and (7.23) one gets

α2 =
∑

ij

piA
−1
ij pj + FA(l,m) , (7.25)
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where

FA(l,m) =
2

5
l2 +

11

10
m2 −

8

5
ml . (7.26)

One gets exactly the same result if one first deletes node 10 and then node 11. In this

case one writes

α10 = z̃ − µ̃9 , (7.27)

where now z̃ is orthogonal to the space of simple roots α1, . . . , α9 and α11 which form the

algebra D10, and µ̃9 is the D10 fundamental weight associated to node 9,

µ̃9 =
1

2
[α1 + 2α2 + . . . + 8α8 + 5α9 + 4α11] . (7.28)

This gives

µ̃2
9 =

5

2
, (7.29)

which implies

z̃2 = −
1

2
. (7.30)

Once eq. (7.27) is substituted in eq. (7.16), one can see that the coefficient in front of the

root α11 is (l − 2m). If we now delete node 11, this corresponds to writing

α11 = ỹ − λ8 , (7.31)

where ỹ is orthogonal to the A9 roots αi and to z̃, and λ8 is

λ8 =
1

5
[α1 + 2α2 + 3α3 + . . . + 8α8 + 4α9] , (7.32)

which implies

λ2
8 =

8

5
(7.33)

and

ỹ2 =
2

5
. (7.34)

Using these results one obtains again the expression (7.25) for the square length of the

root.

We now want to analyse the representations that arise at each level. Again, we must

impose α2 = 2, 0,−2 . . .. We also have a constraint on the GL(10,R) representations coming

from imposing that the number of indices of a generator at levels (l,m) must be 2l + m,

that is

10n +
∑

i

pi(10 − i) = 2l + m , (7.35)

where again n is the number of groups of 10 antisymmetric indices. For m = 0 we get

the same result as in IIB, while for m = 1 we only get solutions for l = 0, 1, . . . , 4, the

corresponding fields being the RR forms, C2l+1.

It is important to emphasise that by simply looking at eqs. (7.10) and (7.26) one

deduces that for any given m there is a finite number of solutions, that is a finite number

of representations, in both IIA and IIB. A more careful analysis reveals that

FB(l +
m

2
,m) = FA(l,m) . (7.36)
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This remarkable result implies that when m is even the analysis of the representations for

IIB and IIA is identical, that is for any given m the representations that one gets at a given

level l for IIA are the same as the ones that one gets at level l + m
2 for IIB. If one considers

all the representations with a given even m, the IIA and IIB thus give the same result. In

particular, this implies that the m = 2 fields are the same for both theories, and they are

given in (7.14). Given that the level must be integer, nothing can be said when m is odd,

and there is no way to compare the representations of IIA with the representations of IIB

in this case.

7.2 E11 and T-duality

In the previous subsection we have determined all solitonic fields in D = 10 dimensions,

p-forms and mixed-symmetry fields included, and found the following result for both IIA

and IIB:

A6 A7,1 A8 A8,2 A9,1 A9,3 2 × A10 A10,2 A10,4 . (7.37)

We now proceed with a reduction of all these fields on a d-torus, where d = 10 − D, and

we only keep the resulting p-forms, that is we only consider the D-dimensional spacetime

indices to be completely antisymmetric. Each field, when reduced, is decomposed in forms

that are representations of SL(d,R), and we will show that summing for each form the

representations of SL(d,R) resulting from all the 10-dimensional fields we obtain represen-

tations of the T-duality group SO(d, d).

We consider D ≥ 3, while the cases D < 3 will be considered separately at the end of

this section. The lowest form that one can get is a D − 4-form (this form only exists for

D ≥ 4), which corresponds to A6 with the highest possible amount of internal indices:

AD−4,i1...id → 1 . (7.38)

This is a singlet of SL(d,R), which is of course also a singlet of SO(d, d).

The D − 3 forms come from A6,

AD−3,i1...id−1
→ d (7.39)

and from A7,1,

AD−3,i1...id,j → d . (7.40)

This gives the vector representation of SO(d, d) as results from

2d = d⊕ d . (7.41)

Next we consider the D − 2-forms. They come from A6,

AD−2,i1...id−2
→ (d⊗ d)A , (7.42)

from A7,1,

AD−2,i1...id−1,j → d⊗ d , (7.43)
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from A8,

AD−2,i1...id → 1 (7.44)

and from A8,2,

AD−2,i1i2 → (d ⊗ d)A . (7.45)

Here and in the rest of this section we denote with the suffix A the antisymmetrised product

of the representations. Summing up all the representations of the D − 2-forms gives the

SO(d, d) representations 1 ⊕ (2d ⊗ 2d)A, where

(2d ⊗ 2d)A = (d ⊗ d)A ⊕ (d ⊗ d) ⊕ (d ⊗ d)A. (7.46)

We then consider the D − 1-forms. From A6 we get

AD−1,i1...id−3
→ (d ⊗ d⊗ d)A , (7.47)

from A7,1 we get

AD−1,i1...id−2,j → d⊗ (d ⊗ d)A , (7.48)

from A8 we get

AD−1,i1...id−1
→ d , (7.49)

from A8,2 we get

AD−1,i1...id−1,j1j2 → d⊗ (d ⊗ d)A , (7.50)

from A9,1 we get

AD−1,i1...id,j → d , (7.51)

and finally from A9,3 we get

AD−1,i1...id,j1j2j3 → (d ⊗ d⊗ d)A . (7.52)

This gives 2d⊕ (2d ⊗ 2d ⊗ 2d)A of SO(d, d), where

(2d ⊗ 2d⊗ 2d)A = (d ⊗ d⊗ d)A⊕[d⊗(d⊗ d)A]⊕[d⊗(d⊗ d)A]⊕(d⊗ d⊗ d)A . (7.53)

Finally, we consider the D-forms. All the fields in eq. (7.37) contribute, and we list

here the SL(d,R) representations for all the fields, in the same order as they appear in

eq. (7.37):

(d ⊗ d⊗ d⊗ d)A

d⊗ (d ⊗ d⊗ d)A

(d ⊗ d)A

(d ⊗ d)A ⊗ (d ⊗ d)A

d⊗ d

d⊗ (d ⊗ d⊗ d)A

2 × 1

(d ⊗ d)A

(d ⊗ d⊗ d⊗ d)A . (7.54)
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This sums up to 1 ⊕ 1 ⊕ (2d ⊗ 2d)A ⊕ (2d ⊗ 2d ⊗ 2d⊗ 2d)A of SO(d, d). In particular,

the representation corresponding to four antisymmetrised SO(d, d) indices decomposes as

(2d ⊗ 2d⊗ 2d ⊗ 2d)A = (d⊗ d⊗ d ⊗ d)A ⊕ [d ⊗ (d ⊗ d⊗ d)A]

⊕[(d⊗ d)A ⊗ (d ⊗ d)A] ⊕ [d ⊗ (d⊗ d ⊗ d)A] ⊕ (d ⊗ d⊗ d⊗ d)A . (7.55)

Summarizing, we find that the complete result for the solitonic p-form potentials pre-

cisely coincides with the one of section 2 which is summarised in table 2. Besides, this

general analysis also shows in a very elegant and concise way that the same set of solitonic

fields occurs in four and three dimensions, as anticipated in table 2.

To complete the analysis, we also derive the forms that arise from the reduction of

the fields in eq. (7.37) to D < 3. We first consider the case D = 2. In the derivation

of the scalars, that is the 0-forms, with respect to the general derivation of the D − 2

forms in higher dimensions given in eqs. (7.42)–(7.45), it is eq. (7.43) that gets modified.

Indeed, given that all the indices of the field A7,1 are internal, we have to use the fact that

the GL(10,R) representation of the field is irreducible, which results in the 63 of SL(8,R)

after reduction, while eq. (7.43) applied to the D = 2 case would have given an additional

singlet. All the other representations in D = 2 are unchanged. To summarise, the D fields

in two dimensions are

D0,AB D1,A D1,ABC D2 D′
2 D2,AB D2,ABCD . (7.56)

Repeating the same argument, for D = 1 one finds

D0,ABC D1 D1,AB D1,ABCD . (7.57)

One can formally also reduce to zero dimensions, which gives

D0 D0,ABCD . (7.58)

This last result, not surprisingly, is what one would get by decomposing the adjoint rep-

resentation of E11 in terms of the D10 algebra which results from deleting node 10 in the

Dynkin diagram of figure 1 and reading the result at level 2.

8 Conclusions

In this paper we extended our previous work on the T-duality covariant formulation of WZ

terms corresponding to Fundamental Branes and D-Branes to include the WZ terms of

String Solitons, see eq. (5.8). This led to two distinguishing features which did not occur

in the analysis of the Fundamental Branes and D-branes. First of all, not all solitonic

potentials of supergravity correspond to a supersymmetric String Soliton. This is due to

the fact that the construction of a gauge-invariant WZ term requires the introduction of

a number of worldvolume potentials that do not always fit into a worldvolume multiplet

with 16 supercharges. First, we have determined the T-duality multiplets which contain

the String Solitons, see table 1. Next, we identified the conjugacy classes within these
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T-duality multiplets to which the String Solitons belong. These conjugacy classes can be

defined by specifying a certain set of lightlike directions, see eq. (5.9). Their dimensions

have been determined, see table 9.

The second distinguishing feature is that the supersymmetric String Solitons fill out

T-duality conjugacy classes, whose ten-dimensional origin cannot be understood by consid-

ering the standard NS5A and NS5B branes of string theory alone. The missing components

can be understood as arising from the reduction of a number of mixed symmetry fields that

are precisely the ones predicted by the very extended Kac-Moody algebra E11. This is only

formally so since the mixed symmetry fields, with the present technology, can only be

defined for linearised supersymmetry.

A special example of a mixed symmetry solitonic potential, predicted by E11, is the

dual graviton [9].11 In D = 10 dimensions this is a mixed symmetry potential A7,1 which

has 8 indices but is only antisymmetric in the first 7 indices. Although this dual graviton

can only be defined for linearised gravity and linearised supersymmetry [37], upon reduction

to 9 dimensions it gives rise to a solitonic 6-form and 7-form potential that are part of the

non-linear 9-dimensional supergravity theory. These potentials are the duals of the Kaluza-

Klein (KK) vector and KK scalar, respectively. In particular, the 5-brane charged under

the 6-form is the reduction in the isometry direction of the KK5A (KK5B) monopole, whose

worldvolume theory is described by a vector (tensor) multiplet [28]. This brane, together

with the unwrapped NS5A (NS5B) forms a vector of the nine-dimensional T-duality group

SO(1, 1), which splits in selfdual and anti-selfdual representations. In lower dimensions

the picture is analogous. In particular in D dimensions the KK monopole, reduced in the

isometry direction and wrapped on a d− 1-dimensional torus, and the NS5-brane, reduced

in a transverse direction and wrapped on a d − 1-dimensional torus, give D − 4-branes

that transform as vectors of SO(d, d). The important point is that, in order to obtain the

full T-duality vector representation one needs to include the dual graviton.12 The same

applies to all the other mixed-symmetry potentials predicted by E11. They are needed to

understand the 10-dimensional origin of the different soliton conjugacy classes.

It is interesting to compare the relation between branes and doubled geometry in more

detail. For the Fundamental Branes and the D-branes we found that the WZ term of the

Fundamental 0-branes (see eq. (1.6)), does not contain extra scalars, i.e. they are insensitive

for the doubled geometry. In contrast, the WZ term of the Fundamental String (see

eq. (1.5)) and the D-branes (see eq. (1.8)) depends on twice as many extra scalars as there

are compactified dimensions, i.e. the Fundamental String and the D-branes feel the doubled

geometry. For the Solitonic Branes the situation is slightly different. These branes depend

on the extra scalars via the world-volume curvature F1,A with the index A uncontracted. In

11Another nice application of the mixed symmetry potentials, predicted by E11, is the understanding,

be it at the linearized level only, of the 11-dimensional origin of the IIA 9-form RR potential that is dual

to Romans mass parameter m [36]. This is achieved by the mixed symmetry potential A10,1,1, with 10

antisymmetric indices and 2 symmetric ones.
12The dual graviton is special in the sense that there is a corresponding KK monopole solution which

can be described in terms of the metric. Similar solutions do not exist for the other mixed symmetry fields

that are needed to fill out the T-duality multiplets.
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section 5 we have seen that this implies that a particular Solitonic Brane, which transforms

as an anti-symmetric tensor with m indices under T-duality, only depends on m out of the

2d extra scalars. The doubled geometry, or T-duality covariance, implies that the T-

dual rotated Solitonic Brane will sense the T-dual rotated extra scalars, but again this

rotated brane will only depend on m out of the 2d extra scalars. The fact that there is no

need to impose duality relations on the extra scalars, like in the case of the Fundamental

String [19–21], should make the construction of a kappa-symmetric action easier.

The String Solitons, with brane tension T ∼ (gs)
−2, are just one step in a whole family

of interconnected branes with tension T ∼ (gs)
α and α = 0 ,−1 ,−2 , · · · etc. The next set

of branes in this family, corresponding to α = −3, are much harder to understand. There

is a crucial difference between the fields with α ≤ −3 and the ones with α = 0 ,−1 and

−2 at the level of the gauge algebra. The solitonic fields, given in table 2, have the same

structure in any dimension, and given that their transformations contain RR fields in the

form of SO(d, d) spinor bilinears, the whole analysis of the gauge algebra can be performed

in a general way which is the same in any dimension, as was shown in section 4. For

the α = −3 fields the situation is different, because the requirement of gauge invariance

involves the cancellation of terms containing three α = −1 objects. This is achieved in

each dimension using Fierz identities of spinors of SO(d, d), which implies that in this case

the analysis is dimension-dependent.

An example of an α = −3 field is the field E8 of IIB, which is the S-dual of the RR

8-form C8. Its field strength and gauge transformations are

K9 = dE8 + G3D6 −
1
2F7C2

δE8 = dΞ7 + G3Λ5 −
1
2F7λ1 , (8.1)

and one can easily write down a corresponding WZ term, which contains the world

volume fields c1 and d5 together with two embedding scalars. Imposing electromagnetic

duality between c1 and d5 one obtains a vector plus two scalars, which is the bosonic

sector of a vector multiplet on an 8-dimensional world volume, and the corresponding

brane is the S-dual of the D7-brane. As can be seen from tables 3–7, the α = −3 field of

lowest rank is always ED−2,ȧ, and one can show that this field always gives a WZ term

corresponding to a supersymmetric brane. This brane belongs to the anti-chiral spinor

SO(d, d) representation, which contains the double dimensional reduction of the S-dual of

the D7-brane of IIB. One can also perform direct dimensional reductions of this object,

and correspondingly one expects to find branes associated to α = −3 fields of higher

rank. All these branes can be seen as the endpoints of Fundamental Branes, D-branes and

String Solitons, and it would be interesting to determine their T-duality representations

and to investigate them in more detail.

We just saw an example of a supersymmetric α = −3 brane which was the S-dual of

a Dirichlet brane. By performing similar U-duality rotations on the other branes one can

easily construct examples of supersymmetric branes with α ≤ −3. The minimum values of

α one can obtain in this way are indicated in table 11. The cases D = 3 and D = 4, where

the lowest values of α are obtained, are a bit special. While in dimensions higher than four
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D IIA IIB 9 8 7 6 5 4 3

αmin −2 −4 −4 −4 −4 −5 −5 −7 −11

Table 11. This table gives the minimum value αmin corresponding to the potentials of maximal

supergravity in D dimensions.

the U-duality group Ed+1(d+1) decomposes as

Ed+1(d+1) ⊃ SO(d, d) × R+ , (8.2)

in four dimensions one has

E7(7) ⊃ SO(6, 6) × SL(2,R) (8.3)

and in three dimensions one has

E8(8) ⊃ SO(8, 8) . (8.4)

This implies that in order to obtain tables equivalent to tables 3–7, and in particular in order

to determine the dilaton weight of the fields, one has to perform a further decomposition.

The U-duality representations of all the forms in D = 4 and D = 3 are given in [7, 8].

In four dimensions the SL(2,R) symmetry implies that for each p-form, the T-duality

representation corresponding to α and the one corresponding to −α − 2p are the same,

and the lowest value of α, corresponding to a 4-form, is −7, as can be deduced from the

fact that the highest value of α for a 4-form is −1. In three dimensions, for each p-form

the T-duality representation corresponding to α and the one corresponding to −α− 4p are

conjugate, and the lowest value of α, corresponding to a 3-form, is −11.

The fact that the D7-brane, with α = −1, and the S-dual of the D7-brane, with

α = −3, are related to each other under U-duality, implies that the worldvolume dynamics

of both branes is described by the same supermultiplet, which in this case is a vector

multiplet. In view of this it is convenient to classify branes according to the supermultiplet

that governs their worldvolume dynamics. Since we have only three different multiplets

(scalar, vector and (self-dual) tensor) we only have three different kind of branes: Scalar,

Vector and Tensor Branes. Using this terminology, the Fundamental Branes are Scalar

Branes, while the Dirichlet brane are Vector Branes.13 Among the String Solitons we have

Vector and Tensor Branes. All Vector Solitons can be obtained by a U-duality rotation

of a Vector Dirichlet Brane. Note, however, that their T-duality representations are not

the same. In this sense Vector Solitons are not truly independent branes. This is different

from the Tensor Solitons which stand on themselves and cannot be obtained by a U-duality

rotation of a Scalar or Vector brane.

To conclude, there are a huge number of branes in string theory. In this paper we

have concentrated on just three classes of them: the Fundamental Branes, D-branes and

Solitons. These are by far the best understood branes. Table 11 shows that there are many

13This terminology is not unique for low-dimensional worldvolumes since for three-dimensional worldvol-

umes a vector is dual to a scalar and for two-dimensional worldvolumes a vector is dual to an integration

constant.
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other non-perturbative branes, whose present status is unclear. It would be interesting to

bring some order in them and to investigate whether there is some role to play by these

suggestive branes.
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A Spinor representations of SO(d, d)

In this appendix we summarise a few useful properties of the spinors of SO(d, d), where

d = 10 − D. We will partly follow [38], (appendix of [39]), although we will be using a

different basis for the gamma matrices. Dirac spinors of SO(d, d) have 2d components.

Introducing gamma matrices ΓA (A = 1 · · · , 2d), satisfying the Clifford algebra

{ΓA,ΓB} = 2ηAB , (A.1)

where ηAB is the Minkowski metric with signature (d, d), one defines the (unitary) charge

conjugation matrix C, whose symmetry property is

CT = −ǫC , (A.2)

where ǫ = ±1, such that

CΓAC† = −ηΓT
A , (A.3)

where η = ±1. The matrix C is thus symmetric if ǫ = −1 and antisymmetric if ǫ = 1, and

the symmetry property of CΓA is determined by the product of the two parameters ǫ and

η,

(CΓA)T = ǫη (CΓA) . (A.4)

This enables one to calculate the symmetry property of any matrix CΓA1···An . Requiring

that the total number of symmetric and antisymmetric matrices equals 1
22d(2d + 1) and

1
22d(2d − 1), respectively, one finds, for each value of d, two solutions for the pair ǫ , η such

that eqs. (A.2) and (A.3) are satisfied. These solutions are listed in table 12.

Chiral spinors can be defined by introducing the matrix Γ⋆, with Γ⋆Γ⋆ = 1, which is

proportional to the product of all other gamma-matrices:

Γ⋆ = (−)d Γ1 · · ·Γ2d . (A.5)

For all values of D one can define Majorana-Weyl spinors with 2d−1 real components. In

all dimensions we are using a Weyl basis, so that a spinor λα decomposes according to

λα =

(

λa

λȧ

)

, (A.6)
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d ǫ η C CΓA [C,Γ⋆}

1,5 +1 +1 A S AC

−1 −1 S S

2,6 +1 −1 A A C

+1 +1 A S

3,7 −1 +1 S A AC

+1 −1 A A

4,8 −1 −1 S S C

−1 +1 S A

Table 12. The possible values of ǫ and η for various d. The symmetry properties of C and CΓA

are indicated with S (symmetric) and A (anti-symmetric). The sixth column indicates whether the

charge conjugation matrix commutes (C) or anti-commutes (AC) with Γ⋆. In each dimension, the

charge conjugation matrix corresponding to the first line is C1 and the one corresponding to the

second line is C2.

where the Dirac spinor index α, α = 1, . . . , 2d splits in the two indices a and ȧ denoting

spinors of opposite chirality, where a, ȧ = 1, . . . , 2d−1. The ΓA and Γ⋆ matrices have the

form

(ΓA)α
β =

(

0 (ΓA)a
ḃ

(ΓA)ȧ
b 0

)

, (Γ⋆)α
β =

(

( 2d−1)a
b 0

0 −( 2d−1)ȧ
ḃ

)

. (A.7)

In the Weyl basis the charge conjugation matrix is given by

d odd : Cαβ =

(

0 Caȧ

C ȧa 0

)

, d even : Cαβ =

(

Cab 0

0 C ȧḃ

)

. (A.8)

Finally, a useful identity is

ΓA1···Ad
=

(−)d

d!
ǫA1···AdB1···Bd

Γ∗Γ
Bd···B1 . (A.9)

To derive all the properties of the gamma matrices and the charge conjugation matrices

that we have listed, it is convenient to work with an explicit representation of the gamma

matrices. We first derive this representation in the Euclidean case, that is for SO(2d), and

we denote the corresponding gamma matrices with γA, to distinguish them from the ones of

the maximally non-compact case. If d = 1, the Clifford algebra is simply satisfied if γ1 = σ1

and γ2 = σ2, where σi, i = 1, 2, 3 are the Pauli matrices, satisfying σiσj = δij + iǫijkσk.

To get the gamma matrices for d = 2 one considers the tensor product of Pauli matrices

and the two-dimensional identity matrix. One introduces γ3 and γ4, that start as γ2, and

to make these three matrices anticommuting one considers a tensor product with the three

different Pauli matrices, that is γi+1 = σ2 ⊗ σi. The Clifford algebra is then satisfied if

additionally γ1 = σ1 ⊗ 2. This procedure can be induced to any d. Given the gamma

matrices γA, A = 1, . . . , 2d, in 2d dimensions, that are made of tensor products of d 2 × 2

matrices, one considers the matrices γA ⊗ 2, for A = 1, . . . , 2d− 1, together with γ2d ⊗σ1,
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γ2d ⊗ σ2 and γ2d ⊗ σ3. These matrices satisfy the Clifford algebra in 2(d + 1) dimensions.

This procedure leads to the following result

γ1 = σ1 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ . . .

γ2 = σ2 ⊗ σ1 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ . . .

γ3 = σ2 ⊗ σ2 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ . . .

γ4 = σ2 ⊗ σ3 ⊗ σ1 ⊗ 2 ⊗ 2 ⊗ . . .

γ5 = σ2 ⊗ σ3 ⊗ σ2 ⊗ 2 ⊗ 2 ⊗ . . .

γ6 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ 2 ⊗ . . . (A.10)

γ7 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ 2 ⊗ . . .

γ8 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ . . .

γ9 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ . . .

γ10 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ . . .
... =

...

where it is understood that for SO(2d) one uses γ1 , · · · , γ2d and takes in each expression

the first d factors of 2 × 2 matrices.

In this basis the matrices with odd index γ2n+1 are real and symmetric, while the ma-

trices with even index γ2n are imaginary and antisymmetric. To go to the (d, d) signature,

we define

Γ2n+1 = γ2n+1 Γ2n = iγ2n (A.11)

which implies that all the matrices Γn are real, and are symmetric for n odd and antisym-

metric for n even. The basis we have chosen is a Weyl basis, and the reader can verify that

defining the chirality matrix as in (A.5) one obtains

Γ⋆ = σ3 ⊗ 2 ⊗ 2 ⊗ 2 ⊗ . . . , (A.12)

which is indeed as in eq. (A.7).

If d is even, one finds that the charge conjugation matrix

C1 = 2 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ . . . ⊗ σ1 ⊗ σ2 (A.13)

satisfies eq. (A.3) with η = −1. One can also consider the charge conjugation matrix

C2 = σ3 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ . . . ⊗ σ1 ⊗ σ2 , (A.14)

which satisfies eq. (A.3) with η = +1. Both these matrices have the same symmetry

properties, and they are symmetric if d/2 is even and antisymmetric if d/2 is odd. Both

these matrices commute with Γ⋆.

If d is odd, one finds that the matrix

C1 = σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ . . . ⊗ σ1 ⊗ σ2 (A.15)
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satisfies eq. (A.3) with η = +1, and it is symmetric if (d + 1)/2 is even and antisymmetric

if (d + 1)/2 is odd. The other solution of eq. (A.3) for d odd is

C2 = σ1 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ . . . ⊗ σ1 ⊗ σ2 , (A.16)

where in this case η = −1 and the symmetry properties are opposite to C1. Both these

matrices anticommute with Γ⋆. For any d, the product C1C2 is proportional to Γ⋆. All the

properties we have derived here are listed in table 12.

The C matrices we have defined are hermitian, that is they are real if symmetric and

imaginary if antisymmetric. Given that all the gamma matrices are real one can consider

spinors with real components. When C is real, given the real spinor λα one can then define

the real spinor λ
α

from

λ
α

= λβCβα . (A.17)

Similarly, when C is imaginary one can define

λ
α

= iλβCβα . (A.18)

We now define the conjugate of ΓAλ (without loss of generality we can assume here that

C is real). One has

(ΓAλ)
α

= λγ(ΓA)β
γCβα = −ǫλγ(CΓA)αγ = −η(λΓA)α . (A.19)

The same relation occurs when C is imaginary. In this paper we have made in all dimensions

the choice for C which gives η = −1. This implies that we have always used the relation

(ΓAλ)
α

= (λΓA)α . (A.20)

This also implies that we have chosen C to be imaginary for d = 2 and d = 3, while C is real

for d = 1, d = 4 and d = 5, as can be deduced by looking at the values of ǫ corresponding

to η = −1 in table 12.

In this paper we have considered bilinears of SO(d, d) spinors. In particular, in section 5

we have counted the number of world-volume degrees of freedom of various brane effective

actions by looking at the world-volume fields that appear in the WZ term. In order to

perform this counting, one has to determine the number of different components of the

SO(d, d) spinors that appear in a bilinear containing m Gamma matrices with fixed vector

SO(d, d) indices. We now want to show that to perform this computation one has to go to

light-cone vector indices of the T-duality group. We denote these indices by 1±, 2±, . . . , d±.

If m = 1, we therefore take the single gamma matrix to be along such directions. If m = 2,

we will see that one has to take the product of two Gamma matrices in the directions

n1±, n2±, with n1 6= n2. These directions form a conjugacy class inside the representation

corresponding to two antisymmetric SO(d, d) indices. Similarly, for m = 3 and m = 4 one

has to take the the products of Gamma matrices in the directions n1±, n2±, . . . , nm±, with

n1, n2, . . . , nm all different. For any m, the dimension of this conjugacy class is

2m

(

d

m

)

, (A.21)
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and it is equal to the dimension of the corresponding representation,
(

2d
m

)

, only for m = 0

and m = 1. The dimension of the conjugacy class for m = 2, m = 3 and m = 4 is given in

table 9 for d = 2, . . . , 5.

The products of Gamma matrices in the conjugacy classes defined above all have the

property of being nilpotent. We now want to show that spinor bilinears formed out of

these matrices relate 2d−m spinor components, with m ≤ d, that is 2d−m−1 of one chirality

and 2d−m−1 of the opposite chirality. As we will see, the case m = d is special because

a nilpotent product of m light-cone Gamma matrices maps a generic spinor to a single

component of a given chirality. The case m > d is related to the previous case by using

the epsilon symbol, but we are not interested in this case because it never gives rise to WZ

terms that satisfy our criteria.

To show that the nilpotent product of m light-cone Gamma matrices, m ≤ d, maps a

2d-component spinor to 2d−m components, we make a specific choice of basis and we show

that in this basis the light-cone matrices have 2d−m non-vanishing entries. For any d one

can take the light-cone basis and define the nilpotent matrices

Γ1± =
1

2
(Γ1 ± Γ2d)

Γn± =
1

2
(Γ2n−2 ± Γ2n−1) n = 2, . . . , d , (A.22)

where the standard Gamma matrices are those given in (A.10) and (A.11). Before dis-

cussing the general case, we first consider the cases d = 1 and d = 2 explicitly.

For d = 1 the Gamma matrices are 2 × 2 matrices, and eq. (A.22) gives

Γ1+ =

(

0 1

0 0

)

Γ1− =

(

0 0

1 0

)

. (A.23)

One can see that, given a generic 2-component spinor, each of these matrices maps to a

given chirality. This is obvious, because these two matrices are nothing but ΓA ± ǫABΓB .

In the d = 2 case the matrices are 4 × 4, and using eq. (A.22) one obtains

Γ1+ =











1 0

0 0

0 0

0 1











Γ1− =











0 0

0 1

1 0

0 0











Γ2+ =











0 0

1 0

0 0

−1 0











Γ2− =











0 1

0 0

0 −1

0 0











, (A.24)

where here and in the following the blocks that are left blank have all zero entries. One can

see that each of these matrices maps a generic 4-component spinor to one component of

each chirality. We next consider m = 2, that is the antisymmetric product of two Gamma

matrices. Given the 6 independent ΓAB matrices, one can choose in light-cone coordinates
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the basis Γ1±Γ2±, (Γ1+Γ1− − Γ1−Γ1+) and (Γ2+Γ2− − Γ2−Γ2+), where only the first four

matrices belong to the nilpotent conjugacy class. In particular, one has

Γ1+Γ2+ =











0 0

0 0

0 0

1 0











, (A.25)

which has only one non-zero entry, and thus maps a spinor to one component of a given

chirality. The same applies to the other three matrices obtained by taking the other

combinations of pluses and minuses, while the reader can verify that this does not apply to

(linear combinations of) the other two matrices (Γ1+Γ1−−Γ1−Γ1+) and (Γ2+Γ2−−Γ2−Γ2+).

We now briefly consider the general case d > 2. We explicitly write the matrices Γ2±

and Γ3±. For Γ2± using (A.10) and (A.11) one gets

Γ2+ =











0 000 0
− 0 









, Γ2− =











00 00 −0 0 









, (A.26)

where 0 and are the 2d−2 × 2d−2 zero and identity matrices. Similarly, for Γ3± one gets

Γ3+ =





























0 00 0 0
− 00 0

− 0 0 00




























(A.27)

and

Γ3− =





























00 0 0 −0 00 −0 0 00 0




























(A.28)

where here 0 and are the 2d−3 × 2d−3 zero and identity matrices. One can see that each

of these matrices halves the spinor components of each chirality. The product of the two
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Gamma matrices Γ2+ and Γ3+ is

Γ2+Γ3+ =





























0 00 00 0
− 0 0 00 00 0

− 0




























, (A.29)

where again 0 and are the 2d−3 × 2d−3 zero and identity matrices and thus this matrix

maps a 2d-component spinor to 2d−3 components for each chirality. The reader can verify

that the same applies to the other three combinations of pluses and minuses, while it does

not apply to (Γ2+Γ2− − Γ2−Γ2+), as well as to (Γ3+Γ3− − Γ3−Γ3+).

We consider explicitly the case d = 3, for which the entries in eq. (A.29) are numbers.

We then compute Γ1+ from eq. (A.22), that is

Γ1+ =





























1 0

0 0

0 0

0 1

0 0

0 1

1 0

0 0





























, (A.30)

and we finally consider the product of the three light-cone Gamma matrices

Γ1+Γ2+Γ3+ =





























0 0

0 0

0 0

−1 0

0 0

0 0

0 0

0 0





























, (A.31)

which as expected has only one non-zero entry, and thus maps an 8-component spinor to

a single component of a given chirality.

A careful analysis of the Gamma matrices defined in eqs. (A.10) and (A.11) and the

light-cone Gamma matrices of eq. (A.22) should convince the reader that the result is

completely general and applies to all cases.

Open Access. This article is distributed under the terms of the Creative Commons
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